WO2017122251A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2017122251A1
WO2017122251A1 PCT/JP2016/005175 JP2016005175W WO2017122251A1 WO 2017122251 A1 WO2017122251 A1 WO 2017122251A1 JP 2016005175 W JP2016005175 W JP 2016005175W WO 2017122251 A1 WO2017122251 A1 WO 2017122251A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
positive electrode
active material
electrode plate
Prior art date
Application number
PCT/JP2016/005175
Other languages
French (fr)
Japanese (ja)
Inventor
広太 小川
孝一 草河
長谷川 和弘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2017122251A1 publication Critical patent/WO2017122251A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery having a current collecting structure suitable for high output.
  • nonaqueous electrolyte secondary batteries have been widely used as drive power sources for portable electronic devices such as smartphones, tablet computers, notebook computers, and portable music players.
  • Applications of non-aqueous electrolyte secondary batteries are expanding to electric tools, electric assist bicycles, electric vehicles, and the like, and higher output is required for non-aqueous electrolyte secondary batteries.
  • an electrode body in which a positive electrode plate and a negative electrode plate are laminated or wound via a separator is accommodated in an exterior body.
  • the positive electrode plate and the negative electrode plate constituting the electrode body are electrically connected to external terminals of the positive electrode and the negative electrode through leads, respectively.
  • the sealing body and the outer can are insulated by a gasket.
  • the lead connected to the positive electrode plate is connected to the sealing body, and the lead connected to the negative electrode plate is connected to the bottom of the outer can. That is, in the cylindrical nonaqueous electrolyte secondary battery, the sealing body and the outer can function as the external terminals of the positive electrode and the negative electrode, respectively.
  • Non-aqueous electrolyte secondary batteries often have leads connected to one end in the length direction of the electrode plate.
  • non-aqueous electrolyte secondary batteries in which a plurality of leads are connected to an electrode plate have been developed due to the recent increase in demand for higher output.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery in which a negative electrode lead is connected to both ends of the negative electrode plate in the length direction, and a positive electrode lead is connected to a central portion of the positive electrode plate in the length direction.
  • Patent Document 2 discloses a current collecting structure in which a negative electrode current collector exposed at the outermost periphery of an electrode body is brought into contact with an inner surface of the outer can as a means for electrically connecting the negative electrode plate to the outer can.
  • a technique has been proposed in which the outer diameter of the outer can is reduced after the electrode body is inserted into the outer can.
  • Patent Document 3 a lead is connected to a negative electrode current collector exposed portion provided at an end portion on the winding start side of a negative electrode plate, and a negative electrode current collector exposed portion provided at an end portion on the winding end side is connected to the outer can.
  • a nonaqueous electrolyte secondary battery in contact with the inner surface is disclosed. As a result, it is possible to collect current from both ends of the negative electrode plate to the outer can even though only one lead is connected to the negative electrode plate, so that a non-aqueous electrolyte secondary battery having excellent output characteristics can be obtained. Can be provided.
  • JP 2001-110453 A Japanese Patent Laid-Open No. 10-172523 JP 2013-254561 A
  • Patent Document 3 proposes a technique for reducing the outer shape of the outer can after the electrode body is accommodated in the outer can. .
  • the technique is intended to be applied to an alkaline storage battery such as a nickel cadmium battery having a high-strength electrode plate. Since the electrode plate constituting the electrode body of the nonaqueous electrolyte secondary battery has a thin active material layer formed on a metal foil as a current collector, the strength of the electrode plate is smaller than that of an alkaline storage battery. For this reason, if a force is applied from the outside of the electrode body, the electrode plate may be displaced or the active material layer may be peeled off.
  • the present invention has been made in view of the above, and an object thereof is to provide a nonaqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics.
  • a non-aqueous electrolyte secondary battery includes a negative electrode plate in which a negative electrode active material layer is formed on a negative electrode current collector and a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode plate has a first negative electrode current collector exposed portion and a second negative electrode current collector exposed portion at which the negative electrode active material layer is not formed, respectively, at an end portion on the winding start side and an end portion on the winding end side.
  • a negative electrode lead is joined to the exposed portion of the first negative electrode current collector, and at least a part of the second negative electrode current collector is in contact with the inner side surface of the outer can.
  • the positive electrode active material layer includes a lithium nickel composite oxide.
  • the lithium nickel composite oxide is a general formula Li a Ni x M 1-x O 2 (0 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1, M is selected from the group consisting of Co, Mn, and Al It is preferably represented by at least one element.
  • both ends in the length direction of the negative electrode plate are electrically connected to an outer can that functions as a negative electrode external terminal, a nonaqueous electrolyte secondary battery having excellent output characteristics is provided. be able to. Further, by using the lithium nickel composite oxide as the positive electrode active material, fluctuations in internal resistance due to the charging depth are suppressed. Therefore, according to one embodiment of the present invention, a non-aqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics can be provided.
  • FIG. 1 is a cross-sectional perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a positive electrode plate according to an embodiment of the present invention.
  • FIG. 3 is a plan view of a negative electrode plate according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of an electrode body according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a negative electrode plate according to Comparative Examples 1, 2, and 4.
  • FIG. 6 is a perspective view of electrode bodies according to Comparative Examples 1, 2, and 4.
  • FIG. 1 is a cross-sectional perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a positive electrode plate according to an embodiment of the present invention.
  • FIG. 3 is a plan view of a negative electrode plate according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of an electrode body
  • FIG. 1 is a cross-sectional perspective view of a nonaqueous electrolyte secondary battery 10 according to an embodiment of the present invention.
  • An electrode body 14 and a non-aqueous electrolyte are accommodated in a bottomed cylindrical outer can 18.
  • the inside of the battery is hermetically sealed by caulking and fixing a sealing body 17 via a gasket 16 in a groove portion formed in the vicinity of the opening of the outer can 18.
  • the positive electrode plate 21 has a positive electrode active material layer 22 formed on a positive electrode current collector.
  • the positive electrode active material layer 22 is preferably formed on both surfaces of the positive electrode current collector.
  • a positive electrode current collector exposed portion 23 is provided at a central portion in the length direction of the positive electrode plate 21. In the positive electrode current collector exposed portion 23, it is preferable that both surfaces of the positive electrode current collector are exposed.
  • a positive electrode lead 24 is bonded to the positive electrode current collector exposed portion 23. Examples of the joining method include welding methods such as resistance welding, ultrasonic welding, and laser welding. The current collecting resistance of the positive electrode plate can be reduced by bonding the positive electrode lead 24 to the central portion of the positive electrode plate.
  • the positive lead 24 is preferably joined to the central portion in the length direction of the positive plate, but the joining position of the positive lead 24 is not limited to the central portion.
  • An insulating tape may be affixed on the positive electrode lead 24 bonded to the positive electrode current collector exposed portion 23 and on the back surface of the positive electrode current collector exposed portion 23 bonded to the positive electrode lead 24. Thereby, the internal short circuit resulting from the positive electrode lead 24 is prevented.
  • the positive electrode active material layer 22 can be formed by, for example, applying and drying a positive electrode mixture slurry prepared by kneading a positive electrode active material, a conductive agent, and a binder in a dispersion medium on a positive electrode current collector. .
  • the positive electrode active material layer after drying is preferably compressed with a roller so as to have a predetermined thickness.
  • the energy density of the nonaqueous electrolyte secondary battery can be improved by compressing the positive electrode active material layer 22.
  • the lithium nickel composite oxide is a lithium transition metal composite oxide containing nickel as a main component of a transition metal element and capable of reversibly occluding and releasing lithium ions.
  • the lithium nickel composite oxide is a general formula Li a Ni x M 1-x O 2 (0 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1, M is selected from the group consisting of Co, Mn, and Al It is preferably represented by at least one element.
  • a representing the amount of Li in the general formula is defined as 0 ⁇ a ⁇ 1.2 in consideration of the fact that it changes during charging and discharging.
  • the positive electrode active material can contain a lithium transition metal composite oxide other than the lithium nickel composite oxide.
  • the content of the other lithium transition metal composite oxide in the positive electrode active material is preferably less than 30% by mass with respect to the total mass of the positive electrode active material.
  • examples of other lithium transition metal composite oxides include lithium cobalt composite oxide and lithium manganese composite oxide.
  • the positive electrode current collector for example, a metal foil formed from aluminum, aluminum alloy, nickel, nickel alloy, or stainless steel can be used. Among these, a metal foil formed from aluminum or an aluminum alloy is preferable. Moreover, as a positive electrode lead, the metal plate which consists of a metal illustrated by the positive electrode electrical power collector can be used.
  • the negative electrode plate 31 has a negative electrode active material layer 32 formed on a negative electrode current collector.
  • the negative electrode active material layer 32 is preferably formed on both surfaces of the negative electrode current collector.
  • a first negative electrode current collector exposed portion 33a and a second negative electrode current collector exposed portion 33b are provided at both ends in the length direction of the negative electrode plate. In the first and second negative electrode current collector exposed portions 33a and 33b, the negative electrode active material layers are not formed on both surfaces of the negative electrode current collector.
  • the first and second negative electrode current collector exposed portions 33 a and 33 b may have different lengths on the front and back sides of the negative electrode plate 31.
  • a negative electrode lead 34 is joined to the first negative electrode current collector exposed portion 33a.
  • the negative electrode lead 34 may be bonded to either the front or back of the negative electrode plate 31. Examples of the joining method of the negative electrode lead 34 include welding methods such as resistance welding, ultrasonic welding, and laser welding.
  • the negative electrode active material layer 32 can be formed, for example, by applying a negative electrode mixture slurry prepared by kneading a negative electrode active material and a binder in a dispersion medium to a negative electrode current collector and drying.
  • the negative electrode active material layer 32 after drying is preferably compressed with a roller so as to have a predetermined thickness. By compressing the negative electrode active material layer 32, the energy density of the nonaqueous electrolyte secondary battery can be improved.
  • the negative electrode active material a carbon material or a silicon material capable of reversibly occluding and releasing lithium ions can be used.
  • the carbon material and the silicon material can be used alone or in combination. Since the volume change accompanying charging / discharging is large, the silicon material contains the silicon material in the negative electrode active material, so that the second negative electrode current collector exposed portion 33b disposed on the outermost periphery of the electrode body and the inner surface of the outer can 18 Contact is stable. Therefore, it is preferable to use a silicon material as the negative electrode active material.
  • Examples of the carbon material include graphite such as natural graphite and artificial graphite.
  • Examples of the silicon material include silicon, silicon oxide, lithium silicate, and silicon alloy.
  • silicon oxide silicon oxide represented by the general formula SiO x (0.5 ⁇ x ⁇ 1.6) is preferable from the viewpoint of balance between capacity and cycle characteristics.
  • the silicon material can be used alone, but can also be used as a composite obtained by mixing with graphite in the presence of pitch and sintering.
  • the negative electrode current collector for example, a metal foil formed from copper, copper alloy, nickel, nickel alloy, or stainless steel can be used. Among these, a metal foil formed from copper or a copper alloy is preferable.
  • the negative electrode lead 34 it is preferable to use the metal plate which consists of the metal illustrated by the negative electrode electrical power collector, and it is more preferable to use the clad material of nickel and copper.
  • the electrode body 14 is produced by winding the positive electrode plate 21 and the negative electrode plate 31 through the separator 11.
  • the first negative electrode current collector exposed portion 33 a is disposed on the winding start side of the electrode body 14, and the second negative electrode current collector exposed portion 33 b is disposed on the winding end side of the electrode body 14.
  • a microporous film mainly composed of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used as the separator.
  • the microporous membrane can be used singly or as a laminate of two or more layers.
  • a layer mainly composed of polyethylene (PE) having a low melting point as an intermediate layer and polypropylene (PP) excellent in oxidation resistance as a surface layer.
  • Inorganic particles such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and silicon oxide (SiO 2 ) can be added to the separator. Such inorganic particles can be carried in the separator and can be applied together with a binder on the separator surface.
  • An aramid resin can also be applied to the surface of the separator.
  • non-aqueous electrolyte a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.
  • a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and it is preferable to use a mixture of two or more.
  • the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC) can also be used.
  • the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC).
  • Examples of cyclic carboxylic acid esters include ⁇ -butyrolactone ( ⁇ -BL) and ⁇ -valerolactone ( ⁇ -VL).
  • Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate and methyl Pionate is exemplified.
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified.
  • LiPF 6 is preferable, and the concentration in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L.
  • Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .
  • Example 1 (Preparation of positive electrode plate) 100 parts by mass of LiNi 0.80 Co 0.17 Al 0.03 O 2 as a positive electrode active material, 1 part by mass of acetylene black as a conductive agent, and 1 part by mass of polyvinylidene fluoride (PVDF as a binder) ) was mixed. The mixture was put into N-methyl-2-pyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was intermittently applied to both surfaces of an aluminum positive electrode current collector having a thickness of 15 ⁇ m by a doctor blade method and dried to form a positive electrode active material layer 22 and a positive electrode current collector exposed portion 23.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material layer 22 was compressed with a roller, and the compressed electrode plate was cut into a predetermined size. Finally, a positive electrode lead 24 made of aluminum was joined to the positive electrode current collector exposed portion 23 to produce the positive electrode plate 21 shown in FIG.
  • the negative electrode active material layer 32 was compressed with a roller, and the compressed electrode plate was cut into a predetermined size. Finally, a negative electrode lead 34 made of nickel was joined to the first negative electrode current collector exposed portion 33a to produce the negative electrode plate 31 shown in FIG.
  • the positive electrode plate 21 and the negative electrode plate 31 were wound through a separator 11 made of a polyethylene microporous film to produce an electrode body 14.
  • the first negative electrode current collector exposed portion 33 a was disposed on the winding start side of the electrode body 14, and the second negative electrode current collector exposed portion 33 b was disposed on the winding end side of the electrode body 14. After winding, the end of the second negative electrode current collector exposed portion 33 b was fixed with the winding tape 15.
  • Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 25: 5: 70 (1 atm, 25 ° C.) to prepare a nonaqueous solvent.
  • a nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in the nonaqueous solvent at a concentration of 1.0 mol / L.
  • An annular insulating plate 13 was disposed below the electrode body 14, and the electrode body 14 was inserted into the outer can 18.
  • the negative electrode lead 34 was joined to the bottom of the outer can 18.
  • An annular insulating plate 12 was disposed on the inserted electrode body 14, and a grooved portion was formed in the vicinity of the opening of the outer can.
  • the positive electrode lead 24 was joined to the sealing body 17, and the nonaqueous electrolyte was inject
  • the sealing body 17 was caulked and fixed to the grooved portion formed in the outer can 18 via the gasket 16 to produce the cylindrical nonaqueous electrolyte secondary battery 10 shown in FIG.
  • Example 2 A nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 except that LiNi 0.79 Co 0.18 Al 0.03 O 2 was used as the positive electrode active material.
  • Comparative Example 1 As shown in FIGS. 5 and 6, Comparative Example 1 was performed in the same manner as in Example 1 except that the negative electrode lead 35 was bonded to the second negative electrode current collector exposed portion 33b and a separator was disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
  • Comparative Example 2 As shown in FIGS. 5 and 6, Comparative Example 2 was performed in the same manner as in Example 2 except that the negative electrode lead 35 was bonded to the second negative electrode current collector exposed portion 33b and a separator was disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
  • Comparative Example 3 A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material.
  • Comparative Example 4 As shown in FIGS. 5 and 6, Comparative Example 4 is the same as Comparative Example 3 except that the negative electrode lead 35 is bonded to the second negative electrode current collector exposed portion 33 b and a separator is disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
  • the expansion amount of the lithium nickel composite oxide is larger than the expansion amount of the lithium cobalt composite oxide, and the increase in contact resistance between the negative electrode current collector exposed portion and the inner surface of the outer can is suppressed. It is guessed. From the above results, it can be seen that it is preferable to use a lithium nickel composite oxide as the positive electrode active material in order to ensure contact between the negative electrode current collector exposed portion arranged on the outermost periphery of the electrode body and the inner surface of the outer can. .
  • Example 1 and Example 2 are compared, it can be seen that a higher content of nickel contained in the lithium nickel composite oxide is preferable.
  • the internal resistance of Example 1 is equal to Comparative Example 1 in which the negative electrode lead is joined to both ends of the negative electrode plate. Therefore, the content of nickel contained in the lithium nickel composite oxide is preferably 80 mol% or more.
  • a part of nickel can be replaced with at least one element selected from the group consisting of cobalt, aluminum, and manganese. That is, as the positive electrode active material, the general formula Li a Ni x M 1-x O 2 (0 ⁇ a ⁇ 1.2, 0.8 ⁇ x ⁇ 1, M is at least selected from the group consisting of Co, Al, and Mn. It is more preferable to use a lithium nickel composite oxide represented by 1 element).
  • a non-aqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics can be provided. Since the nonaqueous electrolyte secondary battery according to the present invention is suitable for applications requiring high output such as electric tools and electric vehicles, the industrial applicability of the present invention is great.

Abstract

A non-aqueous electrolyte secondary battery according to an embodiment of the present invention comprises: an electrode body where a negative electrode plate and a positive electrode plate are rolled with a separator interposed therebetween; a non-aqueous electrolyte; an exterior can; and a sealed opening body. An exposed negative electrode collector portion is disposed at each end of a winding start side and of a winding end side of the negative electrode plate, and has no negative electrode active substance layer formed therein. A negative electrode lead is connected to the exposed negative electrode collector portion on the winding start side of the negative electrode plate, and the negative electrode lead is connected to a bottom portion of the exterior can. The exposed negative electrode collector portion on the winding end side of the negative electrode plate is in contact with the internal side surface of the exterior can. The positive electrode active substance layer of the positive electrode plate contains a lithium nickel complex oxide.

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は高出力に適した集電構造を有する非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery having a current collecting structure suitable for high output.
 近年、非水電解質二次電池はスマートフォン、タブレット型コンピュータ、ノートパソコン及び携帯型音楽プレイヤーなどの携帯型電子機器の駆動電源として広く用いられている。非水電解質二次電池の用途は電動工具、電動アシスト自転車及び電気自動車などに拡大しており、非水電解質二次電池にはさらなる高出力化が求められている。 In recent years, nonaqueous electrolyte secondary batteries have been widely used as drive power sources for portable electronic devices such as smartphones, tablet computers, notebook computers, and portable music players. Applications of non-aqueous electrolyte secondary batteries are expanding to electric tools, electric assist bicycles, electric vehicles, and the like, and higher output is required for non-aqueous electrolyte secondary batteries.
 非水電解質二次電池は、正極板と負極板がセパレータを介して積層又は巻回された電極体が外装体に収容されている。電極体を構成する正極板及び負極板はリードを介してそれぞれ正極及び負極の外部端子に電気的に接続される。 In a non-aqueous electrolyte secondary battery, an electrode body in which a positive electrode plate and a negative electrode plate are laminated or wound via a separator is accommodated in an exterior body. The positive electrode plate and the negative electrode plate constituting the electrode body are electrically connected to external terminals of the positive electrode and the negative electrode through leads, respectively.
 例えば、有底円筒形の外装缶を用いる円筒形非水電解質二次電池では、封口体と外装缶の間はガスケットによって絶縁されている。正極板に接続されたリードは封口体に、負極板に接続されたリードは外装缶の底部に接続される。つまり、円筒形非水電解質二次電池では、封口体及び外装缶がそれぞれ正極及び負極の外部端子として機能する。 For example, in a cylindrical nonaqueous electrolyte secondary battery using a bottomed cylindrical outer can, the sealing body and the outer can are insulated by a gasket. The lead connected to the positive electrode plate is connected to the sealing body, and the lead connected to the negative electrode plate is connected to the bottom of the outer can. That is, in the cylindrical nonaqueous electrolyte secondary battery, the sealing body and the outer can function as the external terminals of the positive electrode and the negative electrode, respectively.
 非水電解質二次電池では極板の長さ方向の一端部にリードが接続されている場合が多い。しかし、近年の高出力化の要望の高まりから、極板に複数のリードが接続された非水電解質二次電池が開発されている。特許文献1は負極板の長さ方向の両端部にそれぞれ負極リードが接続され、正極板の長さ方向の中央部に正極リードが接続された非水電解質二次電池を開示している。 Non-aqueous electrolyte secondary batteries often have leads connected to one end in the length direction of the electrode plate. However, non-aqueous electrolyte secondary batteries in which a plurality of leads are connected to an electrode plate have been developed due to the recent increase in demand for higher output. Patent Document 1 discloses a non-aqueous electrolyte secondary battery in which a negative electrode lead is connected to both ends of the negative electrode plate in the length direction, and a positive electrode lead is connected to a central portion of the positive electrode plate in the length direction.
 特許文献2は、負極板を外装缶に電気的に接続するための手段として電極体の最外周において露出した負極集電体を外装缶の内面に接触させる集電構造を開示している。負極集電体と外装缶を確実に接触させるために、電極体を外装缶に挿入した後に外装缶の外径を縮める技術が提案されている。 Patent Document 2 discloses a current collecting structure in which a negative electrode current collector exposed at the outermost periphery of an electrode body is brought into contact with an inner surface of the outer can as a means for electrically connecting the negative electrode plate to the outer can. In order to ensure contact between the negative electrode current collector and the outer can, a technique has been proposed in which the outer diameter of the outer can is reduced after the electrode body is inserted into the outer can.
 特許文献3は、負極板の巻き始め側の端部に設けられた負極集電体露出部にリードを接続し、巻き終り側の端部に設けられた負極集電体露出部を外装缶の内面に接触させた非水電解質二次電池を開示している。これにより、負極板に1本のみのリードが接続されているにも関わらず、負極板の両端部から外装缶への集電が可能になるため出力特性に優れた非水電解質二次電池を提供することができる。 In Patent Document 3, a lead is connected to a negative electrode current collector exposed portion provided at an end portion on the winding start side of a negative electrode plate, and a negative electrode current collector exposed portion provided at an end portion on the winding end side is connected to the outer can. A nonaqueous electrolyte secondary battery in contact with the inner surface is disclosed. As a result, it is possible to collect current from both ends of the negative electrode plate to the outer can even though only one lead is connected to the negative electrode plate, so that a non-aqueous electrolyte secondary battery having excellent output characteristics can be obtained. Can be provided.
特開2001-110453号公報JP 2001-110453 A 特開平10-172523号公報Japanese Patent Laid-Open No. 10-172523 特開2013-254561号公報JP 2013-254561 A
 特許文献1に記載されているように負極板に複数のリードが接続されている場合、電極体の端面上にリードを重ねるように折り曲げて、リードの重なり部を外装缶の底部に接合する必要がある。この場合、リードと外装缶の底部を接合すると同時に、複数のリード同士も接合しなければならない。そのため、負極板に1本のリードが接続されている場合に比べて接合条件の自由度が低下するため、非水電解質二次電池の製造が困難になる場合がある。 When a plurality of leads are connected to the negative electrode plate as described in Patent Document 1, it is necessary to bend the leads so as to overlap the end face of the electrode body and to join the overlapping portion of the leads to the bottom of the outer can There is. In this case, the leads and the bottom of the outer can must be joined simultaneously, and a plurality of leads must be joined together. For this reason, the degree of freedom of the bonding conditions is reduced as compared with the case where one lead is connected to the negative electrode plate, which may make it difficult to manufacture the nonaqueous electrolyte secondary battery.
 特許文献3に開示されている集電構造を採用すれば、1本のみのリードを用いながら複数のリードを用いた場合と同等の出力特性が得ることができる。しかし、電極体の最外周に配置された負極集電体露出部と外装缶の内面は物理的に接触しているだけで、互いに接合されているわけではない。そのため、充放電中の正極板や負極板の体積変化によって負極板と外装缶との間の電気抵抗が変動するおそれがある。電極体の最外周にある負極集電体露出部と外装缶とを確実に接触させるために、特許文献2は電極体を外装缶へ収容した後に外装缶の外形を縮める技術を提案している。しかし、その技術は高強度の極板を有するニッケルカドミウム電池などのアルカリ蓄電池に適用することを目的としている。非水電解質二次電池の電極体を構成する極板は、集電体としての金属箔上に薄い活物質層が形成されているため、極板の強度はアルカリ蓄電池に比べると小さい。そのため、電極体の外部から力を加えると極板の位置ズレや活物質層の剥がれが生じるおそれがある。 If the current collecting structure disclosed in Patent Document 3 is employed, output characteristics equivalent to the case of using a plurality of leads while using only one lead can be obtained. However, the negative electrode current collector exposed portion disposed on the outermost periphery of the electrode body and the inner surface of the outer can are merely in physical contact with each other and are not joined to each other. Therefore, there is a possibility that the electrical resistance between the negative electrode plate and the outer can varies due to the volume change of the positive electrode plate and the negative electrode plate during charging and discharging. In order to ensure contact between the negative electrode current collector exposed portion on the outermost periphery of the electrode body and the outer can, Patent Document 2 proposes a technique for reducing the outer shape of the outer can after the electrode body is accommodated in the outer can. . However, the technique is intended to be applied to an alkaline storage battery such as a nickel cadmium battery having a high-strength electrode plate. Since the electrode plate constituting the electrode body of the nonaqueous electrolyte secondary battery has a thin active material layer formed on a metal foil as a current collector, the strength of the electrode plate is smaller than that of an alkaline storage battery. For this reason, if a force is applied from the outside of the electrode body, the electrode plate may be displaced or the active material layer may be peeled off.
 本発明は上記に鑑みてなされたものであり、製造が容易で出力特性に優れた非水電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a nonaqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics.
 上記課題を解決するために本発明の一態様に係る非水電解質二次電池は、負極集電体に負極活物質層が形成された負極板及び正極集電体に正極活物質層が形成された正極板がセパレータを介して巻回された電極体と、非水電解質と、電極体及び非水電解質を収容する有底筒状の外装缶と、外装缶の開口部を封止する封口体と、を有している。負極板が巻き始め側の端部及び巻き終り側の端部にそれぞれ負極活物質層が形成されていない第1負極集電体露出部及び第2負極集電体露出部を有する。第1負極集電体露出部に負極リードが接合され、第2負極集電体の少なくとも一部が前記外装缶の内側面に接触している。正極活物質層はリチウムニッケル複合酸化物を含む。リチウムニッケル複合酸化物は、一般式LiNi1-x(0<a≦1.2、0.8≦x≦1、MはCo、Mn、及びAlからなる群から選ばれる少なくとも1種の元素)で表されることが好ましい。 In order to solve the above problems, a non-aqueous electrolyte secondary battery according to one embodiment of the present invention includes a negative electrode plate in which a negative electrode active material layer is formed on a negative electrode current collector and a positive electrode active material layer on a positive electrode current collector. Electrode body in which the positive electrode plate is wound through a separator, a nonaqueous electrolyte, a bottomed cylindrical outer can that contains the electrode body and the nonaqueous electrolyte, and a sealing body that seals the opening of the outer can And have. The negative electrode plate has a first negative electrode current collector exposed portion and a second negative electrode current collector exposed portion at which the negative electrode active material layer is not formed, respectively, at an end portion on the winding start side and an end portion on the winding end side. A negative electrode lead is joined to the exposed portion of the first negative electrode current collector, and at least a part of the second negative electrode current collector is in contact with the inner side surface of the outer can. The positive electrode active material layer includes a lithium nickel composite oxide. The lithium nickel composite oxide is a general formula Li a Ni x M 1-x O 2 (0 <a ≦ 1.2, 0.8 ≦ x ≦ 1, M is selected from the group consisting of Co, Mn, and Al It is preferably represented by at least one element.
 本発明の一態様によれば、負極板の長さ方向の両端部が負極外部端子として機能する外装缶に電気的に接続されるため、出力特性に優れた非水電解質二次電池を提供することができる。また、正極活物質としてリチウムニッケル複合酸化物を用いることにより、充電深度による内部抵抗の変動が抑制される。そのため、本発明の一態様によれば製造が容易で出力特性に優れた非水電解質二次電池を提供することができる。 According to one embodiment of the present invention, since both ends in the length direction of the negative electrode plate are electrically connected to an outer can that functions as a negative electrode external terminal, a nonaqueous electrolyte secondary battery having excellent output characteristics is provided. be able to. Further, by using the lithium nickel composite oxide as the positive electrode active material, fluctuations in internal resistance due to the charging depth are suppressed. Therefore, according to one embodiment of the present invention, a non-aqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics can be provided.
図1は本発明の一実施形態に係る非水電解質二次電池の断面斜視図である。FIG. 1 is a cross-sectional perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 図2は本発明の一実施形態に係る正極板の平面図である。FIG. 2 is a plan view of a positive electrode plate according to an embodiment of the present invention. 図3は本発明の一実施形態に係る負極板の平面図である。FIG. 3 is a plan view of a negative electrode plate according to an embodiment of the present invention. 図4は本発明の一実施形態に係る電極体の斜視図である。FIG. 4 is a perspective view of an electrode body according to an embodiment of the present invention. 図5は比較例1,2及び4に係る負極板の平面図である。FIG. 5 is a plan view of a negative electrode plate according to Comparative Examples 1, 2, and 4. FIG. 図6は比較例1,2及び4に係る電極体の斜視図である。6 is a perspective view of electrode bodies according to Comparative Examples 1, 2, and 4. FIG.
 本発明を実施するための形態について図面を参照しながら詳細に説明する。なお、本発明は下記の実施形態に限定されず、その要旨を変更しない範囲で適宜変更して実施することができる。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary, it can change suitably and can implement.
 図1は本発明の一実施形態に係る非水電解質二次電池10の断面斜視図である。有底円筒形の外装缶18に電極体14と非水電解質が収容されている。外装缶18の開口部の近傍に形成された溝入れ部にガスケット16を介して封口体17をかしめ固定することにより電池内部が密閉されている。 FIG. 1 is a cross-sectional perspective view of a nonaqueous electrolyte secondary battery 10 according to an embodiment of the present invention. An electrode body 14 and a non-aqueous electrolyte are accommodated in a bottomed cylindrical outer can 18. The inside of the battery is hermetically sealed by caulking and fixing a sealing body 17 via a gasket 16 in a groove portion formed in the vicinity of the opening of the outer can 18.
 図2に示すように、正極板21は正極集電体に形成された正極活物質層22を有している。正極活物質層22は正極集電体の両面に形成されていることが好ましい。正極板21の長さ方向の中央部に正極集電体露出部23が設けられている。正極集電体露出部23では、正極集電体の両面が露出していることが好ましい。その正極集電体露出部23に正極リード24が接合されている。接合方法としては、抵抗溶接、超音波溶接、及びレーザ溶接などの溶接法が例示される。正極板の中央部に正極リード24を接合することで、正極板の集電抵抗を低減することができる。正極リード24は正極板の長さ方向の中央部に接合することが好ましいが、正極リード24の接合位置は中央部に限定されない。正極集電体露出部23に接合された正極リード24上と、正極リード24が接合された正極集電体露出部23の裏面に絶縁テープを貼り付けてもよい。これにより、正極リード24に起因する内部短絡が防止される。 As shown in FIG. 2, the positive electrode plate 21 has a positive electrode active material layer 22 formed on a positive electrode current collector. The positive electrode active material layer 22 is preferably formed on both surfaces of the positive electrode current collector. A positive electrode current collector exposed portion 23 is provided at a central portion in the length direction of the positive electrode plate 21. In the positive electrode current collector exposed portion 23, it is preferable that both surfaces of the positive electrode current collector are exposed. A positive electrode lead 24 is bonded to the positive electrode current collector exposed portion 23. Examples of the joining method include welding methods such as resistance welding, ultrasonic welding, and laser welding. The current collecting resistance of the positive electrode plate can be reduced by bonding the positive electrode lead 24 to the central portion of the positive electrode plate. The positive lead 24 is preferably joined to the central portion in the length direction of the positive plate, but the joining position of the positive lead 24 is not limited to the central portion. An insulating tape may be affixed on the positive electrode lead 24 bonded to the positive electrode current collector exposed portion 23 and on the back surface of the positive electrode current collector exposed portion 23 bonded to the positive electrode lead 24. Thereby, the internal short circuit resulting from the positive electrode lead 24 is prevented.
 正極活物質層22は、例えば、正極活物質、導電剤、及び結着剤を分散媒中で混練して作製した正極合剤スラリーを正極集電体に塗布、乾燥して形成することができる。乾燥後の正極活物質層はローラーで所定厚みになるように圧縮することが好ましい。正極活物質層22を圧縮することで非水電解質二次電池のエネルギー密度を向上させることができる。 The positive electrode active material layer 22 can be formed by, for example, applying and drying a positive electrode mixture slurry prepared by kneading a positive electrode active material, a conductive agent, and a binder in a dispersion medium on a positive electrode current collector. . The positive electrode active material layer after drying is preferably compressed with a roller so as to have a predetermined thickness. The energy density of the nonaqueous electrolyte secondary battery can be improved by compressing the positive electrode active material layer 22.
 正極活物質として、リチウムニッケル複合酸化物が用いられる。本発明の一実施形態において、リチウムニッケル複合酸化物とはニッケルを遷移金属元素の主成分として含むリチウム遷移金属複合酸化物であって、リチウムイオンを可逆的に吸蔵、放出することができるものをいう。リチウムニッケル複合酸化物は、一般式LiNi1-x(0<a≦1.2、0.8≦x≦1、MはCo、Mn、及びAlからなる群から選ばれる少なくとも1種の元素)で表されることが好ましい。一般式中のLi量を表すaは充放電中に変化することを考慮して0<a≦1.2と規定されている。正極板の作製時においては、aは0.95≦a≦1.2を満たすことが好ましい。正極活物質には、そのリチウムニッケル複合酸化物以外のリチウム遷移金属複合酸化物を含むことができる。この場合、正極活物質中の他のリチウム遷移金属複合酸化物の含有量は正極活物質の全質量に対して30質量%未満であることが好ましい。他のリチウム遷移金属複合酸化物としては、リチウムコバルト複合酸化物及びリチウムマンガン複合酸化物が例示される。 As the positive electrode active material, lithium nickel composite oxide is used. In one embodiment of the present invention, the lithium nickel composite oxide is a lithium transition metal composite oxide containing nickel as a main component of a transition metal element and capable of reversibly occluding and releasing lithium ions. Say. The lithium nickel composite oxide is a general formula Li a Ni x M 1-x O 2 (0 <a ≦ 1.2, 0.8 ≦ x ≦ 1, M is selected from the group consisting of Co, Mn, and Al It is preferably represented by at least one element. A representing the amount of Li in the general formula is defined as 0 <a ≦ 1.2 in consideration of the fact that it changes during charging and discharging. In producing the positive electrode plate, a preferably satisfies 0.95 ≦ a ≦ 1.2. The positive electrode active material can contain a lithium transition metal composite oxide other than the lithium nickel composite oxide. In this case, the content of the other lithium transition metal composite oxide in the positive electrode active material is preferably less than 30% by mass with respect to the total mass of the positive electrode active material. Examples of other lithium transition metal composite oxides include lithium cobalt composite oxide and lithium manganese composite oxide.
 正極集電体としては、例えば、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、又はステンレス鋼から形成された金属箔を使用することができる。これらの中で、アルミニウム又はアルミニウム合金から形成された金属箔が好ましい。また、正極リードとしては、正極集電体に例示された金属からなる金属板を用いることができる。 As the positive electrode current collector, for example, a metal foil formed from aluminum, aluminum alloy, nickel, nickel alloy, or stainless steel can be used. Among these, a metal foil formed from aluminum or an aluminum alloy is preferable. Moreover, as a positive electrode lead, the metal plate which consists of a metal illustrated by the positive electrode electrical power collector can be used.
 図3に示すように、負極板31は負極集電体に形成された負極活物質層32を有している。負極活物質層32は負極集電体の両面に形成されていることが好ましい。負極板の長さ方向の両端部にはそれぞれ第1負極集電体露出部33a及び第2負極集電体露出部33bが設けられている。第1及び第2負極集電体露出部33a,33bでは、負極集電体の両面に負極活物質層が形成されていない。第1及び第2負極集電体露出部33a,33bは負極板31の表裏で長さが異なっていてもよい。第1負極集電体露出部33aに負極リード34が接合されている。負極リード34は負極板31の表裏のいずれに接合してもよい。負極リード34の接合方法としては、抵抗溶接、超音波溶接、及びレーザ溶接などの溶接法が例示される。 As shown in FIG. 3, the negative electrode plate 31 has a negative electrode active material layer 32 formed on a negative electrode current collector. The negative electrode active material layer 32 is preferably formed on both surfaces of the negative electrode current collector. A first negative electrode current collector exposed portion 33a and a second negative electrode current collector exposed portion 33b are provided at both ends in the length direction of the negative electrode plate. In the first and second negative electrode current collector exposed portions 33a and 33b, the negative electrode active material layers are not formed on both surfaces of the negative electrode current collector. The first and second negative electrode current collector exposed portions 33 a and 33 b may have different lengths on the front and back sides of the negative electrode plate 31. A negative electrode lead 34 is joined to the first negative electrode current collector exposed portion 33a. The negative electrode lead 34 may be bonded to either the front or back of the negative electrode plate 31. Examples of the joining method of the negative electrode lead 34 include welding methods such as resistance welding, ultrasonic welding, and laser welding.
 負極活物質層32は、例えば、負極活物質と結着剤を分散媒中で混練して作製した負極合剤スラリーを負極集電体に塗布し、乾燥して形成することができる。乾燥後の負極活物質層32はローラーで所定厚みになるように圧縮することが好ましい。負極活物質層32を圧縮することで非水電解質二次電池のエネルギー密度を向上させることができる。 The negative electrode active material layer 32 can be formed, for example, by applying a negative electrode mixture slurry prepared by kneading a negative electrode active material and a binder in a dispersion medium to a negative electrode current collector and drying. The negative electrode active material layer 32 after drying is preferably compressed with a roller so as to have a predetermined thickness. By compressing the negative electrode active material layer 32, the energy density of the nonaqueous electrolyte secondary battery can be improved.
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出することができる炭素材料やケイ素材料を用いることができる。炭素材料及びケイ素材料は単独で、又は混合して用いることができる。ケイ素材料は充放電に伴う体積変化が大きいため、負極活物質中にケイ素材料を含むことにより電極体の最外周に配置される第2負極集電体露出部33bと外装缶18の内側面の接触が安定する。そのため、ケイ素材料を負極活物質として用いることが好ましい。ただし、充放電に伴う体積変化が大きすぎると負極活物質層の負極集電体からの剥離によるサイクル低下などの問題が生じるおそれがあるため、ケイ素材料を炭素材料と混合して用いることが好ましい。 As the negative electrode active material, a carbon material or a silicon material capable of reversibly occluding and releasing lithium ions can be used. The carbon material and the silicon material can be used alone or in combination. Since the volume change accompanying charging / discharging is large, the silicon material contains the silicon material in the negative electrode active material, so that the second negative electrode current collector exposed portion 33b disposed on the outermost periphery of the electrode body and the inner surface of the outer can 18 Contact is stable. Therefore, it is preferable to use a silicon material as the negative electrode active material. However, if the volume change due to charging / discharging is too large, problems such as cycle reduction due to peeling of the negative electrode active material layer from the negative electrode current collector may occur, so it is preferable to use a silicon material mixed with a carbon material. .
 炭素材料としては、天然黒鉛及び人造黒鉛などの黒鉛が例示される。ケイ素材料としては、ケイ素、酸化ケイ素、ケイ酸リチウム、及びケイ素合金が例示される。酸化ケイ素として、容量とサイクル特性のバランスの観点から一般式SiO(0.5≦x<1.6)で表される酸化ケイ素が好ましい。ケイ素材料は単独で用いることもできるが、ピッチの存在下で黒鉛とともに混合し、焼結して得られる複合体として用いることもできる。 Examples of the carbon material include graphite such as natural graphite and artificial graphite. Examples of the silicon material include silicon, silicon oxide, lithium silicate, and silicon alloy. As the silicon oxide, silicon oxide represented by the general formula SiO x (0.5 ≦ x <1.6) is preferable from the viewpoint of balance between capacity and cycle characteristics. The silicon material can be used alone, but can also be used as a composite obtained by mixing with graphite in the presence of pitch and sintering.
 負極集電体としては、例えば、銅、銅合金、ニッケル、ニッケル合金、又はステンレス鋼から形成された金属箔を使用することができる。これらの中で、銅又は銅合金から形成された金属箔が好ましい。また、負極リード34としては、負極集電体に例示された金属からなる金属板を用いることが好ましく、ニッケルと銅のクラッド材を用いることがより好ましい。 As the negative electrode current collector, for example, a metal foil formed from copper, copper alloy, nickel, nickel alloy, or stainless steel can be used. Among these, a metal foil formed from copper or a copper alloy is preferable. Moreover, as the negative electrode lead 34, it is preferable to use the metal plate which consists of the metal illustrated by the negative electrode electrical power collector, and it is more preferable to use the clad material of nickel and copper.
 電極体14は、正極板21及び負極板31をセパレータ11を介して巻回して作製される。第1負極集電体露出部33aは電極体14の巻き始め側に配置され、第2負極集電体露出部33bは電極体14の巻き終り側に配置される。 The electrode body 14 is produced by winding the positive electrode plate 21 and the negative electrode plate 31 through the separator 11. The first negative electrode current collector exposed portion 33 a is disposed on the winding start side of the electrode body 14, and the second negative electrode current collector exposed portion 33 b is disposed on the winding end side of the electrode body 14.
 セパレータとしては、ポリエチレン(PE)やポリプロピレン(PP)のようなポリオレフィンを主成分とする微多孔膜を用いることができる。微多孔膜は1層単独で、又は2層以上を積層して用いることができる。2層以上の積層セパレータにおいては、融点が低いポリエチレン(PE)を主成分とする層を中間層に、耐酸化性に優れたポリプロピレン(PP)を表面層とすることが好ましい。セパレータには酸化アルミニウム(Al)、酸化チタン(TiO)及び酸化ケイ素(SiO)のような無機粒子を添加することができる。このような無機粒子はセパレータ中に担持させることができ、セパレータ表面に結着剤とともに塗布することもできる。セパレータの表面にアラミド系の樹脂を塗布することもできる。 As the separator, a microporous film mainly composed of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous membrane can be used singly or as a laminate of two or more layers. In a laminated separator having two or more layers, it is preferable to use a layer mainly composed of polyethylene (PE) having a low melting point as an intermediate layer and polypropylene (PP) excellent in oxidation resistance as a surface layer. Inorganic particles such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and silicon oxide (SiO 2 ) can be added to the separator. Such inorganic particles can be carried in the separator and can be applied together with a binder on the separator surface. An aramid resin can also be applied to the surface of the separator.
 非水電解質として、非水溶媒中に電解質塩としてのリチウム塩を溶解させたものを用いることができる。 As the non-aqueous electrolyte, a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.
 非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ-ブチロラクトン(γ-BL)及びγ-バレロラクトン(γ-VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。 As the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and it is preferable to use a mixture of two or more. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). In addition, a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC), can also be used. Examples of the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC). Examples of cyclic carboxylic acid esters include γ-butyrolactone (γ-BL) and γ-valerolactone (γ-VL). Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate and methyl Pionate is exemplified.
 リチウム塩として、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが好ましく、非水電解液中の濃度は0.5~2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。 LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified. Among these, LiPF 6 is preferable, and the concentration in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L. Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .
 本発明の実施形態について、以下に具体的な実施例を用いてより詳細に説明する。 Embodiments of the present invention will be described below in more detail using specific examples.
(実施例1)
(正極板の作製)
 正極活物質として100質量部のLiNi0.80Co0.17Al0.03と、導電剤としての1質量部のアセチレンブラックと、結着剤としての1質量部のポリフッ化ビニリデン(PVDF)を混合した。その混合物を分散媒としてのN-メチル-2-ピロリドン(NMP)に投入し、混練して正極合剤スラリーを調製した。その正極合剤スラリーをドクターブレード法により厚みが15μmのアルミニウム製の正極集電体の両面に間欠塗布し、乾燥して正極活物質層22と正極集電体露出部23を形成した。次いで、正極活物質層22をローラーにより圧縮し、圧縮された極板を所定サイズに切断した。最後に、正極集電体露出部23にアルミニウム製の正極リード24を接合して図2に示す正極板21を作製した。
Example 1
(Preparation of positive electrode plate)
100 parts by mass of LiNi 0.80 Co 0.17 Al 0.03 O 2 as a positive electrode active material, 1 part by mass of acetylene black as a conductive agent, and 1 part by mass of polyvinylidene fluoride (PVDF as a binder) ) Was mixed. The mixture was put into N-methyl-2-pyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was intermittently applied to both surfaces of an aluminum positive electrode current collector having a thickness of 15 μm by a doctor blade method and dried to form a positive electrode active material layer 22 and a positive electrode current collector exposed portion 23. Subsequently, the positive electrode active material layer 22 was compressed with a roller, and the compressed electrode plate was cut into a predetermined size. Finally, a positive electrode lead 24 made of aluminum was joined to the positive electrode current collector exposed portion 23 to produce the positive electrode plate 21 shown in FIG.
(負極板の作製)
 負極活物質としての100質量部の黒鉛と、増粘剤としての1質量部のカルボキシメチルセルロース(CMC)と、結着剤としての1質量部のスチレンブタジエンゴムを混合した。その混合物を分散媒としての水へ投入し、混練して負極合剤スラリーを作製した。その負極合剤スラリーを、厚み8μmの銅製の負極集電体の両面にドクターブレード法により間欠塗布し、乾燥して負極活物質層32、第1負極集電体露出部33a、及び第2負極集電体露出部33bを形成した。次いで、負極活物質層32をローラーで圧縮し、圧縮された極板を所定サイズに切断した。最後に、第1負極集電体露出部33aにニッケル製の負極リード34を接合して図3に示す負極板31を作製した。
(Preparation of negative electrode plate)
100 parts by mass of graphite as a negative electrode active material, 1 part by mass of carboxymethyl cellulose (CMC) as a thickener, and 1 part by mass of styrene butadiene rubber as a binder were mixed. The mixture was put into water as a dispersion medium and kneaded to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was intermittently applied to both sides of a copper negative electrode current collector having a thickness of 8 μm by a doctor blade method and dried to form a negative electrode active material layer 32, a first negative electrode current collector exposed portion 33a, and a second negative electrode A current collector exposed portion 33b was formed. Next, the negative electrode active material layer 32 was compressed with a roller, and the compressed electrode plate was cut into a predetermined size. Finally, a negative electrode lead 34 made of nickel was joined to the first negative electrode current collector exposed portion 33a to produce the negative electrode plate 31 shown in FIG.
(電極体の作製)
 正極板21及び負極板31を、ポリエチレン製微多孔膜からなるセパレータ11を介して巻回して電極体14を作製した。第1負極集電体露出部33aを電極体14の巻き始め側に配置し、第2負極集電体露出部33bを電極体14の巻き終り側に配置した。巻回後に第2負極集電体露出部33bの端部を巻き止めテープ15で固定した。
(Production of electrode body)
The positive electrode plate 21 and the negative electrode plate 31 were wound through a separator 11 made of a polyethylene microporous film to produce an electrode body 14. The first negative electrode current collector exposed portion 33 a was disposed on the winding start side of the electrode body 14, and the second negative electrode current collector exposed portion 33 b was disposed on the winding end side of the electrode body 14. After winding, the end of the second negative electrode current collector exposed portion 33 b was fixed with the winding tape 15.
(非水電解質の調製)
 エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)を25:5:70の体積比(1気圧、25℃)で混合して非水溶媒を調製した。その非水溶媒に電解質塩としてのヘキサフルオロリン酸リチウム(LiPF)を1.0mol/Lの濃度に溶解して非水電解質を調製した。
(Preparation of non-aqueous electrolyte)
Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 25: 5: 70 (1 atm, 25 ° C.) to prepare a nonaqueous solvent. A nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in the nonaqueous solvent at a concentration of 1.0 mol / L.
(非水電解質二次電池の作製)
 電極体14の下部に環状の絶縁板13を配置し、電極体14を外装缶18へ挿入した。負極リード34は外装缶18の底部に接合した。挿入した電極体14の上部に環状の絶縁板12を配置し、外装缶の開口部の近傍に溝入れ部を形成した。そして、正極リード24を封口体17に接合して、非水電解質を外装缶の内部へ注入した。最後に、外装缶18に形成された溝入れ部に封口体17をガスケット16を介してかしめ固定して図1に示す円筒形の非水電解質二次電池10を作製した。
(Preparation of non-aqueous electrolyte secondary battery)
An annular insulating plate 13 was disposed below the electrode body 14, and the electrode body 14 was inserted into the outer can 18. The negative electrode lead 34 was joined to the bottom of the outer can 18. An annular insulating plate 12 was disposed on the inserted electrode body 14, and a grooved portion was formed in the vicinity of the opening of the outer can. And the positive electrode lead 24 was joined to the sealing body 17, and the nonaqueous electrolyte was inject | poured in the inside of an exterior can. Finally, the sealing body 17 was caulked and fixed to the grooved portion formed in the outer can 18 via the gasket 16 to produce the cylindrical nonaqueous electrolyte secondary battery 10 shown in FIG.
(実施例2)
 正極活物質としてLiNi0.79Co0.18Al0.03を用いたこと以外は実施例1と同様にして実施例2に係る非水電解質二次電池を作製した。
(Example 2)
A nonaqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as in Example 1 except that LiNi 0.79 Co 0.18 Al 0.03 O 2 was used as the positive electrode active material.
(比較例1)
 図5及び図6に示すように第2負極集電体露出部33bにも負極リード35を接合し、電極体の最外周にセパレータを配置したこと以外は実施例1と同様にして比較例1に係る非水電解質二次電池を作製した。
(Comparative Example 1)
As shown in FIGS. 5 and 6, Comparative Example 1 was performed in the same manner as in Example 1 except that the negative electrode lead 35 was bonded to the second negative electrode current collector exposed portion 33b and a separator was disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
(比較例2)
 図5及び図6に示すように第2負極集電体露出部33bにも負極リード35を接合し、電極体の最外周にセパレータを配置したこと以外は実施例2と同様にして比較例2に係る非水電解質二次電池を作製した。
(Comparative Example 2)
As shown in FIGS. 5 and 6, Comparative Example 2 was performed in the same manner as in Example 2 except that the negative electrode lead 35 was bonded to the second negative electrode current collector exposed portion 33b and a separator was disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
(比較例3)
 正極活物質としてLiCoOを用いたこと以外は実施例1と同様にして比較例3に係る非水電解質二次電池を作製した。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material.
(比較例4)
 図5及び図6に示すように第2負極集電体露出部33bにも負極リード35を接合し、電極体の最外周にセパレータを配置したこと以外は比較例3と同様にして比較例4に係る非水電解質二次電池を作製した。
(Comparative Example 4)
As shown in FIGS. 5 and 6, Comparative Example 4 is the same as Comparative Example 3 except that the negative electrode lead 35 is bonded to the second negative electrode current collector exposed portion 33 b and a separator is disposed on the outermost periphery of the electrode body. The nonaqueous electrolyte secondary battery which concerns on was produced.
(内部抵抗の測定)
 実施例1、2及び比較例1~4に係る各電池について、充電深度(SOC)が100%、50%、30%、及び10%における内部抵抗を交流四端子法で測定した。まず、各電池を電池電圧が4.2Vになるまで0.5Itの定電流で充電して各電池の充電深度(SOC)を100%にした。このときの各電池の内部抵抗を測定した後、各電池を0.5Itの定電流で放電した。放電中に充電深度(SOC)が50%、30%、及び10%に到達した各時点で放電を一旦停止して各電池の内部抵抗を測定した。測定結果を表1に示す。なお、0.5Itは満充電の電池を1時間で放電させることができる電流値(1It)の半分である。
(Measurement of internal resistance)
For each of the batteries according to Examples 1 and 2 and Comparative Examples 1 to 4, the internal resistance at a charging depth (SOC) of 100%, 50%, 30%, and 10% was measured by the AC four-terminal method. First, each battery was charged with a constant current of 0.5 It until the battery voltage reached 4.2 V, and the charging depth (SOC) of each battery was set to 100%. After measuring the internal resistance of each battery at this time, each battery was discharged at a constant current of 0.5 It. At each time point when the depth of charge (SOC) reached 50%, 30%, and 10% during discharging, discharging was temporarily stopped and the internal resistance of each battery was measured. The measurement results are shown in Table 1. Note that 0.5 It is half of the current value (1 It) that can discharge a fully charged battery in one hour.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、充電深度(SOC)が30%から100%の範囲では正極活物質の種類や負極リードの数によらず内部抵抗に差はみられないが、充電深度(SOC)が10%の場合には内部抵抗に差がみられる。以下、各実施例及び比較例について充電深度(SOC)が10%の場合の結果を対比して本発明の効果を説明する。 As shown in Table 1, there is no difference in internal resistance regardless of the type of positive electrode active material and the number of negative electrode leads when the depth of charge (SOC) is in the range of 30% to 100%. In some cases, there is a difference in internal resistance. Hereinafter, the effects of the present invention will be described by comparing the results when the depth of charge (SOC) is 10% for each of the examples and comparative examples.
 負極板の両端に負極リードが接合された比較例1、2、及び4はいずれも内部抵抗は15mΩと、正極活物質による内部抵抗への影響はみられていない。ところが、負極板の巻き終り側に負極リードを接合せずに負極集電体露出部を外装缶の内側面に接触させた実施例1、2及び比較例3を比較すると正極活物質によって内部抵抗に差がみられる。リチウムニッケル複合酸化物を用いた実施例1及び2の内部抵抗はリチウムコバルト複合酸化物を用いた比較例3の内部抵抗より小さい。浅い充電深度においても、リチウムニッケル複合酸化物の膨張量がリチウムコバルト複合酸化物の膨張量よりも大きいため、負極集電体露出部と外装缶の内側面の接触抵抗の増加が抑制されたものと推察される。以上の結果から、電極体の最外周に配置された負極集電体露出部と外装缶の内側面を確実に接触させるために正極活物質としてリチウムニッケル複合酸化物を用いることが好ましいことがわかる。 In Comparative Examples 1, 2, and 4 in which the negative electrode lead was bonded to both ends of the negative electrode plate, the internal resistance was 15 mΩ, and the positive electrode active material did not affect the internal resistance. However, when comparing Examples 1, 2 and Comparative Example 3 in which the negative electrode current collector exposed portion was brought into contact with the inner surface of the outer can without joining the negative electrode lead to the end of winding of the negative electrode plate, the internal resistance was increased by the positive electrode active material. There is a difference. The internal resistance of Examples 1 and 2 using the lithium nickel composite oxide is smaller than the internal resistance of Comparative Example 3 using the lithium cobalt composite oxide. Even when the charging depth is shallow, the expansion amount of the lithium nickel composite oxide is larger than the expansion amount of the lithium cobalt composite oxide, and the increase in contact resistance between the negative electrode current collector exposed portion and the inner surface of the outer can is suppressed. It is guessed. From the above results, it can be seen that it is preferable to use a lithium nickel composite oxide as the positive electrode active material in order to ensure contact between the negative electrode current collector exposed portion arranged on the outermost periphery of the electrode body and the inner surface of the outer can. .
 次に、実施例1及び実施例2を比較すると、リチウムニッケル複合酸化物に含まれるニッケルの含有量が多いほうが好ましいことがわかる。実施例1の内部抵抗は、負極板の両端部に負極リードを接合した比較例1に等しい。したがって、リチウムニッケル複合酸化物に含まれるニッケルの含有量は80mol%以上であることが好ましい。サイクル特性などの電池特性を向上させるために、ニッケルの一部をコバルト、アルミニウム、及びマンガンからなる群から選ばれる少なくとも1つの元素で置換することができる。すなわち、正極活物質として一般式LiNi1-x(0<a≦1.2,0.8≦x≦1、MはCo,Al,及びMnからなる群から選ばれる少なくとも1つの元素である。)で表されるリチウムニッケル複合酸化物を用いることがより好ましい。 Next, when Example 1 and Example 2 are compared, it can be seen that a higher content of nickel contained in the lithium nickel composite oxide is preferable. The internal resistance of Example 1 is equal to Comparative Example 1 in which the negative electrode lead is joined to both ends of the negative electrode plate. Therefore, the content of nickel contained in the lithium nickel composite oxide is preferably 80 mol% or more. In order to improve battery characteristics such as cycle characteristics, a part of nickel can be replaced with at least one element selected from the group consisting of cobalt, aluminum, and manganese. That is, as the positive electrode active material, the general formula Li a Ni x M 1-x O 2 (0 <a ≦ 1.2, 0.8 ≦ x ≦ 1, M is at least selected from the group consisting of Co, Al, and Mn. It is more preferable to use a lithium nickel composite oxide represented by 1 element).
 本発明によれば、製造が容易で出力特性に優れた非水電解質二次電池を提供することができる。本発明に係る非水電解質二次電池は電動工具や電気自動車などの高出力が求められる用途に適しているため、本発明の産業上の利用可能性は大きい。 According to the present invention, a non-aqueous electrolyte secondary battery that is easy to manufacture and excellent in output characteristics can be provided. Since the nonaqueous electrolyte secondary battery according to the present invention is suitable for applications requiring high output such as electric tools and electric vehicles, the industrial applicability of the present invention is great.
10   非水電解質二次電池
11   セパレータ
14   電極体
15   巻き止めテープ
17   封口体
18   外装缶
21   正極板
22   正極活物質層
23   正極集電体露出部
24   正極リード
31   負極板
32   負極活物質層
33a  第1負極集電体露出部
33b  第2負極集電体露出部
34   負極リード
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Separator 14 Electrode body 15 Winding tape 17 Sealing body 18 Outer can 21 Positive electrode plate 22 Positive electrode active material layer 23 Positive electrode collector exposed part 24 Positive electrode lead 31 Negative electrode plate 32 Negative electrode active material layer 33a 1 negative electrode current collector exposed portion 33b second negative electrode current collector exposed portion 34 negative electrode lead

Claims (3)

  1.  負極集電体に負極活物質層が形成された負極板及び正極集電体に正極活物質層が形成された正極板がセパレータを介して巻回された電極体と、
     非水電解質と、
     前記電極体及び前記非水電解質を収容する有底筒状の外装缶と、
     前記外装缶の開口部を封止する封口体と、を備え、
     前記負極板が巻き始め側の端部及び巻き終り側の端部にそれぞれ負極活物質層が形成されていない第1負極集電体露出部及び第2負極集電体露出部を有し、
     前記第1負極集電体露出部に負極リードが接合され、
     前記第2負極集電体の少なくとも一部が前記外装缶の内側面に接触し、
     前記正極活物質層がリチウムニッケル複合酸化物を含む、
     非水電解質二次電池。
    A negative electrode plate in which a negative electrode active material layer is formed on a negative electrode current collector, and an electrode body in which a positive electrode plate in which a positive electrode active material layer is formed on a positive electrode current collector is wound through a separator;
    A non-aqueous electrolyte,
    A bottomed cylindrical outer can containing the electrode body and the non-aqueous electrolyte;
    A sealing body for sealing the opening of the outer can,
    The negative electrode plate has a first negative electrode current collector exposed portion and a second negative electrode current collector exposed portion in which a negative electrode active material layer is not formed respectively at an end portion on a winding start side and an end portion on a winding end side,
    A negative electrode lead is joined to the exposed portion of the first negative electrode current collector,
    At least a portion of the second negative electrode current collector is in contact with an inner surface of the outer can,
    The positive electrode active material layer includes a lithium nickel composite oxide;
    Non-aqueous electrolyte secondary battery.
  2.  前記リチウムニッケル複合酸化物がニッケルを80mol%以上含む請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium nickel composite oxide contains 80 mol% or more of nickel.
  3.  負極集電体に負極活物質層が形成された負極板及び正極集電体に正極活物質層が形成された正極板がセパレータを介して巻回された電極体と、
     非水電解質と、
     前記電極体及び前記非水電解質を収容する有底筒状の外装缶と、
     前記外装缶の開口部を封止する封口体と、を備え、
     前記負極板が巻き始め側の端部及び巻き終り側の端部にそれぞれ負極活物質層が形成されていない第1負極集電体露出部及び第2負極集電体露出部を有し、
     前記第1負極集電体露出部に負極リードが接合され、
     前記第2負極集電体の少なくとも一部が前記外装缶の内側面に接触し、
     前記正極活物質層が一般式LiaNix1-x2(0<a≦1.2、0.8≦x≦1、MはCo,Mn,及びAlからなる群から選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物を含む、
     非水電解質二次電池。
    A negative electrode plate in which a negative electrode active material layer is formed on a negative electrode current collector, and an electrode body in which a positive electrode plate in which a positive electrode active material layer is formed on a positive electrode current collector is wound through a separator;
    A non-aqueous electrolyte,
    A bottomed cylindrical outer can containing the electrode body and the non-aqueous electrolyte;
    A sealing body for sealing the opening of the outer can,
    The negative electrode plate has a first negative electrode current collector exposed portion and a second negative electrode current collector exposed portion in which a negative electrode active material layer is not formed respectively at an end portion on a winding start side and an end portion on a winding end side,
    A negative electrode lead is joined to the exposed portion of the first negative electrode current collector,
    At least a portion of the second negative electrode current collector is in contact with an inner surface of the outer can,
    The positive electrode active material layer has a general formula Li a Ni x M 1-x O 2 (0 <a ≦ 1.2, 0.8 ≦ x ≦ 1, M is at least selected from the group consisting of Co, Mn, and Al) A lithium nickel composite oxide represented by one element),
    Non-aqueous electrolyte secondary battery.
PCT/JP2016/005175 2016-01-12 2016-12-19 Non-aqueous electrolyte secondary battery WO2017122251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003153 2016-01-12
JP2016-003153 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122251A1 true WO2017122251A1 (en) 2017-07-20

Family

ID=59310929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005175 WO2017122251A1 (en) 2016-01-12 2016-12-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2017122251A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084986A1 (en) * 2018-10-26 2020-04-30 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
CN111183542A (en) * 2017-09-29 2020-05-19 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
WO2021100282A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Lithium titanate sintered body plate
CN113039662A (en) * 2018-12-19 2021-06-25 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same
WO2021153441A1 (en) * 2020-01-31 2021-08-05 三洋電機株式会社 Non-aqueous electrolytic secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
WO2012042830A1 (en) * 2010-09-30 2012-04-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2016147564A1 (en) * 2015-03-13 2016-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
WO2012042830A1 (en) * 2010-09-30 2012-04-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2016147564A1 (en) * 2015-03-13 2016-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183542A (en) * 2017-09-29 2020-05-19 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
CN111183542B (en) * 2017-09-29 2023-06-02 松下控股株式会社 Nonaqueous electrolyte secondary battery
WO2020084986A1 (en) * 2018-10-26 2020-04-30 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
JPWO2020084986A1 (en) * 2018-10-26 2021-09-09 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
JP7320738B2 (en) 2018-10-26 2023-08-04 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
CN113039662A (en) * 2018-12-19 2021-06-25 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same
CN113039662B (en) * 2018-12-19 2023-05-05 三洋电机株式会社 Electrode plate for secondary battery and secondary battery using the same
WO2021100282A1 (en) * 2019-11-20 2021-05-27 日本碍子株式会社 Lithium titanate sintered body plate
JPWO2021100282A1 (en) * 2019-11-20 2021-05-27
WO2021153441A1 (en) * 2020-01-31 2021-08-05 三洋電機株式会社 Non-aqueous electrolytic secondary battery

Similar Documents

Publication Publication Date Title
JP4743752B2 (en) Lithium ion secondary battery
CN108352491B (en) Nonaqueous electrolyte secondary battery
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
JP6138436B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2014035923A (en) Non-aqueous electrolyte secondary battery
JP2014035922A (en) Nonaqueous electrolyte secondary battery
JP2014035929A (en) Nonaqueous electrolyte secondary battery
WO2016013179A1 (en) Non-aqueous electrolyte secondary battery
JP2016085838A (en) Lithium ion secondary battery
JP2015082381A (en) Nonaqueous electrolyte secondary battery
US11456460B2 (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2012174387A (en) Electrode plate for battery, and battery using it
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP5413945B2 (en) Multilayer laminated nonaqueous electrolyte secondary battery
JP2014035924A (en) Nonaqueous electrolyte secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2001229970A (en) Cylindrical lithium battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
WO2020137818A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
WO2017051516A1 (en) Non-aqueous electrolyte secondary battery
JP2016085884A (en) battery
JP2019153539A (en) Nonaqueous electrolyte secondary battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP