JP2009199756A - Method of manufacturing lithium ion secondary battery - Google Patents

Method of manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2009199756A
JP2009199756A JP2008037328A JP2008037328A JP2009199756A JP 2009199756 A JP2009199756 A JP 2009199756A JP 2008037328 A JP2008037328 A JP 2008037328A JP 2008037328 A JP2008037328 A JP 2008037328A JP 2009199756 A JP2009199756 A JP 2009199756A
Authority
JP
Japan
Prior art keywords
sealing
standing
electrolyte
battery
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008037328A
Other languages
Japanese (ja)
Other versions
JP2009199756A5 (en
JP5234739B2 (en
Inventor
Yutaka Sakauchi
裕 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008037328A priority Critical patent/JP5234739B2/en
Publication of JP2009199756A publication Critical patent/JP2009199756A/en
Publication of JP2009199756A5 publication Critical patent/JP2009199756A5/ja
Application granted granted Critical
Publication of JP5234739B2 publication Critical patent/JP5234739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery improved in charge discharge cycle characteristics. <P>SOLUTION: A method of manufacturing lithium ion secondary battery includes a first sealing step of housing an electrode formed by laminating a positive electrode and a negative electrode through a separator into an outer packaging comprising multilayer laminate films and sealing the outer peripheral part of the outer packaging except a first electrolyte pouring opening peripheral part; a first electrolyte pouring step of pouring an electrolyte; a second sealing step of forming a second sealing part by leaving 10-30% of the first electrolyte pouring opening peripheral part as a second electrolyte pouring opening; a first standing step of standing for one day; a charging step; a second standing step of standing for two or three days; a discharge step; a second electrolyte pouring step of pouring the electrolyte 1.0-1.5 times of the difference between the battery weight after the first electrolyte pouring step and the battery weight after the discharge; and a third sealing step of forming a third sealing part by sealing the second electrolyte pouring opening under reduced pressure over 25-50% of the width of the second sealing part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池、特にラミネートフィルム外装型リチウムイオン二次電池の製造方法に関するものである。   The present invention relates to a method for producing a lithium ion secondary battery, in particular, a laminate film exterior type lithium ion secondary battery.

正極にリチウム含有複合酸化物を用い、負極に炭素材料、ケイ素材料、またはリチウム金属等を用いるリチウムイオン二次電池は、高いエネルギー密度を実現できることから携帯電話、ノートパソコン用等の電源として、さらには、高い入出力特性を実現できることからハイブリッド自動車用等の電源として注目されている。   Lithium ion secondary batteries that use lithium-containing composite oxides for the positive electrode and carbon materials, silicon materials, or lithium metals for the negative electrode can achieve a high energy density. Has attracted attention as a power source for hybrid vehicles and the like because of its high input / output characteristics.

特に金属箔、例えばアルミニウム箔を中間の1層に持つ樹脂フィルム主体の多層ラミネートフィルムを外装体として用いたラミネートフィルム外装型リチウムイオン二次電池は、軽量、放熱性に優れる、及び形状自由度の高さ等から注目が高まっている。   In particular, a laminated film exterior type lithium ion secondary battery using a multilayer laminate film mainly composed of a resin film having a metal foil, for example, an aluminum foil as an intermediate layer, as an exterior body is light in weight, excellent in heat dissipation, and has a shape flexibility. Attention is increasing from the height.

しかしながら、リチウムイオン二次電池では、充放電、特に初回充電時に電解液が電極と反応してガスを発生し、発生したガスによる電池の膨れ/変形、発生したガスの電極間滞留による充放電反応の阻害/低下、ガス発生による電解液の消費に伴う電解液量の不足による充放電サイクル特性の低下等、電池寿命の低下を招く可能性がある。   However, in the lithium ion secondary battery, the charge and discharge, especially the electrolyte reacts with the electrode during the first charge to generate gas, the battery is swollen / deformed by the generated gas, and the charge / discharge reaction due to the stay of the generated gas between the electrodes. There is a possibility that the battery life may be shortened, such as a decrease in charge / discharge cycle characteristics due to an insufficient amount of the electrolytic solution accompanying the consumption of the electrolytic solution due to gas generation.

ガス発生に対する対策として、例えば、特許文献1には、電解液注入/封口後、充電工程、充電状態にて60℃保存工程を行い、外装体の一部を開封して、発生したガスを排出し、開封部を再度封口する方法が開示されている。   As countermeasures against gas generation, for example, in Patent Document 1, after injection / sealing of an electrolyte, a charging process and a storage process at 60 ° C. in a charged state are performed, a part of the outer body is opened, and the generated gas is discharged. And the method of sealing again an opening part is disclosed.

特許文献2には、電解液注入/仮封口後、充電を行い、仮封口部を外し、開封部を大気圧未満にて再度封口する方法、及び最終封口は、ラミネートフィルムを熱融着し、ラミネートフィルムが容器内圧保持と圧力開放用安全弁とを兼ね備える方法が開示されている。   In Patent Document 2, charging is performed after electrolyte injection / temporary sealing, the temporary sealing part is removed, and the opening part is sealed again at less than atmospheric pressure, and the final sealing is performed by thermally bonding the laminate film, A method is disclosed in which a laminate film combines a container internal pressure holding and a pressure relief safety valve.

特許文献3には、電解液注入後、予備充電を行い、未封口部を減圧下で封口する方法、及び減圧封口前に不足分の電解液の注入工程を経る方法が開示されている。   Patent Document 3 discloses a method of performing preliminary charging after injecting an electrolytic solution and sealing an unsealed portion under reduced pressure, and a method of performing a step of injecting an insufficient amount of electrolytic solution before reducing pressure.

特許文献4及び5には、電解液を2回に分けて注入し、1回目と2回目の注入工程の間に充電を行う方法が開示されている。   Patent Documents 4 and 5 disclose a method in which an electrolytic solution is injected in two portions, and charging is performed between the first and second injection steps.

特開2000−277144号公報JP 2000-277144 A 特許第3997369号公報Japanese Patent No. 3997369 特許第3787942号公報Japanese Patent No. 3778742 特開2006−260864号公報JP 2006-260864 A 特開2006−294282号公報JP 2006-294282 A

従来開示されている方法は、ガス発生に対する対策、及び電池特性の向上方法として各々優れているが、本発明は、更なる電池特性、特に充放電サイクル特性の向上を図ったリチウムイオン二次電池の製造方法を提供することを目的とする。   Conventionally disclosed methods are excellent as countermeasures against gas generation and methods for improving battery characteristics. However, the present invention is a lithium ion secondary battery in which further battery characteristics, particularly charge / discharge cycle characteristics are improved. It aims at providing the manufacturing method of.

前記目的を達成するために本発明のリチウムイオン二次電池の製造方法は、正極と負極とをセパレータを介して積層してなる電極体を、金属箔を中間層に持つ樹脂フィルム主体の多層ラミネートフィルムよりなる外装体にて挟持して収納した後、正極リード部、及び負極リード部を前記外装体外部へ突出させた状態で外装体の外周部を、第一の注液口辺部を残して封口する第一の封口工程と、前記第一の注液口辺部から電解液を注入する第一の注液工程と、前記第一の注液口辺部の10〜30%を第二の注液口として残して第二の封口部を形成する第二の封口工程と、第二の封口工程後1日間静置する第一の静置工程と、第一の静置工程後前記正極リード部と前記負極リード部を通して充電する充電工程と、充電状態で2〜3日間静置する第二の静置工程と、第二の静置工程後放電する放電工程と、前記第一の注液工程後の電池重量と前記放電工程後の電池重量との差の1.0〜1.5倍の電解液を前記第二の注液口から注入する第二の注液工程と、減圧下で前記第二の注液口を前記第二の封口部の封止幅の25〜50%にわたり封口し第三の封口部を形成する第三の封口工程とを含むことを特徴とする。   In order to achieve the above object, a method for producing a lithium ion secondary battery according to the present invention is a resin film-based multi-layer laminate having an electrode body in which a positive electrode and a negative electrode are laminated via a separator, and a metal foil as an intermediate layer. After being sandwiched and housed in an outer package made of a film, the outer periphery of the outer package is left in the state where the positive electrode lead portion and the negative electrode lead portion are projected to the outside of the outer package body, leaving the first injection port side portion. A first sealing step for sealing and a first liquid injection step for injecting an electrolytic solution from the first liquid injection port side, and 10 to 30% of the first liquid injection port side for the second time. A second sealing step for forming a second sealing portion to leave as a liquid injection port, a first stationary step for one day after the second sealing step, and the positive electrode after the first stationary step A charging step of charging through the lead part and the negative electrode lead part; 1.0 to 1.5 times the difference between the standing step, the discharging step after the second standing step, the battery weight after the first pouring step and the battery weight after the discharging step A second pouring step of injecting the electrolyte solution from the second pouring port, and sealing the second pouring port under reduced pressure over 25 to 50% of the sealing width of the second sealing portion. And a third sealing step for forming a third sealing portion.

本発明によれば、ガス発生による電池の膨れ/変形、充放電反応の阻害/低下、及びガス発生による電解液の消費に伴う電解液量の不足による充放電サイクル特性の低下を抑制することができ、かつ、電池の異常等で電池内圧が上昇した際の内圧開放箇所が特定される。   According to the present invention, it is possible to suppress battery swelling / deformation due to gas generation, inhibition / reduction of charge / discharge reaction, and deterioration of charge / discharge cycle characteristics due to shortage of electrolyte due to consumption of electrolyte due to gas generation. The location where the internal pressure is released when the internal pressure of the battery increases due to battery abnormality or the like is specified.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(本発明による電池構成)
図1〜図4は本発明のリチウムイオン二次電池の製造方法の一実施の形態の途中工程を示す模式平面図であり、図1(a)、図2(a)、図3(a)、図4(a)は第一の封口工程、図1(b)、図2(b)、図3(b)、図4(b)は第二の封口工程、図1(c)、図2(c)、図3(c)、図4(c)は第三の封口工程を示す。図1は対向辺からそれぞれ正極リードと負極リードが導出され、多層ラミネートフィルム2枚で電極体を覆い、周囲4辺が封止されたリチウムイオン二次電池を示し、図2は対向辺からそれぞれ正極リードと負極リードが導出され、多層ラミネートフィルム1枚を折り返して電極体を覆い、周囲3辺が封止されたリチウムイオン二次電池を示し、図3は1辺から正極リードと負極リードが導出され、多層ラミネートフィルム1枚を折り返して電極体を覆い、周囲3辺が封止されたリチウムイオン二次電池を示し、図4は1辺から正極リードと負極リードが導出され、多層ラミネートフィルム2枚で電極体を覆い、周囲4辺が封止されたリチウムイオン二次電池を示す。
(Battery configuration according to the present invention)
1 to 4 are schematic plan views showing intermediate steps of an embodiment of a method for producing a lithium ion secondary battery according to the present invention. FIGS. 1 (a), 2 (a), and 3 (a). 4 (a) is the first sealing step, FIG. 1 (b), FIG. 2 (b), FIG. 3 (b) and FIG. 4 (b) are the second sealing step, FIG. 1 (c) and FIG. 2 (c), FIG. 3 (c), and FIG. 4 (c) show a third sealing step. FIG. 1 shows a lithium ion secondary battery in which a positive electrode lead and a negative electrode lead are led out from opposite sides, the electrode body is covered with two multilayer laminate films, and the surrounding four sides are sealed. FIG. Fig. 3 shows a lithium ion secondary battery in which a positive electrode lead and a negative electrode lead are led out, a multilayer laminate film is folded back to cover the electrode body, and three sides are sealed. Fig. 3 shows the positive electrode lead and the negative electrode lead from one side. Fig. 4 shows a lithium ion secondary battery in which one multilayer laminate film is folded to cover an electrode body and three sides are sealed, and Fig. 4 shows a positive electrode lead and a negative electrode lead from one side. A lithium ion secondary battery in which the electrode body is covered with two sheets and the four sides are sealed is shown.

図1〜図4に示すように本発明は、電極体1をアルミラミネートフィルム外装体に収納後、正極リード部2、及び負極リード部3を外装体外部へ突出させた状態で外装体の外周部4を第一の注液口辺部5を残して封口する第一の封口工程(図1(a)、図2(a)、図3(a)、図4(a)参照)と、第一の注液口辺部5より電解液を注入する第一の注液工程と、第一の注液口辺部5の10%〜30%の長さを第二の注液口7として残して第二の封口部6を形成する第二の封口工程(図1(b)、図2(b)、図3(b)、図4(b)参照)と、その後1日間静置する第一の静置工程と、その後、正極リード部2及び負極リード部3を通して充電する充電工程と、充電状態にて2〜3日間静置する第二の静置工程と、静置後に放電する放電工程と、第一の注液工程後の電池重量と放電工程後の電池重量との差の1.0倍〜1.5倍の電解液を第二の注液口7より注入する第二の注液工程と、減圧下で第二の注液口7を第二の封口部6の封止幅の25%〜50%にわたり封口し、第三の封口部8を形成する第三の封口工程より構成される。   As shown in FIGS. 1 to 4, in the present invention, after the electrode body 1 is housed in the aluminum laminate film exterior body, the outer periphery of the exterior body with the positive electrode lead portion 2 and the negative electrode lead portion 3 protruding outside the exterior body body is shown. A first sealing step (see FIG. 1 (a), FIG. 2 (a), FIG. 3 (a), FIG. 4 (a)) for sealing the portion 4 leaving the first liquid injection side 5; The first liquid injection step of injecting the electrolytic solution from the first liquid inlet side 5 and the length of 10% to 30% of the first liquid inlet side 5 as the second liquid inlet 7 The second sealing step (see FIG. 1 (b), FIG. 2 (b), FIG. 3 (b), and FIG. 4 (b)) for forming the second sealing portion 6 to leave, and then let stand for one day. The first standing step, then the charging step of charging through the positive electrode lead portion 2 and the negative electrode lead portion 3, the second standing step of standing in a charged state for 2 to 3 days, and discharging after standing Electric discharge And a second injection in which an electrolyte solution of 1.0 to 1.5 times the difference between the battery weight after the first injection step and the battery weight after the discharge step is injected from the second injection port 7. From the liquid sealing step and the third sealing step of sealing the second liquid filling port 7 under reduced pressure over 25% to 50% of the sealing width of the second sealing portion 6 to form the third sealing portion 8. Composed.

本発明の第二の封口工程にて第二の注液口7の辺の長さを第一の注液口辺部5の10%より小さくした場合、第一の静置工程から放電工程にかけて発生したガスの排出を行う際のガス排出口として充分な大きさが確保できず、電池内部にガスが残留し易い、かつ、第二の注液工程にて電解液を注入する際の電解液注入口としても充分な大きさではなく、電解液が注入し難く、電池外部へ電解液がこぼれ易いため好ましくなく、30%より大きくした場合、第一の静置工程から放電工程にかけて発生したガスの排出を行う際に共に起こる電解液の溶媒成分の揮発による電解液の減少が大きくなり、充電工程と放電工程における充放電反応が円滑に進行し難くなるため好ましくない。   When the length of the side of the second liquid injection port 7 is made smaller than 10% of the first liquid injection port side 5 in the second sealing step of the present invention, the first standing step to the discharging step are performed. Electrolytic solution that cannot be sufficiently large as a gas outlet when discharging the generated gas, tends to remain inside the battery, and is injected when the electrolytic solution is injected in the second liquid injection step The inlet is not large enough, and it is difficult to inject the electrolyte, and it is not preferable because the electrolyte easily spills out of the battery. When it is larger than 30%, the gas generated from the first stationary step to the discharge step This is not preferable because the decrease in the electrolyte solution due to the volatilization of the solvent component of the electrolyte solution that occurs together with the discharge of the electrolyte increases and the charge / discharge reaction in the charging step and the discharging step does not proceed smoothly.

本発明の第一の静置工程にて、静置期間を設けない場合、電解液が電極体内部へ充分行き渡らないため好ましくなく、1日より長くすると電解液の溶媒成分の揮発量が多くなり、電解液の減少により充電工程と放電工程における充放電反応が円滑に進行し難くなるため好ましくない。   In the first standing step of the present invention, when a standing period is not provided, it is not preferable because the electrolytic solution does not sufficiently reach the inside of the electrode body. The decrease in the electrolyte is not preferable because the charge / discharge reaction in the charging step and the discharging step is difficult to proceed smoothly.

本発明の第二の静置工程にて静置期間が2日より短い場合、充電工程時に発生したガスを充分排出できず、電池内部にガスが残留し易いため好ましくなく、3日より長くすると電解液の溶媒成分の揮発量が多くなり、電解液の減少により放電工程時の放電反応が円滑に進行し難くなるため好ましくない。   When the standing period is shorter than 2 days in the second standing step of the present invention, it is not preferable because the gas generated during the charging process cannot be sufficiently discharged and the gas tends to remain inside the battery. The volatilization amount of the solvent component of the electrolytic solution is increased, and the discharge reaction during the discharging process is difficult to proceed smoothly due to a decrease in the electrolytic solution.

本発明の第二の注液工程にて注入する電解液量が第一の注液工程後の電池重量と放電工程後の電池重量との差の1.0倍より少ない場合、電池内の電解液量が充分ではなく、充放電反応が円滑に進行し難くなり、充放電サイクル特性が低下しやすくなるため好ましくなく、1.5倍より多い場合、電池内の電解液が過剰となり、過剰分がガスとなり易く、発生ガスによる電池の膨れ/変形、ガスの電極間滞留による充放電反応の阻害/低下が起こり易くなり、充放電サイクル特性が低下しやすくなるため好ましくない。   When the amount of electrolyte injected in the second injection step of the present invention is less than 1.0 times the difference between the battery weight after the first injection step and the battery weight after the discharge step, The amount of the liquid is not sufficient, and the charge / discharge reaction is difficult to proceed smoothly, and the charge / discharge cycle characteristics are liable to deteriorate, which is not preferred. Is liable to become a gas, and the battery is swollen / deformed by the generated gas, and the charge / discharge reaction is hindered / reduced due to gas retention between electrodes, and the charge / discharge cycle characteristics are liable to deteriorate.

本発明の第三の封口工程にて第二の注液口7を第二の封口部6の幅の25%より狭く封口した場合、電池内部から外部への封口経路長が充分ではなく、第三の封口部8より電解液の浸み出しが起こり易くなるため好ましくなく、50%より広く封口した場合、第三の封口部8の強度が強くなり、電池内圧上昇時に第三の封口部8以外の箇所が開口する可能性が高くなり、電池内圧上昇時の内圧開放口を特定し難くなるため好ましくない。   When the second injection port 7 is sealed narrower than 25% of the width of the second sealing portion 6 in the third sealing step of the present invention, the length of the sealing path from the inside of the battery to the outside is not sufficient. It is not preferable because the electrolyte solution is likely to ooze out from the third sealing portion 8. When the sealing is performed wider than 50%, the strength of the third sealing portion 8 is increased, and the third sealing portion 8 is increased when the battery internal pressure increases. This is not preferable because the possibility of opening other locations increases and it becomes difficult to specify the internal pressure release port when the battery internal pressure rises.

本発明の静置期間の環境温度は、特に制限されないが、環境温度を20℃より低くした場合、特に問題は生じないが、冷却環境設備等が必要となるため、また、温度の低下に伴って電解液中のリチウムイオンの移動度が徐々に低下し、40℃より高くした場合、電解液の溶媒成分が揮発し易くなり、電解液の減少により充電工程と放電工程時の充放電反応が円滑に進行し難くなるため、静置期間の環境温度は、20℃〜40℃とするのが好ましい。   Although the environmental temperature in the standing period of the present invention is not particularly limited, there is no particular problem when the environmental temperature is lower than 20 ° C., but cooling environment equipment or the like is necessary, and as the temperature decreases. When the mobility of lithium ions in the electrolytic solution gradually decreases and the temperature is higher than 40 ° C., the solvent component of the electrolytic solution is likely to volatilize, and the decrease in the electrolytic solution causes the charge / discharge reaction during the charging and discharging steps Since it becomes difficult to advance smoothly, it is preferable that the environmental temperature of a stationary period shall be 20 to 40 degreeC.

(ラミネートフィルム外装体)
本発明に用いるラミネートフィルム外装体は、金属箔を中間の1層に持つ樹脂フィルム主体の多層ラミネートフィルムであれば特に制限はないが、形状加工の容易性等から、金属箔としてアルミニウム箔を用いたものが好ましい。
(Laminate film exterior)
The laminate film exterior body used in the present invention is not particularly limited as long as it is a multilayer laminate film mainly composed of a resin film having a metal foil as an intermediate layer, but aluminum foil is used as the metal foil from the viewpoint of ease of shape processing. Is preferable.

(電極体・正極)
本発明の電極体を構成する正極は、通常のリチウムイオン二次電池用正極を用いることができる。例えば、正極活物質として、LiCoO2、LiNiO2、LiMn24、LiNi1/3Co1/3Mn1/32、LiNi0.5Mn1.54、LiFePO4等のリチウム含有複合酸化物が挙げられ、これらのリチウム含有複合酸化物の遷移金属部分を他の元素で置換させたものでもよく、また、これらの混合物でもよい。これらの正極活物質をカーボンブラック等の導電性付与剤、及びポリフッ化ビニリデン(PVdF)等の結着剤と共に、結着剤を溶解しうるN−メチル−2−ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の集電体上に塗布し、溶剤を乾燥する等の方法により正極を形成する。
(Electrode body / Positive electrode)
As the positive electrode constituting the electrode body of the present invention, a normal positive electrode for a lithium ion secondary battery can be used. For example, as the positive electrode active material, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc. The transition metal portion of these lithium-containing composite oxides may be substituted with other elements, or a mixture thereof. These positive electrode active materials in a solvent such as N-methyl-2-pyrrolidone (NMP) capable of dissolving the binder together with a conductivity imparting agent such as carbon black and a binder such as polyvinylidene fluoride (PVdF). The mixture is dispersed and kneaded, applied onto a current collector such as an aluminum foil, and the positive electrode is formed by a method such as drying the solvent.

(電極体・負極)
本発明の電極体を構成する負極は、通常のリチウムイオン二次電池用負極を用いることができる。例えば、負極活物質として、リチウム金属、または、黒鉛材料、非晶質炭素材料、ケイ素材料、ケイ素化合物材料等のリチウムを吸蔵、放出可能な材料が挙げられ、また、これらの混合物でもよい。これらの負極活物質をカーボンブラック等からなる導電性付与剤、及びPVdF等からなる結着剤と共に、結着剤を溶解しうるNMP等の溶剤中に分散混練し、これを銅箔等の集電体上に塗布し、溶剤を乾燥する等の方法により負極を形成する。
(Electrode / Negative electrode)
As the negative electrode constituting the electrode body of the present invention, a normal negative electrode for a lithium ion secondary battery can be used. For example, examples of the negative electrode active material include lithium metal, or a material that can occlude and release lithium, such as a graphite material, an amorphous carbon material, a silicon material, and a silicon compound material, or a mixture thereof. These negative electrode active materials are dispersed and kneaded together with a conductivity-imparting agent made of carbon black or the like and a binder made of PVdF or the like in a solvent such as NMP that can dissolve the binder, and this is collected into a copper foil or the like. The negative electrode is formed by a method such as coating on an electric body and drying the solvent.

(電極体・セパレータ)
本発明の電極体を構成するセパレータは、通常のリチウムイオン二次電池用セパレータを用いることができる。例えば、織布、不織布、多孔膜等を用いることができ、特にポリプロピレン、ポリエチレン系の多孔膜が薄膜で、かつ大面積化、膜強度や膜抵抗の面で好ましく用いられる。
(Electrode body / Separator)
The separator which comprises the electrode body of this invention can use the normal separator for lithium ion secondary batteries. For example, a woven fabric, a non-woven fabric, a porous membrane, and the like can be used. In particular, a polypropylene or polyethylene-based porous membrane is preferably used in terms of a thin film and a large area, membrane strength, and membrane resistance.

(電解液)
本発明に用いる電解液は、通常のリチウムイオン二次電池用電解液を用いることができる。例えば、非水溶媒へ電解質としてリチウム塩を溶解させた非水電解液を用いることができ、リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6等が挙げられ、特にLiPF6、LiBF4が好ましく用いられる。リチウムイミド塩としてはLiN(Ck2k+1SO2)(Cm2m+1SO2)(k、mはそれぞれ独立して1または2である)が挙げられ、また、これらリチウム塩を複数種を組み合わせて用いることもできる。
(Electrolyte)
As the electrolytic solution used in the present invention, a normal electrolytic solution for a lithium ion secondary battery can be used. For example, the non-aqueous solvent lithium salt can be used a nonaqueous electrolyte solution obtained by dissolving as an electrolyte, a lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 In particular, LiPF 6 and LiBF 4 are preferably used. Examples of the lithium imide salt include LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2), and these lithium salts Can also be used in combination.

非水溶媒としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類、及びそれらの誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いる。より具体的には、環状カーボネート類:プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、及びこれらの誘導体、鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、及びこれらの誘導体、脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチル、及びこれらの誘導体、γ−ラクトン類:γ−ブチロラクトン、及びこの誘導体、環状エーテル類:テトラヒドロフラン、2−メチルテトラヒドロフラン、鎖状エーテル類:1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、及びこれらの誘導体、その他:ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルこれらを1種または2種以上を混合して使用することができる。   As the non-aqueous solvent, at least one kind selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers, and organic solvents thereof. The organic solvent is used. More specifically, cyclic carbonates: propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof, chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC), Ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof, aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate, and derivatives thereof, γ-lactones: γ-butyrolactone, And its derivatives, cyclic ethers: tetrahydrofuran, 2-methyltetrahydrofuran, chain ethers: 1, 2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof, others: dimethyl Sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3- Dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester Two or more kinds can be mixed and used.

さらに電解液添加剤として、一般的な、例えば、ビニレンカーボネート(VC)等を用いることも可能である。   Furthermore, it is also possible to use common, for example, vinylene carbonate (VC) as the electrolyte solution additive.

(正極の作製)
正極活物質(LiMn24)と、導電性付与剤(カーボンブラック)とを混合し、結着剤(PVdF)を溶解させたNMP中に均一に分散させスラリーを作製した。そのスラリーを正極集電体(アルミニウム箔・厚み20μm)上に塗布後、NMPを蒸発させた後、プレスを行い、正極を作製した。
(Preparation of positive electrode)
A positive electrode active material (LiMn 2 O 4 ) and a conductivity-imparting agent (carbon black) were mixed and dispersed uniformly in NMP in which a binder (PVdF) was dissolved to prepare a slurry. The slurry was applied on a positive electrode current collector (aluminum foil, thickness 20 μm), NMP was evaporated, and then pressed to produce a positive electrode.

正極中の固形分比率は、正極活物質:導電性付与剤:結着剤=90:5:5(wt%)とした。正極は、長軸方向にスラリー未塗布部20mm、塗布部200mm、短軸方向100mmに切り出し、スラリー未塗布部へ正極リードを取り付けた。   The solid content ratio in the positive electrode was positive electrode active material: conductivity imparting agent: binder = 90: 5: 5 (wt%). The positive electrode was cut into a slurry uncoated portion 20 mm, a coated portion 200 mm, and a short axis direction 100 mm in the major axis direction, and a positive electrode lead was attached to the slurry uncoated portion.

(負極の作製)
負極活物質(黒鉛材料)と、導電性付与剤(カーボンブラック)とを混合し、結着剤(PVdF)を溶解させたNMP中に均一に分散させスラリーを作製した。そのスラリーを負極集電体(銅箔・厚み15μm)上に塗布後、NMPを蒸発させた後、プレスを行い、負極を作製した。
(Preparation of negative electrode)
A negative electrode active material (graphite material) and a conductivity-imparting agent (carbon black) were mixed and uniformly dispersed in NMP in which a binder (PVdF) was dissolved to prepare a slurry. The slurry was applied on a negative electrode current collector (copper foil, thickness 15 μm), NMP was evaporated, and then pressed to prepare a negative electrode.

負極中の固形分比率は、負極活物質:導電性付与剤:結着剤=89:1:10(wt%)とした。負極は、長軸方向にスラリー未塗布部20mm、塗布部210mm、短軸方向110mmに切り出し、スラリー未塗布部へ正極リードを取り付けた。   The solid content ratio in the negative electrode was negative electrode active material: conductivity imparting agent: binder = 89: 1: 10 (wt%). The negative electrode was cut into a slurry uncoated portion 20 mm, a coated portion 210 mm, and a minor axis direction 110 mm in the major axis direction, and a positive electrode lead was attached to the slurry uncoated portion.

(電極体の作製)
正極をポリエチレン、及びポリプロピレンの2層構造よりなるセパレータ(長軸方法220mm、短軸方向120mm、厚み25μm)を介して負極にて狭持し、正極リードと負極リードが反対の方向を向く様に積層し、正極10枚、負極11枚、セパレータ20枚よりなる電極体を作製した。
(Production of electrode body)
The positive electrode is sandwiched between the negative electrode through a separator (long-axis method 220 mm, short-axis direction 120 mm, thickness 25 μm) having a two-layer structure of polyethylene and polypropylene, so that the positive electrode lead and the negative electrode lead face in opposite directions. The electrode body which laminated | stacked and consists of 10 sheets of positive electrodes, 11 sheets of negative electrodes, and 20 sheets of separators was produced.

(電解液)
電解液は、EC:DEC=40:60(vol%)に、電解質としての1mol/LのLiPF6を溶解したものを用いた。
(Electrolyte)
As the electrolytic solution, EC: DEC = 40: 60 (vol%) in which 1 mol / L LiPF 6 as an electrolyte was dissolved was used.

(ラミネートフィルム外装体)
ラミネートフィルム外装体は、ポリプロピレン(融着層、厚み70μm)、ポリエチレンテレフタレート(厚み20μm)、アルミニウム(厚み50μm)、ポリエチレンテレフタレート(厚み20μm)の順に積層した構造を有するアルミラミネートフィルムを用い、これを所定の大きさに2枚切り出し、その一部分に前記の電極体の大きさに合った底面部分と側面部分とを有する凹部を形成し、これらを対向させて凹部に電極体を収納できる構造とした。
(Laminate film exterior)
The laminate film exterior body uses an aluminum laminate film having a structure in which polypropylene (fused layer, thickness 70 μm), polyethylene terephthalate (thickness 20 μm), aluminum (thickness 50 μm), and polyethylene terephthalate (thickness 20 μm) are laminated in this order. Two sheets are cut out to a predetermined size, and a concave portion having a bottom surface portion and a side surface portion that match the size of the electrode body is formed in a part thereof, and the electrode body can be accommodated in the concave portion by facing them. .

(電池組立)
電極体をアルミラミネートフィルムからなる外装体に収納し、正極リード部、及び負極リード部を外装体外部へ突出させた状態で外周部を第一の注液口辺部を残して封口した(第一の封口工程:図1(a)参照)。第一の注液口辺部より電解液を30g注入した(第一の注液工程)。第一の注液口辺部の一部を第二の注液口として残して開口部を封口し(第二の封口工程:図1(b)参照)、1日間静置した(第一の静置工程)。0.5Aの定電流、及び終止電圧4.3Vの定電流定電圧充電方法にて15時間充電した(充電工程)。充電状態にて表1記載の期間静置した(第二の静置工程)。0.5Aの定電流放電方法にて終止電圧3.0Vまで放電した(放電工程)。第一の注液工程後の電池重量と放電工程後の電池重量との差に対して表1記載の倍数の電解液を第二の注液口より注入した(第二の注液工程)。減圧下で第二の注液口を第二の封口部の幅に対して表1記載の割合(%)の幅にて封口し(第三の封口工程)、リチウムイオン二次電池を作製した。比較例の各工程の値も併せて表1に記載した。
(Battery assembly)
The electrode body was housed in an exterior body made of an aluminum laminate film, and the outer periphery was sealed leaving the first liquid injection port side in a state where the positive electrode lead portion and the negative electrode lead portion were projected to the outside of the exterior body (first One sealing step: see FIG. 1 (a)). 30 g of electrolyte was injected from the side of the first injection port (first injection step). A part of the first liquid injection port side was left as the second liquid injection port, the opening was sealed (second sealing step: see FIG. 1 (b)), and left for 1 day (first Standing step). The battery was charged for 15 hours by a constant current constant voltage charging method having a constant current of 0.5 A and a final voltage of 4.3 V (charging step). It left still for the period of Table 1 in the charging state (2nd standing process). The battery was discharged to a final voltage of 3.0 V by a 0.5 A constant current discharge method (discharge process). The multiple electrolytes listed in Table 1 were injected from the second injection port with respect to the difference between the battery weight after the first injection step and the battery weight after the discharge step (second injection step). Under reduced pressure, the second liquid injection port was sealed at the ratio (%) shown in Table 1 with respect to the width of the second sealing portion (third sealing step) to produce a lithium ion secondary battery. . The values for each step of the comparative example are also shown in Table 1.

(充放電サイクル試験)
25℃にて、充電を4.5Aの定電流、及び終止電圧4.2Vの定電流定電圧充電方法にて3時間、放電を4.5Aの定電流放電方法にて終止電圧3.0Vまでとして充放電サイクル試験を行い、1000サイクル後の放電容量を、1サイクル目の放電容量にて割った値を放電容量維持率(%)として表1に記載した。
(Charge / discharge cycle test)
At 25 ° C., charging is performed at a constant current of 4.5 A and a constant current constant voltage charging method with a termination voltage of 4.2 V for 3 hours. The charge / discharge cycle test was conducted, and the value obtained by dividing the discharge capacity after 1000 cycles by the discharge capacity at the first cycle is shown in Table 1 as the discharge capacity retention rate (%).

また、1000サイクル後の電池体積を、1サイクル目の電池体積にて割った値を体積変化率(%)として表1に記載した。   The value obtained by dividing the battery volume after 1000 cycles by the battery volume at the first cycle is shown in Table 1 as the volume change rate (%).

(第二の封口工程の効果)
実施例1〜2、及び9〜10と比較例1〜6を比較すると、第二の封口工程にて第二の注液口を設けない場合(比較例1〜2)、充放電サイクルの放電容量維持率の低下、及び体積の増大が観測され、第二の封口工程の第二の注液口が必要であることを確認した。また、第二の注液口の長さが本発明の範囲外である場合(比較例3〜6)、充放電サイクルの放電容量維持率の低下、及び体積の増大が観測され、本発明の範囲よりも小さい場合(比較例3〜4)は、電池内の残留ガスが多いために電池体積が増大した結果、充放電サイクル特性が低下したと考えられ、本発明の範囲よりも大きい場合(比較例5〜6)は、電解液の溶媒成分の揮発に伴って電極表面等に残留物等が付着した結果、充放電反応が低下したためと考えられる。 前記結果より、本発明の第二の封口工程は必要であり、範囲が適正であることを確認した。
(Effect of the second sealing process)
Comparing Examples 1 to 2 and 9 to 10 with Comparative Examples 1 to 6, when the second liquid injection port is not provided in the second sealing step (Comparative Examples 1 to 2), discharging in the charge / discharge cycle A decrease in capacity maintenance rate and an increase in volume were observed, and it was confirmed that the second liquid injection port in the second sealing step was necessary. In addition, when the length of the second liquid injection port is outside the range of the present invention (Comparative Examples 3 to 6), a decrease in the discharge capacity maintenance rate of the charge / discharge cycle and an increase in the volume were observed. In the case where it is smaller than the range (Comparative Examples 3 to 4), it is considered that the charge / discharge cycle characteristics are reduced as a result of the increase in the battery volume due to the large amount of residual gas in the battery. In Comparative Examples 5 to 6), it is considered that the charge / discharge reaction was lowered as a result of adhesion of residues or the like to the electrode surface or the like with the volatilization of the solvent component of the electrolytic solution. From the results, it was confirmed that the second sealing step of the present invention was necessary and the range was appropriate.

(第一の静置工程の効果)
実施例1〜2と比較例7〜10を比較すると、静置期間を設けない場合(比較例7〜8)、本発明の範囲よりも長い場合(比較例9〜10)共に充放電サイクルの放電容量維持率の低下が観測された。比較例7〜8では、電解液が電極体内部へ充分に行き渡らないために初期の充放電反応が円滑に進行し難い影響が充放電サイクル時にも反映されたためと考えられ、比較例9〜10では、電解液の溶媒成分の揮発に伴って電極表面等に残留物等が付着した結果、充放電反応が低下したためと考えられる。前記結果より、本発明の第一の静置工程の範囲が適正であることを確認した。
(Effect of the first stationary process)
When Examples 1-2 and Comparative Examples 7-10 are compared, when not providing a stationary period (Comparative Examples 7-8), when longer than the range of this invention (Comparative Examples 9-10), it is a charge / discharge cycle. A decrease in the discharge capacity retention rate was observed. In Comparative Examples 7-8, it is considered that the effect that the initial charging / discharging reaction does not proceed smoothly because the electrolyte solution does not sufficiently reach the inside of the electrode body was also reflected during the charging / discharging cycle. In this case, it is considered that the charge / discharge reaction is reduced as a result of adhesion of residues or the like to the electrode surface or the like as the solvent component of the electrolytic solution is volatilized. From the said result, it confirmed that the range of the 1st stationary process of this invention was appropriate.

(第二の静置工程の効果)
実施例1〜8と比較例11〜14を比較すると、静置期間が本発明の範囲よりも短い場合(比較例11〜12)、本発明の範囲よりも長い場合(比較例13〜14)共に充放電サイクルの放電容量維持率の低下、及び体積の増大が観測された。比較例11〜12では、電池内の残留ガスが多いために電池体積が増大した結果、充放電サイクル特性が低下したと考えられ、比較例13〜14では、電解液の溶媒成分の揮発に伴って電極表面等に残留物等が付着した結果、充放電反応が低下したためと考えられる。前記結果より、本発明の第二の静置工程の範囲が適正であることを確認した。
(Effect of the second stationary process)
When Examples 1-8 are compared with Comparative Examples 11-14, when the standing period is shorter than the range of the present invention (Comparative Examples 11-12), when it is longer than the range of the present invention (Comparative Examples 13-14) In both cases, a decrease in the discharge capacity maintenance rate and an increase in the volume of the charge / discharge cycle were observed. In Comparative Examples 11-12, it is considered that the charge / discharge cycle characteristics were reduced as a result of the increase in the battery volume due to the large amount of residual gas in the battery. In Comparative Examples 13-14, along with the volatilization of the solvent component of the electrolyte solution This is thought to be because the charge / discharge reaction was reduced as a result of adhesion of residues to the electrode surface and the like. From the said result, it confirmed that the range of the 2nd stationary process of this invention was appropriate.

(第二の注液工程の効果)
実施例1〜4と比較例15〜18を比較すると、電解液量が本発明の範囲よりも少ない場合(比較例15〜16)、充放電サイクルの放電容量維持率の低下が観測され、本発明の範囲よりも多い場合(比較例17〜18)、体積の増大が観測された。比較例15〜16では、電池内の電解液量が充分ではなく、充放電反応が円滑に進行し難くなったためと考えられ、比較例17〜18では、過剰な電解液がガスとなったためと考えられる。前記結果より、本発明の第二の注液工程の範囲が適正であることを確認した。
(Effect of the second injection process)
When Examples 1-4 and Comparative Examples 15-18 are compared, when the amount of electrolyte solution is less than the range of this invention (Comparative Examples 15-16), the fall of the discharge capacity maintenance factor of a charging / discharging cycle is observed, this book When more than the scope of the invention (Comparative Examples 17-18), an increase in volume was observed. In Comparative Examples 15 to 16, it is considered that the amount of the electrolyte in the battery was not sufficient, and the charge / discharge reaction was difficult to proceed smoothly. In Comparative Examples 17 to 18, the excess electrolyte became gas. Conceivable. From the said result, it confirmed that the range of the 2nd injection process of this invention was appropriate.

(第三の封口工程の効果)
実施例1〜2と比較例19〜20を比較すると、充放電サイクルの放電容量維持率、及び体積変化共に大きな差は見られないが、本発明の範囲よりも狭い場合(比較例19)、第三の封口部に電解液の浸み出しによると考えられる析出物の付着が観測され、本発明の範囲よりも広い場合(比較例20)、実施例1、2、及び比較例20の電池を各々5個用いて過充電試験を行い、電池を強制的に膨らませた際に実施例1〜2の電池は、各々5個全て第三の封口部が開口したが、比較例20では、2個の電池が第三の封口部以外の箇所が開口し、電池内圧上昇時の内圧開放口を特定することが難しくなった。前記結果より、本発明の第三の封口工程の範囲が適正であることを確認した。
(Effect of the third sealing process)
When Examples 1-2 and Comparative Examples 19-20 are compared, although a big difference is not seen with both the discharge capacity maintenance factor of a charging / discharging cycle, and a volume change, when it is narrower than the scope of the present invention (Comparative Example 19), When the deposit of the deposit considered to be leached out of the electrolyte solution is observed in the third sealing portion and is wider than the range of the present invention (Comparative Example 20), the batteries of Examples 1 and 2 and Comparative Example 20 When the battery was forcedly inflated using 5 each, the batteries of Examples 1 and 2 were all opened by the third sealing portion, but in Comparative Example 20, Locations other than the third sealing portion of the individual batteries opened, making it difficult to specify the internal pressure release port when the internal pressure of the battery increased. From the said result, it confirmed that the range of the 3rd sealing process of this invention was appropriate.

前記結果より、本発明の製造方法を用いて作製した電池は、充放電サイクル特性に優れ、かつ、電池内圧上昇時の内圧開放口の特定が可能であることを確認した。   From the above results, it was confirmed that the battery produced using the production method of the present invention was excellent in charge / discharge cycle characteristics, and that the internal pressure release port when the battery internal pressure increased could be specified.

Figure 2009199756
Figure 2009199756

本発明のリチウムイオン二次電池の製造方法の一実施の形態の途中工程を示す模式平面図。The schematic plan view which shows the intermediate | middle process of one Embodiment of the manufacturing method of the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池の製造方法の一実施の形態の途中工程を示す模式平面図。The schematic plan view which shows the intermediate | middle process of one Embodiment of the manufacturing method of the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池の製造方法の一実施の形態の途中工程を示す模式平面図。The schematic plan view which shows the intermediate | middle process of one Embodiment of the manufacturing method of the lithium ion secondary battery of this invention. 本発明のリチウムイオン二次電池の製造方法の一実施の形態の途中工程を示す模式平面図。The schematic plan view which shows the intermediate | middle process of one Embodiment of the manufacturing method of the lithium ion secondary battery of this invention.

符号の説明Explanation of symbols

1 電極体
2 正極リード部
3 負極リード部
4 外周部
5 第一の注液口辺部
6 第二の封口部
7 第二の注液口
8 第三の封口部
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Positive electrode lead part 3 Negative electrode lead part 4 Outer peripheral part 5 1st liquid injection port side part 6 2nd sealing part 7 2nd liquid injection port 8 3rd sealing part

Claims (1)

正極と負極とをセパレータを介して積層してなる電極体を、金属箔を中間層に持つ樹脂フィルム主体の多層ラミネートフィルムよりなる外装体にて挟持して収納した後、正極リード部、及び負極リード部を前記外装体外部へ突出させた状態で外装体の外周部を、第一の注液口辺部を残して封口する第一の封口工程と、前記第一の注液口辺部から電解液を注入する第一の注液工程と、前記第一の注液口辺部の10〜30%を第二の注液口として残して第二の封口部を形成する第二の封口工程と、第二の封口工程後1日間静置する第一の静置工程と、第一の静置工程後前記正極リード部と前記負極リード部を通して充電する充電工程と、充電状態で2〜3日間静置する第二の静置工程と、第二の静置工程後放電する放電工程と、前記第一の注液工程後の電池重量と前記放電工程後の電池重量との差の1.0〜1.5倍の電解液を前記第二の注液口から注入する第二の注液工程と、減圧下で前記第二の注液口を前記第二の封口部の封止幅の25〜50%にわたり封口し第三の封口部を形成する第三の封口工程とを含むことを特徴とするリチウムイオン二次電池の製造方法。   An electrode body formed by laminating a positive electrode and a negative electrode through a separator is sandwiched and stored by an outer package made of a resin film-based multilayer laminate film having a metal foil as an intermediate layer, and then a positive electrode lead portion and a negative electrode From the first sealing step of sealing the outer peripheral portion of the exterior body with the lead portion protruding outside the exterior body, leaving the first liquid injection port side, and the first liquid injection port side A first injection step of injecting an electrolytic solution, and a second sealing step of forming a second sealing portion leaving 10 to 30% of the first injection port side as a second injection port A first standing step for standing for one day after the second sealing step, a charging step for charging through the positive lead portion and the negative lead portion after the first standing step, and 2 to 3 in a charged state. A second standing step for standing for one day, a discharging step for discharging after the second standing step, and the first infusion process A second injection step of injecting an electrolyte solution of 1.0 to 1.5 times the difference between the subsequent battery weight and the battery weight after the discharge step from the second injection port; And a third sealing step of forming a third sealing part by sealing the second liquid inlet over 25 to 50% of the sealing width of the second sealing part. Battery manufacturing method.
JP2008037328A 2008-02-19 2008-02-19 Method for producing lithium ion secondary battery Active JP5234739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037328A JP5234739B2 (en) 2008-02-19 2008-02-19 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037328A JP5234739B2 (en) 2008-02-19 2008-02-19 Method for producing lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013038680A Division JP2013101979A (en) 2013-02-28 2013-02-28 Method for manufacturing lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2009199756A true JP2009199756A (en) 2009-09-03
JP2009199756A5 JP2009199756A5 (en) 2010-12-02
JP5234739B2 JP5234739B2 (en) 2013-07-10

Family

ID=41143073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037328A Active JP5234739B2 (en) 2008-02-19 2008-02-19 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5234739B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043691A (en) * 2010-08-20 2012-03-01 Nec Energy Devices Ltd Method for manufacturing nonaqueous electrolyte secondary battery
JP2013101979A (en) * 2013-02-28 2013-05-23 Nec Energy Devices Ltd Method for manufacturing lithium ion secondary battery
KR101408623B1 (en) * 2009-09-17 2014-06-17 주식회사 엘지화학 Lithium ion battery in pouch type and method of preparation of the same
JP2020533746A (en) * 2017-11-08 2020-11-19 エルジー・ケム・リミテッド How to improve the life of lithium secondary batteries
CN112952182A (en) * 2021-01-26 2021-06-11 宜春清陶能源科技有限公司 Battery standing system and method
CN114365330A (en) * 2019-09-30 2022-04-15 株式会社村田制作所 Secondary battery and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197070A (en) * 1997-07-24 1999-04-09 Toshiba Battery Co Ltd Lithium secondary battery and manufacture thereof
JP2009146812A (en) * 2007-12-17 2009-07-02 Nissan Motor Co Ltd Battery case and battery pack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197070A (en) * 1997-07-24 1999-04-09 Toshiba Battery Co Ltd Lithium secondary battery and manufacture thereof
JP2009146812A (en) * 2007-12-17 2009-07-02 Nissan Motor Co Ltd Battery case and battery pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408623B1 (en) * 2009-09-17 2014-06-17 주식회사 엘지화학 Lithium ion battery in pouch type and method of preparation of the same
JP2012043691A (en) * 2010-08-20 2012-03-01 Nec Energy Devices Ltd Method for manufacturing nonaqueous electrolyte secondary battery
JP2013101979A (en) * 2013-02-28 2013-05-23 Nec Energy Devices Ltd Method for manufacturing lithium ion secondary battery
JP2020533746A (en) * 2017-11-08 2020-11-19 エルジー・ケム・リミテッド How to improve the life of lithium secondary batteries
US11322811B2 (en) 2017-11-08 2022-05-03 Lg Energy Solution, Ltd. Method for improving lifespan of lithium secondary battery
CN114365330A (en) * 2019-09-30 2022-04-15 株式会社村田制作所 Secondary battery and method for manufacturing same
CN112952182A (en) * 2021-01-26 2021-06-11 宜春清陶能源科技有限公司 Battery standing system and method

Also Published As

Publication number Publication date
JP5234739B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5246747B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5076288B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2010027368A (en) Lithium secondary battery
JP2010135111A (en) Lithium-ion secondary battery
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
WO2013146285A1 (en) Lithium-ion secondary cell
JP6380377B2 (en) Lithium ion secondary battery
JP6037296B2 (en) Pouch exterior material for secondary battery and pouch-type secondary battery including the same
JP5234739B2 (en) Method for producing lithium ion secondary battery
WO2016013179A1 (en) Non-aqueous electrolyte secondary battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP6341195B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2011086448A (en) Lithium ion secondary battery
JP2009170384A (en) Lithium secondary battery
JP7276957B2 (en) lithium ion secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP2010040466A (en) Laminated nonaqueous electrolyte secondary battery
JP6739343B2 (en) Method for manufacturing lithium-ion secondary battery
JP2020077575A (en) Lithium ion secondary battery
JP2013101979A (en) Method for manufacturing lithium ion secondary battery
CN114583244B (en) Lithium ion secondary battery
JP7290089B2 (en) Non-aqueous electrolyte secondary battery
JP7276956B2 (en) lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250