JP5076288B2 - Secondary battery negative electrode and secondary battery using the same - Google Patents

Secondary battery negative electrode and secondary battery using the same Download PDF

Info

Publication number
JP5076288B2
JP5076288B2 JP2005205423A JP2005205423A JP5076288B2 JP 5076288 B2 JP5076288 B2 JP 5076288B2 JP 2005205423 A JP2005205423 A JP 2005205423A JP 2005205423 A JP2005205423 A JP 2005205423A JP 5076288 B2 JP5076288 B2 JP 5076288B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005205423A
Other languages
Japanese (ja)
Other versions
JP2007026805A (en
Inventor
博規 山本
麻里子 宮地
雅人 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005205423A priority Critical patent/JP5076288B2/en
Publication of JP2007026805A publication Critical patent/JP2007026805A/en
Application granted granted Critical
Publication of JP5076288B2 publication Critical patent/JP5076288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は二次電池用負極およびそれを用いた二次電池に関し、特に出力特性に優れ、さらに高い容量を有する二次電池用負極およびそれを用いた二次電池に関する。   The present invention relates to a negative electrode for a secondary battery and a secondary battery using the same, and more particularly to a negative electrode for a secondary battery having excellent output characteristics and a higher capacity, and a secondary battery using the same.

リチウムイオン二次電池は携帯電話やノートパソコン等のモバイル端末の普及により、その電力源となる電池の役割が重要視されている。これら電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められる。   With the spread of mobile terminals such as mobile phones and notebook personal computers, the role of the battery serving as the power source of lithium ion secondary batteries is regarded as important. These batteries are required to have a small size, light weight, high capacity, and performance that does not easily deteriorate even after repeated charge and discharge.

また小型高容量ばかりでなく、大型リチウムイオン二次電池に関しては高い出力特性が求められる。これを実現するために、活物質層の厚みをできる限り薄くして電池自体の抵抗を下げる方法がある。しかしながらこの方法では電極が薄くなるため、電池容量を稼ごうとすると、電極の捲回数や積層数が多くなってしまう。この結果、捲回数や積層数が多くなった分、集電体部の体積・重量が増加することになり、高容量化が困難になっている。   Moreover, not only small and high capacity but also high output characteristics are required for large lithium ion secondary batteries. In order to realize this, there is a method of reducing the resistance of the battery itself by reducing the thickness of the active material layer as much as possible. However, in this method, the electrode is thinned, so that increasing the battery capacity results in an increase in the number of times the electrode is wound and the number of stacked layers. As a result, the volume and weight of the current collector portion are increased by the increase in the number of wrinkles and the number of layers, making it difficult to increase the capacity.

そこで炭素繊維を使用することで電極抵抗を下げたり、電極を構成する粒子の比表面積を増加させることにより、出力特性を上げる試みがなされている。   Thus, attempts have been made to increase output characteristics by using carbon fiber to lower electrode resistance or increase the specific surface area of particles constituting the electrode.

例えば、特許文献1には黒鉛質炭素繊維を負極活物質に用いて、電極の抵抗を下げることで高出力化を実現する技術が開示されている。また、特許文献2には負極活物質粒子のBET法による測定における比表面積を、1.2m2以上6m2以下にすることで出力特性を向上させようとする試みが記載されている。
特開2004−117846号公報(第4〜5頁) 特開2004−296305号公報
For example, Patent Document 1 discloses a technique for realizing high output by using graphitic carbon fiber as a negative electrode active material and reducing the resistance of an electrode. Further, a specific surface area in the measurement by the BET method of the negative electrode active material particles in Patent Document 2, is an attempt to improve the output characteristics by the 1.2 m 2 or more 6 m 2 or less is described.
Japanese Patent Laying-Open No. 2004-117846 (pages 4-5) JP 2004-296305 A

しかしながら、この特許文献1、2に開示された負極活物質にはいくつかの問題があった。   However, the negative electrode active materials disclosed in Patent Documents 1 and 2 have some problems.

第一の問題点は黒鉛質炭素繊維を負極に用いた場合、黒鉛質炭素繊維自体のかさ密度が小さいためスラリーや電極作製が困難なことであった。また、これらの負極活物質はプロピレンカーボネートなどの電解液成分が存在するとこれに悪影響を及ぼし、安定的な動作特性を有する電池とすることが困難であった。   The first problem is that when graphitic carbon fibers are used for the negative electrode, slurry and electrodes are difficult to produce because the bulk density of the graphitic carbon fibers themselves is small. In addition, these negative electrode active materials have an adverse effect on the presence of an electrolyte component such as propylene carbonate, making it difficult to obtain batteries having stable operating characteristics.

第2の問題点は負極活物質粒子自体の比表面積を高くした場合、負極の電解液に接する表面近傍に存在しない負極活物質は電池の出力特性向上に対する寄与が少なく、所望の出力特性等を得ることができない場合があることであった。また、電解液の分解等により負極表面上に皮膜等が形成され見かけ上の比表面積が小さくなってその効果が小さくなる場合があった。更に、電池の高容量化を図るためにシリコンやスズのような高容量の負極活物質を用いた場合、充放電に伴う膨張収縮が大きく比表面積を高くすると、膨張収縮時に負極中の負極活物質近傍の部分の内部破壊が起こるという欠点があった。   The second problem is that when the specific surface area of the negative electrode active material particles itself is increased, the negative electrode active material that is not present in the vicinity of the surface in contact with the electrolyte of the negative electrode has little contribution to improving the output characteristics of the battery, and the desired output characteristics, etc. There was a case that could not be obtained. Moreover, a film or the like is formed on the surface of the negative electrode due to decomposition of the electrolytic solution and the apparent specific surface area is reduced, and the effect may be reduced. Further, when a high capacity negative electrode active material such as silicon or tin is used to increase the capacity of the battery, if the expansion / shrinkage due to charge / discharge is large and the specific surface area is increased, the negative electrode active material in the negative electrode during expansion / shrinkage is increased. There was a drawback that internal destruction occurred in the vicinity of the substance.

そこで、本発明者は鋭意検討した結果、負極活物質層の電解液に接する界面の表面積を大きくすれば、最も電池の出力特性の向上効果が大きいことを発見した。また、この界面の表面積を大きくするためには、単に負極活物質層の成膜方法を調節するだけでは表面性状の制御性などの点から不十分であり、集電体の表面性状(表面粗さ)を所定の範囲に調節すれば良いことを発見した。   Thus, as a result of intensive studies, the present inventor has found that the effect of improving the output characteristics of the battery is greatest when the surface area of the interface of the negative electrode active material layer in contact with the electrolyte is increased. In addition, in order to increase the surface area of the interface, it is not sufficient in terms of controllability of the surface properties, for example, to simply adjust the film formation method of the negative electrode active material layer. I have found that it is only necessary to adjust the range to a predetermined range.

更に、電池の高容量化を図るには、負極活物質として(a)Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種を用いれば良く、この負極活物質を用いたことによる(充放電時の負極活物質層の)体積膨張・収縮を抑制するためには、負極活物質層中に(b)Liを吸蔵しない元素Xを添加すれば良いことを発見した。   Furthermore, in order to increase the capacity of the battery, (a) at least one selected from the group consisting of metals, metalloids and their oxides capable of inserting and extracting Li can be used as the negative electrode active material. In order to suppress volume expansion / contraction (of the negative electrode active material layer during charge / discharge) due to the use of the negative electrode active material, (b) an element X that does not occlude Li may be added to the negative electrode active material layer. I discovered that.

すなわち、本発明の目的は集電体の表面粗さRaを2μmを超え15μm以下の範囲に調節し、かつ負極活物質層が、(a)Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種の負極活物質と、(b)Liを吸蔵しない元素Xとを含むことにより、集電体上に形成した負極活物質層の電解液に接する界面の表面積を大きくできると共に、充放電(Liの吸蔵、放出)に伴う負極活物質層の体積変化を抑制して負極活物質層を高い表面積に保持できる。この結果、この二次電池用負極を有する二次電池を出力密度が高く高容量のものとすることができる。   That is, the object of the present invention is to adjust the surface roughness Ra of the current collector to a range of more than 2 μm and 15 μm or less, and the negative electrode active material layer is (a) a metal, a semimetal, and a metal capable of inserting and extracting Li An interface in contact with the electrolyte solution of the negative electrode active material layer formed on the current collector by including at least one negative electrode active material selected from the group consisting of oxides of (b) and (b) an element X that does not occlude Li The surface area of the negative electrode active material layer can be increased, and the negative electrode active material layer can be held at a high surface area by suppressing the volume change of the negative electrode active material layer accompanying charge / discharge (Li storage and release). As a result, the secondary battery having the secondary battery negative electrode can have a high output density and a high capacity.

本発明の他の目的は長寿命でかつ信頼性の高い負極材料、およびそれを用いた二次電池を提供することにある。   Another object of the present invention is to provide a negative electrode material having a long lifetime and high reliability, and a secondary battery using the same.

上記課題を解決するため、本発明は以下の構成を有することを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

1.集電体と、前記集電体上に設けられた負極活物質層とを有する二次電池用負極において、
前記集電体の前記負極活物質層側の面が2μmを超え15μm以下の表面粗さ(Ra)を有し、
前記負極活物質層が、(a)Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種の負極活物質と、(b)Liを吸蔵しない元素Xとを含むことを特徴とする二次電池用負極。
1. In a negative electrode for a secondary battery having a current collector and a negative electrode active material layer provided on the current collector,
The negative electrode active material layer side surface of the current collector has a surface roughness (Ra) of more than 2 μm and 15 μm or less,
The negative electrode active material layer comprises (a) at least one negative electrode active material selected from the group consisting of metals, metalloids and their oxides capable of occluding and releasing Li, and (b) element X that does not occlude Li. And a negative electrode for a secondary battery.

2.前記(a)負極活物質が、Si、Sn、Al、Pb、Ag、Ge及びSbからなる群から選択された少なくとも一種の元素Mを含むことを特徴とする上記1に記載の二次電池用負極。   2. 2. The secondary battery according to 1 above, wherein (a) the negative electrode active material contains at least one element M selected from the group consisting of Si, Sn, Al, Pb, Ag, Ge, and Sb. Negative electrode.

3.前記(b)Liを吸蔵しない元素Xが、Fe、Ni、Cu及びTiからなる群から選択された少なくとも一種の元素であることを特徴とする上記2に記載の二次電池用負極。   3. 3. The negative electrode for a secondary battery as described in 2 above, wherein (b) the element X that does not occlude Li is at least one element selected from the group consisting of Fe, Ni, Cu, and Ti.

4.前記元素Mと前記元素Xとの比が、原子数比で元素M:元素X=19:1〜1:9であることを特徴とする上記3に記載の二次電池用負極。   4). 4. The secondary battery negative electrode according to 3 above, wherein the ratio of the element M to the element X is an atomic ratio of element M: element X = 19: 1 to 1: 9.

5.前記負極活物質層の厚みが、前記表面粗さ(Ra)の0.5倍以上5倍以下であることを特徴とする上記1〜4の何れか1項に記載の二次電池用負極。   5). 5. The secondary battery negative electrode according to any one of the above 1 to 4, wherein the thickness of the negative electrode active material layer is 0.5 to 5 times the surface roughness (Ra).

6.上記1〜5の何れか1項に記載の二次電池用負極と、二次電池用正極と、電解液とを有することを特徴とする二次電池。   6). 6. A secondary battery comprising the secondary battery negative electrode according to any one of 1 to 5, a secondary battery positive electrode, and an electrolytic solution.

[作用]
本発明の負極は、2μmを超え15μm以下の表面粗さ(Ra)を有する集電体上に、(a)負極活物質と(b)Liを吸蔵しない元素Xを含む負極活物質層を成膜することで、集電体の表面性状を反映した表面積の高い負極活物質層とすることができる。これにより従来の二次電池よりも負極表面(負極活物質層表面)におけるLiの吸蔵・放出が行われるサイトを多くできると共に充放電に伴う負極活物質層の表面性状の変化を抑制でき、電池の出力特性を向上させることが出来る。
[Action]
In the negative electrode of the present invention, a negative electrode active material layer containing (a) a negative electrode active material and (b) an element X that does not occlude Li is formed on a current collector having a surface roughness (Ra) of more than 2 μm and not more than 15 μm. By forming a film, a negative electrode active material layer having a high surface area reflecting the surface properties of the current collector can be obtained. As a result, the number of sites where Li can be occluded / released on the negative electrode surface (negative electrode active material layer surface) can be increased as compared to conventional secondary batteries, and changes in the surface properties of the negative electrode active material layer associated with charge / discharge can be suppressed. Output characteristics can be improved.

また、高容量材料(Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種の負極活物質)を用いることで、負極活物質層の表面積増加による高容量化をより効果的に発現させることができる。これらの負極活物質は成膜性に優れているため、集電体の表面性状を正確に反映した表面性状を有する負極活物質層を得ることができる。   Further, by using a high-capacity material (at least one kind of negative electrode active material selected from the group consisting of metals, metalloids, and oxides capable of inserting and extracting Li), the surface area of the negative electrode active material layer is increased. Capacitance can be expressed more effectively. Since these negative electrode active materials are excellent in film formability, a negative electrode active material layer having a surface property that accurately reflects the surface property of the current collector can be obtained.

更に、このような負極活物質を用いることで負極活物質層の厚みを薄くして負極の厚み方向の抵抗を下げることができる。この結果、電池の出力特性を向上させることができる。この上、集電体と負極活物質層の密着性を向上させて電池の信頼性を向上させることが出来る。   Furthermore, by using such a negative electrode active material, the thickness of the negative electrode active material layer can be reduced and the resistance in the thickness direction of the negative electrode can be reduced. As a result, the output characteristics of the battery can be improved. In addition, the reliability of the battery can be improved by improving the adhesion between the current collector and the negative electrode active material layer.

本発明によれば、2μmを超え15μm以下の表面粗さ(Ra)を有する集電体上に、(a)負極活物質と(b)Liを吸蔵しない元素Xを含む負極活物質層を成膜することで、電池の出力特性、及び信頼性の向上を実現することが出来る。   According to the present invention, a negative electrode active material layer containing (a) a negative electrode active material and (b) an element X that does not occlude Li is formed on a current collector having a surface roughness (Ra) of more than 2 μm and not more than 15 μm. By forming the film, it is possible to improve the output characteristics and reliability of the battery.

(1)二次電池用負極
本発明の二次電池用負極は集電体と負極活物質層とを有する。これらの部材について以下に説明する。
(1) Negative electrode for secondary battery The negative electrode for a secondary battery of the present invention has a current collector and a negative electrode active material layer. These members will be described below.

(集電体)
集電体としては例えば、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。本発明の集電体の少なくとも負極活物質層に接している面(負極活物質層側の面:図1の21)は、2μmを超え15μm以下の表面粗さ(Ra)を有している必要がある。集電体がこのような範囲の表面粗さを有することによって、この集電体上に形成した負極活物質層表面の表面積を大きくでき、出力密度が高く高容量のものとすることができる。
(Current collector)
For example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used as the current collector. The surface in contact with at least the negative electrode active material layer of the current collector of the present invention (surface on the negative electrode active material layer side: 21 in FIG. 1) has a surface roughness (Ra) of more than 2 μm and 15 μm or less. There is a need. When the current collector has a surface roughness in such a range, the surface area of the surface of the negative electrode active material layer formed on the current collector can be increased, and the output density can be increased and the capacity can be increased.

集電体の表面粗さRaは、3μm以上10μm以下であるのが好ましく、5μm以上8μm以下であるのがより好ましく、6μm以上7μm以下であるのが更に好ましい。表面粗さがこれらの範囲内にあることによって、より効果的にLiの吸蔵、放出を行い高容量化を達成することができる。なお、表面粗さRaはJIS B 0601−1994に準拠して表面粗さ計を用いることにより測定することができる。   The surface roughness Ra of the current collector is preferably 3 μm or more and 10 μm or less, more preferably 5 μm or more and 8 μm or less, and further preferably 6 μm or more and 7 μm or less. When the surface roughness is within these ranges, it is possible to more effectively occlude and release Li and achieve high capacity. The surface roughness Ra can be measured by using a surface roughness meter according to JIS B 0601-1994.

また、このような表面粗さを有する集電体とするためには例えば、電解法を用いることができる。電解法を用いる場合には所定の表面粗さを有する型を用いたり、電解条件(電解時の通電電圧、温度、時間)を制御することで所望の表面粗さRaを有する集電体を得ることができる。   In order to obtain a current collector having such a surface roughness, for example, an electrolytic method can be used. In the case of using an electrolysis method, a collector having a desired surface roughness Ra is obtained by using a mold having a predetermined surface roughness or controlling electrolysis conditions (energization voltage, temperature, time during electrolysis). be able to.

(負極活物質層)
本発明の負極活物質層は、(a)Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種の負極活物質と、(b)Liを吸蔵しない元素Xとを含む。
(Negative electrode active material layer)
The negative electrode active material layer of the present invention includes (a) at least one negative electrode active material selected from the group consisting of metals, metalloids, and oxides capable of inserting and extracting Li, and (b) does not absorb Li Element X.

(a)Liを吸蔵、放出可能な金属、半金属としては、Si、Sn、Al、Pb、Ag、Ge及びSbからなる群から選択された少なくとも一種の元素Mを用いることが好ましい。このような元素Mを用いることによって、より効果的に高容量化を図ることができると共に、負極活物質層の成膜性をより向上させることができる。Liを吸蔵、放出可能な金属、半金属の化合物、混合物、これらの酸化物としては例えば、AlSb,SiOα(0<α≦2),SnOβ(0<β≦2),Si−Sn合金、SnSiOγなどを挙げることができる。また、負極活物質としてアルカリ金属またはアルカリ土類金属を吸蔵・放出可能なものを用いても良い。   (A) It is preferable to use at least one element M selected from the group consisting of Si, Sn, Al, Pb, Ag, Ge, and Sb as a metal or metalloid capable of inserting and extracting Li. By using such an element M, the capacity can be increased more effectively, and the film forming property of the negative electrode active material layer can be further improved. Examples of the metal that can occlude and release Li, a compound of a semimetal, a mixture, and an oxide thereof include AlSb, SiOα (0 <α ≦ 2), SnOβ (0 <β ≦ 2), Si—Sn alloy, and SnSiOγ. And so on. Moreover, you may use what can occlude / release an alkali metal or alkaline-earth metal as a negative electrode active material.

また、本発明の二次電池用負極では、負極活物質層中に(b)Liを吸蔵しない元素Xを含むことによって、充放電に伴う負極活物質層の体積変化(Liの吸蔵、放出に伴う体積膨張、収縮)を抑制し負極活物質層を高い表面積に保持できる。なお、この元素Xは負極活物質層中に単体として存在していても化合物や混合物として存在していても良く、何れの状態であっても、本発明の効果を奏することができる。元素Xは実質的にLiを吸蔵しない元素であり、Liと合金化しない元素であっても良い。   Moreover, in the negative electrode for secondary batteries of the present invention, the negative electrode active material layer contains (b) an element X that does not occlude Li, so that the volume change of the negative electrode active material layer associated with charge and discharge (for Li occlusion and release). Volume expansion and contraction) are suppressed, and the negative electrode active material layer can be held at a high surface area. In addition, this element X may exist in the negative electrode active material layer as a simple substance, or may exist as a compound or a mixture, and the effects of the present invention can be achieved in any state. The element X is an element that does not substantially occlude Li and may be an element that does not alloy with Li.

(b)Liを吸蔵しない元素Xとしては、Fe、Ni、Cu及びTiからなる群から選択された少なくとも一種の元素であることが好ましい。これらの元素Xを有することによって、充放電に伴う(a)負極活物質の体積変化を、(b)Liを吸蔵しない元素Xによって効果的に吸収し、電池全体の体積変化を効果的に抑制することができる。また、この(b)Liを吸蔵しない元素Xとしては、アルカリ金属またはアルカリ土類金属を吸蔵しないものであっても良い。   (B) The element X that does not occlude Li is preferably at least one element selected from the group consisting of Fe, Ni, Cu, and Ti. By containing these elements X, (a) volume change of the negative electrode active material accompanying charge / discharge is effectively absorbed by (b) element X that does not occlude Li, and volume change of the entire battery is effectively suppressed. can do. The element X that does not occlude (b) Li may be an element that does not occlude alkali metals or alkaline earth metals.

また、(a)負極活物質が元素Mを含む場合、上記元素Mと元素Xとの比率が原子数比で元素M:元素X=19:1〜1:9であることが好ましい。元素Xが1:9よりも大きい比率で存在すると、充放電に関与する金属または半金属の割合が少なくなることから、負極の体積エネルギー密度や重量エネルギー密度が小さくなる。また、元素Xが19:1よりも小さい比率で存在すると、元素Xを添加したことによる効果、すなわち負極活物質の充放電に伴う体積変化の抑制や導電性の向上効果が小さくなる。より好ましくは原子数比で元素M:元素X=14:1〜3:7であり、さらに好ましくは元素M:元素X=9:1〜5:5である。   Further, (a) when the negative electrode active material contains the element M, it is preferable that the ratio of the element M and the element X is an atomic ratio of element M: element X = 19: 1 to 1: 9. If the element X is present at a ratio larger than 1: 9, the ratio of the metal or metalloid involved in charge / discharge decreases, so the volume energy density or weight energy density of the negative electrode decreases. In addition, when the element X is present at a ratio smaller than 19: 1, the effect of adding the element X, that is, the suppression of volume change accompanying charging / discharging of the negative electrode active material and the effect of improving conductivity are reduced. More preferably, the atomic ratio is element M: element X = 14: 1 to 3: 7, and further preferably element M: element X = 9: 1 to 5: 5.

集電体上に形成される負極活物質層の厚みは、集電体の表面粗さRaの0.5倍以上、5倍以下であることが好ましく、1倍以上、3倍以下であることがより好ましい。負極がこれらの範囲内の厚みを有することによって、高容量化と負極の低抵抗化の面から最適化を図ることができる。   The thickness of the negative electrode active material layer formed on the current collector is preferably 0.5 to 5 times the surface roughness Ra of the current collector, preferably 1 to 3 times. Is more preferable. When the negative electrode has a thickness within these ranges, optimization can be achieved from the viewpoint of increasing the capacity and reducing the resistance of the negative electrode.

また、この負極活物質層は、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、などの適宜な方式を用いることにより、集電体上に形成することができる。   Further, the negative electrode active material layer can be formed on the current collector by using an appropriate method such as an atomization method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, or a thermal CVD method. it can.

(2)二次電池
図1に、本発明の二次電池用負極を有する二次電池の一例について概略構造を示す。正極集電体11と、リチウムイオンを吸蔵、放出し得る正極活物質を含有する層(正極活物質層)12と、リチウムイオンを吸蔵、放出する負極活物質を含有する層(負極活物質層)13と、負極集電体14と、電解液15、およびこれを含むセパレータ16から構成されている。負極集電体14の負極活物質層13側の面21は、2μmを超え15μm以下の表面粗さ(Ra)となっている。
(2) Secondary Battery FIG. 1 shows a schematic structure of an example of a secondary battery having the negative electrode for a secondary battery of the present invention. Positive electrode current collector 11, layer containing positive electrode active material capable of inserting and extracting lithium ions (positive electrode active material layer) 12, layer containing negative electrode active material absorbing and releasing lithium ions (negative electrode active material layer) ) 13, a negative electrode current collector 14, an electrolytic solution 15, and a separator 16 including the same. The surface 21 on the negative electrode active material layer 13 side of the negative electrode current collector 14 has a surface roughness (Ra) of more than 2 μm and 15 μm or less.

また、図2には負極の局所的な表面の概略図を示す。図2の負極では2μmを超え15μm以下の表面粗さ(Ra)を有する集電体14が存在し、この集電体14上に負極活物質層13が成膜されている。本発明では、負極活物質層13の構成材料として成膜性の良い(集電体の表面状態を正確に反映する)(a)負極活物質と、(b)Liを吸蔵しない元素Xを用いているため、集電体14の表面性状を反映した表面性状を有する負極活物質層とすることができる。以下に、二次電池を構成する各構成部材を説明する。   FIG. 2 shows a schematic diagram of the local surface of the negative electrode. In the negative electrode of FIG. 2, there is a current collector 14 having a surface roughness (Ra) of more than 2 μm and not more than 15 μm, and a negative electrode active material layer 13 is formed on the current collector 14. In the present invention, as the constituent material of the negative electrode active material layer 13, (a) a negative electrode active material having good film formability (accurately reflecting the surface state of the current collector) and (b) an element X that does not occlude Li are used. Therefore, a negative electrode active material layer having a surface property reflecting the surface property of the current collector 14 can be obtained. Below, each structural member which comprises a secondary battery is demonstrated.

(セパレータ)
セパレータ16としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが好ましく用いられる。
(Separator)
As the separator 16, a polyolefin such as polypropylene or polyethylene, or a porous film such as a fluororesin is preferably used.

(正極)
正極は正極集電体11と正極活物質層12とを有する。正極集電体11としては例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができる。正極活物質層としては例えば、通常、用いられるリチウム含有複合酸化物が用いられ、具体的にはLiMO2(MはMn,Fe,Coより選ばれ、一部をMg,Al,Tiなどその他カチオンで置換してもよい)、LiMn24などで代表されるスピネル系のリチウムマンガン複合材料等、汎用の材料を用いることができる。選択された正極活物質を用い、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等の結着剤とともにN−メチル−2−ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の基体上に塗布するなどの方法により正極活物質層12を得ることができる。
(Positive electrode)
The positive electrode has a positive electrode current collector 11 and a positive electrode active material layer 12. As the positive electrode current collector 11, for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used. As the positive electrode active material layer, for example, a lithium-containing composite oxide that is usually used is used. Specifically, LiMO 2 (M is selected from Mn, Fe, and Co, and some other cations such as Mg, Al, and Ti are used. And a general-purpose material such as a spinel-type lithium manganese composite material typified by LiMn 2 O 4 can be used. The selected positive electrode active material is dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF). The positive electrode active material layer 12 can be obtained by a method such as coating on a substrate such as an aluminum foil.

(電解液)
電解液15は電解質、非プロトン性溶媒と添加剤とを少なくとも有する。
(Electrolyte)
The electrolytic solution 15 includes at least an electrolyte, an aprotic solvent, and an additive.

(電解質)
電解質は、リチウム二次電池の場合にはリチウム塩を用い、これを非プロトン性溶媒中に溶解させる。リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6などがあげられる。この中でも特にLiPF6、LiBF4が好ましい。これらのリチウム塩を含むことで高エネルギー密度を達成することができる。
(Electrolytes)
As the electrolyte, in the case of a lithium secondary battery, a lithium salt is used and dissolved in an aprotic solvent. The lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like. Of these, LiPF 6 and LiBF 4 are particularly preferable. By including these lithium salts, a high energy density can be achieved.

(非プロトン性溶媒)
また非プロトン性電解液としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いる。より具体的には、
環状カーボネート類:プロピレンカーボネート(以下、PCと略記。)、エチレンカーボネート(以下、ECと略記。)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)
鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(以下、DECと略記。)、エチルメチルカーボネート(以下、EMCと略記。)、ジプロピルカーボネート(DPC)
脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチル
γ−ラクトン類:γ−ブチロラクトン
環状エーテル類:テトラヒドロフラン、2−メチルテトラヒドロフラン
鎖状エーテル類:1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)、
その他:ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステル。
これらを一種又は二種以上を混合して使用することができる。
(Aprotic solvent)
The aprotic electrolyte is selected from organic solvents such as cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. In addition, at least one organic solvent is used. More specifically,
Cyclic carbonates: propylene carbonate (hereinafter abbreviated as PC), ethylene carbonate (hereinafter abbreviated as EC), butylene carbonate (BC), vinylene carbonate (VC)
Chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (hereinafter abbreviated as DEC), ethyl methyl carbonate (hereinafter abbreviated as EMC), dipropyl carbonate (DPC)
Aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate γ-lactones: γ-butyrolactone Cyclic ethers: tetrahydrofuran, 2-methyltetrahydrofuran Chain ethers: 1,2-ethoxyethane (DEE), ethoxy Methoxyethane (EME),
Other: dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1, 3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester.
These can be used alone or in combination of two or more.

(電池の作製)
表1〜6に記載の正極活物質および導電性付与剤を乾式混合し、バインダーであるPVDFを溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させスラリーを作製した。導電性付与剤としてはカーボンブラックを用いた。そのスラリーを正極集電体となるアルミ金属箔(角型、円筒型の場合には20μm、ラミネート型の場合には25μm)上に塗布後、NMPを蒸発させることにより正極シートとした。正極中の固形分比率は正極活物質:導電性付与剤:PVDF=80:10:10(質量%)とした。
(Production of battery)
A positive electrode active material and a conductivity-imparting agent described in Tables 1 to 6 were dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder was dissolved to prepare a slurry. Carbon black was used as the conductivity imparting agent. The slurry was applied on an aluminum metal foil (20 μm for square and cylindrical types, 25 μm for laminated types) serving as a positive electrode current collector, and then NMP was evaporated to obtain a positive electrode sheet. The solid content ratio in the positive electrode was positive electrode active material: conductivity imparting agent: PVDF = 80: 10: 10 (mass%).

一方、負極活物質としては表1〜6に記載のものを用いた。これら負極の膜厚は正極との容量比によって設定するものであり(以下A/Cバランスと記載;ここでAは負極の単位表面積あたりの容量、Cは正極の単位表面積あたりの容量)、このA/Cバランスが1以上1.7以下となるように正極と負極の塗布量を決定した。   On the other hand, the negative electrode active materials described in Tables 1 to 6 were used. The film thickness of these negative electrodes is set by the capacity ratio with the positive electrode (hereinafter referred to as A / C balance; where A is the capacity per unit surface area of the negative electrode, and C is the capacity per unit surface area of the positive electrode). The coating amount of the positive electrode and the negative electrode was determined so that the A / C balance was 1 or more and 1.7 or less.

電解液は、表1〜6に記載の溶媒、電解質として1mol/LのLiPF6を溶解したものを用いた。 As the electrolytic solution, a solvent described in Tables 1 to 6 and 1 mol / L LiPF 6 dissolved therein as an electrolyte were used.

その後、負極と正極とをポリエチレンからなるセパレータを介して積層し、アルミニウムラミネートフィルム型二次電池(実施例1〜、23〜25、参考例1〜7及び比較例11〜18)、円筒型二次電池(実施例10〜16及び比較例1〜8)、及び角型二次電池(実施例17〜22、31〜33、参考例8〜12及び比較例9、10、19〜23)を作製した。アルミニウムラミネートフィルム型二次電池の場合、用いたラミネートフィルムはポリプロピレン樹脂(封着層、厚み70μm)、ポリエチレンテレフタレート(20μm)、アルミニウム(50μm)、ポリエチレンテレフタレート(20μm)の順に積層した構造を有する。これを所定の大きさに2枚切り出し、その一部分に上記の積層電極体の大きさに合った底面部分と側面部分とを有する凹部を形成し、これらを対向させて上記の積層電極体を包み込み、周囲を熱融着させてフィルム外装電池を作製した。最後の1辺を熱融着封口する前に電解液を積層電極体に含浸させた。 Then, a negative electrode and a positive electrode are laminated via a separator made of polyethylene, and an aluminum laminated film type secondary battery (Examples 1 to 7 , 23 to 25, Reference Examples 1 to 7 and Comparative Examples 11 to 18), a cylindrical type Secondary batteries (Examples 10 to 16 and Comparative Examples 1 to 8) and square secondary batteries (Examples 17 to 22 , 31 to 33, Reference Examples 8 to 12 and Comparative Examples 9, 10, 19 to 23) Was made. In the case of an aluminum laminate film type secondary battery, the laminate film used has a structure in which a polypropylene resin (sealing layer, thickness 70 μm), polyethylene terephthalate (20 μm), aluminum (50 μm), and polyethylene terephthalate (20 μm) are laminated in this order. Two pieces of this are cut into a predetermined size, and a concave portion having a bottom surface portion and a side surface portion that match the size of the multilayer electrode body is formed in a part thereof, and these are opposed to wrap the multilayer electrode body. Then, the periphery was thermally fused to produce a film-clad battery. Before the last side was heat-sealed and sealed, the electrolyte solution was impregnated with the laminated electrode body.

(電池の評価)
上記プロセスによって作製した電池は、温度20℃において、50.0C放電時の容量が1C放電時に対してどのくらいかで評価を行った。つまり50.0C放電容量が1.0C放電容量に近いほど出力特性が高い。測定は放電開始電圧4.2V、放電終止電圧3.0Vとした。その結果を表7〜12に示す。
(Battery evaluation)
The battery manufactured by the above process was evaluated at a temperature of 20 ° C. based on how much the capacity at the time of 50.0C discharge was compared with that at the time of 1C discharge. That is, the closer the 50.0C discharge capacity is to the 1.0C discharge capacity, the higher the output characteristics. The measurement was performed with a discharge start voltage of 4.2 V and a discharge end voltage of 3.0 V. The results are shown in Tables 7-12.

(実施例1)
負極活物質層は、SiO(負極活物質)とFe(元素X)を二元同時蒸着によって厚み1.5μmに成膜し作製した。SiとFeの原子数比は9:1とした。正極活物質層に含まれる正極活物質にはLiCoO2を用いた。電解液には、EC/DEC/EMC=30/50/20(質量比)中に、電解質として1mol/LのLiPF6を添加した。電池の外装体にはアルミニウム箔をラミネートでコーティングした部材で容器を作製して用いた。正極と負極の容量比A/Cバランスは1.05とした。
Example 1
The negative electrode active material layer was formed by depositing SiO (negative electrode active material) and Fe (element X) to a thickness of 1.5 μm by binary simultaneous vapor deposition. The atomic ratio of Si and Fe was 9: 1. LiCoO 2 was used as the positive electrode active material contained in the positive electrode active material layer. To the electrolytic solution, 1 mol / L LiPF 6 was added as an electrolyte in EC / DEC / EMC = 30/50/20 (mass ratio). A container was made of a member coated with an aluminum foil with a laminate for the battery outer body. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.05.

(実施例2)
負極活物質層の厚みを3μmとし、それ以外の条件は実施例1と同じとした。
(実施例3)
負極活物質層の厚みを5μmとし、それ以外の条件は実施例1と同じとした。
(Example 2)
The thickness of the negative electrode active material layer was 3 μm, and other conditions were the same as in Example 1.
(Example 3)
The thickness of the negative electrode active material layer was 5 μm, and other conditions were the same as in Example 1.

(実施例4)
負極活物質層の厚みを9μmとし、それ以外の条件は実施例1と同じとした。
(実施例5)
負極活物質層の厚みを10μmとし、それ以外の条件は実施例1と同じとした。
Example 4
The thickness of the negative electrode active material layer was 9 μm, and other conditions were the same as in Example 1.
(Example 5)
The thickness of the negative electrode active material layer was 10 μm, and other conditions were the same as in Example 1.

(実施例6)
負極活物質層の厚みを12μmとし、それ以外の条件は実施例1と同じとした。
(実施例7)
負極活物質層の厚みを15μmとし、それ以外の条件は実施例1と同じとした。
(Example 6)
The thickness of the negative electrode active material layer was 12 μm, and other conditions were the same as in Example 1.
(Example 7)
The thickness of the negative electrode active material layer was 15 μm, and other conditions were the same as in Example 1.

参考例1
負極活物質層の厚みを1μmとし、それ以外の条件は実施例1と同じとした。
参考例2
負極活物質層の厚みを18μmとし、それ以外の条件は実施例1と同じとした。
( Reference Example 1 )
The thickness of the negative electrode active material layer was 1 μm, and other conditions were the same as in Example 1.
( Reference Example 2 )
The thickness of the negative electrode active material layer was 18 μm, and other conditions were the same as in Example 1.

(実施例10)
負極活物質層は、Si(負極活物質)とNi(元素X)との2つの蒸着源を使用し同時蒸着によって成膜して作製した(Si原子数:Ni原子数=5:5)。正極活物質層に含まれる正極活物質にはLiMnO2を用いた。電解液には、PC/EC/DEC=20/20/60(質量比)中に、電解質として1mol/LのLiPF6を用いた。集電体表面のRaを5μmとし負極活物質層の厚さは6μmとした。電池の外装体には18650円筒型容器を用いた。正極と負極の容量比A/Cバランスは1.07とした。
(Example 10)
The negative electrode active material layer was formed by simultaneous vapor deposition using two vapor deposition sources of Si (negative electrode active material) and Ni (element X) (Si atom number: Ni atom number = 5: 5). LiMnO 2 was used as the positive electrode active material contained in the positive electrode active material layer. As the electrolyte, 1 mol / L LiPF 6 was used as an electrolyte in PC / EC / DEC = 20/20/60 (mass ratio). The Ra on the current collector surface was 5 μm, and the thickness of the negative electrode active material layer was 6 μm. A 18650 cylindrical container was used for the battery outer casing. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.07.

(実施例11)
負極活物質層は、Al(負極活物質に相当)とCu(元素Xに相当)の合金をターゲットにしてスパッタリングによって成膜して作製した(Al原子数:Cu原子数=19:1)。それ以外の条件は実施例10と同じとした。
(Example 11)
The negative electrode active material layer was formed by sputtering using an alloy of Al (corresponding to the negative electrode active material) and Cu (corresponding to the element X) as a target (Al atom number: Cu atom number = 19: 1). The other conditions were the same as in Example 10.

(実施例12)
負極活物質層は、負極活物質としてSi−Sn(負極活物質に相当)とTi(元素Xに相当)の合金をターゲットにしてスパッタリングによって成膜して作製した(Si+Sn原子数:Ti原子数=14:1)。それ以外の条件は実施例10と同じとした。
(Example 12)
The negative electrode active material layer was formed by sputtering using an alloy of Si—Sn (corresponding to the negative electrode active material) and Ti (corresponding to the element X) as the negative electrode active material (Si + Sn atom number: Ti atom number). = 14: 1). The other conditions were the same as in Example 10.

(実施例13)
負極活物質層は、Ag(負極活物質)とFe(元素X)の2つの蒸着源を使用し同時蒸着によって成膜して作製した(Si原子数:Ni原子数=1:9)。それ以外の条件は実施例10と同じとした。
(Example 13)
The negative electrode active material layer was formed by simultaneous vapor deposition using two vapor deposition sources of Ag (negative electrode active material) and Fe (element X) (Si atom number: Ni atom number = 1: 9). The other conditions were the same as in Example 10.

(実施例14)
負極活物質層は、Pb(負極活物質)とNi(元素X)との2つの蒸着源を使用し同時蒸着によって成膜して作製した(Pb原子数:Ni原子数=9:1)。それ以外の条件は実施例10と同じとした。
(Example 14)
The negative electrode active material layer was formed by simultaneous vapor deposition using two vapor deposition sources of Pb (negative electrode active material) and Ni (element X) (Pb atom number: Ni atom number = 9: 1). The other conditions were the same as in Example 10.

(実施例15)
負極活物質層は、Ge(負極活物質)とCu(元素X)との2つの蒸着源を使用し同時蒸着によって成膜して作製した(Ge原子数:Cu原子数=3:7)。それ以外の条件は実施例10と同じとした。
(Example 15)
The negative electrode active material layer was formed by forming a film by simultaneous vapor deposition using two vapor deposition sources of Ge (negative electrode active material) and Cu (element X) (Ge atom number: Cu atom number = 3: 7). The other conditions were the same as in Example 10.

(実施例16)
負極活物質層は、SnO(負極活物質)とCo(元素X)との2つのスパッタ源を使用し同時スパッタリングによって成膜して作製した(Sn原子数:Fe原子数=7:3)。それ以外の条件は実施例10と同じとした。
(Example 16)
The negative electrode active material layer was formed by forming a film by simultaneous sputtering using two sputtering sources of SnO (negative electrode active material) and Co (element X) (Sn atom number: Fe atom number = 7: 3). The other conditions were the same as in Example 10.

(実施例17)
負極活物質層は、SnO(負極活物質)とNi(元素X)を二元同時蒸着によって成膜し作製した。SnOとNiの原子数比は7:3とした。正極活物質層に含まれる正極活物質にはLiCoO2を用いた。電解液には、EC/DEC/EMC=30/50/20(質量比)中に、電解質として1mol/LのLiPF6を用いた。集電体表面のRaを2.2μmとし負極活物質層の厚さは2.2μmとした。電池の外装体にはアルミ製の角型容器を用いた。正極と負極の容量比A/Cバランスは1.2とした。
(Example 17)
The negative electrode active material layer was formed by depositing SnO (negative electrode active material) and Ni (element X) by binary simultaneous vapor deposition. The atomic ratio of SnO and Ni was 7: 3. LiCoO 2 was used as the positive electrode active material contained in the positive electrode active material layer. As the electrolyte, 1 mol / L LiPF 6 was used as an electrolyte in EC / DEC / EMC = 30/50/20 (mass ratio). The Ra on the current collector surface was 2.2 μm, and the thickness of the negative electrode active material layer was 2.2 μm. An aluminum square container was used as the battery casing. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.2.

(実施例18)
集電体表面のRaを2.5μmとし負極活物質層の厚さは2.5μmとした。それ以外の条件は実施例17と同じとした。
(実施例19)
集電体表面のRaを3μmとし負極活物質層の厚さは3μmとした。それ以外の条件は実施例17と同じとした。
(Example 18)
The Ra on the current collector surface was 2.5 μm, and the thickness of the negative electrode active material layer was 2.5 μm. The other conditions were the same as in Example 17.
(Example 19)
The Ra on the current collector surface was 3 μm, and the thickness of the negative electrode active material layer was 3 μm. The other conditions were the same as in Example 17.

(実施例20)
集電体表面のRaを5μmとし負極活物質層の厚さは5μmとした。それ以外の条件は実施例17と同じとした。
(実施例21)
集電体表面のRaを10μmとし負極活物質層の厚さは10μmとした。それ以外の条件は実施例17と同じとした。
(Example 20)
Ra of the current collector surface was 5 μm, and the thickness of the negative electrode active material layer was 5 μm. The other conditions were the same as in Example 17.
(Example 21)
The Ra of the current collector surface was 10 μm, and the thickness of the negative electrode active material layer was 10 μm. The other conditions were the same as in Example 17.

(実施例22)
集電体表面のRaを15μmとし負極活物質層の厚さは15μmとした。それ以外の条件は実施例17と同じとした。
(実施例23〜25および参考例3〜7
集電体の表面粗さRaを変化させた以外の条件は実施例2と同じとした。
(Example 22)
The Ra of the current collector surface was 15 μm, and the thickness of the negative electrode active material layer was 15 μm. The other conditions were the same as in Example 17.
(Examples 23 to 25 and Reference Examples 3 to 7 )
The conditions were the same as in Example 2 except that the surface roughness Ra of the current collector was changed.

(実施例31〜33および参考例8〜12
集電体の表面粗さRaを変化させた以外の条件は実施例19と同じとした。
(比較例1)
負極活物質層は、SiとNiの2つの蒸着源を使用し同時蒸着によって成膜して作製した(Si原子数:Ni原子数=5:5)。正極活物質層に含まれる正極活物質にはLiMnO2を用いた。電解液には、PC/EC/DEC=20/20/60(質量比)中に、電解質として1mol/LのLiPF6を添加した。集電体表面のRaを1μmとし負極活物質の厚さは3μmとした。電池の外装体には円筒型容器を用いた。正極と負極の容量比A/Cバランスは1.07とした。
(Examples 31-33 and Reference Examples 8-12 )
The conditions were the same as in Example 19 except that the surface roughness Ra of the current collector was changed.
(Comparative Example 1)
The negative electrode active material layer was formed by forming a film by simultaneous vapor deposition using two vapor deposition sources of Si and Ni (the number of Si atoms: the number of Ni atoms = 5: 5). LiMnO 2 was used as the positive electrode active material contained in the positive electrode active material layer. To the electrolytic solution, 1 mol / L LiPF 6 was added as an electrolyte in PC / EC / DEC = 20/20/60 (mass ratio). Ra on the current collector surface was 1 μm, and the thickness of the negative electrode active material was 3 μm. A cylindrical container was used as the battery outer package. The capacity ratio A / C balance between the positive electrode and the negative electrode was 1.07.

(比較例2)
負極活物質層は、AlとCuの合金をターゲットにしてスパッタリングによって成膜して作製した(Al原子数:Cu原子数=19:1)。それ以外の条件は比較例1と同じとした。
(Comparative Example 2)
The negative electrode active material layer was formed by sputtering using an alloy of Al and Cu as a target (number of Al atoms: number of Cu atoms = 19: 1). The other conditions were the same as in Comparative Example 1.

(比較例3)
負極活物質層は、Si−SnとTiの合金をターゲットにしてスパッタリングによって成膜して作製した(Si+Sn原子数:Ti原子数=14:1)。それ以外の条件は比較例1と同じとした。
(Comparative Example 3)
The negative electrode active material layer was formed by sputtering using an alloy of Si—Sn and Ti as a target (Si + Sn atom number: Ti atom number = 14: 1). The other conditions were the same as in Comparative Example 1.

(比較例4)
負極活物質層は、AgとFeとの2つの蒸着源を使用し同時蒸着によって成膜して作製した(Si原子数:Ni原子数=1:9)。それ以外の条件は比較例1と同じとした。
(Comparative Example 4)
The negative electrode active material layer was formed by forming a film by simultaneous vapor deposition using two vapor deposition sources of Ag and Fe (Si atom number: Ni atom number = 1: 9). The other conditions were the same as in Comparative Example 1.

(比較例5)
負極活物質層は、PbとNiとの2つの蒸着源を使用し同時蒸着によって成膜して作製した(Pb原子数:Ni原子数=9:1)。それ以外の条件は比較例1と同じとした。
(Comparative Example 5)
The negative electrode active material layer was formed by forming a film by simultaneous vapor deposition using two vapor deposition sources of Pb and Ni (Pb atom number: Ni atom number = 9: 1). The other conditions were the same as in Comparative Example 1.

(比較例6)
負極活物質層は、GeとCuとの2つの蒸着源を使用し同時蒸着によって成膜して作製した(Ge原子数:Cu原子数=3:7)。それ以外の条件は比較例1と同じとした。
(Comparative Example 6)
The negative electrode active material layer was formed by film formation by simultaneous vapor deposition using two vapor deposition sources of Ge and Cu (Ge atom number: Cu atom number = 3: 7). The other conditions were the same as in Comparative Example 1.

(比較例7)
負極活物質層は、SnOとCoとの2つのスパッタ源を使用し同時スパッタリングによって成膜して作製した(Sn原子数:Fe原子数=7:3)。それ以外の条件は比較例1と同じとした。
(Comparative Example 7)
The negative electrode active material layer was formed by forming a film by simultaneous sputtering using two sputtering sources of SnO and Co (the number of Sn atoms: the number of Fe atoms = 7: 3). The other conditions were the same as in Comparative Example 1.

(比較例8)
負極活物質層は、負極活物質としてSiとNiとの2つの蒸着源を使用し同時蒸着によって成膜して作製した(Si原子数:Ni原子数=5:5)。集電体表面のRaを2μmとした以外の条件は実施例10と同じとした。
(Comparative Example 8)
The negative electrode active material layer was produced by forming a film by simultaneous vapor deposition using two vapor deposition sources of Si and Ni as the negative electrode active material (number of Si atoms: number of Ni atoms = 5: 5). The conditions were the same as in Example 10 except that the Ra on the current collector surface was 2 μm.

(比較例9)
集電体表面のRaを2μmとし負極活物質の厚さは0.3μmとした。それ以外の条件は実施例17と同じとした。
(比較例10)
集電体表面のRaを17μmとし負極活物質の厚さは17μmとした。それ以外の条件は実施例17と同じとした。
(Comparative Example 9)
The Ra of the current collector surface was 2 μm, and the thickness of the negative electrode active material was 0.3 μm. The other conditions were the same as in Example 17.
(Comparative Example 10)
Ra on the current collector surface was 17 μm, and the thickness of the negative electrode active material was 17 μm. The other conditions were the same as in Example 17.

(比較例11〜18)
表面粗さRaを変化させた以外の条件は実施例2と同じとした。
(比較例19〜23)
表面粗さRaを変化させた以外の条件は実施例19と同じとした。
(Comparative Examples 11-18)
The conditions were the same as those in Example 2 except that the surface roughness Ra was changed.
(Comparative Examples 19-23)
The conditions were the same as in Example 19 except that the surface roughness Ra was changed.

なお、上記実施例、参考例、及び比較例において同時蒸着を行う場合には負極活物質、元素Xにそれぞれ対応する蒸着源を用いた。そして、この蒸着源の組成、蒸着時の真空度、蒸着時の温度・時間を制御することによって、所望の比率で負極活物質と元素Xを含み、所望の厚さを有する負極活物質層を得た。また、スパッタリング(1つ又は2つのスパッタ源を用いるスパッタリング)を行う場合には、スパッタ源の組成、スパッタリング開始時の温度、スパッタ源とターゲット間の電圧等を制御することによって、所望の比率で負極活物質と元素Xを含み、所望の厚さを有する負極活物質層を得た。 In addition, when performing simultaneous vapor deposition in the said Example, a reference example, and a comparative example, the vapor deposition source corresponding to a negative electrode active material and the element X was used, respectively. Then, by controlling the composition of this vapor deposition source, the degree of vacuum during vapor deposition, and the temperature and time during vapor deposition, a negative electrode active material layer containing a negative electrode active material and element X at a desired ratio and having a desired thickness Obtained. When sputtering (sputtering using one or two sputtering sources) is performed, the composition of the sputtering source, the temperature at the start of sputtering, the voltage between the sputtering source and the target, etc. are controlled at a desired ratio. A negative electrode active material layer containing the negative electrode active material and element X and having a desired thickness was obtained.

負極集電体としては厚み10μmの銅箔を用いた。銅箔は電析によって得たものであり、各実施例、参考例、及び比較例においては電析条件(電析時の通電電圧、温度、電析時間等)を制御することにより所望の表面粗さRaを有する集電体を得た。 A copper foil having a thickness of 10 μm was used as the negative electrode current collector. The copper foil was obtained by electrodeposition. In each of the examples, reference examples, and comparative examples, the desired surface was obtained by controlling the electrodeposition conditions (the energization voltage, temperature, electrodeposition time, etc. during electrodeposition). A current collector having a roughness Ra was obtained.

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
上記のようにして作成した二次電池の評価結果を表7〜12に示す。
Figure 0005076288
The evaluation results of the secondary batteries prepared as described above are shown in Tables 7-12.

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
Figure 0005076288

Figure 0005076288
(集電体の表面粗さRaと負極厚さの検討)
集電体の表面粗さRaを一定とし負極の膜厚を変えた場合、負極厚みが集電体のRaの0.5倍〜5倍の範囲にあるとき、1C放電容量に対する50C放電容量は、75%程度と高い出力特性が認められた(実施例1〜7、10〜25、31〜33)。一方、参考例1〜12に示されるように、集電体のRaに対して負極膜厚が薄すぎたり(Raの0.5倍未満)、厚すぎたりする場合(Raの5倍を超える値)、50C放電容量は約70%であった。これは集電体のRaに対して負極の膜厚が厚くなると、負極表面が滑らかになり比表面積が小さくなってしまうためであると考えられる。また、集電体のRaに対して負極膜厚が薄すぎる場合は集電体への負極活物質層のカバーレッジが悪く、集電体を完全に負極活物質層で覆うことができないためと思われる。
Figure 0005076288
(Examination of current collector surface roughness Ra and negative electrode thickness)
When the surface roughness Ra of the current collector is constant and the film thickness of the negative electrode is changed, when the negative electrode thickness is in the range of 0.5 to 5 times the Ra of the current collector, the 50C discharge capacity with respect to the 1C discharge capacity is The output characteristics as high as 75% were recognized (Examples 1 to 7, 10 to 25, and 31 to 33). On the other hand, as shown in Reference Examples 1 to 12, when the negative electrode film thickness is too thin (less than 0.5 times Ra) or too thick with respect to Ra of the current collector (more than 5 times Ra) Value), the 50 C discharge capacity was about 70%. This is considered to be because when the film thickness of the negative electrode is increased with respect to Ra of the current collector, the negative electrode surface becomes smooth and the specific surface area decreases. In addition, when the negative electrode film thickness is too thin with respect to Ra of the current collector, the coverage of the negative electrode active material layer on the current collector is poor, and the current collector cannot be completely covered with the negative electrode active material layer. Seem.

(負極活物質の種類、および集電体のRaの検討)
本実施例、参考例及び比較例に示されるように負極活物質や元素Xを様々なものに変更しても、表面粗さRaが2μmを超え15μm以下のときには高い出力特性を得ることができた。これは、Raを上記範囲内に設定することによって負極活物質層表面において効果的にLiの吸蔵、放出が行われたためであると考えられる。
(Examination of type of negative electrode active material and Ra of current collector)
Even if the negative electrode active material and the element X are changed to various ones as shown in the examples , reference examples, and comparative examples, high output characteristics can be obtained when the surface roughness Ra exceeds 2 μm and is 15 μm or less. It was. This is considered to be because Li was effectively occluded and released on the negative electrode active material layer surface by setting Ra within the above range.

また、集電体のRaと負極厚さの比を同じにした場合、集電体のRaが2μmを超え15μm以下の間は実施例17〜実施例22に示すように1C放電容量に対する50C放電容量は、70%以上であった。一方、集電体のRaと負極厚さの比が同じであっても、集電体のRaが2μm以下、又は15μm以下を超える値となった場合には、比較例10に示すように高い出力は得られなかった。これは集電体のRaが小さいほど比表面積の増加が少なく、また集電体のRaが大きいと電界分布が一様になっていないためと考えられる。   Further, when the ratio between the Ra of the current collector and the thickness of the negative electrode is the same, when the Ra of the current collector exceeds 2 μm and is 15 μm or less, 50 C discharge with respect to 1 C discharge capacity as shown in Examples 17 to 22 The capacity was 70% or more. On the other hand, even if the ratio of Ra of the current collector and the thickness of the negative electrode is the same, if the Ra of the current collector is 2 μm or less, or a value exceeding 15 μm or less, it is high as shown in Comparative Example 10. No output was obtained. This is presumably because the smaller the current collector Ra is, the less the specific surface area increases, and the larger current collector Ra is that the electric field distribution is not uniform.

本発明に係る二次電池の概略構成図である。It is a schematic block diagram of the secondary battery which concerns on this invention. 本発明に係る負極表面近傍の概略図である。It is the schematic of the negative electrode surface vicinity which concerns on this invention.

符号の説明Explanation of symbols

11 正極集電体
12 正極活物質層
13 負極活物質層
14 負極集電体
15 非水電解質溶液
16 多孔質セパレータ
21 負極活物質層側の面
DESCRIPTION OF SYMBOLS 11 Positive electrode collector 12 Positive electrode active material layer 13 Negative electrode active material layer 14 Negative electrode collector 15 Nonaqueous electrolyte solution 16 Porous separator 21 Negative electrode active material layer side surface

Claims (5)

集電体と、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、または熱CVD方式により前記集電体上に設けられた負極活物質層とを有する二次電池用負極において、
前記集電体の前記負極活物質層側の面が2μmを超え15μm以下の表面粗さ(Ra)を有し、
前記負極活物質層が、(a)Liを吸蔵、放出可能な金属、半金属及びこれらの酸化物からなる群から選択された少なくとも一種の負極活物質と、(b)Liを吸蔵しない元素Xとを含み、
前記負極活物質層の厚みが、前記表面粗さ(Ra)の0.5倍以上5倍以下であり、
前記負極活物質層の厚みが、1.5〜15μmであることを特徴とする二次電池用負極。
In a negative electrode for a secondary battery having a current collector and a negative electrode active material layer provided on the current collector by an atomization method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, or a thermal CVD method ,
The negative electrode active material layer side surface of the current collector has a surface roughness (Ra) of more than 2 μm and 15 μm or less,
The negative electrode active material layer comprises (a) at least one negative electrode active material selected from the group consisting of metals, metalloids and their oxides capable of occluding and releasing Li, and (b) element X that does not occlude Li. Including
The thickness of the negative electrode active material layer is 0.5 to 5 times the surface roughness (Ra),
The negative electrode for a secondary battery, wherein the negative electrode active material layer has a thickness of 1.5 to 15 µm.
前記(a)負極活物質が、Si、Sn、Al、Pb、Ag、Ge及びSbからなる群から選択された少なくとも一種の元素Mを含むことを特徴とする請求項1に記載の二次電池用負極。   The secondary battery according to claim 1, wherein the negative electrode active material (a) includes at least one element M selected from the group consisting of Si, Sn, Al, Pb, Ag, Ge, and Sb. Negative electrode. 前記(b)Liを吸蔵しない元素Xが、Fe、Ni、Cu及びTiからなる群から選択された少なくとも一種の元素であることを特徴とする請求項2に記載の二次電池用負極。   3. The negative electrode for a secondary battery according to claim 2, wherein the element (b) that does not occlude Li is at least one element selected from the group consisting of Fe, Ni, Cu, and Ti. 前記元素Mと前記元素Xとの比が、原子数比で元素M:元素X=19:1〜1:9であることを特徴とする請求項3に記載の二次電池用負極。   4. The negative electrode for a secondary battery according to claim 3, wherein a ratio of the element M to the element X is an element number ratio of element M: element X = 19: 1 to 1: 9. 5. 請求項1〜4の何れか1項に記載の二次電池用負極と、二次電池用正極と、電解液とを有することを特徴とする二次電池。   A secondary battery comprising the secondary battery negative electrode according to claim 1, a secondary battery positive electrode, and an electrolytic solution.
JP2005205423A 2005-07-14 2005-07-14 Secondary battery negative electrode and secondary battery using the same Active JP5076288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205423A JP5076288B2 (en) 2005-07-14 2005-07-14 Secondary battery negative electrode and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205423A JP5076288B2 (en) 2005-07-14 2005-07-14 Secondary battery negative electrode and secondary battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011157874A Division JP2011238623A (en) 2011-07-19 2011-07-19 Negative electrode for secondary battery and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007026805A JP2007026805A (en) 2007-02-01
JP5076288B2 true JP5076288B2 (en) 2012-11-21

Family

ID=37787335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205423A Active JP5076288B2 (en) 2005-07-14 2005-07-14 Secondary battery negative electrode and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5076288B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542785B (en) 2007-02-02 2012-07-18 松下电器产业株式会社 Lithium cell electrode, and method for manufacturing the lithium cell electrode
EP2398093B1 (en) * 2009-02-16 2018-04-11 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP5387904B2 (en) * 2009-12-17 2014-01-15 トヨタ自動車株式会社 Lithium ion secondary battery
CN103299472B (en) * 2011-01-18 2016-02-24 Nec能源元器件株式会社 Rechargeable nonaqueous electrolytic battery
JP5751448B2 (en) 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
JP2011238623A (en) * 2011-07-19 2011-11-24 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP5904363B2 (en) * 2011-12-27 2016-04-13 日産自動車株式会社 Negative electrode active material for electrical devices
KR20180030265A (en) 2012-11-22 2018-03-21 닛산 지도우샤 가부시키가이샤 Negative electrode for electric device and electric device using the same
WO2014080895A1 (en) 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
WO2015111187A1 (en) 2014-01-24 2015-07-30 日産自動車株式会社 Electrical device
WO2015111189A1 (en) 2014-01-24 2015-07-30 日産自動車株式会社 Electrical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1556491A4 (en) * 2002-07-17 2007-02-07 Sepro Corp Herbicide-resistant plants, and polynucleotides and methods for providing same
JP2005116509A (en) * 2003-09-18 2005-04-28 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2007026805A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5076288B2 (en) Secondary battery negative electrode and secondary battery using the same
CN108292779B (en) Lithium ion secondary battery
JP6398985B2 (en) Lithium ion secondary battery
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP6007907B2 (en) Secondary battery
JP5582587B2 (en) Lithium ion secondary battery
CN106410261B (en) Nonaqueous electrolyte battery
JP6380377B2 (en) Lithium ion secondary battery
WO2014133163A1 (en) Nonaqueous electrolyte secondary battery
JP2010267475A (en) Lithium ion secondary battery
JP2007026926A (en) Negative electrode for secondary battery and secondary battery using the same
KR102112207B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
WO2016194733A1 (en) Lithium ion secondary battery
JP2005197080A (en) Anode for secondary battery and secondary battery using it
WO2016021596A1 (en) Lithium secondary battery and production method for same
WO2015194559A1 (en) Electrolyte and secondary cell
JP6341195B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6319092B2 (en) Secondary battery
JP2020167054A (en) Lithium ion secondary battery
WO2018096889A1 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP2020077575A (en) Lithium ion secondary battery
JP5708333B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2020077576A (en) Lithium ion secondary battery
JP7276956B2 (en) lithium ion secondary battery
JP2011238623A (en) Negative electrode for secondary battery and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150