JP2005197080A - Anode for secondary battery and secondary battery using it - Google Patents

Anode for secondary battery and secondary battery using it Download PDF

Info

Publication number
JP2005197080A
JP2005197080A JP2004002082A JP2004002082A JP2005197080A JP 2005197080 A JP2005197080 A JP 2005197080A JP 2004002082 A JP2004002082 A JP 2004002082A JP 2004002082 A JP2004002082 A JP 2004002082A JP 2005197080 A JP2005197080 A JP 2005197080A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
current collector
lithium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002082A
Other languages
Japanese (ja)
Inventor
Hirochika Yamamoto
博規 山本
Mariko Miyaji
麻里子 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004002082A priority Critical patent/JP2005197080A/en
Publication of JP2005197080A publication Critical patent/JP2005197080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode material for a secondary battery with high capacity and a long life. <P>SOLUTION: The anode material for the secondary battery used for the anode storing and releasing lithium ion contains a material component 3a larger than a theoretical weight lithium storage volume of carbon, storing less lithium as it comes nearer a current collector 1a. By using the material component not storing lithium with low ductility and malleability, exfoliation from the collector or pulverization of an anode active material is restrained to improve cycle characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は二次電池用負極およびそれを用いた二次電池に関し、特に高容量でかつサイクル特性に優れた二次電池用負極およびそれを用いた二次電池に関する。   The present invention relates to a negative electrode for a secondary battery and a secondary battery using the same, and more particularly to a negative electrode for a secondary battery having high capacity and excellent cycle characteristics and a secondary battery using the same.

携帯電話やノートパソコン等のモバイル端末の普及により、その電力源となる電池の役割が重要視されている。これら電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められる。
高エネルギー密度でかつ軽量という観点から負極に金属リチウムを用いられることもあるが、この場合充放電サイクルの進行にともない、リチウム表面に針状結晶(デンドライト)が析出したり、このデンドライトが集電体から剥がれる現象が起きる場合がある。この結果、デンドライトがセパレータを貫通し、内部で短絡を起こし、電池の寿命を短くしたり、サイクル特性が劣化するという問題が発生する場合があった。
With the widespread use of mobile terminals such as mobile phones and laptop computers, the role of the battery serving as the power source has been regarded as important. These batteries are required to have a small size, light weight, high capacity, and performance that does not easily deteriorate even after repeated charge and discharge.
From the viewpoint of high energy density and light weight, metallic lithium may be used for the negative electrode. In this case, acicular crystals (dendrites) are deposited on the lithium surface as the charge / discharge cycle progresses, or the dendrites are collected by current. Peeling from the body may occur. As a result, the dendrite penetrates the separator and causes a short circuit inside, which may cause problems such as shortening the battery life or deteriorating cycle characteristics.

そこで、実用電池には上記のような問題のない炭素材料が負極材料として使用されている。このうちで代表的なものには、黒鉛系の炭素材料があるが、この材料が吸蔵可能なリチウムイオン量は黒鉛の層間に挿入可能な量によって制限されており、その比容量である372Ah/kg以上とすることは一般的に困難である。また、リチウムイオン二次電池に使用されている炭素負極等はその理論容量の上限近くまですでに容量を使い切っているため、これ以上の容量アップは望めない場合があった。そこで黒鉛よりもリチウムイオンを吸蔵でき比容量の大きい合金系負極を用いる方法が開発されている。しかしながら合金系負極は充放電の際、発生する体積膨張収縮が大きいため微粉化や集電体からの剥離によって電気的接触が取れなくなる場合があった。   Therefore, carbon materials that do not have the above problems are used as negative electrode materials in practical batteries. A typical one of these is a graphite-based carbon material, but the amount of lithium ions that can be occluded by this material is limited by the amount that can be inserted between graphite layers, and its specific capacity is 372 Ah / It is generally difficult to set the weight to kg or more. In addition, since the capacity of the carbon negative electrode used in the lithium ion secondary battery has already been used up to near the upper limit of the theoretical capacity, it may not be possible to increase the capacity further. Therefore, a method using an alloy-based negative electrode that can occlude lithium ions and has a larger specific capacity than graphite has been developed. However, since the alloy-based negative electrode has a large volume expansion / contraction during charge / discharge, there are cases where electrical contact cannot be obtained due to pulverization or peeling from the current collector.

例えば、特許文献1には負極活物質内に集電体成分を拡散させることで、集電体近傍の膨張収縮を相対的に小さくし、密着性を保つ方法が提案されている。また、特許文献2には活物質中にアルカリ金属と合金化しない導電剤を含み、かつ集電体近傍の活物質導電剤濃度が集電体から離れた位置の活物質導電剤濃度より高い方法が述べられており、例として黒鉛材料中にCu粉末を混合する方法が提案されている。
国際公開番号WO01/031721号パンフレット(第7〜10頁) 特開平9−265976号公報(第3〜4頁)
For example, Patent Document 1 proposes a method in which a current collector component is diffused in a negative electrode active material to relatively reduce expansion and contraction in the vicinity of the current collector and maintain adhesion. Patent Document 2 discloses a method in which the active material contains a conductive agent that does not alloy with an alkali metal, and the active material conductive agent concentration in the vicinity of the current collector is higher than the active material conductive agent concentration at a position away from the current collector. As an example, a method of mixing Cu powder in a graphite material has been proposed.
International Publication Number WO01 / 031721 Pamphlet (7th to 10th pages) JP-A-9-265976 (pages 3-4)

しかしながら、この特許文献1、2に開示された負極材料にはいくつかの問題が生じる場合があった。
第一の問題点はサイクルに伴う活物質の微粉化を抑制できないことである。その理由はリチウムイオン電池の負極の集電体には銅箔が用いられるのが一般的であるが、銅は金・銀のように展性や延性が高く加工性には富むが強靭性には劣るため、活物質が充放電で膨張を繰り返すと集電体からの剥離や微粉化が発生してしまうためである。
However, the negative electrode materials disclosed in Patent Documents 1 and 2 sometimes have some problems.
The first problem is that pulverization of the active material accompanying the cycle cannot be suppressed. The reason for this is that copper foil is generally used for the current collector of the negative electrode of lithium ion batteries, but copper is malleable and ductile like gold and silver and has high workability, but it is tough. This is because when the active material repeatedly expands due to charge and discharge, peeling or pulverization from the current collector occurs.

第2の問題点はサイクルに伴う活物質の集電体からの剥離を防げないことである。その理由は活物質中にアルカリ金属と結合しないものを導電剤として添加しても、リチウムを吸蔵する物質そのものの膨張収縮を抑制できるわけでないため、サイクルとともにこれら体積膨張収縮による応力で剥離が起こってしまう。また第一の問題点にあげた理由も集電体から活物質の剥離が防げない要因である。
本発明の目的は、高容量でかつサイクル特性に優れた二次電池用負極およびそれを用いた二次電池に関する。
The second problem is that the active material cannot be prevented from being peeled off from the current collector due to the cycle. The reason for this is that even if an active material that does not bind to an alkali metal is added as a conductive agent, the expansion and contraction of the lithium storage material itself cannot be suppressed. End up. The reason raised as the first problem is also a factor that prevents the active material from being separated from the current collector.
An object of the present invention relates to a negative electrode for a secondary battery having a high capacity and excellent cycle characteristics, and a secondary battery using the same.

上記課題を解決するため、本発明は以下の構成を有することを特徴とする。本発明は、集電体と、リチウムイオンを吸蔵および放出することのできる二次電池用負極材料とを有する二次電池用負極であって、
該二次電池用負極材料が炭素の理論重量リチウム吸蔵量より大きな材料(A)と、リチウムを吸蔵しない材料成分(B)とを有し、該二次電池用負極材料から集電体側に向かって該材料成分(B)濃度が大きくなることを特徴とする二次電池用負極に関する。
In order to solve the above problems, the present invention is characterized by having the following configuration. The present invention is a secondary battery negative electrode comprising a current collector and a secondary battery negative electrode material capable of occluding and releasing lithium ions,
The negative electrode material for a secondary battery has a material (A) larger than the theoretical weight lithium occlusion amount of carbon and a material component (B) that does not occlude lithium, and extends from the negative electrode material for secondary battery toward the current collector side. The material component (B) concentration is thus increased.

本発明の二次電池用負極は更に、前記炭素の理論重量リチウム吸蔵量より大きな材料(A)が、Si、Sn及びAlからなる群より選択された少なくとも1種の元素を有することが好ましい。
本発明の二次電池用負極は更に、前記リチウムを吸蔵しない材料成分(B)が、Ti、Fe、Co、Ni、Mo及びWからなる群より選択された少なくとも1種の元素を有することが好ましい。
In the negative electrode for a secondary battery of the present invention, it is preferable that the material (A) having a larger theoretical weight lithium occlusion amount of carbon has at least one element selected from the group consisting of Si, Sn and Al.
In the secondary battery negative electrode of the present invention, the material component (B) that does not occlude lithium further contains at least one element selected from the group consisting of Ti, Fe, Co, Ni, Mo, and W. preferable.

本発明の二次電池用負極は更に、前記二次電池用負極材料が、前記炭素の理論重量リチウム吸蔵量より大きな材料(A)と前記リチウムを吸蔵しない材料成分(B)とを有する粒子によって構成されていることが好ましい。
本発明の二次電池用負極は更に、前記集電体が銅箔であり、該銅箔の表面粗さ(Ra)が1〜5μmであることが好ましい。
The negative electrode for a secondary battery according to the present invention further includes particles in which the negative electrode material for a secondary battery has a material (A) larger than the theoretical weight lithium occlusion amount of the carbon and a material component (B) that does not occlude lithium. It is preferable to be configured.
In the secondary battery negative electrode of the present invention, it is preferable that the current collector is a copper foil, and the surface roughness (Ra) of the copper foil is 1 to 5 μm.

本発明は、集電体上への第1の供給源からの炭素の理論重量リチウム吸蔵量より大きな材料(A)の供給と、第2の供給源からのリチウムを吸蔵しない材料成分(B)の供給と、により二次電池用負極材料を含む膜を成膜することによる二次電池用負極の製造方法であって、前記集電体上への該材料(A)の供給量を連続的に減らし、且つ該材料成分(B)の供給量を連続的に増やすことを特徴とする二次電池用負極の製造方法に関する。
本発明の二次電池用負極の製造方法は更に、前記二次電池用負極材料を含む膜の成膜法が、蒸着、スパッタリング及びCVD法からなる群より選択された少なくとも1種の方法であることが好ましい。
The present invention provides a material component (B) that supplies a material (A) larger than the theoretical weight lithium occlusion amount of carbon from a first source onto a current collector and does not occlude lithium from a second source. A negative electrode for a secondary battery by forming a film containing a negative electrode material for a secondary battery, and continuously supplying the material (A) onto the current collector. And a method for producing a negative electrode for a secondary battery, wherein the supply amount of the material component (B) is continuously increased.
In the method for producing a negative electrode for a secondary battery according to the present invention, the method for forming a film containing the negative electrode material for a secondary battery is at least one selected from the group consisting of vapor deposition, sputtering, and CVD. It is preferable.

本発明の製造方法は更に、前記炭素の理論重量リチウム吸蔵量より大きな材料(A)及びリチウムを吸蔵しない材料成分(B)の成膜法が、蒸着、スパッタリング及びCVD法からなる群より選択された少なくとも1種の方法であることが好ましい。
本発明は、炭素の理論重量リチウム吸蔵量より大きな材料(A)とリチウムを吸蔵しない材料成分(B)とを有する粒子を形成し、該粒子を集電体上に積層させることを特徴とする二次電池用負極の製造方法に関する。
In the production method of the present invention, the film forming method of the material (A) larger than the theoretical weight lithium occlusion amount of carbon and the material component (B) which does not occlude lithium is selected from the group consisting of vapor deposition, sputtering and CVD methods. Preferably, at least one method is used.
The present invention is characterized in that particles having a material (A) larger than the theoretical weight lithium occlusion amount of carbon and a material component (B) that does not occlude lithium are formed, and the particles are laminated on a current collector. The present invention relates to a method for producing a negative electrode for a secondary battery.

本発明の製造方法は更に、前記粒子の形成方法が、メカニカルリミング又は焼成法であることが好ましい。
本発明は更に、前期製造方法によって製造されたことを特徴とする二次電池用負極に関する。
本発明は更に、前記二次電池用負極を有する二次電池に関する。
In the production method of the present invention, it is preferable that the method for forming the particles is mechanical rimming or firing.
The present invention further relates to a negative electrode for a secondary battery manufactured by the previous manufacturing method.
The present invention further relates to a secondary battery having the secondary battery negative electrode.

本発明によれば、リチウム吸蔵量の多い合金系材料を負極材料としても集電体からの剥離を押さえかつ、活物質の微粉化を抑制するため高容量かつ優れたサイクル特性をえることができる。   According to the present invention, even when an alloy material having a large amount of occlusion of lithium is used as a negative electrode material, it is possible to obtain high capacity and excellent cycle characteristics in order to suppress separation from the current collector and to suppress pulverization of the active material. .

[発明の特徴]
本発明のリチウムイオン二次電池用負極は炭素の理論重量リチウム吸蔵量より大きな材料(A)を有し、集電体に近いほどリチウムを吸蔵しない材料成分(B)を含む負極である。ここで、炭素とは黒鉛の結晶を表し、炭素原6原子当たりリチウムが1原子入った状態が限界とされる。この状態を電気量に換算すると372Ah/gとなる。リチウム吸蔵量より大きな材料(A)はSi、Sn及びAlからなる群より選択された少なくとも1種を含むことが好ましい。これらの材料(A)を用いることによって、より高エネルギー密度を有する二次電池とすることができる。具体的には、これらの金属の炭化物、窒化物、有機酸塩(例えば、酢酸塩)、無機酸塩(例えば、塩化物、炭酸塩、硝酸塩)などの形態で使用することができる。例えば、SiO、SnO、SnO2、Al23またはこれらの酸化物の非量論的化合物などが挙げられる。また、これらは酸化リチウムとの複合酸化物、Li2SnO2、LiSiO、Li2SiO、LiSiO1.5、Li2SiO1.5であってもよい。より好ましくはSi及びAlの少なくとも一方を含む材料(A)を用いるのが良い。
[Features of the invention]
The negative electrode for a lithium ion secondary battery of the present invention is a negative electrode having a material (A) larger than the theoretical weight lithium occlusion amount of carbon and containing a material component (B) that does not occlude lithium as it is closer to the current collector. Here, carbon represents a crystal of graphite, and the limit is the state in which one atom of lithium is contained per six atoms of carbon. When this state is converted into an amount of electricity, it becomes 372 Ah / g. The material (A) larger than the lithium storage amount preferably contains at least one selected from the group consisting of Si, Sn and Al. By using these materials (A), a secondary battery having a higher energy density can be obtained. Specifically, these metal carbides, nitrides, organic acid salts (for example, acetates), inorganic acid salts (for example, chlorides, carbonates, nitrates) and the like can be used. Examples thereof include SiO, SnO, SnO 2 , Al 2 O 3 , and non-stoichiometric compounds of these oxides. These may be composite oxides with lithium oxide, Li 2 SnO 2 , LiSiO, Li 2 SiO, LiSiO 1.5 , Li 2 SiO 1.5 . More preferably, a material (A) containing at least one of Si and Al is used.

リチウムを吸蔵しない材料成分はTi、Fe、Co、Ni、Mo、Wの内から1種以上含む単体あるいは化合物である。
本発明の二次電池用負極の一態様は二次電池用負極材料中のリチウムを吸蔵しない材料成分(B)の濃度が二次電池用負極材料から集電体側に向かって大きくなっていることに特徴がある。この場合、負極材料の一部に二次電池用負極材料を含む層中の層厚方向において集電体側に向かって材料成分(B)の濃度が一定の部分があっても良い。
The material component that does not occlude lithium is a simple substance or a compound containing at least one of Ti, Fe, Co, Ni, Mo, and W.
In one embodiment of the negative electrode for secondary battery of the present invention, the concentration of the material component (B) that does not occlude lithium in the negative electrode material for secondary battery increases from the negative electrode material for secondary battery toward the current collector side. There is a feature. In this case, there may be a portion where the concentration of the material component (B) is constant toward the current collector side in the layer thickness direction in the layer including the negative electrode material for secondary batteries in a part of the negative electrode material.

例えば、これらの材料を銅箔上に蒸着・CVD法・スパッタリング法などで形成する際、集電体に近い方ほどリチウムを吸蔵しない材料成分を多くし、集電体から離れるに従いリチウム吸蔵材料成分が多くなるよう形成する。または炭素の理論重量リチウム吸蔵量より大きな材料とリチウムを吸蔵しない材料成分からなる粒子で、集電体に近いほどリチウムを吸蔵しない材料成分がリチウム吸蔵材料成分より多く含まれる粒子で構成され、集電体から離れるにしたがいリチウム吸蔵材料成分を多く含む粒子で構成される。   For example, when these materials are formed on a copper foil by vapor deposition, CVD, sputtering, etc., the closer to the current collector, the more the material components that do not occlude lithium, and as the distance from the current collector increases, the lithium occlusion material component Form so as to increase. Or particles composed of a material larger than the theoretical weight lithium storage capacity of carbon and a material component that does not occlude lithium, and the closer to the current collector, the more the material component that does not occlude lithium than the lithium occlusion material component. As the distance from the electric body increases, it is composed of particles containing a large amount of lithium storage material components.

二次電池用負極材料から集電体側に向かって材料成分(B)の濃度が大きくなるような濃度勾配を有することが好ましい。   It is preferable to have a concentration gradient such that the concentration of the material component (B) increases from the secondary battery negative electrode material toward the current collector side.

[作用]
本発明の負極は炭素の理論重量リチウム吸蔵量より大きな材料(A)を含み、かつ集電体に近いほどリチウムを吸蔵しない材料成分(B)を多く含むことで以下の効果が得られる。まず、従来リチウムイオン二次電池に使用される炭素材料より理論容量の高い材料(A)を使うことでより電池のエネルギー密度を向上することができる。また、集電体に近いほどリチウムを吸蔵しない材料成分(B)を多く含むことで充放電に伴う体積膨張・収縮が緩和され集電体からの剥離が抑制できる。さらにリチウムを吸蔵しない材料成分(B)として集電体よりも延性・展性の低いものを使うことで充放電によって発生するストレスによる微粉化を抑制することができる。あるいは負極材料を炭素のリチウム吸蔵量より大きな材料(A)とリチウムを吸蔵しない材料成分(B)を有する粒子で構成することで充放電に伴う活物質の微粉化を抑制することができる。
[Action]
The negative electrode of the present invention contains the material (A) larger than the theoretical weight lithium occlusion amount of carbon and contains the material component (B) that does not occlude lithium as it is closer to the current collector. First, the energy density of the battery can be further improved by using a material (A) having a higher theoretical capacity than the carbon material used in the conventional lithium ion secondary battery. In addition, the closer to the current collector, the more the material component (B) that does not occlude lithium is contained, so that the volume expansion / contraction associated with charging / discharging is alleviated and peeling from the current collector can be suppressed. Furthermore, by using a material component (B) that does not occlude lithium and having a lower ductility and malleability than the current collector, pulverization due to stress generated by charging and discharging can be suppressed. Alternatively, the anode material can be composed of particles having a material (A) larger than the lithium storage amount of carbon and a material component (B) that does not store lithium, whereby the pulverization of the active material accompanying charge / discharge can be suppressed.

[負極の構造]
次に、本発明の一実施形態について図面を参照して詳細に説明する。図1は本発明の負極構造の一例を示した模式図である。集電体1aは負極材料(活物質)を形成する際、基体となる部材であり、また充放電の際、活物質と電流のやり取りをする部材である。主として5〜20μm厚の銅箔からなる。この集電体の表面粗さRaは0.01〜5μmが適しており、さらに好ましくは1〜5μmである。これら表面荒さが存在することでより集電体1bと活物質の密着性を高めることができる。Li吸蔵材料(炭素の理論重量リチウム吸蔵量より大きな材料(A))2aはLiを吸蔵・放出する役目をし、Si、Sn及びAlからなる群より選択された少なくとも1種の元素を含む。Li非吸蔵材料(リチウムを吸蔵しない材料成分(B))3aは充放電に伴うLi吸蔵材料2aの微粉化あるいは集電体1aからの剥離を抑制する働きをし、Ti、Fe、Co、Ni、Mo及びWからなる群より選択された少なくとも1種の元素を含む。Li非吸蔵材料がこれらの元素を含むことによって、より高容量でかつサイクル特性に優れた二次電池とすることができる。
[Negative electrode structure]
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an example of the negative electrode structure of the present invention. The current collector 1a is a member that becomes a base when the negative electrode material (active material) is formed, and is a member that exchanges current with the active material during charging and discharging. It consists mainly of a copper foil having a thickness of 5 to 20 μm. The surface roughness Ra of the current collector is suitably from 0.01 to 5 μm, more preferably from 1 to 5 μm. The presence of these surface roughnesses can increase the adhesion between the current collector 1b and the active material. The Li storage material (material (A) larger than the theoretical weight lithium storage amount of carbon) 2a plays a role of storing and releasing Li, and includes at least one element selected from the group consisting of Si, Sn, and Al. The Li non-occlusion material (material component (B) that does not occlude lithium) 3a functions to suppress pulverization of Li storage material 2a accompanying charge / discharge or separation from current collector 1a. Ti, Fe, Co, Ni , At least one element selected from the group consisting of Mo and W. When the Li non-occlusion material contains these elements, a secondary battery having a higher capacity and excellent cycle characteristics can be obtained.

図1の負極では、材料成分(B)の濃度(あるいは集電体の面方向での含有量)が二次電池用負極材料を含む層中の層厚方向の集電体側に向かって大きくなっている。また、Li吸蔵材料2a及びLi非吸蔵材料3aは負極材料中の一定領域を占める(Li吸蔵材料2aは斜線部分:Li非吸蔵材料3aは縦線部分)。   In the negative electrode of FIG. 1, the concentration of the material component (B) (or the content in the surface direction of the current collector) increases toward the current collector side in the layer thickness direction in the layer containing the negative electrode material for the secondary battery. ing. Further, the Li storage material 2a and the Li non-occlusion material 3a occupy a certain region in the negative electrode material (the Li storage material 2a is a hatched portion: the Li non-occlusion material 3a is a vertical line portion).

図3は本発明の負極構造の他の一例を示した模式図である。集電体1b上に、Li吸蔵材料(炭素の理論重量リチウム吸蔵量より大きな材料(A))2bとLi非吸蔵材料(リチウムを吸蔵しない材料成分(B))3bを有する粒子が積層されている。粒子は、Li吸蔵材料2bとLi非吸蔵材料3bが所望の割合で混合されており、粒子中にLi吸蔵材料2bとLi非吸蔵材料3bは均一又は不均一に分布している。好ましくは、図3のように一方の材料を他方の材料が包み込んでいる形態が良い。この場合、粒子中の(B)濃度は二次電池用負極材料を含む層中において層厚方向の集電体側に向かうに従い大きくなっている。負極材料の一部に二次電池用負極材料から集電体側に向かって材料成分(B)の濃度が一定の部分が存在しても良い。   FIG. 3 is a schematic view showing another example of the negative electrode structure of the present invention. Particles having a Li storage material (material (A) larger than the theoretical weight lithium storage amount of carbon (2)) 2b and a non-Li storage material (material component (B) that does not store lithium) 3b are stacked on the current collector 1b. Yes. In the particles, the Li occlusion material 2b and the Li non occlusion material 3b are mixed in a desired ratio, and the Li occlusion material 2b and the Li non occlusion material 3b are uniformly or non-uniformly distributed in the particles. Preferably, as shown in FIG. 3, one material is wrapped with the other material. In this case, the concentration of (B) in the particles increases in the layer containing the negative electrode material for secondary batteries toward the current collector side in the layer thickness direction. A part of the negative electrode material may have a constant concentration of the material component (B) from the negative electrode material for the secondary battery toward the current collector.

このような粒子を用いた場合、積層時に粒子間に空隙が生じるためこの空隙によって充放電による材料(A)の体積膨張・収縮を吸収することができ、負極材料の集電体からの剥離を効果的に抑制できる。   When such particles are used, voids are generated between the particles during lamination, so that the volume expansion / contraction of the material (A) due to charge / discharge can be absorbed by the voids, and the negative electrode material can be separated from the current collector. It can be effectively suppressed.

[二次電池の製造方法]
本発明の負極の製造方法の一例では、炭素の理論重量リチウム吸蔵量より大きな材料(A)とリチウムを吸蔵しない材料成分(B)をそれぞれ別の供給源から供給し、材料(A)の成膜量を連続的に減らし、且つ材料成分(B)の成膜量を連続的に増やすことによって製造することができる。
[Method for producing secondary battery]
In an example of the method for producing a negative electrode of the present invention, a material (A) larger than the theoretical weight lithium occlusion amount of carbon and a material component (B) that does not occlude lithium are supplied from different sources, respectively. It can be manufactured by continuously reducing the amount of film and continuously increasing the amount of film formation of the material component (B).

次に本発明の負極の製造方法の一例を説明する。図2は図1の構造の負極の製造方法を表したものである。本製造方法では、集電体1aとなる銅箔上に負極材料を成膜することで電極となる。集電体1aとしては銅箔を用いることが好ましく、その厚さは5〜20μmが好ましく、1〜5μmがより好ましい。この集電体1aの表面粗さRaは0.01〜5μmが適している。成膜方法としてはスパッタリング法、CVD法、蒸着などの真空成膜法を用いることができる。これらの方法は単独でまたは複数の成膜法を組み合わせて用いることができる。これらの方法を用いることによって精度良く所望の材料を成膜することができる。Li非吸蔵材料供給源4aはLi非吸蔵材料(リチウムを吸蔵しない材料成分(B))3aを集電体1aに供給するもので、Li非吸蔵材料3aを主成分とした材料で構成される。Li吸蔵材料供給源5aはLi吸蔵材料(炭素の理論重量リチウム吸蔵量より大きな材料(A))2aを集電体1aに供給するもので、Li吸蔵材料2aを主成分とした材料で構成される。本製造方法では箔状の集電体1aの表面が、Li非吸蔵材料供給源4aからのLi非吸蔵材料3aの供給方向及びLi吸蔵材料供給源5aからのLi吸蔵材料2aの供給方向と垂直となるように配置され、集電体1aは供給源3a及び5aからの材料の供給方向と垂直方向6に一方の端部7から他方の端部8まで移動させる。集電体1aが一方の端部7から移動開始直後は、集電体1aはLi非吸蔵材料供給源4aの近傍に存在し、Li吸蔵材料供給源5aからは遠い位置にある。このため、Li非吸蔵材料供給源4aから供給されるLi非吸蔵材料3aのうち集電体1a上に成膜されるLi非吸蔵材料3aの割合は多い。これに対してLi吸蔵材料供給源5aから供給されるLi吸蔵材料2aのうち集電体1a上に成膜されるLi吸蔵材料2aの割合は少ない。従って、集電体1aに近い部分においては材料成分(B)の濃度が大きくなる。なお、集電体1aの移動開始直後の、Li吸蔵材料供給源5aからのLi吸蔵材料2aの成膜量は0であっても良い。   Next, an example of the manufacturing method of the negative electrode of this invention is demonstrated. FIG. 2 shows a manufacturing method of the negative electrode having the structure of FIG. In this manufacturing method, an electrode material is formed by forming a negative electrode material on the copper foil to be the current collector 1a. It is preferable to use a copper foil as the current collector 1a, and the thickness is preferably 5 to 20 μm, and more preferably 1 to 5 μm. The surface roughness Ra of the current collector 1a is suitably 0.01 to 5 μm. As a film formation method, a vacuum film formation method such as a sputtering method, a CVD method, or an evaporation method can be used. These methods can be used alone or in combination of a plurality of film forming methods. By using these methods, a desired material can be formed with high accuracy. The Li non-occlusion material supply source 4a supplies the Li non-occlusion material (material component (B) that does not occlude lithium) 3a to the current collector 1a, and is composed of a material mainly composed of the Li non-occlusion material 3a. . The Li storage material supply source 5a supplies a Li storage material (material (A) larger than the theoretical weight lithium storage amount of carbon) 2a to the current collector 1a, and is composed of a material mainly composed of the Li storage material 2a. The In this manufacturing method, the surface of the foil-like current collector 1a is perpendicular to the supply direction of the Li non-occlusion material 3a from the Li non-occlusion material supply source 4a and the supply direction of the Li storage material 2a from the Li storage material supply source 5a. The current collector 1a is moved from one end 7 to the other end 8 in a direction 6 perpendicular to the material supply direction from the supply sources 3a and 5a. Immediately after the current collector 1a starts moving from one end portion 7, the current collector 1a is present in the vicinity of the Li non-occlusion material supply source 4a and is far from the Li storage material supply source 5a. For this reason, the ratio of the Li non-occlusion material 3a formed on the current collector 1a in the Li non-occlusion material 3a supplied from the Li non-occlusion material supply source 4a is large. On the other hand, the proportion of the Li storage material 2a formed on the current collector 1a in the Li storage material 2a supplied from the Li storage material supply source 5a is small. Therefore, the concentration of the material component (B) increases in the portion close to the current collector 1a. Note that the film deposition amount of the Li storage material 2a from the Li storage material supply source 5a immediately after the start of the movement of the current collector 1a may be zero.

一方、集電体1aの移動開始後長時間が経過したとき、集電体1aはLi吸蔵材料供給源5aの近傍に存在し、Li非吸蔵材料供給源4aから遠い位置にある。このため、Li吸蔵材料供給源5aから供給されるLi吸蔵材料2aのうち集電体1a上に成膜されるLi吸蔵材料2aの割合は多いのに対してLi非吸蔵材料供給源4aから供給されるLi非吸蔵材料3aのうち集電体1a上に成膜されるLi非吸蔵材料3aの割合は多い。従って、集電体1aから離れるに従って材料成分(B)の濃度は小さくなる。なお、集電体1aの移動開始後長時間が経過したときのLi非吸蔵材料供給源4aからのLi非吸蔵材料3aの成膜量は0であっても良い。   On the other hand, when a long time has elapsed after the start of the movement of the current collector 1a, the current collector 1a is present in the vicinity of the Li storage material supply source 5a and is far from the Li non-storage material supply source 4a. For this reason, the proportion of the Li storage material 2a formed on the current collector 1a in the Li storage material 2a supplied from the Li storage material supply source 5a is large, whereas the supply is from the Li non-storage material supply source 4a. The ratio of the Li non-occlusion material 3a formed on the current collector 1a in the Li non-occlusion material 3a is large. Accordingly, the concentration of the material component (B) decreases as the distance from the current collector 1a increases. Note that the film formation amount of the Li non-occlusion material 3a from the Li non-occlusion material supply source 4a when a long time has elapsed after the start of the movement of the current collector 1a may be zero.

また、集電体1aを固定し、Li吸蔵材料供給源5aから供給するLi吸蔵材料2aの量を連続的に減らし、Li非吸蔵材料供給源4aから供給するLi非吸蔵材料3aの量を連続的に増やすことによっても同様に負極材料を製造することができる。   Further, the current collector 1a is fixed, the amount of the Li storage material 2a supplied from the Li storage material supply source 5a is continuously reduced, and the amount of the Li non storage material 3a supplied from the Li non storage material supply source 4a is continuously reduced. Similarly, the negative electrode material can be manufactured by increasing the number of the negative electrodes.

このようにして集電体1a近傍では材料成分(B)(Li非吸蔵材料3a)の濃度が大きく、集電体1aから離れるに従ってこの濃度が小さくなっていくような負極を得ることができる。これらの製造方法では原料の供給量及び集電体の移動速度を変化させることによって、材料中のLi非吸蔵材料3aの濃度を容易に制御することができる。   In this way, it is possible to obtain a negative electrode in which the concentration of the material component (B) (Li non-occlusion material 3a) is large in the vicinity of the current collector 1a, and the concentration decreases as the distance from the current collector 1a increases. In these manufacturing methods, the concentration of the Li non-occlusion material 3a in the material can be easily controlled by changing the supply amount of the raw material and the moving speed of the current collector.

なお、スパッタリング法、CVD法、蒸着の際の原料及び成膜条件は公知のものを用いることができる。   In addition, a well-known thing can be used for the raw material and film-forming conditions at the time of sputtering method, CVD method, and vapor deposition.

次に、本発明の製造方法の他の一例として図3の構造の電池の製造方法を説明する。図3の電池の負極材料を構成する粒子は、Li吸蔵材料2bとLi非吸蔵材料3bをメカニカルミリングによって混合・粒子化するか、これらの材料を混合したものを焼成することによって得られる。これらの方法を用いることによって粒子内のLi非吸蔵材料3bの濃度を容易に制御することができる。この際、あらかじめLi吸蔵材料2bとLi非吸蔵材料3bの混合比を調整することで粒子内のLi吸蔵材料2bとLi非吸蔵材料3bの比を変えることができる。また、粒子の平均粒径は0.1〜5μmであることが好ましい。平均粒径がこれらの範囲内にあることによって、粒子間に適度な分布・大きさで空隙を設けることができ、この空隙部分で材料(A)の膨張収縮による体積変化を吸収できるため、集電体からの負極材料の剥離を効果的に防止することができる。   Next, a method for manufacturing the battery having the structure shown in FIG. 3 will be described as another example of the manufacturing method of the present invention. The particles constituting the negative electrode material of the battery of FIG. 3 can be obtained by mixing and granulating the Li occlusion material 2b and the Li non-occlusion material 3b by mechanical milling, or by firing a mixture of these materials. By using these methods, the concentration of the Li non-occlusion material 3b in the particles can be easily controlled. At this time, the ratio of the Li storage material 2b and the Li non-storage material 3b in the particles can be changed by adjusting the mixing ratio of the Li storage material 2b and the Li non-storage material 3b in advance. Moreover, it is preferable that the average particle diameter of particle | grains is 0.1-5 micrometers. When the average particle diameter is within these ranges, voids can be provided between the particles with an appropriate distribution and size, and volume changes due to expansion and contraction of the material (A) can be absorbed in the voids. Peeling of the negative electrode material from the electric body can be effectively prevented.

このようにして得られた負極粉体材料を導電性物質、導電付与剤、バインダーや溶剤と分散混練した溶液状とし、粉体内のLi非吸蔵材料3b濃度の大きなものから集電体1b上に順次、塗布していく。導電付与剤及びバインダーは公知のものを用いることができる。溶液中の導電付与剤の含量は1〜5質量%であることが好ましい。また、バインダーの含量は1〜10質量%であることが好ましい。塗布方法としてはドクターブレード法あるいはスプレー塗布等を用いる。これらの製造方法は簡易な装置で短時間に行うことができる。Li非吸蔵材料3bの比重がLi吸蔵材料2bと比較して大きい場合には、Li非吸蔵材料3bとLi吸蔵材料2bの比が異なる複数種の粒子を溶媒中に一括して混合・塗布した後に放置することにより、Li非吸蔵材料3bの比重がLi吸蔵材料2bより多い粒子が集電体1b側に先に沈降し、集電体に近いほどリチウムを吸蔵しない材料成分を含む負極を得ることができる。   The negative electrode powder material thus obtained is made into a solution form dispersed and kneaded with a conductive substance, a conductivity-imparting agent, a binder and a solvent, and a material having a high Li non-occlusion material 3b concentration in the powder is placed on the current collector 1b. Apply sequentially. A well-known thing can be used for a conductive provision agent and a binder. The content of the conductivity-imparting agent in the solution is preferably 1 to 5% by mass. Moreover, it is preferable that the content of a binder is 1-10 mass%. As a coating method, a doctor blade method or spray coating is used. These manufacturing methods can be performed in a short time with a simple apparatus. When the specific gravity of the Li non-occlusion material 3b is larger than that of the Li occlusion material 2b, a plurality of types of particles having different ratios between the Li non-occlusion material 3b and the Li occlusion material 2b were mixed and applied in a solvent. By leaving it later, particles whose specific gravity of the Li non-occlusion material 3b is larger than that of the Li occlusion material 2b are first settled on the current collector 1b side, and a negative electrode containing a material component that does not occlude lithium is obtained as it is closer to the current collector. be able to.

[二次電池]
上記負極を用い、これを正極、セパレータ及び電解液と組み合わせることによって二次電池とすることができる。
[Secondary battery]
A secondary battery can be obtained by using the negative electrode and combining it with a positive electrode, a separator and an electrolytic solution.

正極としては例えば、LiCoO2、LixCo1-yy2、Li2NiO2、LixMnO2、LixMnF2、LixMnS2、LixMn1-yy2、LixMn1-yy2、LixMn1-yy2-zz、LixMn1-yMyO2-zz、LixMn24、LixMn24、LixMn24、LixMn2-yy4、LixMn2-yy4-zz及びLixMn2-yMyO4-zz(0<x≦1.5、0<y<1.0、Z≦1.0、Mは、少なくとも1つ以上の遷移金属を表す)があげられ、その厚みは10〜500μmである。正極活物質も負極同様カーボンブラック等の導電性物質、ポリフッ化ビニリデン(PVDF)等の結着剤をN−メチル−2、フッ素樹脂等の多−ピロリドン(NMP)等の溶剤と分散混練したものを正極集電体に塗布し用いる。 As the positive electrode for example, LiCoO 2, Li x Co 1 -y M y O 2, Li 2 NiO 2, Li x MnO 2, Li x MnF 2, Li x MnS 2, Li x Mn 1-y M y O 2, Li x Mn 1-y M y O 2, Li x Mn 1-y M y O 2-z F z, Li x Mn 1-y MyO 2-z S z, Li x Mn 2 O 4, Li x Mn 2 F 4, Li x Mn 2 S 4, Li x Mn 2-y M y O 4, Li x Mn 2-y M y O 4-z F z , and Li x Mn 2-y MyO 4 -z S z (0 <X ≦ 1.5, 0 <y <1.0, Z ≦ 1.0, and M represents at least one transition metal), and the thickness thereof is 10 to 500 μm. Similarly to the negative electrode, the positive electrode active material is a conductive material such as carbon black, and a binder such as polyvinylidene fluoride (PVDF) is dispersed and kneaded with a solvent such as N-methyl-2, multi-pyrrolidone (NMP) such as fluororesin. Is applied to the positive electrode current collector.

負極と正極の間には絶縁をしかつイオン導電性のあるセパレータがありポリプロピレン、ポリエチレン等のポリオレフィン孔性フィルムからなる。
また、電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。
There is an insulating and ionic conductive separator between the negative electrode and the positive electrode, and it is made of a polyolefin porous film such as polypropylene or polyethylene.
Moreover, as electrolyte solution, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl Linear carbonates such as carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2- Chain ethers such as ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethyl Formamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2- An aprotic organic solvent such as oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, etc. is used, or a mixture of two or more of these organic solvents. The lithium salt that dissolves in the solvent is dissolved.

リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質を用いてもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ). 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like. Further, a polymer electrolyte may be used instead of the electrolytic solution.

図4に電池の実施例としてコインタイプのセルの形態を示す。本発明は電池形状には制限がなく、セパレータを挟んで対向した正極、負極を巻回型、積層型などの形態を取ることが可能であり、セルにも、コイン型、ラミネートパック、角型セル、円筒型セルを用いることができる。   FIG. 4 shows a form of a coin type cell as an example of the battery. The present invention is not limited in battery shape, and can take the form of a positive electrode and a negative electrode facing each other with a separator in between, a wound type, a laminated type, etc. A cell or a cylindrical cell can be used.

以下では、電池の組み立て方法の一例を説明する。正極・セパレータ・負極を積層、あるいは積層したものを巻回した後に、金属缶や合成樹脂と金属箔との積層体からなる可とう性フィルムからなる容器に収容後電解液を注液し、封口することによって電池を製造することができる。   Below, an example of the assembly method of a battery is demonstrated. After laminating the positive electrode, separator, and negative electrode, or winding the laminated one, it is placed in a container made of a flexible film made of a metal can or a laminate of synthetic resin and metal foil, and then the electrolyte is injected and sealed By doing so, a battery can be manufactured.

[実施例1]、[参考例1]
(第1の実施形態)
次に、実施例1及び参考例1を用いて第1の実施の形態を説明する。実施例1及び参考例1では成膜法(図2の製造方法)によって図1の構造の二次電池を製造する。この際の成膜法は蒸着、スパッタリング、CVD法で行った。蒸着には材料の融点や物性によって電子ビーム、イオンビーム、抵抗加熱法などを使い分けて成膜を行った。スパッタリングは材料からなるターゲットに不活性ガスをプラズマ化して加速電圧でスパッタすることで行った。CVD法の場合、Li非吸蔵材料供給源4aとLi吸蔵材料供給源5aのチャンバーを隔離し、反応ガスが混じり合わないようした。
[Example 1], [Reference Example 1]
(First embodiment)
Next, the first embodiment will be described using Example 1 and Reference Example 1. In Example 1 and Reference Example 1, a secondary battery having the structure of FIG. 1 is manufactured by a film forming method (manufacturing method of FIG. 2). The film formation method at this time was performed by vapor deposition, sputtering, or CVD. For the vapor deposition, the film was formed by properly using an electron beam, an ion beam, a resistance heating method, etc. depending on the melting point and physical properties of the material. Sputtering was performed by forming an inert gas into plasma on a target made of a material and sputtering with an acceleration voltage. In the case of the CVD method, the chambers of the Li non-occlusion material supply source 4a and the Li occlusion material supply source 5a are isolated so that the reaction gases are not mixed.

これらの成膜法においてLi非吸蔵材料供給源4a及びLi吸蔵材料供給源5aの先端と集電体とを離れさせて配置した。次に、集電体をLi非吸蔵材料供給源4a及びLi吸蔵材料供給源5aの供給方向に垂直な方向(図2の6に相当)に一端(図2の7に相当)から他端(図2の8に相当)まで移動させた。上記製法によって製造した負極中の材料成分(B)の濃度はセパレータ近傍で0質量%であり、集電体側に向かうにつれて増加し、負極集電体近傍では100質量%であった。   In these film forming methods, the tip of the Li non-occlusion material supply source 4a and the Li occlusion material supply source 5a and the current collector were arranged apart from each other. Next, the current collector is moved from one end (corresponding to 7 in FIG. 2) to the other end (corresponding to 7 in FIG. 2) in the direction perpendicular to the supply direction of the Li non-occlusion material supply source 4a and the Li storage material supply source 5a. (Corresponding to 8 in FIG. 2). The density | concentration of the material component (B) in the negative electrode manufactured by the said manufacturing method was 0 mass% near the separator, increased as it went to the collector side, and was 100 mass% near the negative electrode collector.

このようにして得られた負極のサイクル特性を確認するため正極と組み合わせて電池とし評価を行った。対極となる正極にはLiCoO2を主成分とした電極を使用し、正極と負極の容量の比率は正極1に対し負極が1.0から1.1に収まるよう塗布量を制御した。この負極と正極間にセパレータを巻き込みながら捲回し円筒型のセルを作製し評価をおこなった。サイクル特性の結果を表1に示す。サイクル特性は初回放電容量が80%まで低下する充放電のサイクル数で評価を行った。この結果からLi非吸蔵材料3aとして延性や展性の高い金、銅を使用した場合、充放電のサイクルによる容量劣化が激しいことが判明した。これは充放電による体積膨張・収縮よってLi吸蔵材料2aが集電体1aから剥離、あるいは微粉化しているためである。 In order to confirm the cycle characteristics of the negative electrode thus obtained, a battery was evaluated in combination with the positive electrode. An electrode composed mainly of LiCoO 2 was used as a positive electrode as a counter electrode, and the coating amount was controlled so that the capacity ratio between the positive electrode and the negative electrode was 1.0 to 1.1 with respect to the positive electrode 1. A cylindrical cell was fabricated by winding a separator between the negative electrode and the positive electrode and evaluated. The results of the cycle characteristics are shown in Table 1. The cycle characteristics were evaluated by the number of charge / discharge cycles at which the initial discharge capacity was reduced to 80%. From this result, it was found that when gold or copper having high ductility or malleability was used as the Li non-occlusion material 3a, the capacity deterioration due to the charge / discharge cycle was severe. This is because the Li storage material 2a is peeled off or pulverized from the current collector 1a due to volume expansion / contraction due to charge / discharge.

Figure 2005197080
Figure 2005197080

[実施例2]、[参考例2]
次に、実施例2及び参考例2を用いて第2の実施の形態を説明する。本実施形態では負極材料はLi吸蔵材料2b及びLi非吸蔵材料3bを有する粒子によって構成されている。まず、メカニカルミリング又は焼成によって粒子を形成した。メカニカルミリングはアルゴン雰囲気下で行い、Li吸蔵材料2bとLi非吸蔵材料3bの質量比を変えて作製した粒子を所望の種類だけ用意した。Li吸蔵材料2bとLi非吸蔵材料3bの焼成は不活性ガス化のもと合金になるまで焼成し、場合によっては焼成後粉砕し、得られた粒子を負極として用いた。
[Example 2], [Reference Example 2]
Next, a second embodiment will be described using Example 2 and Reference Example 2. In the present embodiment, the negative electrode material is composed of particles having a Li storage material 2b and a Li non-storage material 3b. First, particles were formed by mechanical milling or firing. Mechanical milling was performed in an argon atmosphere, and a desired type of particles prepared by changing the mass ratio of the Li storage material 2b and the Li non-storage material 3b were prepared. The Li occlusion material 2b and the Li non-occlusion material 3b were fired until they became an alloy under inert gasification, and in some cases, pulverized after firing, and the obtained particles were used as the negative electrode.

このようにして得られた負極粉体材料をカーボンブラック、ポリフッ化ビニリデン(PVDF)、N−メチル−2−ピロリドン(NMP)と分散混練し、粉体内のLi非吸蔵材料(材料成分(B))3bの濃度の大きなものから集電体1b上に順次、塗布した。上記製法によって製造した負極中の材料成分(B)の濃度はセパレータ近傍で0質量%であり、集電体側に向かうにつれて増加し、負極集電体近傍では100質量%であった。   The negative electrode powder material thus obtained was dispersed and kneaded with carbon black, polyvinylidene fluoride (PVDF), N-methyl-2-pyrrolidone (NMP), and Li non-occlusion material (material component (B) in the powder) ) The material having a high concentration of 3b was sequentially applied onto the current collector 1b. The density | concentration of the material component (B) in the negative electrode manufactured by the said manufacturing method was 0 mass% near the separator, increased as it went to the collector side, and was 100 mass% near the negative electrode collector.

なお、各サンプルの特徴について以下に示す。   The characteristics of each sample are shown below.

このようにして得られた負極のサイクル特性を確認するため正極と組み合わせ電池とし評価を行った。この結果からLi非吸蔵材料3bとLi吸蔵材料2bをメカニカルミリングや焼成等で合金化しなかった負極はサイクルによる容量劣化が激しいことが判明した。これは充放電による体積膨張・収縮よってLi吸蔵材料2bが集電体1bから剥離、あるいは微粉化しているためである。   In order to confirm the cycle characteristics of the negative electrode thus obtained, a positive electrode and a combination battery were evaluated. From this result, it was found that the capacity deterioration due to the cycle was severe in the negative electrode in which the Li non-occlusion material 3b and the Li occlusion material 2b were not alloyed by mechanical milling or firing. This is because the Li storage material 2b is peeled off or pulverized from the current collector 1b by volume expansion / contraction due to charge / discharge.

Figure 2005197080
Figure 2005197080

本発明の第一の実施形態の一例を示す負極材料の模式図である。It is a schematic diagram of the negative electrode material which shows an example of 1st embodiment of this invention. 本発明の第一の実施形態の一例を示す負極材料の製造方法を表す図である。It is a figure showing the manufacturing method of the negative electrode material which shows an example of 1st embodiment of this invention. 本発明の第二の実施形態の一例を示す負極材料の模式図である。It is a schematic diagram of the negative electrode material which shows an example of 2nd embodiment of this invention. 本発明の第二の実施形態の一例を示す負極材料の製造方法を表す図である。It is a figure showing the manufacturing method of the negative electrode material which shows an example of 2nd embodiment of this invention.

符号の説明Explanation of symbols

1 正極材料質層
2 負極材料質層
3 正極集電体
4 負極集電体
5 セパレータ
6 正極外装缶
7 負極外装缶
8 絶縁パッキング
1a,1b 集電体
2a,2b Li吸蔵材料
3a,3b Li非吸蔵材料
4a Li非吸蔵材料ソース
5a Li吸蔵材料ソース

DESCRIPTION OF SYMBOLS 1 Positive electrode material layer 2 Negative electrode material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Positive electrode outer can 7 Negative electrode outer can 8 Insulation packing 1a, 1b Current collector 2a, 2b Li occlusion material 3a, 3b Li non Occlusion material 4a Li non-occlusion material source 5a Li occlusion material source

Claims (11)

集電体と、リチウムイオンを吸蔵および放出することのできる二次電池用負極材料とを有する二次電池用負極であって、
該二次電池用負極材料が炭素の理論重量リチウム吸蔵量より大きな材料(A)と、リチウムを吸蔵しない材料成分(B)とを有し、該二次電池用負極材料から集電体側に向かって該材料成分(B)濃度が大きくなることを特徴とする二次電池用負極。
A secondary battery negative electrode comprising a current collector and a secondary battery negative electrode material capable of occluding and releasing lithium ions,
The negative electrode material for a secondary battery has a material (A) larger than the theoretical weight lithium occlusion amount of carbon and a material component (B) that does not occlude lithium, and extends from the negative electrode material for secondary battery toward the current collector side. And the concentration of the material component (B) is increased.
前記炭素の理論重量リチウム吸蔵量より大きな材料(A)が、Si、Sn及びAlからなる群より選択された少なくとも1種の元素を有することを特徴とする請求項1記載の二次電池用負極。   2. The negative electrode for a secondary battery according to claim 1, wherein the material (A) larger than the theoretical weight lithium occlusion amount of carbon has at least one element selected from the group consisting of Si, Sn and Al. . 前記リチウムを吸蔵しない材料成分(B)が、Ti、Fe、Co、Ni、Mo及びWからなる群より選択された少なくとも1種の元素を有すること特徴とする請求項1又は2に記載の二次電池用負極。   The material component (B) that does not occlude lithium has at least one element selected from the group consisting of Ti, Fe, Co, Ni, Mo, and W. 3. Negative electrode for secondary battery. 前記二次電池用負極材料が、前記炭素の理論重量リチウム吸蔵量より大きな材料(A)と前記リチウムを吸蔵しない材料成分(B)とを有する粒子によって構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の二次電池用負極。   The said negative electrode material for secondary batteries is comprised by the particle | grains which have a material (A) larger than the theoretical weight lithium occlusion amount of the said carbon, and the material component (B) which does not occlude the said lithium. The negative electrode for a secondary battery according to any one of 1 to 3. 前記集電体が銅箔であり、該銅箔の表面粗さ(Ra)が1〜5μmであること特徴とする請求項1乃至4のいずれか1項に記載の二次電池用負極。   The negative electrode for a secondary battery according to any one of claims 1 to 4, wherein the current collector is a copper foil, and the surface roughness (Ra) of the copper foil is 1 to 5 µm. 集電体上への第1の供給源からの炭素の理論重量リチウム吸蔵量より大きな材料(A)の供給と、第2の供給源からのリチウムを吸蔵しない材料成分(B)の供給と、により二次電池用負極材料を含む膜を成膜することによる二次電池用負極の製造方法であって、
前記集電体上への該材料(A)の供給量を連続的に減らし、且つ該材料成分(B)の供給量を連続的に増やすことを特徴とする二次電池用負極の製造方法。
Supplying a material (A) larger than the theoretical weight lithium occlusion amount of carbon from the first source onto the current collector, and supplying a material component (B) that does not occlude lithium from the second source; A method for producing a negative electrode for a secondary battery by forming a film containing a negative electrode material for a secondary battery by:
A method for producing a negative electrode for a secondary battery, wherein the supply amount of the material (A) onto the current collector is continuously reduced, and the supply amount of the material component (B) is continuously increased.
前記二次電池用負極材料を含む膜の成膜法が、蒸着、スパッタリング及びCVD法からなる群より選択された少なくとも1種の方法であることを特徴とする請求項6記載の二次電池用負極の製造方法。   The method for forming a film containing the negative electrode material for a secondary battery is at least one method selected from the group consisting of vapor deposition, sputtering, and CVD methods. Manufacturing method of negative electrode. 炭素の理論重量リチウム吸蔵量より大きな材料(A)とリチウムを吸蔵しない材料成分(B)とを有する粒子を形成し、該粒子を集電体上に積層させることを特徴とする二次電池用負極の製造方法。   For a secondary battery, characterized by forming particles having a material (A) larger than the theoretical weight lithium storage capacity of carbon and a material component (B) that does not store lithium, and laminating the particles on a current collector Manufacturing method of negative electrode. 前記粒子の形成方法が、メカニカルリミング又は焼成法であることを特徴とする請求項8記載の二次電池用負極の製造方法。   The method for producing a negative electrode for a secondary battery according to claim 8, wherein the method for forming the particles is mechanical rimming or firing. 請求項6乃至9のいずれか1項に記載の製造方法によって製造されたことを特徴とする二次電池用負極。   A negative electrode for a secondary battery manufactured by the manufacturing method according to claim 6. 請求項1乃至5のいずれか1項又は請求項10に記載の二次電池用負極を有する二次電池。




The secondary battery which has the negative electrode for secondary batteries of any one of Claims 1 thru | or 5 or Claim 10.




JP2004002082A 2004-01-07 2004-01-07 Anode for secondary battery and secondary battery using it Pending JP2005197080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002082A JP2005197080A (en) 2004-01-07 2004-01-07 Anode for secondary battery and secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002082A JP2005197080A (en) 2004-01-07 2004-01-07 Anode for secondary battery and secondary battery using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010074920A Division JP5187335B2 (en) 2010-03-29 2010-03-29 Negative electrode for secondary battery and method for producing the same, secondary battery

Publications (1)

Publication Number Publication Date
JP2005197080A true JP2005197080A (en) 2005-07-21

Family

ID=34817414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002082A Pending JP2005197080A (en) 2004-01-07 2004-01-07 Anode for secondary battery and secondary battery using it

Country Status (1)

Country Link
JP (1) JP2005197080A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293852A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery and anode for the lithium secondary battery
JP2007005149A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Anode for lithium-ion secondary battery, its manufacturing method, and lithium-ion secondary battery using it
WO2007055198A1 (en) * 2005-11-08 2007-05-18 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
JP2007329010A (en) * 2006-06-07 2007-12-20 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
JP2008270154A (en) * 2007-01-30 2008-11-06 Sony Corp Negative electrode and method of manufacturing it, and battery and method of manufacturing it
JP2009289586A (en) * 2008-05-29 2009-12-10 Sony Corp Negative electrode and secondary battery, and manufacturing method of negative electrode and secondary battery
JP2011034836A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
WO2011132428A1 (en) * 2010-04-23 2011-10-27 パナソニック株式会社 Negative electrode for lithium-ion battery, production method therefor, and lithium-ion battery
JP2012028345A (en) * 2011-11-07 2012-02-09 Hitachi Chem Co Ltd Method of producing anode material for lithium-ion secondary battery
WO2012063765A1 (en) * 2010-11-08 2012-05-18 古河電気工業株式会社 Non-aqueous electrolyte secondary battery
WO2014171337A1 (en) * 2013-04-19 2014-10-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US8951672B2 (en) 2007-01-30 2015-02-10 Sony Corporation Anode, method of manufacturing it, battery, and method of manufacturing it
JP2015038886A (en) * 2009-09-30 2015-02-26 株式会社半導体エネルギー研究所 Negative electrode of power storage device
CN105027332A (en) * 2013-01-25 2015-11-04 苹果杰克199有限合伙公司 System, method and apparatus for forming a thin film lithium ion battery
WO2019230298A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000100429A (en) * 1998-09-18 2000-04-07 Canon Inc Electrode structure and secondary battery
WO2001031724A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP2001273892A (en) * 2000-03-28 2001-10-05 Sanyo Electric Co Ltd Secondary cell
JP2002270156A (en) * 2001-03-08 2002-09-20 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003017039A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Device and method of forming electrode for lithium secondary battery
JP2003077542A (en) * 2001-09-05 2003-03-14 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacturing method
JP2005183365A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000100429A (en) * 1998-09-18 2000-04-07 Canon Inc Electrode structure and secondary battery
WO2001031724A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP2001273892A (en) * 2000-03-28 2001-10-05 Sanyo Electric Co Ltd Secondary cell
JP2002270156A (en) * 2001-03-08 2002-09-20 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003017039A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Device and method of forming electrode for lithium secondary battery
JP2003077542A (en) * 2001-09-05 2003-03-14 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacturing method
JP2005183365A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293852A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery and anode for the lithium secondary battery
JP2007005149A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Anode for lithium-ion secondary battery, its manufacturing method, and lithium-ion secondary battery using it
WO2007055198A1 (en) * 2005-11-08 2007-05-18 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
US7943254B2 (en) 2006-03-20 2011-05-17 Sony Corportion Anode and battery
US8173299B2 (en) 2006-03-20 2012-05-08 Sony Corporation Anode and battery
JP2007329010A (en) * 2006-06-07 2007-12-20 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
JP2008270154A (en) * 2007-01-30 2008-11-06 Sony Corp Negative electrode and method of manufacturing it, and battery and method of manufacturing it
JP4525742B2 (en) * 2007-01-30 2010-08-18 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US8951672B2 (en) 2007-01-30 2015-02-10 Sony Corporation Anode, method of manufacturing it, battery, and method of manufacturing it
JP2009289586A (en) * 2008-05-29 2009-12-10 Sony Corp Negative electrode and secondary battery, and manufacturing method of negative electrode and secondary battery
JP2011034836A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2015038886A (en) * 2009-09-30 2015-02-26 株式会社半導体エネルギー研究所 Negative electrode of power storage device
JP5095863B2 (en) * 2010-04-23 2012-12-12 パナソニック株式会社 Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery
US9391315B2 (en) 2010-04-23 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion battery and method for producing the same, and lithium ion battery
WO2011132428A1 (en) * 2010-04-23 2011-10-27 パナソニック株式会社 Negative electrode for lithium-ion battery, production method therefor, and lithium-ion battery
WO2012063765A1 (en) * 2010-11-08 2012-05-18 古河電気工業株式会社 Non-aqueous electrolyte secondary battery
JP2012104292A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nonaqueous electrolyte secondary battery
JP2012028345A (en) * 2011-11-07 2012-02-09 Hitachi Chem Co Ltd Method of producing anode material for lithium-ion secondary battery
US9478797B2 (en) 2013-01-25 2016-10-25 Applejack 199 L.P. System, method and apparatus for forming a thin film lithium ion battery
JP2016507875A (en) * 2013-01-25 2016-03-10 アップルジャック 199 エル.ピー. System, method and apparatus for forming a thin film lithium ion battery
CN105027332A (en) * 2013-01-25 2015-11-04 苹果杰克199有限合伙公司 System, method and apparatus for forming a thin film lithium ion battery
US10535868B2 (en) 2013-01-25 2020-01-14 Applejack 199 L.P. System, method and apparatus for forming a thin film lithium ion battery
WO2014171337A1 (en) * 2013-04-19 2014-10-23 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
WO2019230298A1 (en) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP7386432B2 (en) 2018-05-30 2023-11-27 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6191454B2 (en) Secondary battery and electrolyte
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
KR100450548B1 (en) Anode for secondary battery and secondary battery therewith
JP4650603B2 (en) Anode material for secondary battery, method for producing the same, and secondary battery using the same
JP6070540B2 (en) Secondary battery and electrolyte
JP4466369B2 (en) Secondary battery negative electrode and secondary battery using the same
JP5068459B2 (en) Lithium secondary battery
JP5278994B2 (en) Lithium secondary battery
JP2003217574A (en) Negative electrode for secondary battery and secondary battery using the same
JP4752508B2 (en) Secondary battery negative electrode material, secondary battery negative electrode and secondary battery using the same
JP2011096638A (en) Secondary battery
JP5076288B2 (en) Secondary battery negative electrode and secondary battery using the same
JPWO2013114946A1 (en) Lithium secondary battery
JP2005149750A (en) Nonaqueous electrolyte secondary battery
JP4517560B2 (en) Lithium ion secondary battery and method of using lithium secondary battery
JP6048147B2 (en) Non-aqueous electrolyte secondary battery
JP2005197080A (en) Anode for secondary battery and secondary battery using it
JP2010044958A (en) Secondary battery and method of manufacturing the same and anode, positive electrode, and electroyte
JP2007026926A (en) Negative electrode for secondary battery and secondary battery using the same
JP6607188B2 (en) Positive electrode and secondary battery using the same
JP2011096672A (en) Nonaqueous electrolyte secondary battery
JPWO2014171518A1 (en) Lithium ion secondary battery
JPWO2016098428A1 (en) Lithium ion secondary battery
JP4951879B2 (en) Lithium secondary battery and positive electrode active material for lithium secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100421