JP2010040466A - Laminated nonaqueous electrolyte secondary battery - Google Patents

Laminated nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010040466A
JP2010040466A JP2008205156A JP2008205156A JP2010040466A JP 2010040466 A JP2010040466 A JP 2010040466A JP 2008205156 A JP2008205156 A JP 2008205156A JP 2008205156 A JP2008205156 A JP 2008205156A JP 2010040466 A JP2010040466 A JP 2010040466A
Authority
JP
Japan
Prior art keywords
separator
laminated
secondary battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205156A
Other languages
Japanese (ja)
Other versions
JP5413945B2 (en
Inventor
Takashi Nakajima
隆志 中島
Masaaki Kibe
昌明 木部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008205156A priority Critical patent/JP5413945B2/en
Publication of JP2010040466A publication Critical patent/JP2010040466A/en
Application granted granted Critical
Publication of JP5413945B2 publication Critical patent/JP5413945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated nonaqueous electrolyte secondary battery which is hardly deformed with cycle characteristics improved. <P>SOLUTION: This battery has pass structure as a diffusion route of an electrolyte in a porous sheet 5 disposed outside power generating elements and the projecting parts 1 of a separator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池に関し、特に積層型ラミネート非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a laminated laminate non-aqueous electrolyte secondary battery.

リチウムイオン二次電池などの非水電解質二次電池は、小型機器用の電源として広く採用され、今日のモバイル機器の発展に大きく寄与している。また、近年では小型の携帯用電子機器用途以外にも、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車や電力貯蔵分野といった大容量で高い寿命特性と信頼性が要求される用途への需要が高まっている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as power sources for small devices, and greatly contribute to the development of today's mobile devices. In addition to small-sized portable electronic devices in recent years, due to consideration for environmental issues and increased awareness of energy savings, applications that require high capacity and high lifespan characteristics and reliability such as electric vehicles and power storage are required. Demand is growing.

電池の寿命特性としては、特に繰り返し充放電に対する放電容量の劣化が少ないことが求められる。このようなサイクル特性は、従来の小型電子機器用途においては、例えば500サイクル後に初期容量の60〜70%程度の容量を保持していれば良いと考えられていた。しかしながら、上記した電気自動車や電力貯蔵といった用途のリチウムイオン二次電池では、数千サイクル以上での高い寿命特性が必要と考えられている。   As the life characteristics of the battery, it is particularly required that the deterioration of the discharge capacity due to repeated charge / discharge is small. Such a cycle characteristic is considered to be sufficient if a capacity of about 60 to 70% of the initial capacity is maintained after 500 cycles, for example, in a conventional small electronic device application. However, it is considered that the above-described lithium ion secondary battery for applications such as electric vehicles and power storage needs high life characteristics at several thousand cycles or more.

一方、リチウムイオン二次電池では、充放電を繰り返すことによって電極内部で非水電解液が分解されることによって電解液不足が生じ、その結果として電池抵抗の増大や容量劣化などの特性劣化を生じることが指摘されている。この現象は液枯れと呼ばれており、充放電にともなう電極活物質層の体積膨張や、負極あるいは正極において電解液が還元分解や酸化分解を受ける結果、電解液が不足してセパレータ及び電極活物質層内部に電解液が十分に満たされない領域が生じる。そのような領域ではリチウムイオンの拡散が阻害されるため、抵抗が増大し、活物質へのリチウムイオンの挿入・脱離がスムーズに行えず容量劣化を引き起こすものと考えられる。特に、長寿命が要求されるリチウムイオン二次電池に対しては、このような液枯れによる特性劣化を抑えることが重要である。   On the other hand, in a lithium ion secondary battery, the non-aqueous electrolyte is decomposed inside the electrode due to repeated charge and discharge, resulting in insufficient electrolyte, resulting in characteristics such as increased battery resistance and capacity degradation. It has been pointed out. This phenomenon is called liquid withering. As a result of volume expansion of the electrode active material layer due to charge and discharge, and electrolyte solution undergoing reductive decomposition or oxidative decomposition at the negative electrode or the positive electrode, the electrolyte solution becomes insufficient and the separator and electrode A region where the electrolyte solution is not sufficiently filled is formed inside the material layer. In such a region, the diffusion of lithium ions is hindered, so that the resistance increases, and lithium ions cannot be smoothly inserted into and extracted from the active material, causing capacity deterioration. In particular, for lithium ion secondary batteries that require a long life, it is important to suppress such deterioration of characteristics due to liquid drainage.

液枯れの影響を抑制する方法としては、例えば電解液不足による特性劣化が生じないように予め十分な量の電解液をセル内に収容しておく方法が考えられる。   As a method for suppressing the influence of the liquid withering, for example, a method in which a sufficient amount of the electrolytic solution is accommodated in the cell in advance so as not to cause deterioration of characteristics due to shortage of the electrolytic solution is conceivable.

電池内の電解液は正極、負極、セパレータから成る発電要素体の空隙部分及び外装体と発電要素の間のデッドスペースに存在している。   The electrolyte in the battery is present in the void portion of the power generation element body composed of the positive electrode, the negative electrode, and the separator, and in the dead space between the exterior body and the power generation element.

円筒型または角型の電池においてはデッドスペースに電解液が多くあっても、外装体として硬く変形しにくい金属缶を用いているために電池として変形しづらいものになる。   In a cylindrical or prismatic battery, even if there is a large amount of electrolyte in the dead space, the battery can hardly be deformed because a metal can that is hard and difficult to deform is used as the exterior body.

一方で近年、正極と負極がセパレータを介して複数枚積層させ、それぞれの負極集電体同士および正極集電体同士を接続した積層型構造の場合、一般に外装体としては金属缶よりも質量が軽いアルミニウム等の金属箔層と樹脂層とが接合したラミネートフィルムが用いられている。ラミネートフィルムは金属缶に比べ強度が低いために多量の電解液を注液した場合にはデッドスペースにある電解液により電池として変形しやすいものになる。   On the other hand, in recent years, in the case of a laminated structure in which a plurality of positive electrodes and negative electrodes are laminated via a separator and the respective negative electrode current collectors and positive electrode current collectors are connected to each other, the outer body generally has a mass higher than that of a metal can. A laminated film in which a metal foil layer such as light aluminum and a resin layer are joined is used. Since the laminate film has lower strength than a metal can, when a large amount of electrolyte is injected, the laminate film is easily deformed as a battery by the electrolyte in the dead space.

以上よりラミネートフィルムを用いた電池においては液枯れを防止するために多量の電解液を注液しても変形し難くなる適切な手段を講じる必要があり、正極、負極、セパレータから成る発電要素体以外に電解液を保持するものを含む構造にするなどが考えられる。   As described above, in a battery using a laminate film, it is necessary to take appropriate measures to prevent deformation even when a large amount of electrolyte is injected in order to prevent liquid drainage, and a power generation element composed of a positive electrode, a negative electrode, and a separator. In addition to the above, it is possible to use a structure including an electrolyte solution holding member.

特許文献1においては電解液を膨潤し吸収するテープを発電要素の最外周に固定することで漏液耐性を向上させ、サイクル特性を向上させることが記載されている。   Patent Document 1 describes that a tape that swells and absorbs an electrolytic solution is fixed to the outermost periphery of a power generation element to improve leakage resistance and improve cycle characteristics.

特開2003−151634号公報JP 2003-151634 A

電解液を吸収する方法として上述のような手段を用いた場合、テープを発電要素に固定させるプロセスはテープの貼りずれ等の製造性に難があり、最外周部のテープと発電要素内部への電解液の拡散経路としてのパス構造の信頼性が低く、サイクル試験で電解液が消費された発電要素内部に、保液しているテープ部分から電解液を供給するのが効率的でない恐れがある。   When the above-described means is used as a method for absorbing the electrolytic solution, the process of fixing the tape to the power generation element has difficulty in manufacturability such as sticking of the tape, and the tape on the outermost periphery and the inside of the power generation element The reliability of the path structure as the electrolyte diffusion path is low, and it may not be efficient to supply the electrolyte from the tape part that holds the liquid inside the power generation element where the electrolyte was consumed in the cycle test. .

この問題を解決するには、電解液の保液部分とセパレータとの接続を確実に行い、電解液の拡散経路としてのパス構造の信頼性を高めつつ、積層型ラミネート非水電解質二次電池を変形し難くする必要がある。   In order to solve this problem, the laminated liquid non-aqueous electrolyte secondary battery can be manufactured while reliably connecting the liquid retaining part of the electrolytic solution and the separator, and improving the reliability of the path structure as a diffusion path of the electrolytic solution. It is necessary to make it difficult to deform.

すなわち、本発明の技術的課題は、サイクル特性が向上し、変形し難い積層型ラミネート非水電解質二次電池を提供することにある。   That is, the technical problem of the present invention is to provide a laminated laminated non-aqueous electrolyte secondary battery that has improved cycle characteristics and is difficult to deform.

本発明の積層型ラミネート非水電解質二次電池は、正極および負極がセパレータを介して積層され、最外層に多孔性シートを有する積層体をラミネートフィルムで外装した積層型ラミネート非水電解質二次電池において、セパレータに凸部を有し、前記セパレータの凸部が前記多孔性シートと接触していることを特徴とする。   The laminated laminated nonaqueous electrolyte secondary battery of the present invention is a laminated laminated nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are laminated via a separator, and a laminate having a porous sheet as an outermost layer is packaged with a laminated film. The separator has a convex portion, and the convex portion of the separator is in contact with the porous sheet.

本発明の積層型ラミネート非水電解質二次電池は、前記セパレータの凸部同士が、前記積層体の側面で重なり合わないことを特徴とする。   The laminated laminate nonaqueous electrolyte secondary battery of the present invention is characterized in that the convex portions of the separator do not overlap on the side surface of the laminated body.

本発明によれば、セパレータの凸部と多孔性シートとでパス構造を持たせることによりサイクル特性が向上し、変形し難い積層型ラミネート非水電解質二次電池が得られる。   According to the present invention, by providing a path structure with the convex portions of the separator and the porous sheet, cycle characteristics are improved, and a laminated laminated nonaqueous electrolyte secondary battery that is difficult to deform is obtained.

本発明の実施の形態による積層型ラミネート非水電解質二次電池について以下に説明する。   A laminated laminate nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described below.

(本発明における電池構成)
図3は、本発明の実施の形態の一例を示すセパレータの図である。セパレータの凸部1は、セパレータのうち負極とほぼ同じ大きさの四角形であるセパレータの電極絶縁部2以外の部分である。
(Battery configuration in the present invention)
FIG. 3 is a diagram of a separator showing an example of an embodiment of the present invention. The separator convex part 1 is a part other than the electrode insulating part 2 of the separator which is a quadrangle of the same size as the negative electrode in the separator.

図1は、本発明の実施例1の積層型ラミネート非水電解質二次電池の平面透視図である。正極集電体6およびリチウムイオンを吸蔵、放出し得る正極活物質を含有する正極活物質層と、負極集電体4およびリチウムイオンを吸蔵、放出し得る負極活物質を含有する負極活物質層が、セパレータの凸部1とセパレータの電極絶縁部を有するセパレータを介して対向して積層されて成る発電要素体と、その外部に多孔性シート5が積層されている。   FIG. 1 is a plan perspective view of a laminated laminated nonaqueous electrolyte secondary battery according to Example 1 of the present invention. A positive electrode active material layer containing a positive electrode current collector 6 and a positive electrode active material capable of occluding and releasing lithium ions, and a negative electrode current collector 4 and a negative electrode active material layer containing a negative electrode active material capable of occluding and releasing lithium ions However, the power generation element body which is laminated so as to face each other through the separator having the separator convex portion 1 and the electrode insulating portion of the separator, and the porous sheet 5 are laminated outside thereof.

アルミタブ7を正極集電体6に、ニッケルタブ9を負極集電体4に溶接し、タブと集電体および集電体同士が電気的に接続されるように一体化している。それぞれの折り返されたセパレータの凸部1は、テープ8で多孔性シート5と固定されている。発電要素体と電解液を2つに折ったアルミラミネートフィルムに収納し、外周3辺を熱溶着して熱溶着部10が形成され、積層型ラミネート電池が作製される。   The aluminum tab 7 is welded to the positive electrode current collector 6 and the nickel tab 9 is welded to the negative electrode current collector 4, and the tab, the current collector, and the current collector are integrated so as to be electrically connected. The convex portions 1 of the folded separators are fixed to the porous sheet 5 with a tape 8. The power generation element body and the electrolytic solution are housed in an aluminum laminate film folded in two, and the outer peripheral three sides are heat welded to form the heat welded portion 10, thereby producing a laminated laminate battery.

多孔性シートと折り返されたセパレータの凸部がテープによって固定されることによりパス構造を有することができる。セパレータの凸部は、折り返すことによって多孔性シートに固定されるだけの長さがあればよい。各層のセパレータの凸部は、互いに重ならないようにずれているのが、電池が厚くなるのを防ぐ上で好ましい。   The porous sheet and the folded convex portion of the separator can be fixed with a tape to have a pass structure. The convex part of a separator should just be long enough to be fixed to a porous sheet by folding. In order to prevent the battery from becoming thick, it is preferable that the convex portions of the separators in each layer are shifted so as not to overlap each other.

図2は、図1のA−A断面のうち、アルミラミネートフィルム以外を示す図である。各層のセパレータの凸部1が最外部にある多孔性シート5とテープ8により固定されており、各層のセパレータの電極絶縁部2がそれぞれ多孔性シート5とのパス構造を有している。   FIG. 2 is a view showing other than the aluminum laminate film in the AA cross section of FIG. 1. The convex portions 1 of the separators of the respective layers are fixed by the porous sheet 5 and the tape 8 which are the outermost parts, and the electrode insulating portions 2 of the separators of the respective layers each have a path structure with the porous sheet 5.

発電要素の上下にそれぞれ多孔性シートを配置する場合には、セパレータの凸部は近い側の多孔性シートとパス構造を持つのが特性上好ましい。   When the porous sheets are arranged above and below the power generation element, it is preferable in terms of characteristics that the convex portion of the separator has a path structure with the porous sheet on the near side.

パス構造の作製手段としては、テープによる固定、一部熱圧着、一部圧着、一部超音波融着等が挙げられる。   Examples of means for producing the pass structure include fixing with a tape, partial thermocompression bonding, partial compression bonding, and partial ultrasonic fusion.

発電要素を含む積層体は、リチウム塩を溶解した非水電解液とともにアルミラミネートフィルムに収容されて、積層型ラミネート電池が構成されている。   A laminated body including a power generation element is accommodated in an aluminum laminate film together with a non-aqueous electrolyte solution in which a lithium salt is dissolved to constitute a laminated laminate battery.

正極および負極がセパレータを介して積層されてなる発電要素体において、セパレータはセパレータの凸部を有しており、発電要素外にある多孔性シートとセパレータの凸部がパス構造を有することにより、多孔性シートに保液されている電解液が、二次電池の使用に伴い消費された発電要素内部に拡散していくことで、発電要素内部に電解液を供給するという特徴を有する。   In the power generation element body in which the positive electrode and the negative electrode are laminated via the separator, the separator has a convex portion of the separator, and the porous sheet outside the power generation element and the convex portion of the separator have a path structure, The electrolyte solution retained in the porous sheet is characterized in that the electrolyte solution is supplied into the power generation element by diffusing into the power generation element consumed with the use of the secondary battery.

(集電体)
正極集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができ、負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
(Current collector)
As the positive electrode current collector, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used. As the negative electrode current collector, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.

(セパレータ)
セパレータとしては、ポリプロピレン、ポリエチレンなどのポリオレフィン、フッ素樹脂などの多孔性フィルムが用いられる。
(Separator)
As the separator, a polyolefin film such as polypropylene or polyethylene, or a porous film such as a fluororesin is used.

(多孔性シート)
多孔性シートに用いられる材質は特に限定しないが、ポリオレフィン、ポリアミド樹脂、ポリ酢酸ビニル、ポリビニルアルコール、スルホン酸基含有樹脂、フッ素含有樹脂、セルロースなどを用いることができる。
(Porous sheet)
The material used for the porous sheet is not particularly limited, but polyolefin, polyamide resin, polyvinyl acetate, polyvinyl alcohol, sulfonic acid group-containing resin, fluorine-containing resin, cellulose and the like can be used.

(正極)
正極活物質としては、通常リチウム含有複合酸化物が用いられ、具体的にはLiMO2(MはMn、Fe、Co、Niより選ばれる1種のみ、または2種以上の混合物であり、一部をMg、Al、Tiなどその他カチオンで置換してもよい)、LiMn24など汎用の材料を用いることができる。また、LiFePO4で表されるオリビン型材料を用いることもできる。これらから選択された正極活物質と、カーボンブラックなどの導電助剤とを、ポリフッ化ビニリデン(以下PVdFと表記)などの結着剤とともにN−メチル−2−ピロリドン(以下NMPと表記)などの溶剤中に分散混練し、このスラリーを用いてアルミニウム箔などの正極集電体に塗布装置によって塗布された後、溶媒を乾燥させるなどの方法により正極活物質層を得ることができる。例えば、この塗布を正極集電体の両面に対して行うことによって、両面に正極活物質層が形成された正極を得ることができる。得られた正極は、プレスすることにより圧縮して適当な密度に調整する。
(Positive electrode)
As the positive electrode active material, a lithium-containing composite oxide is usually used. Specifically, LiMO 2 (M is one kind selected from Mn, Fe, Co, Ni, or a mixture of two or more kinds, May be substituted with other cations such as Mg, Al, Ti), and general-purpose materials such as LiMn 2 O 4 can be used. An olivine type material represented by LiFePO 4 can also be used. A positive electrode active material selected from these and a conductive auxiliary agent such as carbon black, together with a binder such as polyvinylidene fluoride (hereinafter referred to as PVdF), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and the like. A positive electrode active material layer can be obtained by a method of dispersing and kneading in a solvent, applying the slurry to a positive electrode current collector such as an aluminum foil with a coating apparatus, and then drying the solvent. For example, by performing this coating on both surfaces of the positive electrode current collector, a positive electrode having a positive electrode active material layer formed on both surfaces can be obtained. The obtained positive electrode is compressed and adjusted to an appropriate density by pressing.

(負極)
負極活物質としては、黒鉛、非晶質炭素などの炭素材料、あるいはLi金属、Si、Sn、Al、などのLiと合金を形成する材料、Si酸化物、SiとSi以外の多金属元素を含むSi複合酸化物、Sn酸化物、SnとSn以外の多金属元素を含むSn複合酸化物、Li4Ti512などを単独または混合して用いることができる。これらから選択された負極活物質と、必要に応じて導電助剤とを、PVdFなどの結着剤とともにNMPなどの溶剤中に分散混練したスラリー、および銅箔などの負極集電体を用いて、正極と同様な方法にて負極集電体両面に負極活物質層を形成した負極を得ることができる。
(Negative electrode)
Examples of the negative electrode active material include carbon materials such as graphite and amorphous carbon, materials that form an alloy with Li such as Li metal, Si, Sn, and Al, Si oxide, and multimetallic elements other than Si and Si. Si composite oxide containing, Sn oxide, Sn composite oxide containing multimetallic elements other than Sn and Sn, Li 4 Ti 5 O 12 , or the like can be used alone or in combination. Using a slurry obtained by dispersing and kneading a negative electrode active material selected from these materials and, if necessary, a conductive additive in a solvent such as NMP together with a binder such as PVdF, and a negative electrode current collector such as a copper foil A negative electrode in which a negative electrode active material layer is formed on both surfaces of the negative electrode current collector can be obtained by the same method as for the positive electrode.

導電助剤としては、カーボンブラック、アセチレンブラックなどの炭素質粉末を用いることができる。   As the conductive assistant, carbonaceous powder such as carbon black and acetylene black can be used.

結着剤としては、PVdFやポリテトラフルオロエチレンなどのフッ素系樹脂、ポリオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリイミド系樹脂などを用いることができる。   As the binder, fluorine resins such as PVdF and polytetrafluoroethylene, polyolefin resins, styrene resins, acrylic resins, polyimide resins and the like can be used.

(電解液)
電解液は、電解質が溶解された非水溶媒を用いることができる。電解質は、リチウムイオン二次電池の場合にはリチウム塩を用い、これを非水溶媒中に溶解させる。リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6などが挙げられる。この中でも特にLiPF6、LiBF4が好ましい。リチウムイミド塩としてはLiN(CkFn2k+1SO2)(Cm2m+1SO2)(k、mはそれぞれ独立して1または2である)が挙げられる。これらは単独で、または複数種を組み合わせて用いることができる。
(Electrolyte)
As the electrolytic solution, a nonaqueous solvent in which an electrolyte is dissolved can be used. In the case of a lithium ion secondary battery, the electrolyte uses a lithium salt, which is dissolved in a non-aqueous solvent. The lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, etc. LiSbF 6 and the like. Of these, LiPF 6 and LiBF 4 are particularly preferable. Examples of the lithium imide salt include LiN (C k Fn 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2). These can be used alone or in combination of two or more.

また非水溶媒としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いる。より具体的には、環状カーボネート類:プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体、鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体、脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体、γ−ラクトン類:γ−ブチロラクトン、およびこれらの誘導体、環状エーテル類:テトラヒドロフラン、2−メチルテトラヒドロフラン、鎖状エーテル類:1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、およびこれらの誘導体、その他:ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステル、これらを1種または2種以上を混合して使用することができる。   The non-aqueous solvent is at least selected from organic solvents such as cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. One kind of organic solvent is used. More specifically, cyclic carbonates: propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof, chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC), Ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof, aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate, and derivatives thereof, γ-lactones: γ-butyrolactone, And derivatives thereof, cyclic ethers: tetrahydrofuran, 2-methyltetrahydrofuran, chain ethers: 1, 2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof, Other: dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1, 3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester, 1 type (s) or 2 or more types can be mixed and used.

さらに電解液添加剤として、一般的な、例えば、ビニレンカーボネート(VC)などを用いることも可能である。   Furthermore, it is also possible to use common, for example, vinylene carbonate (VC) as the electrolyte solution additive.

以下に、本発明の実施例を詳述する。本発明は以下の実施例のみに限定されるものではない。   Examples of the present invention are described in detail below. The present invention is not limited only to the following examples.

(実施例1)
(負極の作製)
負極活物質として平均粒径30μmの人造黒鉛粉末と、結着剤としてPVdFとを重量比95:5でNMP中に均一に分散混練させてスラリーを作製した。このスラリーを負極集電体となる厚み10μmの銅箔上に塗布後、125℃にて10分間NMPを蒸発させることにより負極活物質層を形成した。同様にもう一方の面に負極活物質層を形成して、プレスすることにより両面に活物質層を備えた負極を作製した。負極集電体を除いた厚みは135μm、活物質層の空孔率は30%となるように電極密度を調整した。
Example 1
(Preparation of negative electrode)
An artificial graphite powder having an average particle size of 30 μm as a negative electrode active material and PVdF as a binder were uniformly dispersed and kneaded in NMP at a weight ratio of 95: 5 to prepare a slurry. After applying this slurry on a 10 μm thick copper foil serving as a negative electrode current collector, NMP was evaporated at 125 ° C. for 10 minutes to form a negative electrode active material layer. Similarly, a negative electrode active material layer was formed on the other surface and pressed to prepare a negative electrode having an active material layer on both surfaces. The electrode density was adjusted so that the thickness excluding the negative electrode current collector was 135 μm, and the porosity of the active material layer was 30%.

(正極の作製)
正極活物質として平均粒径10μmのLiMn24粉末と、結着剤としてPVdFと、導電助剤としてカーボンブラックとを重量比92:4:4でNMP中に均一に分散混練させてスラリーを作製した。そのスラリーを正極集電体となる厚み20μmのアルミ箔上に塗布後、125℃にて10分間NMPを蒸発させることにより正極活物質層を形成した。同様に、もう一方の面にも正極活物質層を形成し、プレスすることにより両面に活物質層を備えた正極を作製した。正極集電体を除いた厚みは245μm、活物質層の空孔率は30%となるように電極密度を調整した。
(Preparation of positive electrode)
A slurry is obtained by uniformly dispersing and kneading a LiMn 2 O 4 powder having an average particle diameter of 10 μm as a positive electrode active material, PVdF as a binder, and carbon black as a conductive auxiliary agent in a weight ratio of 92: 4: 4 in NMP. Produced. The slurry was applied on a 20 μm thick aluminum foil serving as a positive electrode current collector, and then NMP was evaporated at 125 ° C. for 10 minutes to form a positive electrode active material layer. Similarly, a positive electrode active material layer was formed on the other surface and pressed to produce a positive electrode having an active material layer on both surfaces. The electrode density was adjusted so that the thickness excluding the positive electrode current collector was 245 μm, and the porosity of the active material layer was 30%.

電解液は、溶媒としてエチレンカーボネート:ジエチルカーボネート=30:70(体積%)に、電解質として1mol/LのLiPF6を溶解したものを用いた。セパレータはポリエチレンおよびポリプロピレンからなる厚み25μm、空孔率40%のものを用いた。 The electrolyte used was a solvent in which 1 mol / L LiPF 6 was dissolved as an electrolyte in ethylene carbonate: diethyl carbonate = 30: 70 (volume%) as a solvent. The separator was made of polyethylene and polypropylene and had a thickness of 25 μm and a porosity of 40%.

(電極の切り出し)
上記のように作製した負極を30mm×14mmの負極活物質層とその短辺部に5mm×5mmの負極活物質層未塗布部が延出した形状に切り出した。同様に、上記のように作製した正極を28mm×13mmの正極活物質層と5mm×5mmの正極活物質層未塗布部が延出した形状に切り出した。
(Cut electrode)
The negative electrode produced as described above was cut into a shape in which a negative electrode active material layer having a size of 30 mm × 14 mm and an uncoated portion of a negative electrode active material layer having a size of 5 mm × 5 mm were extended to the short side portion. Similarly, the positive electrode produced as described above was cut into a shape in which a positive electrode active material layer of 28 mm × 13 mm and an uncoated portion of a positive electrode active material layer of 5 mm × 5 mm were extended.

(セパレータの切り出し)
セパレータは32mm×16mm及びセパレータの凸部としてセパレータの長辺部分に4mm×3mmの形状に切り出した。セパレータは全部で10枚使用し、そのうち5枚は積層したときに各層のセパレータの凸部が重ならないようにセパレータの一方の長辺部分の端から2mm、8mm、14mm、20mm、26mmのところで切り出した。残りの5枚は、セパレータのもう一方の長辺部分の端から2mm、8mm、14mm、20mm、26mmのところで切り出した。
(Cut out the separator)
The separator was cut into a shape of 4 mm × 3 mm on the long side of the separator as a convex part of 32 mm × 16 mm and the separator. Ten separators are used in total, and five of them are cut out at 2 mm, 8 mm, 14 mm, 20 mm, and 26 mm from the end of one long side of the separator so that the convex portions of the separators of each layer do not overlap. It was. The remaining 5 sheets were cut out at 2 mm, 8 mm, 14 mm, 20 mm, and 26 mm from the end of the other long side portion of the separator.

(多孔性シートの切り出し)
多孔性シートはポリエチレンからなる厚み270μm、空孔率55%のものを32mm×16mmの形状に切り出した。
(Cut out porous sheet)
A porous sheet made of polyethylene and having a thickness of 270 μm and a porosity of 55% was cut into a shape of 32 mm × 16 mm.

(ラミネート型電池の作製)
図4は、本発明のセパレータの凸部同士が、積層体の側面で重なり合わない発電要素の平面図である。負極、正極、セパレータ、多孔性シート5をそれぞれ6枚、5枚、10枚、2枚用意し、積層体の上下最外層には多孔性シート5を1枚ずつ配置し、多孔性シート5を除く最外周が負極となるように、負極と正極を、セパレータを介して順次積層した(多孔性シート5/セパレータ/負極/セパレータ/正極/セパレータ/・・・/セパレータ/正極/セパレータ/負極/セパレータ/多孔性シート5、という順番)。その際、セパレータの凸部1は、左右に各5枚を配置し重ならないように積層した。また、正極集電体6同士と負極集電体4同士が重なるようにして、両極の活物質層未塗布部は積層体の左右に位置するように配置した。これらの作業は、負極集電体4の形状、正極集電体6の形状およびセパレータの形状に掘られた冶具を用いて、各積層物の位置を決めながら積層を行った。セパレータの凸部1は、上下に5枚ずつ折り返し、多孔性シート5とセパレータの凸部1を厚さ15μmのPPSテープ(ポリフェニレンサルファイドテープ)にて固定した。
(Production of laminated battery)
FIG. 4 is a plan view of a power generation element in which the convex portions of the separator of the present invention do not overlap on the side surface of the laminate. The negative electrode, the positive electrode, the separator, and the porous sheet 5 were each prepared in 6 sheets, 5 sheets, 10 sheets, and 2 sheets, and the porous sheet 5 was disposed on the upper and lower outermost layers of the laminate one by one. The negative electrode and the positive electrode were sequentially laminated via a separator so that the outermost periphery excluding the negative electrode was removed (porous sheet 5 / separator / negative electrode / separator / positive electrode / separator /.../ separator / positive electrode / separator / negative electrode / Separator / porous sheet 5). In that case, the convex part 1 of the separator was laminated | stacked so that it might arrange | position five each on either side and may not overlap. Further, the positive electrode current collectors 6 and the negative electrode current collectors 4 overlap each other, and the active material layer uncoated portions of both electrodes are disposed on the left and right sides of the laminate. In these operations, lamination was performed while determining the position of each laminate using a jig dug into the shape of the negative electrode current collector 4, the shape of the positive electrode current collector 6, and the shape of the separator. The convex portions 1 of the separator were folded up and down by 5 sheets, and the porous sheet 5 and the convex portions 1 of the separator were fixed with a PPS tape (polyphenylene sulfide tape) having a thickness of 15 μm.

幅5mm、長さ20mm、厚み0.1mmのアルミ製のシーラントつきのタブを正極集電体に、同サイズのニッケル製のシーラントつきのタブを負極集電体に、タブと集電体および集電体同士が電気的に接続されるように超音波溶接を行って一体化した。次に、電池外装体として厚み125μmの70mm×70mmのポリプロピレンとアルミ箔からなるアルミラミネートフィルムを2つに折り、積層体を収納し、電解液を注入する1辺を除く辺は熱溶着により接着した。セパレータの凸部を除く各積層物の体積に、その空孔率を乗じることにより求めた積層体の総空孔体積と同量の電解液を注液して減圧下にて含浸させた後、開口部を熱溶着することで、積層型ラミネート電池を作製した。   A tab with an aluminum sealant having a width of 5 mm, a length of 20 mm, and a thickness of 0.1 mm is used as a positive electrode current collector, a tab with a nickel sealant of the same size is used as a negative electrode current collector, a tab, a current collector, and a current collector. They were integrated by ultrasonic welding so that they were electrically connected to each other. Next, an aluminum laminate film made of 70 mm × 70 mm polypropylene and aluminum foil with a thickness of 125 μm is folded in two as the battery outer package, the laminated body is accommodated, and the sides excluding one side where the electrolyte solution is injected are bonded by thermal welding. did. After impregnating under reduced pressure by injecting the same amount of electrolytic solution as the total pore volume of the laminate obtained by multiplying the volume of each laminate excluding the convex portion of the separator by its porosity, A laminated laminate battery was produced by thermally welding the opening.

(積層型ラミネート電池のコンディショニング)
この電池のコンディショニングは、20℃一定の恒温槽中で1サイクル目に0.2C、4.2V定電流定電圧で10時間充電した後、0.2C定電流で3.0Vの定電位まで放電とした。
(Conditioning of laminated laminate batteries)
The battery was conditioned at a constant temperature of 20 ° C. in the first cycle with a charge of 0.2 C, 4.2 V constant current and constant voltage for 10 hours, and then discharged to a constant potential of 3.0 V at 0.2 C constant current. It was.

(電池厚みの測定方法)
コンディショニング後の電池厚最大部をノギスにより測定した。
(Measurement method of battery thickness)
The maximum battery thickness after conditioning was measured with calipers.

(サイクル試験の測定方法)
電池厚最大部を測定後に60℃一定の恒温槽中で1C、4.2V定電流定電圧で2.5時間充電した後、1C定電流で3.0Vの定電位まで放電することを1サイクルとして、これを500サイクル行った。1サイクルの放電容量を基準として500サイクル後の放電容量をサイクル後容量維持率とし、サイクル後容量維持率を測定した。
(Measurement method for cycle test)
After measuring the maximum thickness of the battery, charge it for 1 hour at 1C, 4.2V constant current and constant voltage in a constant temperature bath at 60 ° C, then discharge it to a constant potential of 3.0V at 1C constant current. As a result, 500 cycles were performed. Based on the discharge capacity of one cycle, the discharge capacity after 500 cycles was defined as the post-cycle capacity retention rate, and the post-cycle capacity retention rate was measured.

(実施例2)
図5は、本発明のセパレータの凸部同士が、積層体の側面で重なり合う発電要素の平面図である。積層方法は、図4による積層と同じ方法で行った。その際セパレータの凸部1は、左右に各5枚を配置し、それぞれ重なるように積層した。図6は、本発明の実施例2の積層型ラミネート非水電解質二次電池の平面透視図である。セパレータの凸部が他のセパレータの凸部と重なっている以外は実施例1と同様にして積層型ラミネート電池を作製した。
(Example 2)
FIG. 5 is a plan view of the power generation element in which the convex portions of the separator of the present invention overlap on the side surface of the laminate. The lamination method was performed in the same manner as the lamination according to FIG. At that time, five convex portions 1 of the separator were arranged on the left and right sides and laminated so as to overlap each other. FIG. 6 is a plan perspective view of the laminated laminated nonaqueous electrolyte secondary battery of Example 2 of the present invention. A laminated laminate battery was produced in the same manner as in Example 1 except that the convex portions of the separator overlapped with the convex portions of the other separators.

コンディショニング後の電池厚最大部を測定するとともに、サイクル後容量維持率を測定した。   The maximum cell thickness after conditioning was measured, and the capacity retention rate after cycling was measured.

(比較例1)
図7は、比較例1の積層型ラミネート非水電解質二次電池の平面透視図である。発電要素の積層方法は、図4による積層と同じ方法で行った。図8は、図7のB−B断面のうち、アルミラミネートフィルム以外を示す図である。多孔性シート5とセパレータがパス構造を持たず、セパレータの凸部がない以外は実施例1と同様にして積層型ラミネート電池を作製した。
(Comparative Example 1)
7 is a perspective plan view of the laminated laminate nonaqueous electrolyte secondary battery of Comparative Example 1. FIG. The power generation element was laminated by the same method as that of FIG. FIG. 8 is a view showing a portion other than the aluminum laminate film in the BB cross section of FIG. 7. A laminated laminate battery was produced in the same manner as in Example 1 except that the porous sheet 5 and the separator did not have a pass structure and there were no separator protrusions.

コンディショニング後の電池厚最大部を測定するとともに、サイクル後容量維持率を測定した。   The maximum cell thickness after conditioning was measured, and the capacity retention rate after cycling was measured.

(比較例2)
図9は、比較例2の積層型ラミネート非水電解質二次電池の平面透視図である。図10は、図9のC−Cの断面のうち、アルミラミネートフィルム以外を示す図である。セパレータの凸部がなく、1枚のセパレータの電極絶縁部2として32mm×160mmの形状で打ち抜き、そのセパレータの電極絶縁部2をつづら状に折り、セパレータの電極絶縁部2の上下部分が多孔性シート5とそれぞれ接する以外は実施例1と同様にして積層型ラミネート電池を作製した。
(Comparative Example 2)
FIG. 9 is a plan perspective view of the laminated laminate nonaqueous electrolyte secondary battery of Comparative Example 2. FIG. 10 is a diagram illustrating a portion other than the aluminum laminate film in the cross section taken along the line CC in FIG. 9. There is no convex part of the separator, and the electrode insulating part 2 of one separator is punched in a shape of 32 mm × 160 mm, the electrode insulating part 2 of the separator is folded in a zigzag shape, and the upper and lower parts of the separator electrode insulating part 2 are porous A laminated laminate battery was produced in the same manner as in Example 1 except that the sheet 5 was in contact with each other.

コンディショニング後の電池厚最大部を測定するとともに、サイクル後容量維持率を測定した。   The maximum cell thickness after conditioning was measured, and the capacity retention rate after cycling was measured.

Figure 2010040466
Figure 2010040466

表1に、実施例1〜2、比較例1〜2の電池厚み、およびサイクル後容量維持率を示す。   Table 1 shows the battery thicknesses of Examples 1 and 2 and Comparative Examples 1 and 2, and the capacity retention ratio after cycling.

実施例1〜2と比較例1のサイクル後容量維持率の結果より、多孔性シートとセパレータの凸部がパス構造を有することでサイクル後容量維持率が向上することが確認できた。また、実施例1〜2と比較例2のサイクル後容量維持率の結果より、多孔性シートが各層のセパレータの凸部とパス構造を有する方が、多孔性シートがセパレータの電極絶縁部の上下部分とパス構造を有するよりもサイクル後容量維持率が良好であることが確認できた。さらに実施例1と実施例2を比較すると、実施例2ではセパレータの凸部が重なることで電池厚みは厚くなるが、サイクル後容量維持率は大差なく良好であることが確認できた。   From the results of the post-cycle capacity retention ratios of Examples 1 and 2 and Comparative Example 1, it was confirmed that the post-cycle capacity retention ratio was improved because the convex portions of the porous sheet and the separator had a pass structure. In addition, from the results of the capacity retention ratio after cycles of Examples 1 and 2 and Comparative Example 2, the porous sheet has a convex portion and a path structure of the separator of each layer, and the porous sheet is located above and below the electrode insulating portion of the separator. It was confirmed that the post-cycle capacity retention rate was better than that having a partial and path structure. Further, when Example 1 was compared with Example 2, it was confirmed that in Example 2, the battery thickness was increased due to the overlapping of the convex portions of the separator, but the capacity retention rate after cycling was good without much difference.

本発明の積層型ラミネート電池は、多孔性シートに電解液が保液され、それが二次電池の使用に伴い消費された発電要素内部に拡散していくことで、発電要素内部に電解液を供給する構造であることから、サイクル後容量維持率が向上することが確認できた。また電解液を保液するのが多孔性シートであることから、電解液が消費され、発電要素内部に拡散しても変形し難い電池であることが確認できた。   In the laminated laminate battery of the present invention, an electrolytic solution is retained in a porous sheet, which diffuses into the power generation element consumed as a result of the use of the secondary battery. It was confirmed that the capacity maintenance rate after the cycle was improved because of the supply structure. In addition, since the porous sheet retains the electrolytic solution, it was confirmed that the battery was consumed and was not easily deformed even when diffused inside the power generation element.

実施例の結果を総合して考慮すれば、セパレータの凸部と多孔性シートとでパス構造を持たせることによりサイクル特性が向上し、変形し難い積層型ラミネート非水電解質二次電池が得られることがわかった。   Considering the results of the examples in total, a cycle structure is improved by providing a path structure with the convex portion of the separator and the porous sheet, and a multilayer laminated non-aqueous electrolyte secondary battery that is difficult to deform is obtained. I understood it.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明の実施例1の積層型ラミネート非水電解質二次電池の平面透視図。1 is a plan perspective view of a laminated laminate nonaqueous electrolyte secondary battery according to Example 1 of the present invention. FIG. 図1のA−A断面のうち、アルミラミネートフィルム以外を示す図。The figure which shows things other than an aluminum laminate film among the AA cross sections of FIG. 本発明の実施の形態の一例を示すセパレータの図。The figure of the separator which shows an example of embodiment of this invention. 本発明のセパレータの凸部同士が、積層体の側面で重なり合わない発電要素の平面図。The top view of the electric power generation element with which the convex parts of the separator of this invention do not overlap on the side surface of a laminated body. 本発明のセパレータの凸部同士が、積層体の側面で重なり合う発電要素の平面図。The top view of the electric power generation element with which the convex parts of the separator of this invention overlap on the side surface of a laminated body. 本発明の実施例2の積層型ラミネート非水電解質二次電池の平面透視図。The plane perspective view of the lamination type lamination nonaqueous electrolyte secondary battery of Example 2 of the present invention. 比較例1の積層型ラミネート非水電解質二次電池の平面透視図。FIG. 3 is a plan perspective view of a laminated laminate nonaqueous electrolyte secondary battery of Comparative Example 1. 図7のB−B断面のうち、アルミラミネートフィルム以外を示す図。The figure which shows things other than an aluminum laminate film among the BB cross sections of FIG. 比較例2の積層型ラミネート非水電解質二次電池の平面透視図。FIG. 6 is a plan perspective view of a laminated laminate nonaqueous electrolyte secondary battery of Comparative Example 2. 図9のC−Cの断面のうち、アルミラミネートフィルム以外を示す図。The figure which shows other than an aluminum laminate film among the cross sections of CC of FIG.

符号の説明Explanation of symbols

1 セパレータの凸部
2 セパレータの電極絶縁部
3 負極
4 負極集電体
5 多孔性シート
6 正極集電体
7 アルミタブ
8 テープ
9 ニッケルタブ
10 熱溶着部
11 正極
DESCRIPTION OF SYMBOLS 1 Separator convex part 2 Separator electrode insulation part 3 Negative electrode 4 Negative electrode current collector 5 Porous sheet 6 Positive electrode current collector 7 Aluminum tab 8 Tape 9 Nickel tab 10 Thermal welding part 11 Positive electrode

Claims (2)

正極および負極がセパレータを介して積層され、最外層に多孔性シートを有する積層体をラミネートフィルムで外装した積層型ラミネート非水電解質二次電池において、セパレータに凸部を有し、前記セパレータの凸部が前記多孔性シートと接触していることを特徴とする積層型ラミネート非水電解質二次電池。   In a laminated laminated nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are laminated via a separator, and a laminate having a porous sheet as an outermost layer is packaged with a laminate film, the separator has a convex portion, A laminated laminated non-aqueous electrolyte secondary battery, characterized in that a portion is in contact with the porous sheet. 前記セパレータの凸部同士が、前記積層体の側面で重なり合わないことを特徴とする請求項1に記載の積層型ラミネート非水電解質二次電池。   The multilayer laminated nonaqueous electrolyte secondary battery according to claim 1, wherein the convex portions of the separator do not overlap each other on a side surface of the multilayer body.
JP2008205156A 2008-08-08 2008-08-08 Multilayer laminated nonaqueous electrolyte secondary battery Expired - Fee Related JP5413945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205156A JP5413945B2 (en) 2008-08-08 2008-08-08 Multilayer laminated nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205156A JP5413945B2 (en) 2008-08-08 2008-08-08 Multilayer laminated nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010040466A true JP2010040466A (en) 2010-02-18
JP5413945B2 JP5413945B2 (en) 2014-02-12

Family

ID=42012772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205156A Expired - Fee Related JP5413945B2 (en) 2008-08-08 2008-08-08 Multilayer laminated nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5413945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery
JP2017500708A (en) * 2014-01-10 2017-01-05 エルジー・ケム・リミテッド Electrode assembly having safety separation membrane and secondary battery including the same
CN108539254A (en) * 2017-03-03 2018-09-14 丰田自动车株式会社 Lithium rechargeable battery and its manufacturing method
CN112335091A (en) * 2018-06-29 2021-02-05 远景Aesc能源元器件有限公司 Lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102050A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Electrode structure for layer built cell/capacitor
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Laminate type lithium-ion polymer battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102050A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Electrode structure for layer built cell/capacitor
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Laminate type lithium-ion polymer battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500708A (en) * 2014-01-10 2017-01-05 エルジー・ケム・リミテッド Electrode assembly having safety separation membrane and secondary battery including the same
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery
CN108539254A (en) * 2017-03-03 2018-09-14 丰田自动车株式会社 Lithium rechargeable battery and its manufacturing method
JP2018147669A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
CN108539254B (en) * 2017-03-03 2021-02-26 丰田自动车株式会社 Lithium ion secondary battery and method for manufacturing same
CN112335091A (en) * 2018-06-29 2021-02-05 远景Aesc能源元器件有限公司 Lithium ion secondary battery
CN112335091B (en) * 2018-06-29 2023-10-27 远景Aesc能源元器件有限公司 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP5413945B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN110137442B (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP5218808B2 (en) Lithium ion battery
JP5392809B2 (en) Lithium secondary battery
JP5541957B2 (en) Multilayer secondary battery
US9017861B2 (en) Nonaqueous electrolyte secondary battery
JP2009080971A (en) Anode for lithium ion battery
JP2014035925A (en) Nonaqueous electrolyte secondary battery
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
JP2014035929A (en) Nonaqueous electrolyte secondary battery
JP4836185B2 (en) Non-aqueous electrolyte secondary battery
JP5413945B2 (en) Multilayer laminated nonaqueous electrolyte secondary battery
JP2012181978A (en) Nonaqueous electrolyte battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2012174387A (en) Electrode plate for battery, and battery using it
JP2011222128A (en) Secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP2016072119A (en) Lithium secondary battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP6184104B2 (en) Non-aqueous electrolyte battery
JP5639903B2 (en) Lithium ion secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5413945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees