JP3579227B2 - Thin rechargeable battery - Google Patents

Thin rechargeable battery Download PDF

Info

Publication number
JP3579227B2
JP3579227B2 JP26038197A JP26038197A JP3579227B2 JP 3579227 B2 JP3579227 B2 JP 3579227B2 JP 26038197 A JP26038197 A JP 26038197A JP 26038197 A JP26038197 A JP 26038197A JP 3579227 B2 JP3579227 B2 JP 3579227B2
Authority
JP
Japan
Prior art keywords
exterior material
heat
thin
fusible resin
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26038197A
Other languages
Japanese (ja)
Other versions
JPH11102673A (en
Inventor
聡一 花房
正夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP26038197A priority Critical patent/JP3579227B2/en
Publication of JPH11102673A publication Critical patent/JPH11102673A/en
Application granted granted Critical
Publication of JP3579227B2 publication Critical patent/JP3579227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、薄形二次電池に関し、ガス放出機構を設けた薄形二次電池に係わる。
【0002】
【従来の技術】
近年、例えばポリマーリチウムイオン二次電池のような0.5mm程度の厚さを有する薄形二次電池は、小型、軽量を重視する携帯パソコンのようなコードレス機器の電源として注目され、その開発が活発に進められている。
【0003】
前記薄形二次電池の実用化にあたっての重要な要素技術は、正極、負極の活物質の選択、電池の構成技術の他に、外装材による薄形発電要素池の密封技術が挙げられる。前記外装材による前記薄形発電要素の密封性が低下すると、前記発電要素を構成する電解液が揮発、漏洩して電池反応を低減させるばかりか、外部から湿気が容易に侵入して性能低下を招く。
【0004】
このようなことから、従来の前記薄形二次電池は、内面に熱融着性樹脂フィルムが配された外装材内に正極、セパレータおよび負極を有する薄形発電要素を前記正負極の集電体に接続された外部端子が前記外装材の開口縁部から延出するように収納し、かつ前記開口縁部で前記熱融着性樹脂フィルムを互いに熱融着して前記発電要素を前記外装材内に密封した構造を有する。前記外装材は、例えば熱融着性樹脂フィルム、アルミニウム箔のようなバリアフィルムおよびポリエチレンテレフタレートフィルムのような剛性を有する樹脂フィルムを少なくともこの順序で積層した積層フィルムからなる。
【0005】
しかしながら、前記薄形二次電池において過充電等により内部にガスが発生した場合、内圧が上昇する。このため、外装材である積層フィルムが膨張して最終的に破裂する。薄型二次電池が破裂すると、その内容物(特に電解液)が飛散し、機器に直接搭載した場合には機器が損傷し、電池パックの場合にはケースが破損し、同様に搭載された機器の損傷を招く。
【0006】
【発明が解決しようとする課題】
本発明は、過充電時等においてガスが発生して内圧が上昇した際に、そのガスを外部に容易に逃散させて破裂に至るのを未然に防止することが可能な薄形二次電池を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る薄型二次電池は、内面に熱融着性樹脂が配された外装材内に正極、セパレータ、負極および非水電解質を有する薄型発電要素を前記正負極にそれぞれ電気的に接続された外部端子が前記外装材の開口縁部から延出するように収納した薄型二次電池であって
前記開口縁部全てで前記熱融着性樹脂フィルムを互いに熱融着し、その熱融着部により前記発電要素を前記外装材内に密封し、かつ
孔または切り込み部は、前記外装材の前記熱融着部を除く一部に、前記外装材の内面から外面に亘って設けられ、かつ金属箔は前記外装材内面の前記熱融着性樹脂フィルムに前記孔または切り込み部を塞ぐように配置されていると共にその周縁部が前記熱融着性樹脂フィルムに熱融着されていることを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明に係わる薄形二次電池、例えば薄形ポリマー電解質二次電池を図面を参照して詳細に説明する。
図1は、本発明に係わる薄形ポリマー電解質二次電池を示す斜視図、図2は図1の二次電池の展開斜視図、図3は図1のIII −III 線に沿う断面図である。内面に熱融着性樹脂フィルムが配された例えば積層フィルムからなる外装材1内には、薄形発電要素2が収納され、前記外装材1の例えば3側辺でその内面の熱融着性樹脂フィルムを互いに熱融着したシール部3a,3b,3cにより前記発電要素2を密封している。前記発電要素2は、図3に示すように正極4、セパレータであるポリマー電解質層5および負極6がこの順序で積層した構造を有する。
【0009】
前記正極4は、アルミニウム製の集電体7の両面に正極層8が担持された構造を有する。前記集電体7は、帯状アルミニウム箔からなる端子部9を有し、この端子部9にはアルミニウム製の外部正極リード10が超音波溶接によって接続されている。この外部リード10は、前記外装材1のシール部3bから外部に延出されている。
【0010】
前記負極6は、銅製の集電体11の両面に負極層12が担持された構造を有する。前記集電体11は、帯状銅箔からなる端子部13を有し、この端子部13には外部負極リード14が超音波溶接等によって接続されている。この外部リード14は、前記外装材1のシール部3bから外部に延出されている。
【0011】
切り込み部、例えば十字状切り込み部15は、前記発電要素2の表面に対応する前記外装材1に設けられている。金属箔、例えば円形の金属箔16は前記外装材1内面の熱融着性樹脂フィルムに前記十字状切り込み部15を塞ぐように配置されていると共にその環状周縁部17が熱融着性樹脂フィルムに熱融着されている。
【0012】
このような薄形ポリマー電解質二次電池は、例えば次のような方法により製造される。まず、図2に示すように帯状積層フィルム18の所定部分にそのシール面となる熱融着性樹脂フィルム側から例えばカッター等により十字状の切り込み部15を形成し、この切り込み部15を含む前記熱融着性樹脂フィルムに円形の金属箔16を配置すると共に、その環状周縁部17を前記熱融着性樹脂フィルムに熱融着して貼り付ける。つづいて、正負極の外部端子10,14が取付けられた薄形発電要素2を短辺に平行な中央部に位置する折り曲げ線19を境にして金属箔16が貼着されていない前記積層フィルム18部分に前記外部端子10,14がフィルム18の短辺の端面から延出するように載せた後、前記積層フィルム18を前記折り曲げ線19で前記発電要素2を包むように折り曲げる。その後、前記折り曲げ部を除く3つの側辺を熱シールして前記発電要素2を密封することにより図1に示す二次電池を製造する。
【0013】
前記外装材1、正極4、負極6および電解質層5は、次のような構成になっている。
1)外装材1
この外装材1は、シール面に熱融着性樹脂が配され、中間にアルミニウム(Al)のような金属薄膜を介在させた積層フィルムからなることが好ましい。具体的には、シール面側から外面に向けて積層したポリエチレン(PE)/ポリエチレンテレフタレート(PET)/Al箔/PETの積層フィルム;PE/ナイロン/Al箔/PETの積層フィルム;アイオノマー/Ni箔/PE/PETの積層フィルム;エチレンビニルアセテート(EVA)/PE/Al箔/PETの積層フィルム;アイオノマー/PET/Al箔/PETの積層フィルム等を用いることができる。ここで、シール面側のPE、アイオノマー、EVA以外のフィルムは防湿性、耐通気性、耐薬品性を担っている。
【0014】
なお、前記外装材は積層フィルムをその内面(シール面)に熱融着性樹脂フィルムが位置するように折り曲げ、その折り曲げ線と平行な端部を熱シールして筒状物を作製し、この中に前述した薄形発電要素をその正極と電気的に接続された外部端子が一方の開口から延出し、その負極と電気的に接続された外部端子が他方の開口から延出するように収納し、前記2つの開口部を熱シールして前記発電要素を密封した構造にしてもよい。
【0015】
2)正極4
この正極4は、アルミニウム製の集電体7の両面に活物質、非水電解液及びこの電解液を保持するポリマーを含む正極層8が担持された構造を有する。
【0016】
前記活物質としては、種々の酸化物(例えばLiMn などのリチウムマンガン複合酸化物、二酸化マンガン、例えばLiNiO などのリチウム含有ニッケル酸化物、例えばLiCoO などのリチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウムを含む非晶質五酸化バナジウムなど)や、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブテンなど)等を挙げることができる。中でも、リチウムマンガン複合酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケル酸化物を用いるのが好ましい。
【0017】
前記非水電解液は、非水溶媒に電解質を溶解することにより調製される。
前記非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。前記非水溶媒は、単独で使用しても、2種以上混合して使用しても良い。
【0018】
前記電解質としては、例えば過塩素酸リチウム(LiClO )、六フッ化リン酸リチウム(LiPF )、ホウ四フッ化リチウム(LiBF )、六フッ化砒素リチウム(LiAsF )、トリフルオロメタンスルホン酸リチウム(LiCF SO )、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF SO ]等のリチウム塩を挙げることができる。
【0019】
前記電解質の前記非水溶媒に対する溶解量は、0.2mol/L〜2mol/Lとすることが望ましい。
前記非水電解液を保持するポリマーとしては、例えば、ポリエチレンオキサイド誘導体、ポリプロピレンオキサイド誘導体、前記誘導体を含むポリマー、ビニリデンフロライド(VdF)とヘキサフルオロプロピレン(HFP)との共重合体等を用いることができる。前記HFPの共重合割合は、前記共重合体の合成方法にも依存するが、通常、最大で20重量%前後である。
【0020】
前記正極層は、導電性を向上する観点から導電性材料を含んでいてもよい。この導電性材料としては、例えば、人造黒鉛、カーボンブラック(例えばアセチレンブラックなど)、ニッケル粉末等を挙げることができる。
【0021】
前記集電体としては、例えばアルミニウム製エキスパンドメタル、アルミニウム製メッシュ、アルミニウム製パンチドメタル等を用いることができる。
なお、前記正極は集電体の片面に正極層を担持させた構造にしてもよい。
【0022】
3)負極6
この負極6は、銅製の集電体11の両面に活物質、非水電解液及びこの電解液を保持するポリマーを含む負極層12が担持された構造を有する。
【0023】
前記活物質としては、リチウムイオンを吸蔵放出する炭素質材料を挙げることができる。かかる炭素質材料としては、例えば、有機高分子化合物(例えば、フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られるもの、コークスや、メソフェーズピッチを焼成することにより得られるもの、人造グラファイト、天然グラファイト等に代表される炭素質材料を挙げることができる。中でも、500℃〜3000℃の温度で、常圧または減圧下にて前記メソフェーズピッチを焼成して得られる炭素質材料を用いるのが好ましい。
【0024】
前記非水電解液及び前記ポリマーとしては、前述した正極で説明したものと同様なものが用いられる。
前記負極層は、人造グラファイト、天然グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック、ニッケル粉末、ポリフェニレン誘導体等の導電性材料、オレフィン系ポリマーや炭素繊維等のフィラーを含むことを許容する。
【0025】
前記集電体としては、例えば銅製エキスパンドメタル、銅製メッシュ、銅製パンチドメタル等を用いることができる。
なお、前記負極は集電体の片面に正極層を担持させた構造にしてもよい。
【0026】
4)ポリマー電解質層5
この電解質層5は、非水電解液及びこの電解液を保持するポリマーを含む。
前記非水電解液及び前記ポリマーとしては、前述した正極で説明したものと同様なものが用いられる。
【0027】
前記電解質層は、圧縮強度を向上させるためにSiO 粉末のような無機フィラーを添加してもよい。
前記発電要素は、1層に限らず、2層以上前記外装材内に収納してもよい。
【0028】
前記外装材に設ける切り込み部は、十字状に限らず、線状でもよい。また、図4に示すように切り込み部の代わりに円形等の孔20を外装材1に開口してもよい。特に、外装材として中間にAl箔のような金属箔を介在させた積層フィルムから形成した場合には、前記切り込み部または孔は前記外装材の内面から外面に向けて例えばカッターやパンチングにより形成することが望ましい。この手法により切り込み部または孔を形成すれば、前記積層フィルムの金属箔に起因するバリが外装材の外面に生じ、内面にバリが生じないため、前記外装材内面に金属箔を熱融着する際に前記バリによって前記金属箔が損傷されるのを防止することができる。
【0029】
前記外装材に貼り付ける金属箔としては、例えばアルミニウム箔を用いることができる。この金属箔は、円形に限らず、四角形、多角形等任意である。
前記金属箔の厚さは、その性質(特に延伸性)により一概に規定できないが、Al箔の場合には3〜50μmにすることが好ましい。
【0030】
なお、薄形二次電池の体積エネルギー密度を高めるために図1または図4の外部端子10,14が延出されるシール部3bを除く互いに平行するシール部3a,3c表面側に折り曲げて固定してもよい。
【0031】
以上説明した本発明によれば、薄形発電要素2が収納された外装材1に例えば十字状の切り込み部15を設け、かつ金属箔16を前記外装材1内面の前記熱融着性樹脂フィルムに切り込み部15を塞ぐように配置すると共にその周縁部17を前記熱融着性樹脂フィルムに熱融着することによって、過充電等により前記発電要素2からガスが発生して内圧が上昇しても、前記金属箔16の箇所で破断されて外装材1自体が破裂する前にガスを逃散することができる。
【0032】
すなわち、図5に示すように外装材1の内部にガスが発生して外装材1が膨張すると、金属箔16が外側に湾曲され、それに伴って前記金属箔16と未融着状態の外装材1部分が前記切り込み部15に沿って外側に開き、穴が形成される。その結果、前記金属箔16に対してさらにその穴に向かって外側に湾曲する力が働くため、最後にはその力に抗しきれずに破断される。
【0033】
一方、図4に示すように外装材1に孔20を開口し、金属箔16を外装材1内面の前記熱融着性樹脂フィルムに前記孔20を塞ぐように配置すると共にその周縁部を前記熱融着性樹脂フィルムに熱融着することによって、過充電等によりガスが発生して外装材1が膨張すると、前記金属箔16は前記孔20に向かって外側に湾曲する力が働くため、最後にはその力に抗しきれずに破断される。
【0034】
したがって、過充電時等においてガスが発生して内圧が上昇した際に、そのガスを前記金属箔の破断により外部に容易に逃散させて外装材が破裂に至るのを未然に防止することが可能な薄形二次電池を提供できる。このため、外装材の破裂に伴う内容物(特に電解液)の飛散を回避して、機器に直接搭載した場合における機器の損傷等を防止することができる。
【0035】
また、積層フィルムからなる外装材を用いた場合において、金属箔16を外装材1の内面には位置して貼り付けることによって、切り込み部15(または孔20)の形成によるその破断面に発電要素2等に含まれる電解液が直接接触するのを前記金属箔16により防止できる。その結果、前記積層フィルの間への電解液の侵入に伴うデラミネーションを防止することができる。
【0036】
【実施例】
以下、本発明の好ましい実施例を前述した図面を参照して詳細に説明する。
(実施例1)
<正極の作製>
アセトンにビニリデンフロライド−ヘキサフルオロプロピレン(VdF−HFP)の共重合体(エルファトケム社製商品名;KYNAR2801、共重合比[VdF:HFP]が88:12)粉末を溶解した後、このアセトン溶液にジブチルフタレート(DBP)と、活物質として組成式がLiCoO で表されるリチウム含有コバルト酸化物(日本重化学工業製)とを添加して正極用ペーストを調製した。つづいて、アルミニウム製メッシュからなる多孔質集電体に前記組成の正極用ペーストをナイフコータを用いて塗工し、乾燥空気で乾燥することにより前記多孔質集電体の両面に電解液未含浸正極層が形成された正極素材を作製した。
【0037】
<負極の作製>
前記正極に用いられたのと同様なビニリデンフロライド−ヘキサフルオロプロピレンの共重合体をアセトンに溶解させてアセトン溶液を調製した後、このアセトン溶液にジブチルフタレート(DBP)を添加後、活物質としてメソフェーズピッチ系炭素繊維(株式会社ペトカ社製)を添加し、混合することにより負極用ペーストを調製した。この負極用ペーストを銅製メッシュからなる多孔質集電体にナイフコータを用いて塗工し、乾燥空気により乾燥するして前記多孔質集電体の両面に電解液未含浸負極層が形成された負極素材を作製した。
【0038】
<固体ポリマー電解質層の作製>
前記正極に用いられたのと同様なビニリデンフロライド−ヘキサフルオロプロピレンとの共重合体をアセトンに溶解させてアセトン溶液を調製した後、このアセトン溶液にジブチルフタレート(DBP)を添加後、混合することによって電解質層用ペーストを調製した。前記ペーストを平滑なガラス板上に塗布した後、正負極と同様に乾燥し、前記ガラス板から剥し、電解液未含浸固体ポリマー電解質素材を作製した。
【0039】
<非水電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:1の割合で混合された非水溶媒に電解質としてのLiPF をその濃度が1mol/lになるように溶解させて非水電解液を調製した。
【0040】
得られた正極素材、固体ポリマー電解質素材および負極素材をこの順序で重ね、これらを130℃に加熱した剛性ロールにて加熱圧着して積層して厚さ1.0mm、外形寸法40mm×60mmの積層体を作製した。つづいて、この積層体をメタノール中に浸漬することにより前記正極素材、前記負極素材および前記ポリマー電解質素材中のDBPを溶出してそれら部材を多孔質構造の電解液未含浸発電要素とした。ひきつづき、この発電要素の正負極の多孔質集電体の帯状端子部に外部端子をそれぞれ超音波溶接等により接続した。
【0041】
次いで、内面側からアイオノマー樹脂フィルム/Alフィルム/PETフィルムを積層した3層からなり、厚さ0.1mm、外形寸法70mm×153mmの帯状積層フィルムを用意し、前記積層フィルムの長辺より内側35mm、短辺より内側43mmの箇所にアイオノマー樹脂フィルム側からカッターにより縦横5mmの十字状の切り込み部を形成し、この切り込み部を含む前記アイオノマー樹脂フィルムに外径10mm、厚さ0.01mmの円形状Al箔を配置すると共、そのAl箔の幅2mmに亘る周縁部(環状部)を熱融着して貼り付けた。つづいて、正負極の外部端子が取付けられた前記電解液未含浸発電要素を前記外部端子が前記積層フィルムの短辺から延出するように載せた後、前記積層フィルムを中央でその短辺と平行に前記電解液未含浸発電要素を包むように折り曲げた。ひきつづき、前記折り曲げ部を除く幅10mmの3つの側辺を熱シールした。ただし、前記外部端子が延出される側辺を除く2側辺のうちの一方の側辺の一部を未シール部として残した。その後、前記未シール部を通して前記非水電解液を内部に注入し、未シールを再度、熱融着することにより前述した図1に示す前記積層フィルムからなる外装材1内に薄形発電要素2が密封して収納され、前記発電要素2の表面に対応する箇所に十字状の切り込み部15が設けられ、Al箔16を内面から前記切り込み部15を塞ぐように貼り付けた厚さ1.2mm、外部端子を除く外形寸法70mm×75mm、電気容量100mAhの100個の薄形ポリマー電解質二次電池を製造した。
【0042】
(実施例2)
切り込み部の代わりに円形孔(外径5mm)を外装材に開口した以外、実施例1と同様な構成で、前述した図4に示す100個の薄形ポリマー電解質二次電池を製造した。
【0043】
(比較例1)
積層フィルムに切り込み部を形成せず、かつAl箔を貼り付けない以外、実施例1と同様な寸法、電気容量を有する100個の薄形ポリマー電解質二次電池を製造した。
【0044】
得られた実施例1,2および比較例1の二次電池を内部スペースが72mm×77mm×4.0mmで外形寸法が75mm×80mm×6.0mmの外部接続端子付きポリプロピレン製ケースに各電池の正負極の外部端子が前記外部接続端子に接続されるように収納してパック型電池を組み立て。
【0045】
前記各パック型電池について、1C、3時間の条件で過充電試験を行い、電池パックのケースの厚さ方向の変形量を測定した。その結果を下記表1に示す。

Figure 0003579227
前記表1から明らかなように実施例1,2の薄形二次電池はパック型電池とした時、全てケースの変形が認められなかった。これに対し、比較例1のの薄形二次電池はパック型電池とした時、100個中100個において変形が認められた。なお、実施例1,2のパック型電池を分解してケース内部の薄形ポリマー電解質二次電池を調べたところ、全ての二次電池は切り込み部、円形孔に貼り付けたAl箔での破断が認められた。
【0046】
【発明の効果】
以上詳述したように本発明によれば、過充電時等においてガスが発生して内圧が上昇した際に、そのガスを外部に容易に逃散させて破裂に至るのを未然に防止することが可能な安全性の高い薄形二次電池を提供できる。
【図面の簡単な説明】
【図1】本発明に係わる薄形ポリマー電解質二次電池を示す斜視図。
【図2】図2は図1の二次電池の展開斜視図。
【図3】図1のIII −III 線に沿う断面図。
【図4】本発明に係わる別の薄形ポリマー電解質二次電池を示す斜視図。
【図5】本発明に係わる薄形ポリマー電解質二次電池の作用を説明するための部分断面図。
【符号の説明】
1…外装材、
2…薄形発電要素、
4…正極、
5…ポリマー電解質層、
6…負極、
10,14…外部端子、
15…切り込み部、
16…金属箔、
20…円形孔。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin secondary battery, and more particularly, to a thin secondary battery provided with a gas release mechanism.
[0002]
[Prior art]
In recent years, thin secondary batteries having a thickness of about 0.5 mm, such as polymer lithium ion secondary batteries, have been attracting attention as power supplies for cordless devices such as portable personal computers that emphasize small size and light weight. It is being actively promoted.
[0003]
Important elemental technologies for putting the thin secondary battery into practical use include selection of active materials for the positive electrode and the negative electrode, a technology for forming a battery, and a technology for sealing a thin power generating element pond with an exterior material. When the sealing property of the thin power generating element by the exterior material is reduced, not only does the electrolytic solution constituting the power generating element volatilize and leak to reduce the battery reaction, but also moisture easily enters from the outside to reduce the performance. Invite.
[0004]
For this reason, the conventional thin secondary battery is characterized in that a thin power generating element having a positive electrode, a separator and a negative electrode in an exterior material in which a heat-fusible resin film is disposed on the inner surface is used for collecting the positive and negative electrodes. An external terminal connected to a body is housed so as to extend from an opening edge of the exterior material, and the heat-fusible resin films are heat-sealed to each other at the opening edge, thereby attaching the power generation element to the exterior. It has a structure sealed inside the material. The exterior material is, for example, a laminated film in which a heat-fusible resin film, a barrier film such as an aluminum foil, and a rigid resin film such as a polyethylene terephthalate film are laminated at least in this order.
[0005]
However, when gas is generated inside the thin secondary battery due to overcharging or the like, the internal pressure increases. For this reason, the laminated film as an exterior material expands and eventually bursts. When a thin secondary battery ruptures, its contents (especially electrolyte) are scattered, and the device is damaged when mounted directly on the device, and the case is damaged for a battery pack. Cause damage.
[0006]
[Problems to be solved by the invention]
The present invention provides a thin secondary battery that can easily escape to the outside when a gas is generated and the internal pressure rises at the time of overcharging or the like to prevent rupture, thereby preventing the gas from exploding. It is what we are going to offer.
[0007]
[Means for Solving the Problems]
The thin secondary battery according to the present invention is configured such that a thin power generating element having a positive electrode, a separator, a negative electrode and a non-aqueous electrolyte in an exterior material in which a heat-fusible resin is disposed on an inner surface is electrically connected to the positive and negative electrodes, respectively. A thin secondary battery housed so that the external terminals extend from the opening edge of the exterior material,
The heat-fusible resin films are heat-sealed to each other at all of the opening edges, the power-sealing element is sealed in the exterior material by the heat-sealed portion , and the holes or cutouts are A part of the exterior material except for the heat-sealed portion is provided from the inner surface to the outer surface of the exterior material , and the metal foil has the hole or cut portion in the heat-fusible resin film on the inner surface of the exterior material. It is characterized by being arranged so as to close and a peripheral edge thereof being heat-sealed to the heat-fusible resin film.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a thin secondary battery according to the present invention, for example, a thin polymer electrolyte secondary battery will be described in detail with reference to the drawings.
1 is a perspective view showing a thin polymer electrolyte secondary battery according to the present invention, FIG. 2 is an exploded perspective view of the secondary battery shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line III-III in FIG. . A thin power generating element 2 is housed in an exterior material 1 made of, for example, a laminated film in which a heat-fusible resin film is disposed on the inner surface. The power generating element 2 is sealed by seal portions 3a, 3b, 3c in which resin films are heat-sealed to each other. As shown in FIG. 3, the power generating element 2 has a structure in which a positive electrode 4, a polymer electrolyte layer 5 serving as a separator, and a negative electrode 6 are laminated in this order.
[0009]
The positive electrode 4 has a structure in which a positive electrode layer 8 is supported on both surfaces of a current collector 7 made of aluminum. The current collector 7 has a terminal portion 9 made of strip-shaped aluminum foil, and an external positive electrode lead 10 made of aluminum is connected to the terminal portion 9 by ultrasonic welding. The external lead 10 extends outside from the sealing portion 3b of the exterior material 1.
[0010]
The negative electrode 6 has a structure in which a negative electrode layer 12 is supported on both surfaces of a current collector 11 made of copper. The current collector 11 has a terminal portion 13 made of a strip-shaped copper foil, and an external negative electrode lead 14 is connected to the terminal portion 13 by ultrasonic welding or the like. The external lead 14 extends outside from the sealing portion 3b of the exterior material 1.
[0011]
A cut portion, for example, a cross cut portion 15 is provided in the exterior material 1 corresponding to the surface of the power generating element 2. A metal foil, for example, a circular metal foil 16 is disposed on the heat-fusible resin film on the inner surface of the exterior material 1 so as to cover the cross-shaped cut portion 15, and its annular peripheral portion 17 has a heat-fusible resin film. Is heat-sealed.
[0012]
Such a thin polymer electrolyte secondary battery is manufactured, for example, by the following method. First, as shown in FIG. 2, a cross-shaped cut portion 15 is formed in a predetermined portion of the strip-shaped laminated film 18 from a heat-fusible resin film side serving as a sealing surface thereof by, for example, a cutter or the like. A circular metal foil 16 is arranged on the heat-fusible resin film, and its annular peripheral edge portion 17 is heat-sealed and attached to the heat-fusible resin film. Subsequently, the thin film power generating element 2 to which the external terminals 10 and 14 of the positive and negative electrodes are attached is connected to the laminated film where the metal foil 16 is not adhered to a bending line 19 located at a central portion parallel to the short side. After the external terminals 10 and 14 are mounted on the portion 18 so as to extend from the end face of the short side of the film 18, the laminated film 18 is bent so as to wrap the power generation element 2 at the bending line 19. Then, the three sides excluding the bent portion are heat-sealed to seal the power generation element 2 to manufacture the secondary battery shown in FIG.
[0013]
The package 1, the positive electrode 4, the negative electrode 6, and the electrolyte layer 5 have the following configuration.
1) Exterior material 1
The exterior material 1 is preferably formed of a laminated film in which a heat-fusible resin is disposed on a sealing surface and a metal thin film such as aluminum (Al) is interposed therebetween. Specifically, a laminated film of polyethylene (PE) / polyethylene terephthalate (PET) / Al foil / PET laminated from the sealing surface side to the outer surface; a laminated film of PE / nylon / Al foil / PET; ionomer / Ni foil / PE / PET laminated film; ethylene vinyl acetate (EVA) / PE / Al foil / PET laminated film; ionomer / PET / Al foil / PET laminated film and the like can be used. Here, the film other than PE, ionomer, and EVA on the sealing surface side has moisture resistance, air resistance, and chemical resistance.
[0014]
The exterior material is formed by bending the laminated film so that the heat-fusible resin film is positioned on the inner surface (sealing surface), and heat-sealing the end parallel to the bending line to produce a cylindrical body. The thin-type power generating element described above is housed so that the external terminal electrically connected to the positive electrode extends from one opening and the external terminal electrically connected to the negative electrode extends from the other opening. The two openings may be heat-sealed to seal the power generating element.
[0015]
2) Positive electrode 4
The positive electrode 4 has a structure in which a positive electrode layer 8 containing an active material, a non-aqueous electrolyte and a polymer holding the electrolyte is supported on both surfaces of a current collector 7 made of aluminum.
[0016]
Examples of the active material include various oxides (eg, lithium manganese composite oxide such as LiMn 2 O 4 , manganese dioxide, lithium-containing nickel oxide such as LiNiO 2 , lithium-containing cobalt oxide such as LiCoO 2 , lithium Nickel-cobalt oxide, amorphous vanadium pentoxide containing lithium, etc.) and chalcogen compounds (eg, titanium disulfide, molybdenum disulfide, etc.). Among them, it is preferable to use a lithium manganese composite oxide, a lithium-containing cobalt oxide, and a lithium-containing nickel oxide.
[0017]
The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. The non-aqueous solvents may be used alone or as a mixture of two or more.
[0018]
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluoromethanesulfonic acid. Lithium salts such as lithium (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 3 ) 2 ] can be given.
[0019]
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 2 mol / L.
Examples of the polymer holding the non-aqueous electrolyte include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative, and a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP). Can be. The copolymerization ratio of the HFP depends on the method of synthesizing the copolymer, but is usually at most about 20% by weight.
[0020]
The positive electrode layer may include a conductive material from the viewpoint of improving conductivity. Examples of the conductive material include artificial graphite, carbon black (eg, acetylene black), nickel powder, and the like.
[0021]
As the current collector, for example, aluminum expanded metal, aluminum mesh, aluminum punched metal, or the like can be used.
The positive electrode may have a structure in which a positive electrode layer is supported on one surface of a current collector.
[0022]
3) Negative electrode 6
The negative electrode 6 has a structure in which a negative electrode layer 12 containing an active material, a non-aqueous electrolyte, and a polymer holding the electrolyte is supported on both surfaces of a current collector 11 made of copper.
[0023]
Examples of the active material include carbonaceous materials that occlude and release lithium ions. Such carbonaceous materials include, for example, those obtained by firing organic polymer compounds (eg, phenolic resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke and mesophase pitch, and those made by artificial graphite. And carbonaceous materials represented by natural graphite and the like. Among them, it is preferable to use a carbonaceous material obtained by firing the mesophase pitch at a temperature of 500 ° C to 3000 ° C under normal pressure or reduced pressure.
[0024]
As the non-aqueous electrolyte and the polymer, the same ones as described for the positive electrode described above are used.
The negative electrode layer is allowed to contain conductive materials such as artificial graphite, natural graphite, carbon black, acetylene black, Ketjen black, nickel powder, and polyphenylene derivatives, and fillers such as olefin polymers and carbon fibers.
[0025]
As the current collector, for example, a copper expanded metal, a copper mesh, a copper punched metal, or the like can be used.
The negative electrode may have a structure in which a positive electrode layer is supported on one surface of a current collector.
[0026]
4) Polymer electrolyte layer 5
The electrolyte layer 5 includes a non-aqueous electrolyte and a polymer that holds the electrolyte.
As the non-aqueous electrolyte and the polymer, the same ones as described for the positive electrode described above are used.
[0027]
The electrolyte layer may include an inorganic filler such as SiO 2 powder to improve compressive strength.
The power generation element is not limited to a single layer, and may be housed in the exterior material in two or more layers.
[0028]
The cut portion provided in the exterior material is not limited to a cross shape, but may be a linear shape. Further, as shown in FIG. 4, a hole 20 such as a circle may be opened in the exterior material 1 instead of the cut portion. In particular, when the exterior material is formed from a laminated film in which a metal foil such as an Al foil is interposed in the middle, the cuts or holes are formed by, for example, cutter or punching from the inner surface to the outer surface of the exterior material. It is desirable. If a notch or a hole is formed by this method, burrs due to the metal foil of the laminated film are generated on the outer surface of the exterior material, and burrs are not generated on the inner surface, so that the metal foil is thermally fused to the inner surface of the exterior material. At this time, the metal foil can be prevented from being damaged by the burrs.
[0029]
As the metal foil to be attached to the exterior material, for example, an aluminum foil can be used. This metal foil is not limited to a circle, but may be any shape such as a square or a polygon.
Although the thickness of the metal foil cannot be specified unconditionally due to its properties (especially stretchability), in the case of Al foil, the thickness is preferably 3 to 50 μm.
[0030]
In order to increase the volume energy density of the thin secondary battery, the external terminals 10, 14 of FIG. 1 or FIG. 4 are bent and fixed to the surfaces of the parallel seal portions 3a, 3c except for the seal portion 3b from which the external terminals extend. You may.
[0031]
According to the present invention described above, for example, a cross-shaped cut portion 15 is provided in the exterior material 1 in which the thin power generating element 2 is housed, and the metal foil 16 is attached to the heat-fusible resin film on the inner surface of the exterior material 1. The notch 15 is disposed so as to close the notch 15 and the peripheral edge portion 17 is heat-sealed to the heat-fusible resin film, so that gas is generated from the power generation element 2 due to overcharging and the internal pressure increases. Also, the gas can be escaped before the exterior material 1 itself is ruptured at the location of the metal foil 16 and ruptured.
[0032]
That is, as shown in FIG. 5, when gas is generated inside the exterior material 1 and the exterior material 1 expands, the metal foil 16 is bent outward, and accordingly, the exterior material in an unfused state with the metal foil 16. One part is opened outward along the cutout 15 to form a hole. As a result, the metal foil 16 is subjected to a force curving outward toward the hole, so that the metal foil 16 is finally broken without being able to withstand the force.
[0033]
On the other hand, as shown in FIG. 4, a hole 20 is opened in the exterior material 1, and the metal foil 16 is arranged on the heat-fusible resin film on the inner surface of the exterior material 1 so as to cover the hole 20, and the peripheral edge thereof is formed as described above. When the exterior material 1 expands due to generation of gas due to overcharging or the like due to heat fusion to the heat-fusible resin film, the metal foil 16 exerts a force curving outward toward the hole 20. Eventually, it breaks without being able to withstand the force.
[0034]
Therefore, when gas is generated at the time of overcharging and the internal pressure rises, the gas can be easily escaping to the outside due to the rupture of the metal foil, thereby preventing the exterior material from being ruptured. It is possible to provide a thin secondary battery. Therefore, it is possible to prevent the contents (especially, the electrolytic solution) from being scattered due to the rupture of the exterior material, and to prevent damage to the device when the device is directly mounted on the device.
[0035]
Further, in the case of using an exterior material made of a laminated film, the metal foil 16 is positioned on the inner surface of the exterior material 1 and is adhered, so that the power generation element is formed on the fracture surface formed by the cut 15 (or the hole 20). The metal foil 16 can prevent the electrolyte contained in the metal foil 2 or the like from coming into direct contact. As a result, it is possible to prevent delamination accompanying the intrusion of the electrolytic solution between the laminated fills.
[0036]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(Example 1)
<Preparation of positive electrode>
A powder of vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer (trade name: KYNAR2801, a copolymerization ratio [VdF: HFP] of 88:12, manufactured by Elphatochem Co., Ltd.) is dissolved in acetone, and the powder is dissolved in the acetone solution. Dibutyl phthalate (DBP) and lithium-containing cobalt oxide (manufactured by Nippon Heavy Industries, Ltd.) having a composition formula of LiCoO 2 as an active material were added to prepare a positive electrode paste. Subsequently, a positive electrode paste of the above composition was applied to a porous current collector made of an aluminum mesh using a knife coater, and dried with dry air to form a positive electrode impregnated with no electrolyte on both surfaces of the porous current collector. A positive electrode material on which a layer was formed was produced.
[0037]
<Preparation of negative electrode>
The same vinylidene fluoride-hexafluoropropylene copolymer as used for the positive electrode was dissolved in acetone to prepare an acetone solution, and then dibutyl phthalate (DBP) was added to the acetone solution. A negative electrode paste was prepared by adding and mixing mesophase pitch-based carbon fibers (manufactured by Petka Corporation). This negative electrode paste was coated on a porous current collector made of a copper mesh using a knife coater, and dried with dry air to form a negative electrode having an electrolyte-impregnated negative electrode layer formed on both surfaces of the porous current collector. The material was made.
[0038]
<Preparation of solid polymer electrolyte layer>
After dissolving the same copolymer of vinylidene fluoride-hexafluoropropylene as used for the positive electrode in acetone to prepare an acetone solution, dibutyl phthalate (DBP) is added to the acetone solution, and then mixed. Thus, a paste for an electrolyte layer was prepared. The paste was applied on a smooth glass plate, dried in the same manner as the positive and negative electrodes, and peeled off from the glass plate to prepare a solid polymer electrolyte material not impregnated with an electrolyte.
[0039]
<Preparation of non-aqueous electrolyte>
LiPF 6 as an electrolyte is dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / l. A liquid was prepared.
[0040]
The obtained positive electrode material, solid polymer electrolyte material and negative electrode material are stacked in this order, and they are laminated by heating and pressing with a rigid roll heated to 130 ° C. to have a thickness of 1.0 mm and an outer dimension of 40 mm × 60 mm. The body was made. Subsequently, the laminate was immersed in methanol to elute DBP in the positive electrode material, the negative electrode material, and the polymer electrolyte material, and these members were used as a porous electrolyte-impregnated power generating element having a porous structure. Subsequently, external terminals were respectively connected to the strip-shaped terminal portions of the positive and negative porous current collectors of the power generation element by ultrasonic welding or the like.
[0041]
Next, a band-shaped laminated film having a thickness of 0.1 mm and an outer dimension of 70 mm × 153 mm was prepared from three layers of an ionomer resin film / Al film / PET film laminated from the inner side, and 35 mm inside from the long side of the laminated film. A cross-shaped notch of 5 mm in length and width is formed by a cutter from the side of the ionomer resin film at a position 43 mm inward from the short side, and a circular shape having an outer diameter of 10 mm and a thickness of 0.01 mm is formed in the ionomer resin film including the cut portion. Along with disposing the Al foil, a peripheral portion (annular portion) over a width of 2 mm of the Al foil was bonded by heat fusion. Then, after placing the electrolyte-impregnated non-impregnated power generating element to which the external terminals of the positive and negative electrodes are attached so that the external terminals extend from the short side of the laminated film, the laminated film is positioned at the short side at the center. It was bent so as to wrap the electrolyte-unimpregnated power generating element in parallel. Subsequently, three sides having a width of 10 mm except for the bent portion were heat-sealed. However, a part of one of the two sides except the side from which the external terminal extends was left as an unsealed portion. Thereafter, the non-aqueous electrolytic solution is injected into the interior through the unsealed portion, and the unsealed portion is again heat-sealed to form the thin power generating element 2 in the exterior material 1 made of the laminated film shown in FIG. Is sealed and housed, a cross-shaped cut portion 15 is provided at a position corresponding to the surface of the power generating element 2, and a thickness of 1.2 mm in which an Al foil 16 is adhered from the inner surface so as to cover the cut portion 15. Then, 100 thin polymer electrolyte secondary batteries having an outer size of 70 mm × 75 mm excluding external terminals and an electric capacity of 100 mAh were manufactured.
[0042]
(Example 2)
With the same configuration as in Example 1 except that a circular hole (outer diameter 5 mm) was opened in the exterior material instead of the cutout, 100 thin polymer electrolyte secondary batteries described above and shown in FIG. 4 were manufactured.
[0043]
(Comparative Example 1)
100 thin polymer electrolyte secondary batteries having the same dimensions and electric capacity as in Example 1 except that no cut portions were formed in the laminated film and no Al foil was attached were manufactured.
[0044]
Each of the obtained secondary batteries of Examples 1 and 2 and Comparative Example 1 was placed in a polypropylene case with external connection terminals having an internal space of 72 mm × 77 mm × 4.0 mm and external dimensions of 75 mm × 80 mm × 6.0 mm. The battery pack is assembled by storing the external terminals of the positive and negative electrodes so as to be connected to the external connection terminals.
[0045]
An overcharge test was performed on each of the pack-type batteries under the conditions of 1 C and 3 hours, and the amount of deformation of the battery pack case in the thickness direction was measured. The results are shown in Table 1 below.
Figure 0003579227
As is apparent from Table 1, when the thin secondary batteries of Examples 1 and 2 were formed into a pack type battery, no deformation of the case was observed. On the other hand, when the thin secondary battery of Comparative Example 1 was a pack-type battery, deformation was observed in 100 out of 100 batteries. In addition, when the pack type batteries of Examples 1 and 2 were disassembled and the thin polymer electrolyte secondary batteries inside the case were examined, all the secondary batteries were broken by the Al foil attached to the cut portions and the circular holes. Was observed.
[0046]
【The invention's effect】
As described in detail above, according to the present invention, when gas is generated at the time of overcharging and the internal pressure increases, it is possible to prevent the gas from easily escaping to the outside and rupture. A highly safe thin secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a thin polymer electrolyte secondary battery according to the present invention.
FIG. 2 is an exploded perspective view of the secondary battery of FIG.
FIG. 3 is a sectional view taken along the line III-III in FIG. 1;
FIG. 4 is a perspective view showing another thin polymer electrolyte secondary battery according to the present invention.
FIG. 5 is a partial cross-sectional view for explaining the operation of the thin polymer electrolyte secondary battery according to the present invention.
[Explanation of symbols]
1: exterior material,
2 ... Thin power generation element,
4 ... Positive electrode,
5 ... polymer electrolyte layer,
6 ... negative electrode,
10, 14 ... external terminals,
15 ... notch,
16 ... metal foil,
20 ... Circular hole.

Claims (1)

内面に熱融着性樹脂が配された外装材内に正極、セパレータ、負極および非水電解質を有する薄型発電要素を前記正負極にそれぞれ電気的に接続された外部端子が前記外装材の開口縁部から延出するように収納した薄型二次電池であって
前記開口縁部全てで前記熱融着性樹脂フィルムを互いに熱融着し、その熱融着部により前記発電要素を前記外装材内に密封し、かつ
孔または切り込み部は、前記外装材の前記熱融着部を除く一部に、前記外装材の内面から外面に亘って設けられ、かつ金属箔は前記外装材内面の前記熱融着性樹脂フィルムに前記孔または切り込み部を塞ぐように配置されていると共にその周縁部が前記熱融着性樹脂フィルムに熱融着されていることを特徴とする薄型二次電池。
External terminals electrically connected to the positive and negative electrodes, respectively, of a thin power generation element having a positive electrode, a separator, a negative electrode, and a non-aqueous electrolyte in an exterior material in which a heat-fusible resin is disposed on an inner surface are formed by an opening edge of the exterior material. A thin secondary battery that is stored so as to extend from the part,
The heat-fusible resin films are heat-sealed to each other at all of the opening edges, the power-generating element is sealed in the exterior material by the heat-sealed portion , and the holes or cutouts are A part of the exterior material except for the heat-sealed portion is provided from the inner surface to the outer surface of the exterior material , and the metal foil has the hole or the cut portion in the heat-fusible resin film on the inner surface of the exterior material. A thin secondary battery which is disposed so as to close and a peripheral portion thereof is thermally fused to the heat-fusible resin film.
JP26038197A 1997-09-25 1997-09-25 Thin rechargeable battery Expired - Fee Related JP3579227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26038197A JP3579227B2 (en) 1997-09-25 1997-09-25 Thin rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26038197A JP3579227B2 (en) 1997-09-25 1997-09-25 Thin rechargeable battery

Publications (2)

Publication Number Publication Date
JPH11102673A JPH11102673A (en) 1999-04-13
JP3579227B2 true JP3579227B2 (en) 2004-10-20

Family

ID=17347140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26038197A Expired - Fee Related JP3579227B2 (en) 1997-09-25 1997-09-25 Thin rechargeable battery

Country Status (1)

Country Link
JP (1) JP3579227B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428974B1 (en) * 2001-11-08 2004-04-29 삼성에스디아이 주식회사 Secondary battery applying safety device
JP2008153111A (en) * 2006-12-19 2008-07-03 Hissho Go Safety structure of resin battery can
DE102009048236A1 (en) * 2009-10-05 2011-04-21 Li-Tec Battery Gmbh Electrochemical cell
JP2014022224A (en) * 2012-07-19 2014-02-03 Gs Yuasa Corp Electricity storage element
JP6044450B2 (en) * 2013-05-22 2016-12-14 株式会社豊田自動織機 Power storage device
JP6426959B2 (en) * 2014-09-25 2018-11-21 昭和電工パッケージング株式会社 Tube type exterior body for power storage device and power storage device
JP2019200888A (en) * 2018-05-15 2019-11-21 Smk株式会社 Explosion-proof valve, explosion-proof valve unit, manufacturing method of the explosion-proof valve, and manufacturing method of the explosion-proof valve unit
JP7379812B2 (en) * 2018-10-01 2023-11-15 大日本印刷株式会社 Valve structure, container including the same, and electricity storage device with valve structure
JP7299995B2 (en) * 2019-10-25 2023-06-28 シャープ株式会社 LAMINATED BATTERY AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JPH11102673A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
WO2006033319A1 (en) Lithium secondary battery
JP2000100399A (en) Manufacture of polymer lithium secondary battery
JPH11312505A (en) Thin battery
JP3583592B2 (en) Thin rechargeable battery
JP4053802B2 (en) Electrochemical devices
JP3494558B2 (en) Battery
JP2002245988A (en) Thin battery
JP4366775B2 (en) Solid electrolyte battery
JP3464750B2 (en) Lithium secondary battery
JP3579227B2 (en) Thin rechargeable battery
JP2004039651A (en) Battery
JP3597027B2 (en) Thin battery
JPH11162436A (en) Thin secondary battery
JPH11204088A (en) Sheet battery
JP3283213B2 (en) Lithium secondary battery
JP3457856B2 (en) Polymer electrolyte secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
JP2004139749A (en) Secondary battery, outer packaging material, and laminated film
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JPH1167167A (en) Sheet battery
JP2000173580A (en) Thin secondary battery
JPH11162421A (en) Sheet type battery
JP3588412B2 (en) Thin rechargeable battery
JP2004319099A (en) Electrochemical cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees