JP3554155B2 - Lithium secondary battery and method of manufacturing the same - Google Patents

Lithium secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP3554155B2
JP3554155B2 JP25994297A JP25994297A JP3554155B2 JP 3554155 B2 JP3554155 B2 JP 3554155B2 JP 25994297 A JP25994297 A JP 25994297A JP 25994297 A JP25994297 A JP 25994297A JP 3554155 B2 JP3554155 B2 JP 3554155B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode lead
peel strength
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25994297A
Other languages
Japanese (ja)
Other versions
JPH1197070A (en
Inventor
謙二 土屋
聡一 花房
正夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP25994297A priority Critical patent/JP3554155B2/en
Publication of JPH1197070A publication Critical patent/JPH1197070A/en
Application granted granted Critical
Publication of JP3554155B2 publication Critical patent/JP3554155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電要素がフィルム内に収納された構造のリチウム二次電池及びその製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の発達にともない、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能な二次電池の開発が要望されている。このような二次電池としては、リチウムまたはリチウム合金を活物質とする負極と、モリブデン、バナジウム、チタンあるいはニオブなどの酸化物、硫化物もしくはセレン化物を活物質として含む懸濁液が塗布された集電体からなる正極と非水電解液を具備したリチウム二次電池が知られている。
【0003】
また、負極に、例えばコークス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素のようなリチウムイオンを吸蔵放出する炭素質材料を含む懸濁液が塗布された集電体を用いたリチウム二次電池が提案されている。前記二次電池は、デンドライト析出による負極特性の劣化を改善することができるため、電池寿命と安全性を向上することができる。
【0004】
ところで、リチウム二次電池の一例であるポリマー電解質二次電池は、活物質、非水電解液及びこの電解液を保持するポリマーを含む正極層が集電体に担持された構造の正極と、リチウムイオンを吸蔵放出し得る炭素質材料、非水電解液及びこの電解液を保持するポリマーを含む負極層が集電体に担持された構造の負極と、前記正極と前記負極の間に配置され、非水電解液及びこの電解液を保持するポリマーを含む固体ポリマー電解質層と、前記正極と電気的に接続された正極リードと、前記負極と電気的に接続された負極リードとを含む発電要素; 前記発電要素を前記正極リードの端部および前記負極リードの端部が外部に延出するように被覆し、開口部が熱融着されたフィルム;を備える。このようなリチウム二次電池(素電池)は、例えば、単独か、もしくは組電池の形態で電池パック内に収納され、電子機器の電源として使用される。
【0005】
しかしながら、前記リチウム二次電池は、過充電等によりガスが発生すると、前記フィルムが大幅に膨張し、破裂するため、発電要素の飛散や、電池パックの変形などが生じ、電子機器を損傷したり、人体に悪影響を及ぼす恐れがある。
【0006】
【発明が解決しようとする課題】
本発明は、過充電等によりフィルムが膨張した際に、速やかに膨張を停止し、破裂を未然に防止することが可能なリチウム二次電池及びその製造方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係るリチウム二次電池は、リチウムイオンを吸蔵・放出する正極及び負極と、前記正極と前記負極の間に配置されたリチウムイオン伝導性電解質層と、前記正極と電気的に接続された正極リードと、前記負極と電気的に接続された負極リードとを含む発電要素;
前記発電要素を前記正極リード及び前記負極リードの端部が外側に延出するように被覆し、開口部が熱融着により封止されたフィルム;を具備し、
前記フィルムは融着部に安全弁として機能する領域が1つ以上存在し、前記安全弁領域は、矩形状で、かつ剥離強度が前記正極リード及び前記負極リードそれぞれの融着部の剥離強度の30%〜70%に相当し、
前記安全弁領域と前記正極リードの融着部と前記負極リードの融着部以外の融着部における剥離強度は、前記正極リードの融着部及び前記負極リードの融着部の剥離強度よりも大きいことを特徴とするものである。
【0008】
本発明に係るリチウム二次電池の製造方法は、リチウムイオンを吸蔵・放出する正極及び負極と、前記正極と前記負極の間に配置されたリチウムイオン伝導性電解質層と、前記正極と電気的に接続された正極リードと、前記負極と電気的に接続された負極リードとを含む発電要素がフィルムで前記正極リード及び前記負極リードの端部が外部に延出するように被覆され、前記フィルムの開口部が熱融着により封止された構造を有するリチウム二次電池の製造方法であって、
前記開口部のうち少なくとも1箇所は非熱融着性樹脂シートが介在された状態で熱融着され、前記シートが存在する融着部は、矩形状で、かつ剥離強度が前記正極リード及び前記負極リードそれぞれの融着部の剥離強度の30%〜70%に相当し、
前記シートが存在する融着部と前記正極リードの融着部と前記負極リードの融着部以外の融着部における剥離強度は、前記正極リードの融着部及び前記負極リードの融着部の剥離強度よりも大きいことを特徴とするものである。
【0009】
【発明の実施の形態】
本発明に係るリチウム二次電池の一例(ポリマー電解質二次電池)を図1〜図5を参照して詳細に説明する。
図1は本発明に係るリチウム二次電池に含まれる発電要素の一例を示す断面図、図2は本発明に係るリチウム二次電池を示す部分切欠平面図、図3は図2の二次電池の側面図、図4は図2の二次電池において安全弁が作動した状態を示す部分切欠平面図、図5は図4の二次電池の側面図である。
【0010】
本発明に係るリチウム二次電池は、例えば図1に示すような発電要素1を備える。このような発電要素1は、銅製エキスパンドメタルのような網状集電体2の両面に負極層3が担持された構造を有する負極と、アルミニウム製エキスパンドメタルのような網状集電体4の両面に活物質を含む正極層5が担持された構造を有する2枚の正極を備える。リチウムイオン伝導性電解質層としての2枚の固体ポリマー電解質層6は、前記負極の両面にそれぞれ積層されている。前記各固体ポリマー電解質層6には、前記正極がそれぞれ積層されている。なお、前記負極集電体2は、この集電体と同じ材料からなる帯状端子部7を有する。また、前記正極集電体4は、この集電体と同じ材料からなる帯状端子部8を有する。例えば帯状アルミニウム箔からなる正極リード9は、前記2つの帯状端子部8と接続されている。例えば帯状銅箔からなる負極リード10は、前記負極端子部7に接続されている。このような発電要素1は、縦に二つ折りにしたフィルム11によって被覆されている。前記フィルム11の開口部(長手方向に沿う端部及び長手方向と直交する両端部)は、熱融着により封止されている。熱融着部12のうち、長手方向に沿う端部の中央付近は、他に比べて融着幅が狭くなっている。この幅の狭い融着部13(図2の楕円で囲まれた領域)は、安全弁として機能し、剥離強度が前記正極リード9及び前記負極リード10それぞれの融着部14(図2の円で囲まれた領域)の剥離強度の30%〜70%に相当する。このような幅の狭い融着部は、例えば、熱融着の際に加圧しない箇所を設けることによって形成することができる。
【0011】
このように安全弁として機能する融着部13の剥離強度を設定するのは次のような理由によるものである。前記融着部13の剥離強度を前記融着部14の剥離強度の30%未満にすると、前記フィルム11の気密性が低下し、充放電サイクル特性のような電池特性が低下する恐れがある。一方、前記融着部13の剥離強度が前記融着部14の剥離強度の70%を越えると、過充電等により内圧が上昇した際、破裂を未然に防止することが困難になる恐れがある。前記融着部13の剥離極度のより好ましい範囲は、40%〜60%である。
【0012】
このような構成のリチウム二次電池において、例えば過充電等によりガスが発生し、前記フィルム11の内圧が上昇すると、図4及び図5に示すように前記剥離強度を有する融着部13が剥離し、この部分から前記フィルム11内のガスを外部に逃散させることができるため、前記フィルム11の破裂を未然に回避することができる。
【0013】
前記リチウム二次電池の正極、負極及び電解質層としては、例えば、以下に説明するものを用いることができる。
(正極)
この正極は、正極活物質、非水電解液及びこの電解液を保持するためのポリマーを含む正極層が集電体に担持されたものから形成される。
【0014】
前記正極活物質としては、種々の酸化物(例えばLiMn などのリチウムマンガン複合酸化物、二酸化マンガン、例えばLiNiO などのリチウム含有ニッケル酸化物、例えばLiCoO などのリチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウムを含む非晶質五酸化バナジウムなど)や、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブテンなど)等を挙げることができる。中でも、リチウムマンガン複合酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケル酸化物を用いるのが好ましい。
【0015】
前記非水電解液は、非水溶媒に電解質を溶解することにより調製される。
前記非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。前記非水溶媒は、単独で使用しても、2種以上混合して使用しても良い。
【0016】
前記電解質としては、例えば、過塩素酸リチウム(LiClO )、六フッ化リン酸リチウム(LiPF )、ホウ四フッ化リチウム(LiBF )、六フッ化砒素リチウム(LiAsF )、トリフルオロメタンスルホン酸リチウム(LiCF SO )、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF SO ]等のリチウム塩を挙げることができる。
【0017】
前記電解質の前記非水溶媒に対する溶解量は、0.2mol/l〜2mol/lとすることが望ましい。
前記非水電解液を保持するためのポリマーとしては、例えば、ポリエチレンオキサイド誘導体、ポリプロピレンオキサイド誘導体、前記誘導体を含むポリマー、ビニリデンフロライド(VdF)とヘキサフルオロプロピレン(HFP)との共重合体等を用いることができる。前記HFPの共重合割合は、前記共重合体の合成方法にも依存するが、通常、最大で20重量%前後である。
【0018】
前述した図1においては、前記正極の集電体及び端子部としてアルミニウム製エキスパンドメタルを使用したが、前記集電体には、例えばアルミニウム箔、アルミニウム製メッシュ、アルミニウム製パンチドメタル等を用いても良い。
【0019】
前記正極は、導電性を向上する観点から導電性材料を含んでいてもよい。前記導電性材料としては、例えば、人造黒鉛、カーボンブラック(例えばアセチレンブラックなど)、ニッケル粉末等を挙げることができる。
【0020】
(負極)
この負極は、負極活物質、非水電解液及びこの電解液を保持するためのポリマーを含む負極層が集電体に担持されたものから形成される。
【0021】
前記負極活物質としては、リチウムイオンを吸蔵放出する炭素質材料を挙げることができる。かかる炭素質材料としては、例えば、有機高分子化合物(例えば、フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られるもの、コークスや、メソフェーズピッチを焼成することにより得られるもの、人造グラファイト、天然グラファイト等に代表される炭素質材料を挙げることができる。中でも、500℃〜3000℃の温度で、常圧または減圧下にて前記メソフェーズピッチを焼成して得られる炭素質材料を用いるのが好ましい。
【0022】
前記非水電解液及び前記ポリマーとしては、前述した正極で説明したものと同様なものが用いられる。
前述した図1においては前記負極の集電体及び端子部としては、銅製エキスパンドメタルを使用したが、例えば銅箔、銅製メッシュ、銅製パンチドメタル等を用いても良い。
【0023】
なお、前記負極シートは、人造グラファイト、天然グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック、ニッケル粉末、ポリフェニレン誘導体等の導電性材料、オレフィン系ポリマーや炭素繊維等のフィラーを含むことを許容する。
【0024】
(固体ポリマー電解質層)
この電解質層は、非水電解液及びこの電解液を保持するためのポリマーを含む。
【0025】
前記非水電解液及び前記ポリマーとしては、前述した正極で説明したものと同様なものが用いられる。
前記電解質層は、強度を更に向上させる観点から、酸化硅素粉末のような無機フィラーを添加しても良い。
【0026】
前記リチウム二次電池に用いられるフィルムとしては、例えば、内部に熱融着樹脂(例えば、アイオノマー、ポリエチレン)層が配置されたものを挙げることができる。中でも、シール面に熱融着性樹脂が配され、中間にアルミニウム(Al)のような金属薄膜を介在させた多層フィルムからなることが好ましい。具体的には、シール面側から外面に向けて積層したポリエチレン(PE)/ポリエチレンテレフタレート(PET)/Al箔/PETの多層フィルム;PE/ナイロン/Al箔/PETの多層フィルム;アイオノマー/Ni箔/PE/PETの多層フィルム;エチレンビニルアセテート(EVA)/PE/Al箔/PETの多層フィルム;アイオノマー/PET/Al箔/PETの多層フィルム等を用いることができる。ここで、シール面側のPE、アイオノマー、EVA以外のフィルムは防湿性、耐通気性、耐薬品性を担っている。
【0027】
なお、前述した図2においては、融着部の一部を矩形状に凹ませて融着部の幅を狭くし、安全弁として機能する領域を形成したが、前記領域は剥離強度が前記範囲を満たせばどのような形状であっても良い。例えば、中央に矩形状の非融着領域を有する形状にすることができる。あるいは、非融着領域を形成せず、領域全体の融着強度を弱くしても良い。
【0028】
また、前述した図2においては、フィルムの長手方向に沿う融着部に安全弁機能を有する領域を形成したが、前記領域は正極リード及び負極リードの近傍を除けばどこに設けても良い。例えば、フィルムの長手方向と直交する端部側のうちリードが固定されていない側に形成しても良い。
【0029】
また、前述した図2においては、安全弁機能を有する領域の数を一つにしたが、二つ以上形成しても良い。
前述した図1〜図5においては、内面に熱融着性樹脂フィルムが配された多層フィルムで正極、ポリマー電解質層および負極を有する発電要素を前記正負極にそれぞれ電気的に接続されたリードが前記多層フィルムの1つの開口縁部から延出するように被覆し、前記多層フィルムの開口縁部で前記熱融着性樹脂フィルムを互いに熱融着して前記発電要素を密封した構造のリチウム二次電池に適用した例を説明したが、内面に熱融着性樹脂フィルムが配された多層フィルムで正極、ポリマー電解質層および負極を有する発電要素を前記正極に電気的に接続されたリードが前記多層フィルムの1つの開口縁部から延出し、かつ前記負極に電気的に接続されたリードが前記多層フィルムの他の開口縁部から延出するように被覆し、前記多層フィルムの開口縁部で前記熱融着性樹脂フィルムを互いに熱融着して前記発電要素を密封した構造のリチウム二次電池にも同様に適用することができる。
【0030】
以下、本発明に係るリチウム二次電池の製造方法の一例(ポリマー電解質二次電池の製造方法)を説明する。
本発明に係る製造方法は、内面に熱融着性樹脂フィルムが配された袋に正極、ポリマー電解質層および負極を有する発電要素を前記正負極にそれぞれ電気的に接続されたリードが前記袋の開口縁部から延出するように収納し、前記袋の開口縁部で前記熱融着性樹脂フィルムを互いに熱融着して前記発電要素を密封する製造方法や、内面に熱融着性樹脂フィルムが配されたチューブに正極、ポリマー電解質層および負極を有する発電要素を前記正極に電気的に接続されたリードが前記チューブの1つの開口縁部から延出し、かつ前記負極に電気的に接続されたリードが前記チューブの他の開口縁部から延出するように被覆し、前記チューブの開口縁部で前記熱融着性樹脂フィルムを互いに熱融着して前記発電要素を密封する製造方法に適用することができる。
【0031】
非熱融着性樹脂シートを介しての熱融着は、チューブないし袋の作製時に行っても良いし、リードが延出された開口縁部を封止する際に行っても良い。
前記非熱融着性樹脂シートは、例えば、ポリエチレンテレフタレート(PET)、ナイロン、ポリテトラフルオロエチレン(PTFE)のような撥水性樹脂等から形成することができる。
【0032】
本発明に係る方法で使用するフィルムとしては、前述したのと同様なものを挙げることができる。
以上説明したように本発明に係るリチウム二次電池によれば、過充電等により発電要素からガスが発生し、この発電要素を収納するフィルムの内圧が上昇した際に、剥離強度が正極リード及び負極リードそれぞれの融着部の剥離強度の30〜70%の範囲である融着部が速やかに剥離し、この剥離した部分から前記フィルム内のガスを外部に逃散させることができるため、前記フィルムの破裂を未然に防止することができる。
【0033】
また、本発明に係るリチウム二次電池の製造方法によれば、熱融着部のうち少なくとも1箇所の剥離強度が前述したような特定の値であるリチウム二次電池を製造することができる。すなわち、このような剥離強度が低い領域を熱融着の際の加圧度合いを調節することによって形成すると、加圧の仕方によっては熱融着させる領域に加えた熱が熱融着させない領域に伝わって、結果として熱融着させない領域まで融着されてしまう場合がある。本願発明のようにフィルムとフィルムの間に非熱融着性樹脂シートを介在させて熱融着を行うと、シートが介在している箇所は熱融着されないため、融着部の幅の調節を簡単に行うことができ、目的とする剥離強度を有する融着部を容易に形成することができる。その結果、高性能で、安全性が高いリチウム二次電池を簡単な方法で製造することができる。
【0034】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。
(実施例1)
ポリエチレンテレフタレートからなる表面層と、アルミニウムからなる中間層と、アイオノマー樹脂からなる内部層からなる厚さ100μmのラミネートフィルムを二つに折りたたみ、長手方向と直交する両端部を1対の熱ロールで挟んで熱融着し、前記フィルムの長手方向と直交する両端部に幅が5mmの融着部を形成した。また、上部側の熱ロールを中央付近の1箇所に矩形の凹部を有するものに変更して前記フィルムの長手方向に沿う端部を熱融着し、前記フィルムの長手方向に沿う端部に幅が5mmの熱融着部を形成した。なお、この融着部のうち中央付近の1箇所は長さ5mmに亘って融着幅が1.5mmと狭くなっており、安全弁として機能する。このようにしてラミネートフィルムを封止することにより、縦が76mmで、横が36mmの試験用ポリマー電解質二次電池を組み立てた。
【0035】
得られた二次電池において、安全弁として機能する融着部を5mm巾で長手方向と直交する方向に長さ20mmに切り取り、ピーリング速度20cm/minでピーリング試験を行い剥離強度を測定したところ、0.15kgfであった。前述した寸法のラミネートフィルムを備えるポリマー電解質二次電池の正極リード(幅5mm)融着部及び負極リード(幅5mm)融着部の剥離強度は、いずれも0.5kgfである。従って、前記安全弁として機能する融着部の剥離強度は、正極リード及び負極リードの融着部の剥離強度の30%に相当するものであった。
(実施例2)
実施例1と同様な種類及び厚さのラミネートフィルムを二つに折りたたみ、実施例1と同様にして長手方向と直交する両端部を熱融着し、前記フィルムの長手方向と直交する両端部に実施例1と同様な幅の融着部を形成した。また、上部側の熱ロールを中央付近の1箇所に矩形の凹部を有するものに変更して前記フィルムの長手方向に沿う端部を熱融着し、前記フィルムの長手方向に沿う端部に実施例1と同様な幅の熱融着部を形成した。なお、この融着部のうち中央付近の1箇所は長さ5mmに亘って融着幅が2.5mmと狭くなっており、安全弁として機能する。このようにしてラミネートフィルムを封止することにより、実施例1と同様な寸法の試験用ポリマー電解質二次電池を組み立てた。
【0036】
得られた二次電池において、安全弁として機能する融着部の剥離強度を前述したのと同様にして測定したところ、0.25kgfで、正極リード及び負極リードの融着部の剥離強度の50%に相当するものであった。
(実施例3)
実施例1と同様な種類及び厚さのラミネートフィルムを二つに折りたたみ、実施例1と同様にして長手方向と直交する両端部を熱融着し、前記フィルムの長手方向と直交する両端部に実施例1と同様な幅の融着部を形成した。また、上部側の熱ロールを中央付近の1箇所に矩形の凹部を有するものに変更して前記フィルムの長手方向に沿う端部を熱融着し、前記フィルムの長手方向に沿う端部に実施例1と同様な幅の熱融着部を形成した。なお、この融着部のうち中央付近の1箇所は長さ5mmに亘って融着幅が3.5mmと狭くなっており、安全弁として機能する。このようにしてラミネートフィルムを封止することにより、実施例1と同様な寸法の試験用ポリマー電解質二次電池を組み立てた。
【0037】
得られた二次電池において、安全弁として機能する融着部の剥離強度を前述したのと同様にして測定したところ、0.35kgfで、正極リード及び負極リード融着部の剥離強度の70%に相当するものであった。
(比較例1)
実施例1と同様な種類及び厚さのラミネートフィルムを二つに折りたたみ、実施例1と同様にして長手方向と直交する両端部を熱融着し、前記フィルムの長手方向と直交する両端部に実施例1と同様な幅の融着部を形成した。また、上部側の熱ロールを中央付近の1箇所に矩形の凹部を有するものに変更して前記フィルムの長手方向に沿う端部を熱融着し、前記フィルムの長手方向に沿う端部に実施例1と同様な幅の熱融着部を形成した。なお、この融着部のうち中央付近の1箇所は長さ5mmに亘って融着幅が4mmと狭くなっており、安全弁として機能する。このようにしてラミネートフィルムを封止することにより、実施例1と同様な寸法の試験用ポリマー電解質二次電池を組み立てた。
【0038】
得られた二次電池において、安全弁として機能する融着部の剥離強度を前述したのと同様にして測定したところ、0.40kgfで、正極リード及び負極リード融着部の剥離強度の80%に相当するものであった。
(比較例2)
実施例1と同様な種類及び厚さのラミネートフィルムを二つに折りたたみ、1対の熱ロールで長手方向と直交する両端部及び長手方向に沿う端部を熱融着し、前記フィルムを封止することにより、実施例1と同様な寸法の試験用ポリマー電解質二次電池を組み立てた。なお、融着部の幅は、長手方向と直交する両端部及び長手方向に沿う端部側とも実施例1と同様にした。また、安全弁は設けなかった。
【0039】
得られた二次電池において、実施例1〜3及び比較例1における安全弁機能領域に相当する箇所の剥離強度を前述したのと同様にして測定したところ、0.7kgfで、正極リード及び負極リード融着部の剥離強度の140%に相当するものであった。
【0040】
次いで、正極活物質としてLiCoO 、エチレンカーボネートとジメチルカーボネートを体積比で2:1に混合し、1MのLiPF を溶解して調製した非水電解液及びこの電解液を保持するためのポリマーとしてVdF−HFP共重合体を含む正極と、メソフェーズピッチ系炭素質材料、前記非水電解液及び前記ポリマーを含む負極と、前記非水電解液及び前記ポリマーを含む固体ポリマー電解質層を用いて発電要素を作製し、前述した実施例1〜3及び比較例1〜2と同様な構成のラミネートフィルム内に前記発電要素をそれぞれ内包させ、ポリマー電解質二次電池を製造した。得られた実施例1〜3及び比較例1〜2の二次電池の容量は、いずれも100mAhであった。
【0041】
得られた実施例1〜3及び比較例1〜2の試験用電池について、200mAの定電流で最大電圧15Vの過充電試験を行い、ガスが放出されるまでの時間、及び放出された場所、放出状態を測定した。その結果を下記表1に示す。
【0042】
【表1】

Figure 0003554155
【0043】
表1から明らかなように、融着部に剥離強度が30〜70%の領域が形成された実施例1〜3の試験用電池は、発生したガスが短時間で凹部から放出されており、安全性に優れていることがわかる。これに対し、融着部に剥離強度が70%を越える領域が形成された比較例1の試験用電池と、リード固定部より小さい剥離強度を有する領域が形成されていない比較例2の試験用電池は、ガスを放出するまでの時間が実施例1〜3に比べて長く、リード融着部が剥離すると共に破裂しており、安全性に劣ることがわかる。
【0044】
なお、実施例1と同様なラミネートフィルムによって熱融着により封止する際に実施例1と同様な個所に安全弁機構として機能する領域を設け、この領域の剥離強度を25%にしたところ、得られたポリマー電解質二次電池は気密性が低いため、充放電中に漏液を生じた。
参照例
<正極の作製>
まず、活物質として組成式がLiMn2 4 で表されるリチウムマンガン複合酸化物と、カーボンブラックと、ビニリデンフロライド−ヘキサフルオロプロピレン(VdF−HFP)の共重合体粉末と、可塑剤としてフタル酸ジブチル(DBP)をN−N−ジメチルホルムアミド中で混合し、ペーストを調製した。得られたペーストをポリエチレンテレフタレートフィルム(PETフィルム)上に塗布し、シート化し、非水電解液未含浸の正極シートを作製した。アルミニウム製エキスパンドメタルからなり、正極端子部を有する集電体の両面に、得られた正極シートを熱ロールで加熱圧着することにより非水電解液未含浸の正極を作製した。
【0045】
<負極の作製>
活物質としてメソフェーズピッチ炭素繊維と、ビニリデンフロライド−ヘキサフルオロプロピレン(VdF−HFP)の共重合体粉末と、可塑剤{フタル酸ジブチル(DBP)}とをN−N−ジメチルホルムアミド中で混合し、ペーストを調製した。得られたペーストをポリエチレンテレフタレートフィルム(PETフィルム)上に塗布し、シート化し、電解液未含浸の負極シートを作製した。銅製エキスパンドメタルからなり、負極端子部を有する集電体の両面に、得られた負極シートを熱ロールで加熱圧着することにより電解液未含浸の負極を作製した。
【0046】
<固体ポリマー電解層の作製>
酸化硅素粉末と、ビニリデンフロライド−ヘキサフルオロプロピレン(VdF−HFP)の共重合体粉末と、可塑剤{フタル酸ジブチル(DBP)}とをアセトン中で混合し、ペースト状にした。得られたペーストをポリエチレンテレフタレートフィルム(PETフィルム)上に塗布し、シート化し、電解液未含浸の電解質層を作製した。
【0047】
<非水電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)が混合された非水溶媒に電解質としてのLiPF を溶解させて非水電解液を調製した。
【0048】
<電池の組立>
前記正極と前記負極をその間に前記電解質層を介在させて積層し、これらを145℃に加熱した剛性ロールにて加熱圧着し、積層物を作製した。このような積層物をメタノール中に浸漬し、前記積層物中のDBPをメタノールによって抽出し、除去した。これを乾燥し、積層厚が1.0mm、外径寸法が40×60mmの積層電極を作製した。前記正極の端子部に正極リードとして厚さが0.05mmで、幅が5mmの帯状アルミニウム箔を溶接した。また、前記負極の端子部に負極リードとして厚さが0.05mmで、幅が5mmの帯状銅箔を溶接した。
【0049】
次に、外装材としてPET層、アルミニウム箔層及びアイオノマー樹脂層がこの順番に積層された複合フィルム(外形寸法が113×90mm、厚さが0.1mm)を用意した。前記フィルムを前記アイオノマー樹脂層が内側に位置するように縦に二つ折りにし、長手方向に沿う端部および長手方向と直交する端部を幅10mmで熱融着することにより袋を形成した。この時、長手方向と直交する端部の一部に電解液の注液口としての非熱融着領域を形成した。
【0050】
次いで、図6に示すように積層電極を袋内に収納し、前記袋内へ非熱融着性樹脂シートを配置し、熱融着を施した。
まず、得られた袋20内に前記積層電極21を前記正極リード22及び前記負極リード23の端部が外部に突出するように収納した。次いで、前記袋20内に底辺が5mmで、高さが8mmで、厚さが0.02mmであるポリエチレンテレフタレート製の三角形のシート24を配置した。このシート24は、前記正極リード22及び前記負極リード23が突出している端部から5mm離れた箇所の中央部に配置した。次いで、前記袋20のリードが延出された開口部を加熱融着時の影響が積層電極に表れないように積層電極寸法と加熱融着部分のマージンを持たせるようにして融着幅10mmで加熱融着した。注液口として形成した非熱融着領域から前記非水電解液を注液し、前記積層電極に含浸させた。次いで、前記非熱融着領域を融着幅10mmで加熱融着することにより、厚さが1.2mmで、リード部分を除く外径寸法が55×90mmで、電気容量が100mAhの薄型ポリマー電解質二次電池を100個製造した。
【0051】
得られた各二次電池において、非熱融着性樹脂シートと隣接する融着部を前記樹脂シートの底辺を幅とし、電池の長手方向に対して平行に長さ20mm、幅5mmに切り取り、ピーリング速度20cm/minでピーリング試験を行い剥離強度を測定したところ、0.2kgfであった。また、正極リードの融着部及び負極リードの融着部を電池の長手方向に対して平行に長さ20mm、幅5mmに切り取り、ピーリング速度20cm/minでピーリング試験を行い剥離強度を測定したところ、いずれも0.5kgfであった。従って、非熱融着性樹脂シートを介在させることによって形成された幅の狭い融着部の剥離強度は、正極リード及び負極リードの融着部の剥離強度の40%に相当するものであった。
【0052】
得られた各二次電池を電池収納スペースが57×92×4.0mmで、外形寸法が60×95×6.0mmの外部接続端子付きポリプロピレン製ケースに収納し、パック型電池とした。
(比較例3)
積層電極の作製及び複合フィルムからの袋の作製を参照例と同様にして行った。得られた積層電極を前記袋内に正極リード及び負極リードの端部が外部に突出するように収納した。前記袋のリードが延出された開口部を加熱融着時の影響が積層電極に表れないように積層電極寸法と加熱融着部分のマージンを持たせるようにして融着幅10mmで加熱融着した。注液口として形成した非熱融着領域から前記非水電解液を注液し、前記積層電極に含浸させた。次いで、前記非熱融着領域を融着幅10mmで加熱融着することにより、厚さが1.2mmで、リード部分を除く外径寸法が55×90mmで、電気容量が100mAhの薄型ポリマー電解質二次電池を100個製造した。
【0053】
得られた各二次電池において、参照例における非熱融着性樹脂シートと隣接する融着部に相当する箇所の融着部の剥離強度を参照例と同様にして測定したところ、0.7kgfであった。この融着部の剥離強度は、正極リード及び負極リードの融着部の剥離強度の140%に相当するものであった。
【0054】
次いで、得られた各二次電池を参照例と同様な外部接続端子付きポリプロピレン製ケースに収納し、パック型電池とした。
参照例及び比較例3のパック電池について、2C、15Vで3時間充電を行う過充電試験を実施し、弁作動数と過充電試験後の電池パックの厚さを測定し、その結果を下記表2に示す。
【0055】
【表2】
Figure 0003554155
【0056】
表2から明らかなように、参照例の二次電池は、過充電後、パックの厚さが変形しておらず、内圧上昇後、速やかに安全弁が作動したことがわかる。これに対し、比較例3の二次電池は、過充電の際、パックが変形するほどにフィルムが膨張した後、破裂を生じることがわかる。
【0057】
なお、前述した参照例においては、非熱融着樹脂製シートの形状を三角形にし、このシートと隣接する融着部の幅を段階的に狭くしたが、前記シートの形状は、このシートが存在する融着部の剥離強度が前述した特定の範囲を満たせばどのような形状であっても良い。例えば、矩形、円形、楕円形等にすることができる。
【0058】
また、前述した参照例においては、正極リード及び負極リードが固定された融着部に非熱融着樹脂製シートを配置したが、前記シートは正極リード及び負極リードの近傍を除けばどこに設けても良い。例えば、フィルムの長手方向と直交する端部側のうちリードが固定されていない側や、フィルムの長手方向に沿う端部に形成することができる。
また、前述した参照例においては、シートを介在させる箇所を1箇所にしたが、2箇所以上にしても良い。
【0059】
【発明の効果】
以上詳述したように本発明によれば、過充電時の破裂が回避され、安全性が向上されたリチウム二次電池及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るリチウム二次電池に含まれる発電要素の一例を示す断面図。
【図2】本発明に係るリチウム二次電池を示す部分切欠平面図。
【図3】図2の二次電池の側面図。
【図4】図2の二次電池において安全弁機構が作動した状態を示す部分切欠平面図。
【図5】図4の二次電池の側面図。
【図6】参照例におけるリチウム二次電池を示す平面図。
【符号の説明】
1…発電要素、
9…正極リード、
10…負極リード、
11…フィルム、
12…融着部、
13……安全弁機能を備える融着部、
14…リード融着部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery having a structure in which a power generation element is housed in a film, and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of electronic devices, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a negative electrode containing lithium or a lithium alloy as an active material, and a suspension containing an oxide, sulfide, or selenide of molybdenum, vanadium, titanium, or niobium as an active material were applied. 2. Description of the Related Art A lithium secondary battery including a positive electrode made of a current collector and a non-aqueous electrolyte is known.
[0003]
In addition, lithium using a current collector coated with a negative electrode, for example, a suspension containing a carbonaceous material that absorbs and releases lithium ions such as coke, graphite, carbon fiber, a resin fired body, and pyrolysis gas phase carbon is used. Secondary batteries have been proposed. In the secondary battery, the deterioration of the negative electrode characteristics due to dendrite deposition can be improved, so that the battery life and safety can be improved.
[0004]
Incidentally, a polymer electrolyte secondary battery, which is an example of a lithium secondary battery, includes a positive electrode having a structure in which a positive electrode layer containing an active material, a nonaqueous electrolyte, and a polymer holding the electrolyte is supported on a current collector, and a lithium battery. A carbonaceous material capable of inserting and extracting ions, a negative electrode having a structure in which a negative electrode layer containing a non-aqueous electrolyte and a polymer holding the electrolyte is supported on a current collector, and disposed between the positive electrode and the negative electrode; A power generating element including a non-aqueous electrolyte and a solid polymer electrolyte layer containing a polymer holding the electrolyte, a positive electrode lead electrically connected to the positive electrode, and a negative electrode lead electrically connected to the negative electrode; A film which covers the power generating element so that the end of the positive electrode lead and the end of the negative electrode lead extend to the outside, and has an opening thermally fused. Such a lithium secondary battery (unit cell) is housed in a battery pack, for example, alone or in the form of an assembled battery, and is used as a power source of an electronic device.
[0005]
However, in the lithium secondary battery, when gas is generated due to overcharging or the like, the film is significantly expanded and ruptured, so that a power generation element is scattered, a battery pack is deformed, and the electronic device is damaged. , May cause harm to the human body.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a lithium secondary battery capable of promptly stopping expansion when a film expands due to overcharging or the like and preventing bursting, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
A lithium secondary battery according to the present invention has a positive electrode and a negative electrode that occlude and release lithium ions, a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, and is electrically connected to the positive electrode. A power generating element including a positive electrode lead and a negative electrode lead electrically connected to the negative electrode;
A film that covers the power generating element such that ends of the positive electrode lead and the negative electrode lead extend outward, and a film whose opening is sealed by heat fusion;
The film has at least one region functioning as a safety valve in the fusion bonding portion,The safety valve region has a rectangular shape and a peel strength.Equivalent to 30% to 70% of the peel strength of the fused part of each of the positive electrode lead and the negative electrode leadAnd
The peel strength of the safety valve region, the fusion part of the positive electrode lead and the fusion part other than the fusion part of the negative electrode lead is larger than the peel strength of the fusion part of the positive electrode lead and the fusion part of the negative electrode lead.It is characterized by the following.
[0008]
The method for manufacturing a lithium secondary battery according to the present invention includes a positive electrode and a negative electrode that occlude and release lithium ions, a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, and electrically connected to the positive electrode. A connected positive electrode lead, and a power generating element including a negative electrode lead electrically connected to the negative electrode are covered with a film so that the ends of the positive electrode lead and the negative electrode lead extend outside, and the A method for manufacturing a lithium secondary battery having a structure in which an opening is sealed by heat fusion,
At least one of the openings is heat-fused with a non-heat-fusible resin sheet interposed therebetween, and a fusion portion where the sheet is presentHas a rectangular shape and peel strengthEquivalent to 30% to 70% of the peel strength of the fused part of each of the positive electrode lead and the negative electrode leadAnd
The peel strength of the fused portion where the sheet is present, the fused portion of the positive electrode lead, and the fused portion other than the fused portion of the negative electrode lead is the peel strength of the fused portion of the positive electrode lead and the fused portion of the negative electrode lead. Greater than peel strengthIt is characterized by the following.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
One example of the lithium secondary battery (polymer electrolyte secondary battery) according to the present invention will be described in detail with reference to FIGS.
FIG. 1 is a sectional view showing an example of a power generating element included in a lithium secondary battery according to the present invention, FIG. 2 is a partially cutaway plan view showing a lithium secondary battery according to the present invention, and FIG. 3 is a secondary battery shown in FIG. FIG. 4 is a partially cutaway plan view showing a state in which a safety valve is operated in the secondary battery of FIG. 2, and FIG. 5 is a side view of the secondary battery of FIG.
[0010]
The lithium secondary battery according to the present invention includes a power generating element 1 as shown in FIG. 1, for example. Such a power generating element 1 includes a negative electrode having a structure in which a negative electrode layer 3 is supported on both sides of a reticulated current collector 2 such as a copper expanded metal and a reticulated current collector 4 such as an aluminum expanded metal. Two positive electrodes having a structure in which a positive electrode layer 5 containing an active material is supported are provided. Two solid polymer electrolyte layers 6 as lithium ion conductive electrolyte layers are respectively laminated on both surfaces of the negative electrode. The positive electrode is laminated on each of the solid polymer electrolyte layers 6. The negative electrode current collector 2 has a strip-shaped terminal 7 made of the same material as the current collector. Further, the positive electrode current collector 4 has a strip-shaped terminal portion 8 made of the same material as the current collector. For example, a positive electrode lead 9 made of a strip-shaped aluminum foil is connected to the two strip-shaped terminal portions 8. For example, a negative electrode lead 10 made of a strip-shaped copper foil is connected to the negative electrode terminal 7. Such a power generation element 1 is covered with a film 11 that is folded in two vertically. The openings (ends along the longitudinal direction and both ends perpendicular to the longitudinal direction) of the film 11 are sealed by heat fusion. In the heat-sealed portion 12, a portion near the center of an end along the longitudinal direction has a narrower welding width than the other portions. The narrow fused portion 13 (the area surrounded by the ellipse in FIG. 2) functions as a safety valve, and the peel strength of the fused portion 14 of each of the positive electrode lead 9 and the negative electrode lead 10 (circled in FIG. 2). (Enclosed area) corresponds to 30% to 70% of the peel strength. Such a narrow fused portion can be formed, for example, by providing a portion that is not pressurized during thermal fusion.
[0011]
The reason for setting the peel strength of the fused portion 13 functioning as a safety valve in this way is as follows. When the peel strength of the fusion portion 13 is less than 30% of the peel strength of the fusion portion 14, the airtightness of the film 11 is reduced, and battery characteristics such as charge and discharge cycle characteristics may be reduced. On the other hand, if the peel strength of the fusion portion 13 exceeds 70% of the peel strength of the fusion portion 14, when the internal pressure increases due to overcharging or the like, it may be difficult to prevent rupture beforehand. . The more preferable range of the exfoliation extreme of the fusion part 13 is 40% to 60%.
[0012]
In the lithium secondary battery having such a configuration, when gas is generated due to, for example, overcharging and the internal pressure of the film 11 increases, the fused portion 13 having the peel strength is peeled off as shown in FIGS. Since the gas in the film 11 can escape from this portion to the outside, the rupture of the film 11 can be avoided.
[0013]
As the positive electrode, the negative electrode, and the electrolyte layer of the lithium secondary battery, for example, those described below can be used.
(Positive electrode)
The positive electrode is formed from a current collector in which a positive electrode layer containing a positive electrode active material, a non-aqueous electrolyte, and a polymer for holding the electrolyte is supported on a current collector.
[0014]
As the positive electrode active material, various oxides (for example, LiMn2  O4  Lithium manganese composite oxide such as manganese dioxide such as LiNiO2  Lithium-containing nickel oxide such as LiCoO2  For example, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, amorphous vanadium pentoxide containing lithium, and the like, and chalcogen compounds (for example, titanium disulfide, molybdenum disulfide, and the like). Among them, it is preferable to use a lithium manganese composite oxide, a lithium-containing cobalt oxide, and a lithium-containing nickel oxide.
[0015]
The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. The non-aqueous solvents may be used alone or as a mixture of two or more.
[0016]
As the electrolyte, for example, lithium perchlorate (LiClO4  ), Lithium hexafluorophosphate (LiPF)6  ), Lithium borotetrafluoride (LiBF4  ), Lithium arsenic hexafluoride (LiAsF)6  ), Lithium trifluoromethanesulfonate (LiCF3  SO3  ), Lithium bistrifluoromethylsulfonylimide [LiN (CF3  SO3  )2  ] And other lithium salts.
[0017]
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / l to 2 mol / l.
Examples of the polymer for holding the nonaqueous electrolyte include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative, and a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP). Can be used. The copolymerization ratio of the HFP depends on the method of synthesizing the copolymer, but is usually at most about 20% by weight.
[0018]
In FIG. 1 described above, although the expanded metal made of aluminum is used as the current collector and the terminal portion of the positive electrode, the current collector is made of, for example, aluminum foil, aluminum mesh, aluminum punched metal, or the like. Is also good.
[0019]
The positive electrode may include a conductive material from the viewpoint of improving conductivity. Examples of the conductive material include artificial graphite, carbon black (eg, acetylene black), nickel powder, and the like.
[0020]
(Negative electrode)
This negative electrode is formed from a negative electrode active material, a non-aqueous electrolyte, and a negative electrode layer containing a polymer for holding the electrolyte supported on a current collector.
[0021]
Examples of the negative electrode active material include carbonaceous materials that occlude and release lithium ions. Such carbonaceous materials include, for example, those obtained by firing organic polymer compounds (eg, phenolic resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke, mesophase pitch, and artificial graphite. And carbonaceous materials represented by natural graphite and the like. Among them, it is preferable to use a carbonaceous material obtained by firing the mesophase pitch at a temperature of 500 ° C to 3000 ° C under normal pressure or reduced pressure.
[0022]
As the non-aqueous electrolyte and the polymer, the same ones as described for the positive electrode described above are used.
In FIG. 1 described above, a copper expanded metal is used as the current collector and the terminal of the negative electrode. However, for example, a copper foil, a copper mesh, a copper punched metal, or the like may be used.
[0023]
The negative electrode sheet is allowed to contain conductive materials such as artificial graphite, natural graphite, carbon black, acetylene black, Ketjen black, nickel powder, and polyphenylene derivatives, and fillers such as olefin polymers and carbon fibers.
[0024]
(Solid polymer electrolyte layer)
The electrolyte layer includes a non-aqueous electrolyte and a polymer for holding the electrolyte.
[0025]
As the non-aqueous electrolyte and the polymer, the same ones as described for the positive electrode described above are used.
To the electrolyte layer, an inorganic filler such as silicon oxide powder may be added from the viewpoint of further improving the strength.
[0026]
Examples of the film used for the lithium secondary battery include a film in which a heat-sealing resin (for example, ionomer, polyethylene) layer is disposed. Among them, it is preferable that the sealing film is formed of a multilayer film in which a heat-fusible resin is disposed and a thin metal film such as aluminum (Al) is interposed therebetween. Specifically, a multilayer film of polyethylene (PE) / polyethylene terephthalate (PET) / Al foil / PET laminated from the sealing surface side to the outer surface; a multilayer film of PE / nylon / Al foil / PET; ionomer / Ni foil / PE / PET multilayer film; ethylene vinyl acetate (EVA) / PE / Al foil / PET multilayer film; ionomer / PET / Al foil / PET multilayer film and the like can be used. Here, the film other than PE, ionomer, and EVA on the sealing surface side has moisture resistance, air resistance, and chemical resistance.
[0027]
In addition, in FIG. 2 described above, a part of the fusion part is dented into a rectangular shape to reduce the width of the fusion part, and a region functioning as a safety valve is formed. Any shape may be used as long as it is satisfied. For example, a shape having a rectangular non-fused region in the center can be used. Alternatively, the fusion strength of the entire region may be reduced without forming the non-fusion region.
[0028]
Further, in FIG. 2 described above, a region having a safety valve function is formed at the fusion portion along the longitudinal direction of the film, but the region may be provided anywhere except the vicinity of the positive electrode lead and the negative electrode lead. For example, it may be formed on the side where the lead is not fixed, of the end side orthogonal to the longitudinal direction of the film.
[0029]
Further, in FIG. 2 described above, the number of regions having the safety valve function is one, but two or more regions may be formed.
In FIGS. 1 to 5 described above, a lead electrically connected to the positive and negative electrodes of a power generation element having a positive electrode, a polymer electrolyte layer, and a negative electrode in a multilayer film having a heat-fusible resin film disposed on an inner surface thereof is provided. A lithium secondary battery having a structure in which the power generation element is sealed by coating so as to extend from one opening edge of the multilayer film and heat-sealing the heat-fusible resin films to each other at the opening edge of the multilayer film. Although an example in which the present invention is applied to a secondary battery has been described, the lead electrically connected to the positive electrode is a power generation element having a positive electrode, a polymer electrolyte layer, and a negative electrode in a multilayer film in which a heat-fusible resin film is disposed on the inner surface. A lead extending from one opening edge of the multilayer film and being electrically connected to the negative electrode so as to extend from another opening edge of the multilayer film; Heat sealed together the heat-fusible resin film in the opening edge portion in the lithium secondary battery having a structure in which sealed the power generating element can be applied as well.
[0030]
Hereinafter, an example of a method for manufacturing a lithium secondary battery according to the present invention (a method for manufacturing a polymer electrolyte secondary battery) will be described.
In the manufacturing method according to the present invention, the lead electrically connected to the positive electrode and the negative electrode, respectively, is a power generating element having a positive electrode, a polymer electrolyte layer, and a negative electrode in a bag in which a heat-fusible resin film is disposed on the inner surface. A manufacturing method in which the heat-fusible resin films are housed so as to extend from the opening edge portion and the heat-fusible resin films are heat-sealed to each other at the opening edge portion of the bag to seal the power generating element, A lead having a positive electrode, a polymer electrolyte layer and a negative electrode electrically connected to the positive electrode extends from one opening edge of the tube, and is electrically connected to the negative electrode. Manufacturing method for covering the formed lead so as to extend from another opening edge of the tube, and sealing the power generating element by heat-sealing the heat-fusible resin films to each other at the opening edge of the tube. Apply to Door can be.
[0031]
The heat-sealing through the non-heat-fusible resin sheet may be performed at the time of producing a tube or a bag, or may be performed at the time of sealing an opening edge portion from which a lead is extended.
The non-heat-fusible resin sheet can be formed from, for example, a water-repellent resin such as polyethylene terephthalate (PET), nylon, or polytetrafluoroethylene (PTFE).
[0032]
Examples of the film used in the method according to the present invention include the same films as described above.
As described above, according to the lithium secondary battery of the present invention, when gas is generated from the power generation element due to overcharging or the like, and when the internal pressure of the film containing the power generation element increases, the peeling strength of the positive electrode lead and The fused portion, which is in the range of 30 to 70% of the peel strength of the fused portion of each of the negative electrode leads, is quickly peeled off, and the gas in the film can escape to the outside from the peeled portion. Can be prevented beforehand.
[0033]
Further, according to the method for manufacturing a lithium secondary battery according to the present invention, it is possible to manufacture a lithium secondary battery in which the peel strength of at least one of the heat-sealed portions has the specific value as described above. In other words, when such a region having a low peel strength is formed by adjusting the degree of pressurization at the time of heat fusion, heat applied to the region to be heat-fused depends on the manner of pressurization to a region where heat fusion is not performed. In some cases, heat is fused to a region where heat fusion is not performed. When the non-heat-fusible resin sheet is interposed between the films and heat-sealed as in the present invention, the portion where the sheet is interposed is not heat-sealed, so that the width of the fused portion is adjusted. Can be easily performed, and a fused portion having an intended peel strength can be easily formed. As a result, a high-performance, highly safe lithium secondary battery can be manufactured by a simple method.
[0034]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Example 1)
A 100 μm thick laminated film composed of a surface layer made of polyethylene terephthalate, an intermediate layer made of aluminum, and an inner layer made of an ionomer resin is folded in two, and both ends orthogonal to the longitudinal direction are sandwiched between a pair of heat rolls. To form a fused portion having a width of 5 mm at both ends orthogonal to the longitudinal direction of the film. Further, the upper heat roll is changed to one having a rectangular concave portion at one location near the center, and the end along the longitudinal direction of the film is heat-sealed, and the width is changed to the end along the longitudinal direction of the film. Formed a heat-sealed portion of 5 mm. In addition, one portion near the center of the fused portion has a narrow fused width of 1.5 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this manner, a test polymer electrolyte secondary battery having a length of 76 mm and a width of 36 mm was assembled.
[0035]
In the obtained secondary battery, the fused portion functioning as a safety valve was cut to a length of 20 mm in a direction perpendicular to the longitudinal direction with a width of 5 mm, and a peeling test was performed at a peeling speed of 20 cm / min to measure the peel strength. .15 kgf. The peel strength of the fused portion of the positive electrode lead (5 mm in width) and the fused portion of the negative electrode lead (5 mm in width) of the polymer electrolyte secondary battery having the above-described laminated film are both 0.5 kgf. Therefore, the peel strength of the fused portion functioning as the safety valve was equivalent to 30% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead.
(Example 2)
A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to be applied to both ends orthogonal to the longitudinal direction of the film. A fused portion having the same width as in Example 1 was formed. Further, the heat roll on the upper side is changed to one having a rectangular recess at one location near the center, and the end along the longitudinal direction of the film is heat-sealed, and the heat roll is applied to the end along the longitudinal direction of the film. A heat-sealed portion having the same width as in Example 1 was formed. In addition, one portion near the center of the fused portion has a narrowed fused width of 2.5 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this way, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.
[0036]
In the obtained secondary battery, when the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above, it was found to be 0.25 kgf and 50% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. Was equivalent to
(Example 3)
A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to be applied to both ends orthogonal to the longitudinal direction of the film. A fused portion having the same width as in Example 1 was formed. Further, the heat roll on the upper side is changed to one having a rectangular recess at one location near the center, and the end along the longitudinal direction of the film is heat-sealed, and the heat roll is applied to the end along the longitudinal direction of the film. A heat-sealed portion having the same width as in Example 1 was formed. In addition, one portion near the center of the fusion portion has a fusion width of 3.5 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this way, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.
[0037]
In the obtained secondary battery, when the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above, it was 0.35 kgf, which was 70% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. It was equivalent.
(Comparative Example 1)
A laminate film of the same type and thickness as in Example 1 was folded into two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to both ends orthogonal to the longitudinal direction of the film. A fused portion having the same width as in Example 1 was formed. Further, the upper heat roll is changed to one having a rectangular recess at one location near the center, and the end along the longitudinal direction of the film is heat-sealed, and the heat roll is applied to the end along the longitudinal direction of the film. A heat-sealed portion having the same width as in Example 1 was formed. In addition, one portion near the center of the fusion portion has a fusion width of 4 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this way, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.
[0038]
In the obtained secondary battery, when the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above, it was 0.40 kgf, which was 80% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. It was equivalent.
(Comparative Example 2)
A laminate film having the same type and thickness as in Example 1 is folded into two, and both ends orthogonal to the longitudinal direction and the ends along the longitudinal direction are heat-sealed with a pair of heat rolls to seal the film. As a result, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled. The width of the fused portion was the same as that in Example 1 at both ends perpendicular to the longitudinal direction and at the ends along the longitudinal direction. No safety valve was provided.
[0039]
In the obtained secondary battery, when the peel strength at a portion corresponding to the safety valve function region in Examples 1 to 3 and Comparative Example 1 was measured in the same manner as described above, the positive electrode lead and the negative electrode lead were 0.7 kgf. This was equivalent to 140% of the peel strength of the fused portion.
[0040]
Then, LiCoO as a positive electrode active material2  , Ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 2: 1 and 1M LiPF6  And a positive electrode containing a VdF-HFP copolymer as a polymer for holding the electrolyte, a mesophase pitch-based carbonaceous material, a negative electrode containing the nonaqueous electrolyte and the polymer And a power generation element using the non-aqueous electrolyte and the solid polymer electrolyte layer containing the polymer, and the power generation element was formed in a laminated film having the same configuration as in Examples 1 to 3 and Comparative Examples 1 and 2 described above. Were respectively included to produce a polymer electrolyte secondary battery. The capacities of the obtained secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were all 100 mAh.
[0041]
The obtained test batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to an overcharge test of a maximum voltage of 15 V at a constant current of 200 mA, and the time until gas was released, and the location where the gas was released, The release state was measured. The results are shown in Table 1 below.
[0042]
[Table 1]
Figure 0003554155
[0043]
As is clear from Table 1, in the test batteries of Examples 1 to 3 in which a region having a peel strength of 30 to 70% was formed in the fused portion, the generated gas was released from the concave portion in a short time, It turns out that it is excellent in safety. On the other hand, the test battery of Comparative Example 1 in which a region having a peel strength exceeding 70% was formed in the fused portion, and the test battery of Comparative Example 2 in which a region having a peel strength smaller than the lead fixing portion was not formed. It can be seen that the battery had a longer time to release gas than Examples 1 to 3, and the lead fusion part was peeled off and burst, resulting in poor safety.
[0044]
In addition, when sealing by heat fusion with the same laminated film as in Example 1, a region functioning as a safety valve mechanism was provided at the same place as in Example 1, and the peel strength of this region was set to 25%. Since the obtained polymer electrolyte secondary battery had low airtightness, liquid leakage occurred during charging and discharging.
(Reference example)
<Preparation of positive electrode>
First, as an active material, the composition formula is LiMn.TwoOFourA lithium manganese composite oxide represented by the following formula, carbon black, vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder, and dibutyl phthalate (DBP) as a plasticizer in N-N-dimethylformamide And a paste was prepared. The obtained paste was applied on a polyethylene terephthalate film (PET film) to form a sheet, and a positive electrode sheet not impregnated with a non-aqueous electrolyte was prepared. A positive electrode not impregnated with a non-aqueous electrolyte was prepared by heat-pressing the obtained positive electrode sheet on both sides of a current collector made of aluminum expanded metal and having a positive electrode terminal portion using a hot roll.
[0045]
<Preparation of negative electrode>
A mesophase pitch carbon fiber as an active material, a vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder, and a plasticizer {dibutyl phthalate (DBP)} were mixed in N-N-dimethylformamide. , To prepare a paste. The obtained paste was applied on a polyethylene terephthalate film (PET film) and formed into a sheet, thereby producing a negative electrode sheet not impregnated with an electrolyte. A negative electrode not impregnated with an electrolytic solution was prepared by heat-pressing the obtained negative electrode sheet on both surfaces of a current collector made of copper expanded metal and having a negative electrode terminal portion using a hot roll.
[0046]
<Preparation of solid polymer electrolytic layer>
Silicon oxide powder, vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder, and a plasticizer {dibutyl phthalate (DBP)} were mixed in acetone to form a paste. The obtained paste was applied on a polyethylene terephthalate film (PET film), formed into a sheet, and an electrolyte layer not impregnated with the electrolyte was prepared.
[0047]
<Preparation of non-aqueous electrolyte>
LiPF as an electrolyte in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed6  Was dissolved to prepare a non-aqueous electrolyte.
[0048]
<Assembly of battery>
The positive electrode and the negative electrode were laminated with the electrolyte layer interposed therebetween, and these were heated and pressed by a rigid roll heated to 145 ° C. to produce a laminate. Such a laminate was immersed in methanol, and the DBP in the laminate was extracted with methanol and removed. This was dried to produce a laminated electrode having a laminated thickness of 1.0 mm and an outer diameter of 40 × 60 mm. A strip-shaped aluminum foil having a thickness of 0.05 mm and a width of 5 mm was welded to the terminal portion of the positive electrode as a positive electrode lead. Further, a strip-shaped copper foil having a thickness of 0.05 mm and a width of 5 mm was welded to the terminal portion of the negative electrode as a negative electrode lead.
[0049]
Next, a composite film (external dimensions: 113 × 90 mm, thickness: 0.1 mm) in which a PET layer, an aluminum foil layer, and an ionomer resin layer were laminated in this order was prepared as an exterior material. The film was vertically folded in two so that the ionomer resin layer was located inside, and the end along the longitudinal direction and the end perpendicular to the longitudinal direction were heat-sealed with a width of 10 mm to form a bag. At this time, a non-thermally fused region was formed at a part of the end perpendicular to the longitudinal direction as a liquid injection port for the electrolytic solution.
[0050]
Next, as shown in FIG. 6, the laminated electrode was housed in a bag, a non-heat-fusible resin sheet was placed in the bag, and heat fusion was performed.
First, the laminated electrode 21 was housed in the obtained bag 20 such that the ends of the positive electrode lead 22 and the negative electrode lead 23 project outside. Next, a triangular sheet 24 made of polyethylene terephthalate having a base of 5 mm, a height of 8 mm, and a thickness of 0.02 mm was arranged in the bag 20. The sheet 24 was disposed at the center of a position 5 mm away from the end where the positive electrode lead 22 and the negative electrode lead 23 protruded. Then, the opening of the bag 20 from which the lead is extended has a margin of a laminated electrode dimension and a heat-fused portion so that the influence of heat fusion does not appear on the laminated electrode. Heat fusion was performed. The non-aqueous electrolyte was injected from the non-thermally fused region formed as an injection port, and was impregnated into the laminated electrode. Next, the non-heat-fused region is heat-fused with a fusion width of 10 mm, so that the thickness is 1.2 mm, the outer diameter dimension excluding the lead portion is 55 × 90 mm, and the electric capacity is 100 mAh. 100 secondary batteries were manufactured.
[0051]
In each of the obtained secondary batteries, the fused portion adjacent to the non-heat-fusible resin sheet is cut to a length of 20 mm and a width of 5 mm in parallel with the longitudinal direction of the battery, with the bottom of the resin sheet as the width, When a peeling test was performed at a peeling speed of 20 cm / min to measure the peel strength, it was 0.2 kgf. Further, the fused portion of the positive electrode lead and the fused portion of the negative electrode lead were cut in parallel to the longitudinal direction of the battery to a length of 20 mm and a width of 5 mm, and a peeling test was performed at a peeling speed of 20 cm / min to measure the peel strength. Were 0.5 kgf. Therefore, the peel strength of the narrow fused portion formed by interposing the non-heat-fusible resin sheet was equivalent to 40% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. .
[0052]
Each of the obtained secondary batteries was housed in a polypropylene case with an external connection terminal having a battery storage space of 57 × 92 × 4.0 mm and an outer dimension of 60 × 95 × 6.0 mm to obtain a pack-type battery.
(Comparative Example 3)
Production of laminated electrodes and production of bags from composite filmsReference exampleWas performed in the same manner as described above. The obtained laminated electrode was housed in the bag such that the ends of the positive electrode lead and the negative electrode lead protruded outside. The opening where the lead of the bag is extended is heated and fused at a fusion width of 10 mm so as to have a margin of the laminated electrode dimensions and the heated fusion portion so that the influence of the fusion during heating does not appear on the laminated electrode. did. The non-aqueous electrolyte was injected from the non-thermally fused region formed as an injection port, and was impregnated into the laminated electrode. Next, the non-heat-fused region is heat-fused with a fusion width of 10 mm, so that the thickness is 1.2 mm, the outer diameter dimension excluding the lead portion is 55 × 90 mm, and the electric capacity is 100 mAh. 100 secondary batteries were manufactured.
[0053]
In each of the obtained secondary batteries,Reference exampleThe peel strength of the fused portion at the location corresponding to the fused portion adjacent to the non-heat-fusible resin sheet inReference exampleIt was 0.7 kgf when measured similarly. The peel strength of the fused portion was equivalent to 140% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead.
[0054]
Next, each of the obtained secondary batteries isReference exampleThe battery was housed in a polypropylene case with external connection terminals similar to that described above to obtain a battery pack.
Reference exampleThe battery pack of Comparative Example 3 was subjected to an overcharge test in which the battery was charged at 2 C and 15 V for 3 hours, the number of valve operations and the thickness of the battery pack after the overcharge test were measured, and the results are shown in Table 2 below. Show.
[0055]
[Table 2]
Figure 0003554155
[0056]
As is clear from Table 2,Reference exampleIt can be seen that after recharging, the thickness of the pack did not change after overcharging, and the safety valve was activated immediately after the internal pressure increased. On the other hand, it can be seen that the secondary battery of Comparative Example 3 ruptures during overcharging after the film expands enough to deform the pack.
[0057]
It should be noted thatReference exampleIn the above, the shape of the non-heat-fused resin sheet was made triangular, and the width of the fused portion adjacent to this sheet was gradually reduced, but the shape of the sheet was determined by peeling of the fused portion where this sheet was present. Any shape may be used as long as the strength satisfies the specific range described above. For example, the shape can be rectangular, circular, oval, or the like.
[0058]
Also mentioned aboveReference exampleIn the above, the non-heat-fused resin sheet is disposed at the fusion portion where the positive electrode lead and the negative electrode lead are fixed, but the sheet may be provided anywhere except the vicinity of the positive electrode lead and the negative electrode lead. For example, it can be formed on the side where the lead is not fixed among the end sides orthogonal to the longitudinal direction of the film, or on the end along the longitudinal direction of the film.
Also mentioned aboveReference exampleIn the above, the position where the sheet is interposed is one, but may be two or more.
[0059]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a lithium secondary battery in which rupture during overcharge is avoided and safety is improved, and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a power generation element included in a lithium secondary battery according to the present invention.
FIG. 2 is a partially cutaway plan view showing a lithium secondary battery according to the present invention.
FIG. 3 is a side view of the secondary battery of FIG.
FIG. 4 is a partially cutaway plan view showing a state in which a safety valve mechanism is operated in the secondary battery of FIG. 2;
FIG. 5 is a side view of the secondary battery of FIG.
FIG. 6Reference exampleFIG. 2 is a plan view showing a lithium secondary battery in FIG.
[Explanation of symbols]
1 ... power generation element,
9 ... Positive electrode lead,
10 ... negative electrode lead,
11 ... film,
12 ... fused part,
13 fusion splicing part with safety valve function
14 ... Lead fusion part

Claims (3)

リチウムイオンを吸蔵・放出する正極及び負極と、前記正極と前記負極の間に配置されたリチウムイオン伝導性電解質層と、前記正極と電気的に接続された正極リードと、前記負極と電気的に接続された負極リードとを含む発電要素;
前記発電要素を前記正極リード及び前記負極リードの端部が外側に延出するように被覆し、開口部が熱融着により封止されたフィルム;
を具備し、
前記フィルムは融着部に安全弁として機能する領域が1つ以上存在し、前記安全弁領域は、矩形状で、かつ剥離強度が前記正極リード及び前記負極リードそれぞれの融着部の剥離強度の30%〜70%に相当し、
前記安全弁領域と前記正極リードの融着部と前記負極リードの融着部以外の融着部における剥離強度は、前記正極リードの融着部及び前記負極リードの融着部の剥離強度よりも大きいことを特徴とするリチウム二次電池。
A positive electrode and a negative electrode that occlude and release lithium ions; a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode; a positive electrode lead electrically connected to the positive electrode; A power generating element including a connected negative electrode lead;
A film in which the power generating element is coated so that the ends of the positive electrode lead and the negative electrode lead extend outward, and the opening is sealed by heat sealing;
With
The film has at least one region that functions as a safety valve in the fusion spliced portion, and the safety valve region is rectangular and has a peel strength of 30% of the peel strength of the fused portion of each of the positive electrode lead and the negative electrode lead. ~ 70% ,
The peel strength of the safety valve region, the fusion part of the positive electrode lead and the fusion part other than the fusion part of the negative electrode lead is larger than the peel strength of the fusion part of the positive electrode lead and the fusion part of the negative electrode lead. A lithium secondary battery characterized by the above-mentioned.
前記安全弁領域では、前記フィルムの間にポリエチレンテレフタレート、ナイロン及びポリテトラフルオロエチレンから選ばれる樹脂を含む非熱融着性樹脂シートが介在されていることを特徴とする請求項1記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein a non-heat-fusible resin sheet containing a resin selected from polyethylene terephthalate, nylon and polytetrafluoroethylene is interposed between the films in the safety valve region. battery. リチウムイオンを吸蔵・放出する正極及び負極と、前記正極と前記負極の間に配置されたリチウムイオン伝導性電解質層と、前記正極と電気的に接続された正極リードと、前記負極と電気的に接続された負極リードとを含む発電要素がフィルムで前記正極リード及び前記負極リードの端部が外部に延出するように被覆され、前記フィルムの開口部が熱融着により封止された構造を有するリチウム二次電池の製造方法であって、
前記開口部のうち少なくとも1箇所は非熱融着性樹脂シートが介在された状態で熱融着され、前記シートが存在する融着部は、矩形状で、かつ剥離強度が前記正極リード及び前記負極リードそれぞれの融着部の剥離強度の30%〜70%に相当し、
前記シートが存在する融着部と前記正極リードの融着部と前記負極リードの融着部以外の融着部における剥離強度は、前記正極リードの融着部及び前記負極リードの融着部の剥離強度よりも大きいことを特徴とするリチウム二次電池の製造方法。
A positive electrode and a negative electrode that occlude and release lithium ions; a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode; a positive electrode lead electrically connected to the positive electrode; A power generating element including a connected negative electrode lead is covered with a film so that the ends of the positive electrode lead and the negative electrode lead extend to the outside, and the opening of the film is sealed by heat sealing. A method for producing a lithium secondary battery having
At least one of the openings is heat-fused with a non-heat-fusible resin sheet interposed therebetween, and the fused portion where the sheet is present has a rectangular shape and a peel strength of the positive lead and the positive electrode. It corresponds to 30% to 70% of the peel strength of the fused part of each negative electrode lead ,
The peel strength of the fused portion where the sheet is present, the fused portion of the positive electrode lead, and the fused portion other than the fused portion of the negative electrode lead is the peel strength of the fused portion of the positive electrode lead and the fused portion of the negative electrode lead. A method for producing a lithium secondary battery, wherein the method is higher than a peel strength .
JP25994297A 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same Expired - Fee Related JP3554155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25994297A JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-198569 1997-07-24
JP19856997 1997-07-24
JP25994297A JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1197070A JPH1197070A (en) 1999-04-09
JP3554155B2 true JP3554155B2 (en) 2004-08-18

Family

ID=26511055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25994297A Expired - Fee Related JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3554155B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126446A1 (en) 2005-05-23 2006-11-30 Matsushita Electric Industrial Co., Ltd. Safety mechanism for laminate battery
WO2011108126A1 (en) 2010-03-02 2011-09-09 Jmエナジー株式会社 Laminate outer packaging storage device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797430B1 (en) 1998-10-30 2004-09-28 Sony Corporation Non-aqueous electrolytic battery and manufacturing method
JP4622019B2 (en) * 1999-01-20 2011-02-02 パナソニック株式会社 Flat battery
KR100509589B1 (en) * 1999-01-20 2005-08-23 삼성에스디아이 주식회사 A safety device of secondary battery
JP2001250526A (en) * 2000-03-06 2001-09-14 Yuasa Corp Sealed battery
JP4018881B2 (en) * 2001-03-29 2007-12-05 Tdk株式会社 Electrochemical devices
JP4639538B2 (en) * 2001-06-25 2011-02-23 トヨタ自動車株式会社 Sealing structure of electrode body
KR100420147B1 (en) * 2001-10-19 2004-03-02 삼성에스디아이 주식회사 Li-ion secondary battery
JP4604441B2 (en) 2002-07-18 2011-01-05 日本電気株式会社 Film-clad battery and manufacturing method thereof
JP3859645B2 (en) 2004-01-16 2006-12-20 Necラミリオンエナジー株式会社 Film exterior electrical device
JP4232038B2 (en) 2004-08-11 2009-03-04 日本電気株式会社 Film-clad electrical device and method for manufacturing the same
WO2006098242A1 (en) * 2005-03-17 2006-09-21 Nec Corporation Film enclosed electric device and production method therefor
KR100684724B1 (en) 2005-04-26 2007-02-20 삼성에스디아이 주식회사 Secondary battery and safety device using the same
JP4977375B2 (en) 2006-02-15 2012-07-18 Necエナジーデバイス株式会社 Lithium ion battery and battery pack using the same
JP5011928B2 (en) * 2006-10-03 2012-08-29 株式会社Gsユアサ battery
JP5088662B2 (en) * 2006-12-28 2012-12-05 大日本印刷株式会社 Flat electrochemical cell
JP5234739B2 (en) * 2008-02-19 2013-07-10 Necエナジーデバイス株式会社 Method for producing lithium ion secondary battery
WO2009113634A1 (en) 2008-03-14 2009-09-17 日本電気株式会社 Film-covered electrical device and assembled battery
US9039789B2 (en) 2010-12-08 2015-05-26 Mie Industry And Enterprise Support Center Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body
KR102112670B1 (en) 2015-10-28 2020-05-19 주식회사 엘지화학 Battery Cell of Venting Structure Using Taping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126446A1 (en) 2005-05-23 2006-11-30 Matsushita Electric Industrial Co., Ltd. Safety mechanism for laminate battery
WO2011108126A1 (en) 2010-03-02 2011-09-09 Jmエナジー株式会社 Laminate outer packaging storage device

Also Published As

Publication number Publication date
JPH1197070A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
JP3964521B2 (en) Assembled battery
JP2000100399A (en) Manufacture of polymer lithium secondary battery
JP3494558B2 (en) Battery
JP2002245988A (en) Thin battery
JP3863135B2 (en) battery
JP3464750B2 (en) Lithium secondary battery
JP4366775B2 (en) Solid electrolyte battery
JP3583592B2 (en) Thin rechargeable battery
JP3597027B2 (en) Thin battery
JP3579227B2 (en) Thin rechargeable battery
JPH09199175A (en) Manufacture of polymer electrolyte secondary cell
JPH11204088A (en) Sheet battery
JP3283213B2 (en) Lithium secondary battery
JPH11162436A (en) Thin secondary battery
JP2000294286A (en) Polymer lithium secondary battery
JP3457856B2 (en) Polymer electrolyte secondary battery
JP3583589B2 (en) Sheet type battery
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
JP2000173580A (en) Thin secondary battery
JPH11162421A (en) Sheet type battery
JPH1131496A (en) Battery
JP3588412B2 (en) Thin rechargeable battery
JPH11102682A (en) Thin secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees