JPH1197070A - Lithium secondary battery and manufacture thereof - Google Patents

Lithium secondary battery and manufacture thereof

Info

Publication number
JPH1197070A
JPH1197070A JP9259942A JP25994297A JPH1197070A JP H1197070 A JPH1197070 A JP H1197070A JP 9259942 A JP9259942 A JP 9259942A JP 25994297 A JP25994297 A JP 25994297A JP H1197070 A JPH1197070 A JP H1197070A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode lead
film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259942A
Other languages
Japanese (ja)
Other versions
JP3554155B2 (en
Inventor
Kenji Tsuchiya
謙二 土屋
Soichi Hanabusa
聡一 花房
Masao Kawaguchi
正夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP25994297A priority Critical patent/JP3554155B2/en
Publication of JPH1197070A publication Critical patent/JPH1197070A/en
Application granted granted Critical
Publication of JP3554155B2 publication Critical patent/JP3554155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery wherein the burst of a laminate film can be prevented in the overcharging. SOLUTION: This battery comprises a power generating element 1 comprising a positive electrode and a negative electrode storing and releasing a lithium ion, a lithium ion conductive electrolyte layer, a positive electrode lead 9 electrically connected to the positive electrode, and a negative electrode lead 10 electrically connected to the negative electrode, and a film 11 which covers the power generating element 1 in such manner that the edge parts of the positive electrode lead 9 and the negative electrode lead 10 are extended outside, and of which an opening part is sealed by the thermal fusion. At least one area 13 having a function of a safety valve, exists on the fusion part of the film 11, and the peel strength of the area 13 having the function as the safety valve, is corresponding to 30-70% of the peel strength of the fusion parts 14 of the positive electrode lead 9 and the negative electrode lead 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電要素がフィル
ム内に収納された構造のリチウム二次電池及びその製造
方法に関する。
The present invention relates to a lithium secondary battery having a structure in which a power generating element is housed in a film, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の発達にともない、小型
で軽量、かつエネルギー密度が高く、更に繰り返し充放
電が可能な二次電池の開発が要望されている。このよう
な二次電池としては、リチウムまたはリチウム合金を活
物質とする負極と、モリブデン、バナジウム、チタンあ
るいはニオブなどの酸化物、硫化物もしくはセレン化物
を活物質として含む懸濁液が塗布された集電体からなる
正極と非水電解液を具備したリチウム二次電池が知られ
ている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a negative electrode using lithium or a lithium alloy as an active material, and a suspension containing an oxide, sulfide, or selenide as an active material, such as molybdenum, vanadium, titanium, or niobium, were applied. A lithium secondary battery including a positive electrode made of a current collector and a non-aqueous electrolyte is known.

【0003】また、負極に、例えばコークス、黒鉛、炭
素繊維、樹脂焼成体、熱分解気相炭素のようなリチウム
イオンを吸蔵放出する炭素質材料を含む懸濁液が塗布さ
れた集電体を用いたリチウム二次電池が提案されてい
る。前記二次電池は、デンドライト析出による負極特性
の劣化を改善することができるため、電池寿命と安全性
を向上することができる。
In addition, a current collector coated with a suspension containing a carbonaceous material that absorbs and releases lithium ions, such as coke, graphite, carbon fiber, fired resin, and pyrolytic gas phase carbon, is coated on the negative electrode. A used lithium secondary battery has been proposed. In the secondary battery, the deterioration of the negative electrode characteristics due to dendrite deposition can be improved, so that the battery life and safety can be improved.

【0004】ところで、リチウム二次電池の一例である
ポリマー電解質二次電池は、活物質、非水電解液及びこ
の電解液を保持するポリマーを含む正極層が集電体に担
持された構造の正極と、リチウムイオンを吸蔵放出し得
る炭素質材料、非水電解液及びこの電解液を保持するポ
リマーを含む負極層が集電体に担持された構造の負極
と、前記正極と前記負極の間に配置され、非水電解液及
びこの電解液を保持するポリマーを含む固体ポリマー電
解質層と、前記正極と電気的に接続された正極リード
と、前記負極と電気的に接続された負極リードとを含む
発電要素; 前記発電要素を前記正極リードの端部およ
び前記負極リードの端部が外部に延出するように被覆
し、開口部が熱融着されたフィルム;を備える。このよ
うなリチウム二次電池(素電池)は、例えば、単独か、
もしくは組電池の形態で電池パック内に収納され、電子
機器の電源として使用される。
Incidentally, a polymer electrolyte secondary battery, which is an example of a lithium secondary battery, has a positive electrode having a structure in which a positive electrode layer containing an active material, a nonaqueous electrolyte and a polymer holding the electrolyte is supported on a current collector. A negative electrode having a structure in which a negative electrode layer containing a carbonaceous material capable of inserting and extracting lithium ions, a nonaqueous electrolyte and a polymer holding the electrolyte is supported on a current collector, and between the positive electrode and the negative electrode. A solid polymer electrolyte layer including a non-aqueous electrolyte and a polymer holding the electrolyte, a positive electrode lead electrically connected to the positive electrode, and a negative electrode lead electrically connected to the negative electrode A power generating element; a film which covers the power generating element so that an end of the positive electrode lead and an end of the negative electrode lead extend to the outside, and has an opening thermally fused; Such a lithium secondary battery (unit cell), for example, alone or
Alternatively, the battery pack is housed in a battery pack in the form of an assembled battery, and is used as a power source for an electronic device.

【0005】しかしながら、前記リチウム二次電池は、
過充電等によりガスが発生すると、前記フィルムが大幅
に膨張し、破裂するため、発電要素の飛散や、電池パッ
クの変形などが生じ、電子機器を損傷したり、人体に悪
影響を及ぼす恐れがある。
However, the lithium secondary battery is
When gas is generated due to overcharging or the like, the film is significantly expanded and ruptured, so that the power generation element may be scattered, the battery pack may be deformed, and the electronic device may be damaged or the human body may be adversely affected. .

【0006】[0006]

【発明が解決しようとする課題】本発明は、過充電等に
よりフィルムが膨張した際に、速やかに膨張を停止し、
破裂を未然に防止することが可能なリチウム二次電池及
びその製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION According to the present invention, when the film expands due to overcharging or the like, the expansion is stopped immediately,
An object of the present invention is to provide a lithium secondary battery capable of preventing rupture and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明に係るリチウム二
次電池は、リチウムイオンを吸蔵・放出する正極及び負
極と、前記正極と前記負極の間に配置されたリチウムイ
オン伝導性電解質層と、前記正極と電気的に接続された
正極リードと、前記負極と電気的に接続された負極リー
ドとを含む発電要素;前記発電要素を前記正極リード及
び前記負極リードの端部が外側に延出するように被覆
し、開口部が熱融着により封止されたフィルム;を具備
し、前記フィルムは融着部に安全弁として機能する領域
が1つ以上存在し、前記安全弁として機能する領域の剥
離強度は前記正極リード及び前記負極リードそれぞれの
融着部の剥離強度の30%〜70%に相当することを特
徴とするものである。
A lithium secondary battery according to the present invention comprises a positive electrode and a negative electrode that occlude and release lithium ions, a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, A power generating element including a positive electrode lead electrically connected to the positive electrode and a negative electrode lead electrically connected to the negative electrode; the power generating element has ends of the positive electrode lead and the negative electrode lead extending outward. And a film having an opening portion sealed by heat sealing, wherein the film has at least one region functioning as a safety valve in the fusion bonding portion, and has a peel strength in a region functioning as the safety valve. Is equivalent to 30% to 70% of the peel strength of the fused portion of each of the positive electrode lead and the negative electrode lead.

【0008】本発明に係るリチウム二次電池の製造方法
は、リチウムイオンを吸蔵・放出する正極及び負極と、
前記正極と前記負極の間に配置されたリチウムイオン伝
導性電解質層と、前記正極と電気的に接続された正極リ
ードと、前記負極と電気的に接続された負極リードとを
含む発電要素がフィルムで前記正極リード及び前記負極
リードの端部が外部に延出するように被覆され、前記フ
ィルムの開口部が熱融着により封止された構造を有する
リチウム二次電池の製造方法であって、前記開口部のう
ち少なくとも1箇所は非熱融着性樹脂シートが介在され
た状態で熱融着され、前記シートが存在する融着部の剥
離強度は前記正極リード及び前記負極リードそれぞれの
融着部の剥離強度の30%〜70%に相当することを特
徴とするものである。
A method for manufacturing a lithium secondary battery according to the present invention comprises a positive electrode and a negative electrode that occlude and release lithium ions;
A power generation element including a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, a positive electrode lead electrically connected to the positive electrode, and a negative electrode lead electrically connected to the negative electrode is a film. In a method for manufacturing a lithium secondary battery having a structure in which the ends of the positive electrode lead and the negative electrode lead are coated so as to extend to the outside, and the opening of the film is sealed by heat sealing. At least one of the openings is heat-fused with a non-heat-fusible resin sheet interposed therebetween, and the peel strength of the fused portion where the sheet is present is the fusion strength of each of the positive electrode lead and the negative electrode lead. Characterized in that it corresponds to 30% to 70% of the peel strength of the part.

【0009】[0009]

【発明の実施の形態】本発明に係るリチウム二次電池の
一例(ポリマー電解質二次電池)を図1〜図5を参照し
て詳細に説明する。図1は本発明に係るリチウム二次電
池に含まれる発電要素の一例を示す断面図、図2は本発
明に係るリチウム二次電池を示す部分切欠平面図、図3
は図2の二次電池の側面図、図4は図2の二次電池にお
いて安全弁が作動した状態を示す部分切欠平面図、図5
は図4の二次電池の側面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An example of a lithium secondary battery (a polymer electrolyte secondary battery) according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a cross-sectional view showing an example of a power generating element included in a lithium secondary battery according to the present invention. FIG. 2 is a partially cutaway plan view showing a lithium secondary battery according to the present invention.
FIG. 4 is a side view of the secondary battery of FIG. 2, FIG. 4 is a partially cutaway plan view showing a state in which the safety valve is operated in the secondary battery of FIG.
FIG. 5 is a side view of the secondary battery in FIG. 4.

【0010】本発明に係るリチウム二次電池は、例えば
図1に示すような発電要素1を備える。このような発電
要素1は、銅製エキスパンドメタルのような網状集電体
2の両面に負極層3が担持された構造を有する負極と、
アルミニウム製エキスパンドメタルのような網状集電体
4の両面に活物質を含む正極層5が担持された構造を有
する2枚の正極を備える。リチウムイオン伝導性電解質
層としての2枚の固体ポリマー電解質層6は、前記負極
の両面にそれぞれ積層されている。前記各固体ポリマー
電解質層6には、前記正極がそれぞれ積層されている。
なお、前記負極集電体2は、この集電体と同じ材料から
なる帯状端子部7を有する。また、前記正極集電体4
は、この集電体と同じ材料からなる帯状端子部8を有す
る。例えば帯状アルミニウム箔からなる正極リード9
は、前記2つの帯状端子部8と接続されている。例えば
帯状銅箔からなる負極リード10は、前記負極端子部7
に接続されている。このような発電要素1は、縦に二つ
折りにしたフィルム11によって被覆されている。前記
フィルム11の開口部(長手方向に沿う端部及び長手方
向と直交する両端部)は、熱融着により封止されてい
る。熱融着部12のうち、長手方向に沿う端部の中央付
近は、他に比べて融着幅が狭くなっている。この幅の狭
い融着部13(図2の楕円で囲まれた領域)は、安全弁
として機能し、剥離強度が前記正極リード9及び前記負
極リード10それぞれの融着部14(図2の円で囲まれ
た領域)の剥離強度の30%〜70%に相当する。この
ような幅の狭い融着部は、例えば、熱融着の際に加圧し
ない箇所を設けることによって形成することができる。
A lithium secondary battery according to the present invention includes a power generating element 1 as shown in FIG. 1, for example. Such a power generating element 1 includes a negative electrode having a structure in which a negative electrode layer 3 is supported on both surfaces of a mesh current collector 2 such as a copper expanded metal;
Two positive electrodes having a structure in which a positive electrode layer 5 containing an active material is supported on both surfaces of a net-like current collector 4 such as an expanded metal made of aluminum are provided. Two solid polymer electrolyte layers 6 as lithium ion conductive electrolyte layers are respectively laminated on both surfaces of the negative electrode. The positive electrode is laminated on each of the solid polymer electrolyte layers 6.
The negative electrode current collector 2 has a strip-shaped terminal portion 7 made of the same material as the current collector. Further, the positive electrode current collector 4
Has a strip-shaped terminal portion 8 made of the same material as the current collector. For example, a positive electrode lead 9 made of a strip-shaped aluminum foil
Are connected to the two band-shaped terminal portions 8. For example, the negative electrode lead 10 made of a strip-shaped copper foil is
It is connected to the. Such a power generation element 1 is covered with a film 11 which is folded vertically. Openings (ends along the longitudinal direction and both ends perpendicular to the longitudinal direction) of the film 11 are sealed by heat fusion. In the heat-sealed portion 12, the vicinity of the center of the end along the longitudinal direction has a narrower fusion width than the other portions. The narrow fused portion 13 (the area surrounded by the ellipse in FIG. 2) functions as a safety valve, and the peel strength of the fused portion 14 of each of the positive electrode lead 9 and the negative electrode lead 10 (circled in FIG. 2). (Enclosed area) corresponds to 30% to 70% of the peel strength. Such a narrow fused portion can be formed, for example, by providing a portion that is not pressurized during thermal fusion.

【0011】このように安全弁として機能する融着部1
3の剥離強度を設定するのは次のような理由によるもの
である。前記融着部13の剥離強度を前記融着部14の
剥離強度の30%未満にすると、前記フィルム11の気
密性が低下し、充放電サイクル特性のような電池特性が
低下する恐れがある。一方、前記融着部13の剥離強度
が前記融着部14の剥離強度の70%を越えると、過充
電等により内圧が上昇した際、破裂を未然に防止するこ
とが困難になる恐れがある。前記融着部13の剥離極度
のより好ましい範囲は、40%〜60%である。
[0011] The fusion portion 1 thus functioning as a safety valve.
The peel strength of No. 3 is set for the following reason. If the peel strength of the fusion portion 13 is less than 30% of the peel strength of the fusion portion 14, the airtightness of the film 11 is reduced, and battery characteristics such as charge / discharge cycle characteristics may be reduced. On the other hand, if the peel strength of the fused portion 13 exceeds 70% of the peel strength of the fused portion 14, when the internal pressure increases due to overcharging or the like, it may be difficult to prevent rupture beforehand. . The more preferable range of the exfoliation extreme of the fusion part 13 is 40% to 60%.

【0012】このような構成のリチウム二次電池におい
て、例えば過充電等によりガスが発生し、前記フィルム
11の内圧が上昇すると、図4及び図5に示すように前
記剥離強度を有する融着部13が剥離し、この部分から
前記フィルム11内のガスを外部に逃散させることがで
きるため、前記フィルム11の破裂を未然に回避するこ
とができる。
In the thus constructed lithium secondary battery, when a gas is generated due to, for example, overcharging and the internal pressure of the film 11 increases, as shown in FIGS. 13 is peeled off, and the gas in the film 11 can escape to the outside from this portion, so that the rupture of the film 11 can be avoided.

【0013】前記リチウム二次電池の正極、負極及び電
解質層としては、例えば、以下に説明するものを用いる
ことができる。 (正極)この正極は、正極活物質、非水電解液及びこの
電解液を保持するためのポリマーを含む正極層が集電体
に担持されたものから形成される。
As the positive electrode, the negative electrode, and the electrolyte layer of the lithium secondary battery, for example, those described below can be used. (Positive Electrode) This positive electrode is formed of a positive electrode layer containing a positive electrode active material, a non-aqueous electrolyte, and a polymer for holding the electrolyte, supported on a current collector.

【0014】前記正極活物質としては、種々の酸化物
(例えばLiMn24 などのリチウムマンガン複合酸
化物、二酸化マンガン、例えばLiNiO2 などのリチ
ウム含有ニッケル酸化物、例えばLiCoO2 などのリ
チウム含有コバルト酸化物、リチウム含有ニッケルコバ
ルト酸化物、リチウムを含む非晶質五酸化バナジウムな
ど)や、カルコゲン化合物(例えば、二硫化チタン、二
硫化モリブテンなど)等を挙げることができる。中で
も、リチウムマンガン複合酸化物、リチウム含有コバル
ト酸化物、リチウム含有ニッケル酸化物を用いるのが好
ましい。
Examples of the positive electrode active material include various oxides (eg, lithium-manganese composite oxide such as LiMn 2 O 4 , manganese dioxide, lithium-containing nickel oxide such as LiNiO 2, and lithium-containing cobalt oxide such as LiCoO 2 , for example). Oxide, lithium-containing nickel-cobalt oxide, lithium-containing amorphous vanadium pentoxide and the like, and chalcogen compounds (for example, titanium disulfide and molybdenum disulfide). Among them, it is preferable to use a lithium manganese composite oxide, a lithium-containing cobalt oxide, and a lithium-containing nickel oxide.

【0015】前記非水電解液は、非水溶媒に電解質を溶
解することにより調製される。前記非水溶媒としては、
エチレンカーボネート(EC)、プロピレンカーボネー
ト(PC)、ブチレンカーボネート(BC)、ジメチル
カーボネート(DMC)、ジエチルカーボネート(DE
C)、エチルメチルカーボネート(EMC)、γ−ブチ
ロラクトン(γ−BL)、スルホラン、アセトニトリ
ル、1,2−ジメトキシエタン、1,3−ジメトキシプ
ロパン、ジメチルエーテル、テトラヒドロフラン(TH
F)、2−メチルテトラヒドロフラン等を挙げることが
できる。前記非水溶媒は、単独で使用しても、2種以上
混合して使用しても良い。
The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent. As the non-aqueous solvent,
Ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DE
C), ethyl methyl carbonate (EMC), γ-butyrolactone (γ-BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (TH
F) and 2-methyltetrahydrofuran. The non-aqueous solvents may be used alone or as a mixture of two or more.

【0016】前記電解質としては、例えば、過塩素酸リ
チウム(LiClO4 )、六フッ化リン酸リチウム(L
iPF6 )、ホウ四フッ化リチウム(LiBF4 )、六
フッ化砒素リチウム(LiAsF6 )、トリフルオロメ
タンスルホン酸リチウム(LiCF3 SO3 )、ビスト
リフルオロメチルスルホニルイミドリチウム[LiN
(CF3 SO32 ]等のリチウム塩を挙げることがで
きる。
Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (L
iPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN
(CF 3 SO 3 ) 2 ].

【0017】前記電解質の前記非水溶媒に対する溶解量
は、0.2mol/l〜2mol/lとすることが望ま
しい。前記非水電解液を保持するためのポリマーとして
は、例えば、ポリエチレンオキサイド誘導体、ポリプロ
ピレンオキサイド誘導体、前記誘導体を含むポリマー、
ビニリデンフロライド(VdF)とヘキサフルオロプロ
ピレン(HFP)との共重合体等を用いることができ
る。前記HFPの共重合割合は、前記共重合体の合成方
法にも依存するが、通常、最大で20重量%前後であ
る。
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / l to 2 mol / l. Examples of the polymer for holding the nonaqueous electrolyte include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative,
A copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP) or the like can be used. The copolymerization ratio of the HFP depends on the method of synthesizing the copolymer, but is usually at most about 20% by weight.

【0018】前述した図1においては、前記正極の集電
体及び端子部としてアルミニウム製エキスパンドメタル
を使用したが、前記集電体には、例えばアルミニウム
箔、アルミニウム製メッシュ、アルミニウム製パンチド
メタル等を用いても良い。
In FIG. 1 described above, an aluminum expanded metal is used for the current collector and the terminal of the positive electrode. However, the current collector may be, for example, aluminum foil, aluminum mesh, aluminum punched metal, or the like. May be used.

【0019】前記正極は、導電性を向上する観点から導
電性材料を含んでいてもよい。前記導電性材料として
は、例えば、人造黒鉛、カーボンブラック(例えばアセ
チレンブラックなど)、ニッケル粉末等を挙げることが
できる。
The positive electrode may include a conductive material from the viewpoint of improving conductivity. Examples of the conductive material include artificial graphite, carbon black (eg, acetylene black), nickel powder, and the like.

【0020】(負極)この負極は、負極活物質、非水電
解液及びこの電解液を保持するためのポリマーを含む負
極層が集電体に担持されたものから形成される。
(Negative Electrode) The negative electrode is formed of a negative electrode active material, a non-aqueous electrolyte and a negative electrode layer containing a polymer for holding the electrolyte supported on a current collector.

【0021】前記負極活物質としては、リチウムイオン
を吸蔵放出する炭素質材料を挙げることができる。かか
る炭素質材料としては、例えば、有機高分子化合物(例
えば、フェノール樹脂、ポリアクリロニトリル、セルロ
ース等)を焼成することにより得られるもの、コークス
や、メソフェーズピッチを焼成することにより得られる
もの、人造グラファイト、天然グラファイト等に代表さ
れる炭素質材料を挙げることができる。中でも、500
℃〜3000℃の温度で、常圧または減圧下にて前記メ
ソフェーズピッチを焼成して得られる炭素質材料を用い
るのが好ましい。
Examples of the negative electrode active material include carbonaceous materials that occlude and release lithium ions. Such carbonaceous materials include, for example, those obtained by firing organic polymer compounds (eg, phenolic resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke and mesophase pitch, and those made by artificial graphite. And carbonaceous materials represented by natural graphite and the like. Among them, 500
It is preferable to use a carbonaceous material obtained by calcining the mesophase pitch at a temperature of from ℃ to 3,000 ℃ under normal pressure or reduced pressure.

【0022】前記非水電解液及び前記ポリマーとして
は、前述した正極で説明したものと同様なものが用いら
れる。前述した図1においては前記負極の集電体及び端
子部としては、銅製エキスパンドメタルを使用したが、
例えば銅箔、銅製メッシュ、銅製パンチドメタル等を用
いても良い。
As the non-aqueous electrolyte and the polymer, those similar to those described for the above-mentioned positive electrode are used. In FIG. 1 described above, a copper expanded metal was used as the current collector and terminal of the negative electrode.
For example, copper foil, copper mesh, copper punched metal, or the like may be used.

【0023】なお、前記負極シートは、人造グラファイ
ト、天然グラファイト、カーボンブラック、アセチレン
ブラック、ケッチェンブラック、ニッケル粉末、ポリフ
ェニレン誘導体等の導電性材料、オレフィン系ポリマー
や炭素繊維等のフィラーを含むことを許容する。
The negative electrode sheet contains conductive materials such as artificial graphite, natural graphite, carbon black, acetylene black, Ketjen black, nickel powder, and polyphenylene derivatives, and fillers such as olefin polymers and carbon fibers. Allow.

【0024】(固体ポリマー電解質層)この電解質層
は、非水電解液及びこの電解液を保持するためのポリマ
ーを含む。
(Solid Polymer Electrolyte Layer) This electrolyte layer contains a non-aqueous electrolyte and a polymer for holding the electrolyte.

【0025】前記非水電解液及び前記ポリマーとして
は、前述した正極で説明したものと同様なものが用いら
れる。前記電解質層は、強度を更に向上させる観点か
ら、酸化硅素粉末のような無機フィラーを添加しても良
い。
As the non-aqueous electrolyte and the polymer, those similar to those described for the positive electrode described above are used. From the viewpoint of further improving the strength, the electrolyte layer may include an inorganic filler such as silicon oxide powder.

【0026】前記リチウム二次電池に用いられるフィル
ムとしては、例えば、内部に熱融着樹脂(例えば、アイ
オノマー、ポリエチレン)層が配置されたものを挙げる
ことができる。中でも、シール面に熱融着性樹脂が配さ
れ、中間にアルミニウム(Al)のような金属薄膜を介
在させた多層フィルムからなることが好ましい。具体的
には、シール面側から外面に向けて積層したポリエチレ
ン(PE)/ポリエチレンテレフタレート(PET)/
Al箔/PETの多層フィルム;PE/ナイロン/Al
箔/PETの多層フィルム;アイオノマー/Ni箔/P
E/PETの多層フィルム;エチレンビニルアセテート
(EVA)/PE/Al箔/PETの多層フィルム;ア
イオノマー/PET/Al箔/PETの多層フィルム等
を用いることができる。ここで、シール面側のPE、ア
イオノマー、EVA以外のフィルムは防湿性、耐通気
性、耐薬品性を担っている。
Examples of the film used in the lithium secondary battery include a film in which a heat-sealing resin (for example, ionomer, polyethylene) layer is disposed inside. Among them, it is preferable that the sealing surface is formed of a multilayer film in which a heat-fusible resin is disposed and a metal thin film such as aluminum (Al) is interposed therebetween. Specifically, polyethylene (PE) / polyethylene terephthalate (PET) /
Al foil / PET multilayer film; PE / Nylon / Al
Foil / PET multilayer film; ionomer / Ni foil / P
A multilayer film of E / PET; a multilayer film of ethylene vinyl acetate (EVA) / PE / Al foil / PET; a multilayer film of ionomer / PET / Al foil / PET can be used. Here, the film other than PE, ionomer, and EVA on the sealing surface has moisture resistance, air resistance, and chemical resistance.

【0027】なお、前述した図2においては、融着部の
一部を矩形状に凹ませて融着部の幅を狭くし、安全弁と
して機能する領域を形成したが、前記領域は剥離強度が
前記範囲を満たせばどのような形状であっても良い。例
えば、中央に矩形状の非融着領域を有する形状にするこ
とができる。あるいは、非融着領域を形成せず、領域全
体の融着強度を弱くしても良い。
In FIG. 2 described above, a part of the fused portion is dented into a rectangular shape to reduce the width of the fused portion, thereby forming a region functioning as a safety valve. Any shape may be used as long as the above range is satisfied. For example, a shape having a rectangular non-fused region in the center can be used. Alternatively, the fusion strength of the entire region may be reduced without forming the non-fusion region.

【0028】また、前述した図2においては、フィルム
の長手方向に沿う融着部に安全弁機能を有する領域を形
成したが、前記領域は正極リード及び負極リードの近傍
を除けばどこに設けても良い。例えば、フィルムの長手
方向と直交する端部側のうちリードが固定されていない
側に形成しても良い。
Further, in FIG. 2 described above, a region having a safety valve function is formed at the fusion portion along the longitudinal direction of the film, but the region may be provided anywhere except the vicinity of the positive electrode lead and the negative electrode lead. . For example, it may be formed on the side where the lead is not fixed among the end sides orthogonal to the longitudinal direction of the film.

【0029】また、前述した図2においては、安全弁機
能を有する領域の数を一つにしたが、二つ以上形成して
も良い。前述した図1〜図5においては、内面に熱融着
性樹脂フィルムが配された多層フィルムで正極、ポリマ
ー電解質層および負極を有する発電要素を前記正負極に
それぞれ電気的に接続されたリードが前記多層フィルム
の1つの開口縁部から延出するように被覆し、前記多層
フィルムの開口縁部で前記熱融着性樹脂フィルムを互い
に熱融着して前記発電要素を密封した構造のリチウム二
次電池に適用した例を説明したが、内面に熱融着性樹脂
フィルムが配された多層フィルムで正極、ポリマー電解
質層および負極を有する発電要素を前記正極に電気的に
接続されたリードが前記多層フィルムの1つの開口縁部
から延出し、かつ前記負極に電気的に接続されたリード
が前記多層フィルムの他の開口縁部から延出するように
被覆し、前記多層フィルムの開口縁部で前記熱融着性樹
脂フィルムを互いに熱融着して前記発電要素を密封した
構造のリチウム二次電池にも同様に適用することができ
る。
In FIG. 2 described above, the number of regions having the safety valve function is one, but two or more regions may be formed. In FIGS. 1 to 5 described above, a power generation element having a positive electrode, a polymer electrolyte layer and a negative electrode is a multilayer film in which a heat-fusible resin film is disposed on the inner surface. A lithium battery having a structure in which the power generation element is sealed by coating so as to extend from one opening edge of the multilayer film and heat-sealing the heat-fusible resin films to each other at the opening edge of the multilayer film. Although an example in which the present invention is applied to a secondary battery has been described, a lead electrically connected to the positive electrode is a power generating element having a positive electrode, a polymer electrolyte layer, and a negative electrode in a multilayer film in which a heat-fusible resin film is disposed on the inner surface. The multilayer film extending from one opening edge of the multilayer film and being electrically connected to the negative electrode so as to extend from another opening edge of the multilayer film; Heat sealed together the heat-fusible resin film in the opening edge portion in the lithium secondary battery having a structure in which sealed the power generating element can be applied as well.

【0030】以下、本発明に係るリチウム二次電池の製
造方法の一例(ポリマー電解質二次電池の製造方法)を
説明する。本発明に係る製造方法は、内面に熱融着性樹
脂フィルムが配された袋に正極、ポリマー電解質層およ
び負極を有する発電要素を前記正負極にそれぞれ電気的
に接続されたリードが前記袋の開口縁部から延出するよ
うに収納し、前記袋の開口縁部で前記熱融着性樹脂フィ
ルムを互いに熱融着して前記発電要素を密封する製造方
法や、内面に熱融着性樹脂フィルムが配されたチューブ
に正極、ポリマー電解質層および負極を有する発電要素
を前記正極に電気的に接続されたリードが前記チューブ
の1つの開口縁部から延出し、かつ前記負極に電気的に
接続されたリードが前記チューブの他の開口縁部から延
出するように被覆し、前記チューブの開口縁部で前記熱
融着性樹脂フィルムを互いに熱融着して前記発電要素を
密封する製造方法に適用することができる。
Hereinafter, an example of a method for manufacturing a lithium secondary battery according to the present invention (a method for manufacturing a polymer electrolyte secondary battery) will be described. In the manufacturing method according to the present invention, a lead in which a heat-fusible resin film is disposed on the inner surface of a positive electrode, a power generating element having a polymer electrolyte layer and a negative electrode, and a lead electrically connected to the positive and negative electrodes, respectively, is provided in the bag. A manufacturing method in which the heat-fusible resin films are housed so as to extend from the opening edge, and the heat-fusible resin films are heat-sealed to each other at the opening edge of the bag to seal the power generating element, A lead electrically connected to the positive electrode extends a power generating element having a positive electrode, a polymer electrolyte layer, and a negative electrode from a tube on which a film is disposed, and extends from one opening edge of the tube, and is electrically connected to the negative electrode. Manufacturing method for covering the formed lead so as to extend from the other opening edge of the tube, and sealing the power generating element by heat-sealing the heat-fusible resin films to each other at the opening edge of the tube. Apply to Door can be.

【0031】非熱融着性樹脂シートを介しての熱融着
は、チューブないし袋の作製時に行っても良いし、リー
ドが延出された開口縁部を封止する際に行っても良い。
前記非熱融着性樹脂シートは、例えば、ポリエチレンテ
レフタレート(PET)、ナイロン、ポリテトラフルオ
ロエチレン(PTFE)のような撥水性樹脂等から形成
することができる。
The heat-sealing through the non-heat-fusible resin sheet may be performed at the time of producing a tube or a bag, or may be performed at the time of sealing the opening edge portion where the lead is extended. .
The non-heat-fusible resin sheet can be formed from, for example, a water-repellent resin such as polyethylene terephthalate (PET), nylon, or polytetrafluoroethylene (PTFE).

【0032】本発明に係る方法で使用するフィルムとし
ては、前述したのと同様なものを挙げることができる。
以上説明したように本発明に係るリチウム二次電池によ
れば、過充電等により発電要素からガスが発生し、この
発電要素を収納するフィルムの内圧が上昇した際に、剥
離強度が正極リード及び負極リードそれぞれの融着部の
剥離強度の30〜70%の範囲である融着部が速やかに
剥離し、この剥離した部分から前記フィルム内のガスを
外部に逃散させることができるため、前記フィルムの破
裂を未然に防止することができる。
As the film used in the method according to the present invention, the same films as described above can be mentioned.
As described above, according to the lithium secondary battery of the present invention, gas is generated from the power generation element due to overcharging or the like, and when the internal pressure of the film containing the power generation element is increased, the peel strength is equal to that of the positive electrode lead. The fused portion, which is in the range of 30 to 70% of the peel strength of the fused portion of each of the negative electrode leads, is quickly peeled off, and the gas in the film can be escaping from the peeled portion to the outside. Can be prevented beforehand.

【0033】また、本発明に係るリチウム二次電池の製
造方法によれば、熱融着部のうち少なくとも1箇所の剥
離強度が前述したような特定の値であるリチウム二次電
池を製造することができる。すなわち、このような剥離
強度が低い領域を熱融着の際の加圧度合いを調節するこ
とによって形成すると、加圧の仕方によっては熱融着さ
せる領域に加えた熱が熱融着させない領域に伝わって、
結果として熱融着させない領域まで融着されてしまう場
合がある。本願発明のようにフィルムとフィルムの間に
非熱融着性樹脂シートを介在させて熱融着を行うと、シ
ートが介在している箇所は熱融着されないため、融着部
の幅の調節を簡単に行うことができ、目的とする剥離強
度を有する融着部を容易に形成することができる。その
結果、高性能で、安全性が高いリチウム二次電池を簡単
な方法で製造することができる。
Further, according to the method of manufacturing a lithium secondary battery according to the present invention, it is possible to manufacture a lithium secondary battery in which the peel strength of at least one of the heat-sealed portions has the specific value as described above. Can be. In other words, when such a region having a low peel strength is formed by adjusting the degree of pressurization at the time of heat fusion, heat applied to the region to be heat-fused depends on the manner of pressurization to a region where heat fusion is not performed. Transmitted,
As a result, there is a case where a region where heat fusion is not performed is fused. When a non-heat-fusible resin sheet is interposed between the films and heat-sealed as in the invention of the present application, the portion where the sheet is interposed is not heat-sealed. Can be easily performed, and a fused portion having a desired peel strength can be easily formed. As a result, a high-performance, highly safe lithium secondary battery can be manufactured by a simple method.

【0034】[0034]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 (実施例1)ポリエチレンテレフタレートからなる表面
層と、アルミニウムからなる中間層と、アイオノマー樹
脂からなる内部層からなる厚さ100μmのラミネート
フィルムを二つに折りたたみ、長手方向と直交する両端
部を1対の熱ロールで挟んで熱融着し、前記フィルムの
長手方向と直交する両端部に幅が5mmの融着部を形成
した。また、上部側の熱ロールを中央付近の1箇所に矩
形の凹部を有するものに変更して前記フィルムの長手方
向に沿う端部を熱融着し、前記フィルムの長手方向に沿
う端部に幅が5mmの熱融着部を形成した。なお、この
融着部のうち中央付近の1箇所は長さ5mmに亘って融
着幅が1.5mmと狭くなっており、安全弁として機能
する。このようにしてラミネートフィルムを封止するこ
とにより、縦が76mmで、横が36mmの試験用ポリ
マー電解質二次電池を組み立てた。
Embodiments of the present invention will be described below in detail with reference to the drawings. (Example 1) A 100 μm-thick laminated film composed of a surface layer made of polyethylene terephthalate, an intermediate layer made of aluminum, and an inner layer made of an ionomer resin was folded in two, and both ends orthogonal to the longitudinal direction were paired. And heat-sealed by sandwiching between the heat rolls to form a fused portion having a width of 5 mm at both ends orthogonal to the longitudinal direction of the film. Further, the upper heat roll is changed to one having a rectangular concave portion at one place near the center, and the end along the longitudinal direction of the film is heat-sealed, and the width is changed to the end along the longitudinal direction of the film. Formed a heat-sealed portion of 5 mm. In addition, one portion near the center of the fused portion has a narrow fused width of 1.5 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this manner, a test polymer electrolyte secondary battery having a length of 76 mm and a width of 36 mm was assembled.

【0035】得られた二次電池において、安全弁として
機能する融着部を5mm巾で長手方向と直交する方向に
長さ20mmに切り取り、ピーリング速度20cm/m
inでピーリング試験を行い剥離強度を測定したとこ
ろ、0.15kgfであった。前述した寸法のラミネー
トフィルムを備えるポリマー電解質二次電池の正極リー
ド(幅5mm)融着部及び負極リード(幅5mm)融着
部の剥離強度は、いずれも0.5kgfである。従っ
て、前記安全弁として機能する融着部の剥離強度は、正
極リード及び負極リードの融着部の剥離強度の30%に
相当するものであった。 (実施例2)実施例1と同様な種類及び厚さのラミネー
トフィルムを二つに折りたたみ、実施例1と同様にして
長手方向と直交する両端部を熱融着し、前記フィルムの
長手方向と直交する両端部に実施例1と同様な幅の融着
部を形成した。また、上部側の熱ロールを中央付近の1
箇所に矩形の凹部を有するものに変更して前記フィルム
の長手方向に沿う端部を熱融着し、前記フィルムの長手
方向に沿う端部に実施例1と同様な幅の熱融着部を形成
した。なお、この融着部のうち中央付近の1箇所は長さ
5mmに亘って融着幅が2.5mmと狭くなっており、
安全弁として機能する。このようにしてラミネートフィ
ルムを封止することにより、実施例1と同様な寸法の試
験用ポリマー電解質二次電池を組み立てた。
In the obtained secondary battery, a fused portion functioning as a safety valve was cut to a length of 20 mm in a direction perpendicular to the longitudinal direction with a width of 5 mm, and a peeling speed of 20 cm / m.
When the peeling strength was measured by performing a peeling test in, it was 0.15 kgf. The peel strength of the fused portion of the positive electrode lead (5 mm in width) and the fused portion of the negative electrode lead (5 mm in width) of the polymer electrolyte secondary battery provided with the laminate film having the above-mentioned dimensions are both 0.5 kgf. Therefore, the peel strength of the fused portion functioning as the safety valve was equivalent to 30% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. (Example 2) A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to obtain a laminate film with the longitudinal direction of the film. Fused portions having the same width as in Example 1 were formed at both ends orthogonal to each other. In addition, the heat roll on the upper side
Change to one having a rectangular concave portion at the place and heat-seal the end along the longitudinal direction of the film, and at the end along the longitudinal direction of the film a heat-seal part of the same width as in Example 1 Formed. In addition, in one portion near the center of the fused portion, the fused width is narrowed to 2.5 mm over a length of 5 mm,
Functions as a safety valve. By sealing the laminate film in this manner, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.

【0036】得られた二次電池において、安全弁として
機能する融着部の剥離強度を前述したのと同様にして測
定したところ、0.25kgfで、正極リード及び負極
リードの融着部の剥離強度の50%に相当するものであ
った。 (実施例3)実施例1と同様な種類及び厚さのラミネー
トフィルムを二つに折りたたみ、実施例1と同様にして
長手方向と直交する両端部を熱融着し、前記フィルムの
長手方向と直交する両端部に実施例1と同様な幅の融着
部を形成した。また、上部側の熱ロールを中央付近の1
箇所に矩形の凹部を有するものに変更して前記フィルム
の長手方向に沿う端部を熱融着し、前記フィルムの長手
方向に沿う端部に実施例1と同様な幅の熱融着部を形成
した。なお、この融着部のうち中央付近の1箇所は長さ
5mmに亘って融着幅が3.5mmと狭くなっており、
安全弁として機能する。このようにしてラミネートフィ
ルムを封止することにより、実施例1と同様な寸法の試
験用ポリマー電解質二次電池を組み立てた。
In the obtained secondary battery, when the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above, the peel strength of the fused portion of the positive electrode lead and the negative electrode lead was 0.25 kgf. Was equivalent to 50%. (Example 3) A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to obtain a film having the same length as the longitudinal direction of the film. Fused portions having the same width as in Example 1 were formed at both ends orthogonal to each other. In addition, the heat roll on the upper side
Change to one having a rectangular concave portion at the place and heat-seal the end along the longitudinal direction of the film, and at the end along the longitudinal direction of the film a heat-seal part having the same width as in Example 1 Formed. In addition, in one portion near the center of the fused portion, the fused width is reduced to 3.5 mm over a length of 5 mm,
Functions as a safety valve. By sealing the laminate film in this manner, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.

【0037】得られた二次電池において、安全弁として
機能する融着部の剥離強度を前述したのと同様にして測
定したところ、0.35kgfで、正極リード及び負極
リード融着部の剥離強度の70%に相当するものであっ
た。 (比較例1)実施例1と同様な種類及び厚さのラミネー
トフィルムを二つに折りたたみ、実施例1と同様にして
長手方向と直交する両端部を熱融着し、前記フィルムの
長手方向と直交する両端部に実施例1と同様な幅の融着
部を形成した。また、上部側の熱ロールを中央付近の1
箇所に矩形の凹部を有するものに変更して前記フィルム
の長手方向に沿う端部を熱融着し、前記フィルムの長手
方向に沿う端部に実施例1と同様な幅の熱融着部を形成
した。なお、この融着部のうち中央付近の1箇所は長さ
5mmに亘って融着幅が4mmと狭くなっており、安全
弁として機能する。このようにしてラミネートフィルム
を封止することにより、実施例1と同様な寸法の試験用
ポリマー電解質二次電池を組み立てた。
In the obtained secondary battery, the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above. As a result, the peel strength of the fused portion of the positive electrode lead and the negative electrode lead was 0.35 kgf. It was equivalent to 70%. (Comparative Example 1) A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction were heat-sealed in the same manner as in Example 1 to obtain a laminate film with the longitudinal direction of the film. Fused portions having the same width as in Example 1 were formed at both ends orthogonal to each other. In addition, the heat roll on the upper side
Change to one having a rectangular concave portion at the place and heat-seal the end along the longitudinal direction of the film, and at the end along the longitudinal direction of the film a heat-seal part having the same width as in Example 1 Formed. In addition, one portion near the center of the fusion portion has a fusion width of 4 mm over a length of 5 mm, and functions as a safety valve. By sealing the laminate film in this manner, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled.

【0038】得られた二次電池において、安全弁として
機能する融着部の剥離強度を前述したのと同様にして測
定したところ、0.40kgfで、正極リード及び負極
リード融着部の剥離強度の80%に相当するものであっ
た。 (比較例2)実施例1と同様な種類及び厚さのラミネー
トフィルムを二つに折りたたみ、1対の熱ロールで長手
方向と直交する両端部及び長手方向に沿う端部を熱融着
し、前記フィルムを封止することにより、実施例1と同
様な寸法の試験用ポリマー電解質二次電池を組み立て
た。なお、融着部の幅は、長手方向と直交する両端部及
び長手方向に沿う端部側とも実施例1と同様にした。ま
た、安全弁は設けなかった。
In the obtained secondary battery, when the peel strength of the fused portion functioning as a safety valve was measured in the same manner as described above, the peel strength of the fused portion of the positive electrode lead and the negative electrode lead was 0.40 kgf. It was equivalent to 80%. (Comparative Example 2) A laminate film of the same type and thickness as in Example 1 was folded in two, and both ends orthogonal to the longitudinal direction and the ends along the longitudinal direction were heat-sealed with a pair of heat rolls. By sealing the film, a test polymer electrolyte secondary battery having the same dimensions as in Example 1 was assembled. The width of the fused portion was the same as that in Example 1 at both ends perpendicular to the longitudinal direction and at the ends along the longitudinal direction. No safety valve was provided.

【0039】得られた二次電池において、実施例1〜3
及び比較例1における安全弁機能領域に相当する箇所の
剥離強度を前述したのと同様にして測定したところ、
0.7kgfで、正極リード及び負極リード融着部の剥
離強度の140%に相当するものであった。
In the obtained secondary batteries, Examples 1 to 3
And when the peel strength of the portion corresponding to the safety valve function region in Comparative Example 1 was measured in the same manner as described above,
0.7 kgf, which corresponded to 140% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead.

【0040】次いで、正極活物質としてLiCoO2
エチレンカーボネートとジメチルカーボネートを体積比
で2:1に混合し、1MのLiPF6 を溶解して調製し
た非水電解液及びこの電解液を保持するためのポリマー
としてVdF−HFP共重合体を含む正極と、メソフェ
ーズピッチ系炭素質材料、前記非水電解液及び前記ポリ
マーを含む負極と、前記非水電解液及び前記ポリマーを
含む固体ポリマー電解質層を用いて発電要素を作製し、
前述した実施例1〜3及び比較例1〜2と同様な構成の
ラミネートフィルム内に前記発電要素をそれぞれ内包さ
せ、ポリマー電解質二次電池を製造した。得られた実施
例1〜3及び比較例1〜2の二次電池の容量は、いずれ
も100mAhであった。
Next, LiCoO 2 as a positive electrode active material,
Nonaqueous electrolyte prepared by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 2: 1 and dissolving 1 M LiPF 6 , and a positive electrode containing a VdF-HFP copolymer as a polymer for holding the electrolyte And, a mesophase pitch-based carbonaceous material, a negative electrode containing the non-aqueous electrolyte and the polymer, and a power generation element using the non-aqueous electrolyte and a solid polymer electrolyte layer containing the polymer,
The power generating elements were each included in a laminated film having the same configuration as in Examples 1 to 3 and Comparative Examples 1 and 2 described above, to produce a polymer electrolyte secondary battery. The capacities of the obtained secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were all 100 mAh.

【0041】得られた実施例1〜3及び比較例1〜2の
試験用電池について、200mAの定電流で最大電圧1
5Vの過充電試験を行い、ガスが放出されるまでの時
間、及び放出された場所、放出状態を測定した。その結
果を下記表1に示す。
With respect to the obtained test batteries of Examples 1 to 3 and Comparative Examples 1 and 2, the maximum voltage was 1 at a constant current of 200 mA.
A 5 V overcharge test was performed to measure the time until gas was released, the location where the gas was released, and the release state. The results are shown in Table 1 below.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から明らかなように、融着部に剥離強
度が30〜70%の領域が形成された実施例1〜3の試
験用電池は、発生したガスが短時間で凹部から放出され
ており、安全性に優れていることがわかる。これに対
し、融着部に剥離強度が70%を越える領域が形成され
た比較例1の試験用電池と、リード固定部より小さい剥
離強度を有する領域が形成されていない比較例2の試験
用電池は、ガスを放出するまでの時間が実施例1〜3に
比べて長く、リード融着部が剥離すると共に破裂してお
り、安全性に劣ることがわかる。
As is clear from Table 1, in the test batteries of Examples 1 to 3 in which a region having a peel strength of 30 to 70% was formed in the fused portion, the generated gas was released from the concave portion in a short time. It is clear that the safety is excellent. On the other hand, the test battery of Comparative Example 1 in which a region having a peel strength exceeding 70% was formed in the fused portion, and the test battery of Comparative Example 2 in which a region having a peel strength smaller than the lead fixing portion was not formed. It can be seen that the battery had a longer time to release gas than Examples 1 to 3, and the lead fusion part was peeled off and burst, resulting in poor safety.

【0044】なお、実施例1と同様なラミネートフィル
ムによって熱融着により封止する際に実施例1と同様な
個所に安全弁機構として機能する領域を設け、この領域
の剥離強度を25%にしたところ、得られたポリマー電
解質二次電池は気密性が低いため、充放電中に漏液を生
じた。 (実施例4) <正極の作製>まず、活物質として組成式がLiMn2
4 で表されるリチウムマンガン複合酸化物と、カーボ
ンブラックと、ビニリデンフロライド−ヘキサフルオロ
プロピレン(VdF−HFP)の共重合体粉末と、可塑
剤としてフタル酸ジブチル(DBP)をN−N−ジメチ
ルホルムアミド中で混合し、ペーストを調製した。得ら
れたペーストをポリエチレンテレフタレートフィルム
(PETフィルム)上に塗布し、シート化し、非水電解
液未含浸の正極シートを作製した。アルミニウム製エキ
スパンドメタルからなり、正極端子部を有する集電体の
両面に、得られた正極シートを熱ロールで加熱圧着する
ことにより非水電解液未含浸の正極を作製した。
When sealing with a laminate film similar to that of Example 1 by heat sealing, a region functioning as a safety valve mechanism was provided at a location similar to that of Example 1, and the peel strength of this region was set to 25%. However, since the obtained polymer electrolyte secondary battery had low airtightness, liquid leakage occurred during charging and discharging. Example 4 <Preparation of Positive Electrode> First, a composition formula of LiMn 2 was used as an active material.
Lithium manganese composite oxide represented by O 4 , carbon black, vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder, and dibutyl phthalate (DBP) A paste was prepared by mixing in dimethylformamide. The obtained paste was applied on a polyethylene terephthalate film (PET film) to form a sheet, and a positive electrode sheet not impregnated with a non-aqueous electrolyte was prepared. A positive electrode not impregnated with a non-aqueous electrolyte was produced by heat-pressing the obtained positive electrode sheet on both surfaces of a current collector made of aluminum expanded metal and having a positive electrode terminal portion using a hot roll.

【0045】<負極の作製>活物質としてメソフェーズ
ピッチ炭素繊維と、ビニリデンフロライド−ヘキサフル
オロプロピレン(VdF−HFP)の共重合体粉末と、
可塑剤{フタル酸ジブチル(DBP)}とをN−N−ジ
メチルホルムアミド中で混合し、ペーストを調製した。
得られたペーストをポリエチレンテレフタレートフィル
ム(PETフィルム)上に塗布し、シート化し、電解液
未含浸の負極シートを作製した。銅製エキスパンドメタ
ルからなり、負極端子部を有する集電体の両面に、得ら
れた負極シートを熱ロールで加熱圧着することにより電
解液未含浸の負極を作製した。
<Preparation of Negative Electrode> Mesophase pitch carbon fiber as an active material, vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder,
A plasticizer {dibutyl phthalate (DBP)} was mixed in NN-dimethylformamide to prepare a paste.
The obtained paste was applied on a polyethylene terephthalate film (PET film) and formed into a sheet to prepare a negative electrode sheet not impregnated with an electrolyte. A negative electrode not impregnated with an electrolyte was prepared by heat-pressing the obtained negative electrode sheet on both surfaces of a current collector made of copper expanded metal and having a negative electrode terminal portion with a hot roll.

【0046】<固体ポリマー電解層の作製>酸化硅素粉
末と、ビニリデンフロライド−ヘキサフルオロプロピレ
ン(VdF−HFP)の共重合体粉末と、可塑剤{フタ
ル酸ジブチル(DBP)}とをアセトン中で混合し、ペ
ースト状にした。得られたペーストをポリエチレンテレ
フタレートフィルム(PETフィルム)上に塗布し、シ
ート化し、電解液未含浸の電解質層を作製した。
<Preparation of Solid Polymer Electrolyte Layer> Silicon oxide powder, vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder, and a plasticizer {dibutyl phthalate (DBP)} were mixed in acetone. Mix and make into a paste. The obtained paste was applied on a polyethylene terephthalate film (PET film), formed into a sheet, and an electrolyte layer not impregnated with the electrolyte was prepared.

【0047】<非水電解液の調製>エチレンカーボネー
ト(EC)とジメチルカーボネート(DMC)が混合さ
れた非水溶媒に電解質としてのLiPF6 を溶解させて
非水電解液を調製した。
<Preparation of Nonaqueous Electrolyte> A nonaqueous electrolyte was prepared by dissolving LiPF 6 as an electrolyte in a nonaqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.

【0048】<電池の組立>前記正極と前記負極をその
間に前記電解質層を介在させて積層し、これらを145
℃に加熱した剛性ロールにて加熱圧着し、積層物を作製
した。このような積層物をメタノール中に浸漬し、前記
積層物中のDBPをメタノールによって抽出し、除去し
た。これを乾燥し、積層厚が1.0mm、外径寸法が4
0×60mmの積層電極を作製した。前記正極の端子部
に正極リードとして厚さが0.05mmで、幅が5mm
の帯状アルミニウム箔を溶接した。また、前記負極の端
子部に負極リードとして厚さが0.05mmで、幅が5
mmの帯状銅箔を溶接した。
<Assembly of Battery> The positive electrode and the negative electrode were laminated with the electrolyte layer interposed therebetween,
The laminate was prepared by heat-pressing with a rigid roll heated to ℃. Such a laminate was immersed in methanol, and the DBP in the laminate was extracted with methanol and removed. This is dried and the lamination thickness is 1.0 mm and the outer diameter is 4 mm.
A laminated electrode of 0 × 60 mm was produced. The terminal part of the positive electrode has a thickness of 0.05 mm and a width of 5 mm as a positive electrode lead.
Was welded. In addition, a negative electrode lead having a thickness of 0.05 mm and a width of 5
mm copper foil was welded.

【0049】次に、外装材としてPET層、アルミニウ
ム箔層及びアイオノマー樹脂層がこの順番に積層された
複合フィルム(外形寸法が113×90mm、厚さが
0.1mm)を用意した。前記フィルムを前記アイオノ
マー樹脂層が内側に位置するように縦に二つ折りにし、
長手方向に沿う端部および長手方向と直交する端部を幅
10mmで熱融着することにより袋を形成した。この
時、長手方向と直交する端部の一部に電解液の注液口と
しての非熱融着領域を形成した。
Next, a composite film (external dimensions: 113 × 90 mm, thickness: 0.1 mm) in which a PET layer, an aluminum foil layer, and an ionomer resin layer were laminated in this order was prepared as an exterior material. Fold the film vertically so that the ionomer resin layer is located inside,
A bag was formed by heat-sealing an end along the longitudinal direction and an end perpendicular to the longitudinal direction with a width of 10 mm. At this time, a non-thermally fused region was formed at a part of the end perpendicular to the longitudinal direction as an electrolyte injection port.

【0050】次いで、図6に示すように積層電極を袋内
に収納し、前記袋内へ非熱融着性樹脂シートを配置し、
熱融着を施した。まず、得られた袋20内に前記積層電
極21を前記正極リード22及び前記負極リード23の
端部が外部に突出するように収納した。次いで、前記袋
20内に底辺が5mmで、高さが8mmで、厚さが0.
02mmであるポリエチレンテレフタレート製の三角形
のシート24を配置した。このシート24は、前記正極
リード22及び前記負極リード23が突出している端部
から5mm離れた箇所の中央部に配置した。次いで、前
記袋20のリードが延出された開口部を加熱融着時の影
響が積層電極に表れないように積層電極寸法と加熱融着
部分のマージンを持たせるようにして融着幅10mmで
加熱融着した。注液口として形成した非熱融着領域から
前記非水電解液を注液し、前記積層電極に含浸させた。
次いで、前記非熱融着領域を融着幅10mmで加熱融着
することにより、厚さが1.2mmで、リード部分を除
く外径寸法が55×90mmで、電気容量が100mA
hの薄型ポリマー電解質二次電池を100個製造した。
Next, as shown in FIG. 6, the laminated electrode is housed in a bag, and a non-heat-fusible resin sheet is placed in the bag.
Heat fusion was applied. First, the laminated electrode 21 was housed in the bag 20 so that the ends of the positive electrode lead 22 and the negative electrode lead 23 protruded outside. Then, the inside of the bag 20 has a bottom of 5 mm, a height of 8 mm, and a thickness of 0.3 mm.
A triangular sheet 24 of 02 mm made of polyethylene terephthalate was arranged. The sheet 24 was disposed at the center of a location 5 mm away from the end where the positive electrode lead 22 and the negative electrode lead 23 protruded. Next, the opening of the bag 20 from which the lead is extended has a margin of a laminated electrode dimension and a heat-fused portion so that the influence at the time of heat fusion does not appear on the laminated electrode. Heat fusion was performed. The non-aqueous electrolyte was injected from a non-thermally fused region formed as an injection port, and impregnated into the laminated electrode.
Then, the non-heat-bonded area is heat-fused with a fusion width of 10 mm, so that the thickness is 1.2 mm, the outer diameter excluding the lead portion is 55 × 90 mm, and the electric capacity is 100 mA.
h, 100 thin polymer electrolyte secondary batteries were manufactured.

【0051】得られた各二次電池において、非熱融着性
樹脂シートと隣接する融着部を前記樹脂シートの底辺を
幅とし、電池の長手方向に対して平行に長さ20mm、
幅5mmに切り取り、ピーリング速度20cm/min
でピーリング試験を行い剥離強度を測定したところ、
0.2kgfであった。また、正極リードの融着部及び
負極リードの融着部を電池の長手方向に対して平行に長
さ20mm、幅5mmに切り取り、ピーリング速度20
cm/minでピーリング試験を行い剥離強度を測定し
たところ、いずれも0.5kgfであった。従って、非
熱融着性樹脂シートを介在させることによって形成され
た幅の狭い融着部の剥離強度は、正極リード及び負極リ
ードの融着部の剥離強度の40%に相当するものであっ
た。
In each of the obtained secondary batteries, the fused portion adjacent to the non-heat-fusible resin sheet has a width at the bottom of the resin sheet and a length of 20 mm parallel to the longitudinal direction of the battery.
Cut to width 5mm, peeling speed 20cm / min
When a peeling test was performed to measure the peel strength,
It was 0.2 kgf. Further, the fused portion of the positive electrode lead and the fused portion of the negative electrode lead were cut into a length of 20 mm and a width of 5 mm in parallel with the longitudinal direction of the battery.
When the peeling strength was measured by performing a peeling test at cm / min, each was 0.5 kgf. Therefore, the peel strength of the narrow fused portion formed by interposing the non-heat-fusible resin sheet was equivalent to 40% of the peel strength of the fused portion of the positive electrode lead and the negative electrode lead. .

【0052】得られた各二次電池を電池収納スペースが
57×92×4.0mmで、外形寸法が60×95×
6.0mmの外部接続端子付きポリプロピレン製ケース
に収納し、パック型電池とした。 (比較例3)積層電極の作製及び複合フィルムからの袋
の作製を実施例4と同様にして行った。得られた積層電
極を前記袋内に正極リード及び負極リードの端部が外部
に突出するように収納した。前記袋のリードが延出され
た開口部を加熱融着時の影響が積層電極に表れないよう
に積層電極寸法と加熱融着部分のマージンを持たせるよ
うにして融着幅10mmで加熱融着した。注液口として
形成した非熱融着領域から前記非水電解液を注液し、前
記積層電極に含浸させた。次いで、前記非熱融着領域を
融着幅10mmで加熱融着することにより、厚さが1.
2mmで、リード部分を除く外径寸法が55×90mm
で、電気容量が100mAhの薄型ポリマー電解質二次
電池を100個製造した。
Each of the obtained secondary batteries has a battery storage space of 57 × 92 × 4.0 mm and external dimensions of 60 × 95 ×
The battery was housed in a 6.0 mm polypropylene case with external connection terminals to form a battery pack. Comparative Example 3 Production of a laminated electrode and production of a bag from a composite film were performed in the same manner as in Example 4. The obtained laminated electrode was housed in the bag such that the ends of the positive electrode lead and the negative electrode lead protruded outside. The opening where the lead of the bag is extended is heat-fused at a fusion width of 10 mm so as to have a margin of the laminated electrode dimensions and the heat-fused portion so that the influence of the heat fusion does not appear on the laminated electrode. did. The non-aqueous electrolyte was injected from a non-thermally fused region formed as an injection port, and impregnated into the laminated electrode. Next, the non-heat-fused region is heat-fused with a fusion width of 10 mm so that the thickness is 1.
2mm, outer diameter of 55 x 90mm excluding lead
Thus, 100 thin polymer electrolyte secondary batteries having an electric capacity of 100 mAh were manufactured.

【0053】得られた各二次電池において、実施例4に
おける非熱融着性樹脂シートと隣接する融着部に相当す
る箇所の融着部の剥離強度を実施例4と同様にして測定
したところ、0.7kgfであった。この融着部の剥離
強度は、正極リード及び負極リードの融着部の剥離強度
の140%に相当するものであった。
In each of the obtained secondary batteries, the peel strength of the fused portion at a position corresponding to the fused portion adjacent to the non-heat-fusible resin sheet in Example 4 was measured in the same manner as in Example 4. However, it was 0.7 kgf. The peel strength of the fused portion was equivalent to 140% of the peel strength of the fused portion between the positive electrode lead and the negative electrode lead.

【0054】次いで、得られた各二次電池を実施例4と
同様な外部接続端子付きポリプロピレン製ケースに収納
し、パック型電池とした。実施例4及び比較例3のパッ
ク電池について、2C、15Vで3時間充電を行う過充
電試験を実施し、弁作動数と過充電試験後の電池パック
の厚さを測定し、その結果を下記表2に示す。
Next, each of the obtained secondary batteries was housed in the same polypropylene case with external connection terminals as in Example 4 to obtain a pack-type battery. The battery packs of Example 4 and Comparative Example 3 were subjected to an overcharge test in which charging was performed at 2 C and 15 V for 3 hours, and the number of valve operations and the thickness of the battery pack after the overcharge test were measured. It is shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】表2から明らかなように、実施例4の二次
電池は、過充電後、パックの厚さが変形しておらず、内
圧上昇後、速やかに安全弁が作動したことがわかる。こ
れに対し、比較例3の二次電池は、過充電の際、パック
が変形するほどにフィルムが膨張した後、破裂を生じる
ことがわかる。
As is clear from Table 2, in the secondary battery of Example 4, the thickness of the pack did not change after overcharging, and the safety valve was activated immediately after the internal pressure increased. On the other hand, it can be seen that the secondary battery of Comparative Example 3 ruptures during overcharging after the film expands enough to deform the pack.

【0057】なお、前述した実施例4においては、非熱
融着樹脂製シートの形状を三角形にし、このシートと隣
接する融着部の幅を段階的に狭くしたが、前記シートの
形状は、このシートが存在する融着部の剥離強度が前述
した特定の範囲を満たせばどのような形状であっても良
い。例えば、矩形、円形、楕円形等にすることができ
る。
In the fourth embodiment, the shape of the non-heat-fusible resin sheet is triangular, and the width of the fused portion adjacent to this sheet is gradually reduced. Any shape may be used as long as the peel strength of the fused portion where the sheet exists satisfies the above-described specific range. For example, the shape can be a rectangle, a circle, an ellipse, or the like.

【0058】また、前述した実施例4においては、正極
リード及び負極リードが固定された融着部に非熱融着樹
脂製シートを配置したが、前記シートは正極リード及び
負極リードの近傍を除けばどこに設けても良い。例え
ば、フィルムの長手方向と直交する端部側のうちリード
が固定されていない側や、フィルムの長手方向に沿う端
部に形成することができる。また、前述した実施例4に
おいては、シートを介在させる箇所を1箇所にしたが、
2箇所以上にしても良い。
In the fourth embodiment, the non-heat-fused resin sheet is disposed at the fusion portion to which the positive electrode lead and the negative electrode lead are fixed. It may be provided anywhere. For example, it can be formed on the side to which the lead is not fixed among the end sides orthogonal to the longitudinal direction of the film, or on the end along the longitudinal direction of the film. Further, in the above-described fourth embodiment, the position where the sheet is interposed is one, but
Two or more locations may be used.

【0059】[0059]

【発明の効果】以上詳述したように本発明によれば、過
充電時の破裂が回避され、安全性が向上されたリチウム
二次電池及びその製造方法を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a lithium secondary battery in which rupture during overcharge is avoided and safety is improved, and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るリチウム二次電池に含まれる発電
要素の一例を示す断面図。
FIG. 1 is a cross-sectional view showing an example of a power generation element included in a lithium secondary battery according to the present invention.

【図2】本発明に係るリチウム二次電池を示す部分切欠
平面図。
FIG. 2 is a partially cutaway plan view showing a lithium secondary battery according to the present invention.

【図3】図2の二次電池の側面図。FIG. 3 is a side view of the secondary battery of FIG.

【図4】図2の二次電池において安全弁機構が作動した
状態を示す部分切欠平面図。
FIG. 4 is a partially cutaway plan view showing a state in which a safety valve mechanism operates in the secondary battery of FIG. 2;

【図5】図4の二次電池の側面図。FIG. 5 is a side view of the secondary battery of FIG.

【図6】本発明に係る実施例4におけるリチウム二次電
池を示す平面図。
FIG. 6 is a plan view showing a lithium secondary battery according to Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

1…発電要素、 9…正極リード、 10…負極リード、 11…フィルム、 12…融着部、 13……安全弁機能を備える融着部、 14…リード融着部。 DESCRIPTION OF SYMBOLS 1 ... Power generation element, 9 ... Positive electrode lead, 10 ... Negative electrode lead, 11 ... Film, 12 ... Fusion part, 13 ... Fusion part provided with a safety valve function, 14 ... Lead fusion part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する正極及
び負極と、前記正極と前記負極の間に配置されたリチウ
ムイオン伝導性電解質層と、前記正極と電気的に接続さ
れた正極リードと、前記負極と電気的に接続された負極
リードとを含む発電要素;前記発電要素を前記正極リー
ド及び前記負極リードの端部が外側に延出するように被
覆し、開口部が熱融着により封止されたフィルム;を具
備し、 前記フィルムは融着部に安全弁として機能する領域が1
つ以上存在し、前記安全弁として機能する領域の剥離強
度は前記正極リード及び前記負極リードそれぞれの融着
部の剥離強度の30%〜70%に相当することを特徴と
するリチウム二次電池。
A positive electrode and a negative electrode that occlude and release lithium ions; a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode; a positive electrode lead electrically connected to the positive electrode; A power generating element including a negative electrode and a negative electrode lead electrically connected to the negative electrode; covering the power generating element such that ends of the positive electrode lead and the negative electrode lead extend outward, and an opening is sealed by heat fusion Wherein the film has one region which functions as a safety valve at the fusion spliced part.
A lithium secondary battery, wherein two or more of the regions function as the safety valve, and a peel strength of the region functioning as the safety valve corresponds to 30% to 70% of a peel strength of a fused portion of each of the positive electrode lead and the negative electrode lead.
【請求項2】 リチウムイオンを吸蔵・放出する正極及
び負極と、前記正極と前記負極の間に配置されたリチウ
ムイオン伝導性電解質層と、前記正極と電気的に接続さ
れた正極リードと、前記負極と電気的に接続された負極
リードとを含む発電要素がフィルムで前記正極リード及
び前記負極リードの端部が外部に延出するように被覆さ
れ、前記フィルムの開口部が熱融着により封止された構
造を有するリチウム二次電池の製造方法であって、 前記開口部のうち少なくとも1箇所は非熱融着性樹脂シ
ートが介在された状態で熱融着され、前記シートが存在
する融着部の剥離強度は前記正極リード及び前記負極リ
ードそれぞれの融着部の剥離強度の30%〜70%に相
当することを特徴とするリチウム二次電池の製造方法。
2. A positive electrode and a negative electrode that occlude and release lithium ions, a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, a positive electrode lead electrically connected to the positive electrode, and A power generation element including a negative electrode and a negative electrode lead electrically connected to the negative electrode is covered with a film so that ends of the positive electrode lead and the negative electrode lead extend to the outside, and an opening of the film is sealed by heat sealing. A method of manufacturing a lithium secondary battery having a stopped structure, wherein at least one of the openings is heat-fused with a non-heat-fusible resin sheet interposed therebetween, and the fusion sheet in which the sheet is present The method for manufacturing a lithium secondary battery according to claim 1, wherein the peel strength of the bonded portion corresponds to 30% to 70% of the peel strength of the fused portion of each of the positive electrode lead and the negative electrode lead.
JP25994297A 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same Expired - Fee Related JP3554155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25994297A JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-198569 1997-07-24
JP19856997 1997-07-24
JP25994297A JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1197070A true JPH1197070A (en) 1999-04-09
JP3554155B2 JP3554155B2 (en) 2004-08-18

Family

ID=26511055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25994297A Expired - Fee Related JP3554155B2 (en) 1997-07-24 1997-09-25 Lithium secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3554155B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001093489A (en) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd Flat battery
JP2001250526A (en) * 2000-03-06 2001-09-14 Yuasa Corp Sealed battery
JP2002298795A (en) * 2001-03-29 2002-10-11 Tdk Corp Electrochemical device
JP2003007266A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Sealing structure for electrode body
JP2004055290A (en) * 2002-07-18 2004-02-19 Nec Corp Battery using film as outer jacket and its manufacturing method
KR100420147B1 (en) * 2001-10-19 2004-03-02 삼성에스디아이 주식회사 Li-ion secondary battery
EP1555702A2 (en) * 2004-01-16 2005-07-20 NEC Lamilion Energy, Ltd. Film-covered electric device having pressure release opening
KR100509589B1 (en) * 1999-01-20 2005-08-23 삼성에스디아이 주식회사 A safety device of secondary battery
WO2006098242A1 (en) * 2005-03-17 2006-09-21 Nec Corporation Film enclosed electric device and production method therefor
JP2008091240A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery
JP2008166130A (en) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd Flat electrochemical cell
JP2009199756A (en) * 2008-02-19 2009-09-03 Nec Tokin Corp Method of manufacturing lithium ion secondary battery
US7718306B2 (en) 2005-04-26 2010-05-18 Samsung Sdi Co., Ltd. Rechargeable battery with gas release safety vent
US8057933B2 (en) 2005-05-23 2011-11-15 Panasonic Corporation Safety mechanism for laminate battery
US8283061B2 (en) 2004-08-11 2012-10-09 Nec Corporation Film-encased electric device and production method therefor
US8574746B2 (en) 2008-03-14 2013-11-05 Nec Corporation Film-covered electrical device and assembled battery
US8617731B2 (en) 2006-02-15 2013-12-31 Nec Energy Devices, Ltd. Film-covered battery and assembled battery
US9039789B2 (en) 2010-12-08 2015-05-26 Mie Industry And Enterprise Support Center Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body
CN107949932A (en) * 2015-10-28 2018-04-20 株式会社Lg化学 Battery unit with the exhaust structure using adhesive tape

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059890B2 (en) 2009-03-31 2012-10-31 Jmエナジー株式会社 Laminate exterior power storage device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797430B1 (en) 1998-10-30 2004-09-28 Sony Corporation Non-aqueous electrolytic battery and manufacturing method
US7510799B2 (en) 1998-10-30 2009-03-31 Sony Corporation Non-aqueous electrolyte battery
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001093489A (en) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd Flat battery
JP4622019B2 (en) * 1999-01-20 2011-02-02 パナソニック株式会社 Flat battery
KR100509589B1 (en) * 1999-01-20 2005-08-23 삼성에스디아이 주식회사 A safety device of secondary battery
JP2001250526A (en) * 2000-03-06 2001-09-14 Yuasa Corp Sealed battery
JP2002298795A (en) * 2001-03-29 2002-10-11 Tdk Corp Electrochemical device
JP4639538B2 (en) * 2001-06-25 2011-02-23 トヨタ自動車株式会社 Sealing structure of electrode body
JP2003007266A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Sealing structure for electrode body
KR100420147B1 (en) * 2001-10-19 2004-03-02 삼성에스디아이 주식회사 Li-ion secondary battery
US8088505B2 (en) 2002-07-18 2012-01-03 Nec Corporation Film-packed battery and method of manufacturing the same
JP2004055290A (en) * 2002-07-18 2004-02-19 Nec Corp Battery using film as outer jacket and its manufacturing method
US7901806B2 (en) 2002-07-18 2011-03-08 Nec Corporation Film-armored battery and method of manufacturing the battery
JP4604441B2 (en) * 2002-07-18 2011-01-05 日本電気株式会社 Film-clad battery and manufacturing method thereof
EP1555702A3 (en) * 2004-01-16 2005-08-03 NEC Lamilion Energy, Ltd. Film-covered electric device having pressure release opening
US7267906B2 (en) 2004-01-16 2007-09-11 Nec Corporation Film-covered electric device having pressure release opening
US7579111B2 (en) 2004-01-16 2009-08-25 Nec Corporation Film-covered electric device having pressure release opening
EP1555702A2 (en) * 2004-01-16 2005-07-20 NEC Lamilion Energy, Ltd. Film-covered electric device having pressure release opening
CN1300861C (en) * 2004-01-16 2007-02-14 Neclamilion能源株式会社 Film-covered electric device having pressure release opening
US8283061B2 (en) 2004-08-11 2012-10-09 Nec Corporation Film-encased electric device and production method therefor
US8062780B2 (en) 2005-03-17 2011-11-22 Nec Corporation Film-covered electric device and method of manufacturing same
WO2006098242A1 (en) * 2005-03-17 2006-09-21 Nec Corporation Film enclosed electric device and production method therefor
JP5010467B2 (en) * 2005-03-17 2012-08-29 日本電気株式会社 Film-clad electrical device and method for manufacturing the same
US8178226B2 (en) 2005-03-17 2012-05-15 Nec Corporation Film-covered electric device and method of manufacturing same
US7718306B2 (en) 2005-04-26 2010-05-18 Samsung Sdi Co., Ltd. Rechargeable battery with gas release safety vent
US7935436B2 (en) 2005-04-26 2011-05-03 Samsung Sdi Co., Ltd. Rechargeable battery with gas release safety vent
US8057933B2 (en) 2005-05-23 2011-11-15 Panasonic Corporation Safety mechanism for laminate battery
US8617731B2 (en) 2006-02-15 2013-12-31 Nec Energy Devices, Ltd. Film-covered battery and assembled battery
JP2008091240A (en) * 2006-10-03 2008-04-17 Gs Yuasa Corporation:Kk Battery
JP2008166130A (en) * 2006-12-28 2008-07-17 Dainippon Printing Co Ltd Flat electrochemical cell
JP2009199756A (en) * 2008-02-19 2009-09-03 Nec Tokin Corp Method of manufacturing lithium ion secondary battery
US8574746B2 (en) 2008-03-14 2013-11-05 Nec Corporation Film-covered electrical device and assembled battery
US9039789B2 (en) 2010-12-08 2015-05-26 Mie Industry And Enterprise Support Center Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body
CN107949932A (en) * 2015-10-28 2018-04-20 株式会社Lg化学 Battery unit with the exhaust structure using adhesive tape
US11437683B2 (en) 2015-10-28 2022-09-06 Lg Energy Solution, Ltd. Battery cell of venting structure using taping

Also Published As

Publication number Publication date
JP3554155B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
JP3964521B2 (en) Assembled battery
JP2000100399A (en) Manufacture of polymer lithium secondary battery
JP2002245988A (en) Thin battery
JP3494558B2 (en) Battery
JP3464750B2 (en) Lithium secondary battery
JP3583592B2 (en) Thin rechargeable battery
JP3863135B2 (en) battery
JP3597027B2 (en) Thin battery
JP3579227B2 (en) Thin rechargeable battery
JPH11204088A (en) Sheet battery
JP3283213B2 (en) Lithium secondary battery
JPH11162436A (en) Thin secondary battery
JP3457856B2 (en) Polymer electrolyte secondary battery
JP2000294286A (en) Polymer lithium secondary battery
JP3583589B2 (en) Sheet type battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JPH11162421A (en) Sheet type battery
JPH1131496A (en) Battery
JPH11102682A (en) Thin secondary battery
JP3588412B2 (en) Thin rechargeable battery
JPH1186806A (en) Sheet-form battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees