JP2001229970A - Cylindrical lithium battery - Google Patents

Cylindrical lithium battery

Info

Publication number
JP2001229970A
JP2001229970A JP2000037470A JP2000037470A JP2001229970A JP 2001229970 A JP2001229970 A JP 2001229970A JP 2000037470 A JP2000037470 A JP 2000037470A JP 2000037470 A JP2000037470 A JP 2000037470A JP 2001229970 A JP2001229970 A JP 2001229970A
Authority
JP
Japan
Prior art keywords
electrode plate
winding
separators
negative electrode
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000037470A
Other languages
Japanese (ja)
Inventor
Tomohiro Iguchi
智博 井口
Koji Higashimoto
晃二 東本
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000037470A priority Critical patent/JP2001229970A/en
Publication of JP2001229970A publication Critical patent/JP2001229970A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery, in which positioning of separators, cathode plate and a anode plate at its winding is easy and which hardly causes winding slip pages and a short circuit. SOLUTION: Separators 24 made polyethylene are double-overlapped and the top end parts of them are welded and integrated. Then, at places of an axial core 21, a pair of the top end parts of the integrated separators 24 are welded and jointed. Then, the separators between an cathode plate 22 and an anode plate 23 are wound around in a two-piece state to make wound-around groups 6, and by using the wound-around groups 6, a cylindrical lithium ion battery is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒形リチウムイ
オン電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical lithium ion battery.

【0002】[0002]

【従来の技術】リチウムイオン電池は高エネルギー密度
であるメリットを活かして、主にVTRカメラやノート
型パソコン、携帯電話などのポータブル機器に使用され
ている。近年は電気自動車用や電力貯蔵用を目的とす
る、大形のリチウムイオン電池の研究開発が活発に行わ
れている。特に、自動車産業界においては環境問題に対
応すべく、動力源としてモータを用いる方式の電気自動
車や、動力源として内燃機関とモータの両方を用いるハ
イブリッド方式の電気自動車の開発が進められており、
その一部はすでに実用化されている。
2. Description of the Related Art Lithium ion batteries are mainly used for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. In recent years, research and development of large-sized lithium-ion batteries for electric vehicles and power storage have been actively conducted. In particular, in the automobile industry, development of electric vehicles using a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor as a power source has been promoted in order to respond to environmental issues.
Some of them are already in practical use.

【0003】しかしながら、これらに使用する大形のリ
チウムイオン電池は、高容量、高出力であるとともに、
安全性が強く要求されている。従来の円筒形リチウムイ
オン電池において、高容量化が強く要求されるため、正
極板及び負極板間のセパレータは1枚であった。しかし
ながら、1枚のセパレータでは、正極板と負極板とが短
絡を起こす場合が認められた。すなわち、円筒形リチウ
ムイオン電池の作製時において、正極板とセパレータと
の間又は負極板とセパレータとの間に異物が混入する
と、それが突起物となり、捲回時にセパレータを突き破
り正極板と負極板との間で短絡を起こす場合が認められ
た。また、円筒形リチウムイオン電池の使用時におい
て、セパレータにあらかじめ形成されているピンホール
から短絡を起こす場合も認められた。
[0003] However, large-sized lithium-ion batteries used for these devices have high capacity and high output,
Security is strongly required. In a conventional cylindrical lithium ion battery, since high capacity is strongly required, the number of separators between the positive electrode plate and the negative electrode plate is one. However, with one separator, a case where a short circuit occurred between the positive electrode plate and the negative electrode plate was observed. That is, during the production of a cylindrical lithium-ion battery, when foreign matter is mixed between the positive electrode plate and the separator or between the negative electrode plate and the separator, it becomes a protrusion, which breaks through the separator during winding and breaks the positive electrode plate and the negative electrode plate. In some cases, a short circuit occurred between them. In addition, when using the cylindrical lithium ion battery, a case where a short circuit was generated from a pinhole formed in advance in the separator was also recognized.

【0004】これらの問題点を解決するために、セパレ
ータの厚みを厚くするという方法が検討されている。し
かしながら、セパレータを厚くした場合には、異物の混
入による短絡は防止できるものの、あらかじめ形成され
ているピンホールによる短絡を抑えることはできない。
In order to solve these problems, a method of increasing the thickness of the separator has been studied. However, when the separator is thickened, short-circuiting due to foreign matter can be prevented, but short-circuiting due to pinholes formed in advance cannot be suppressed.

【0005】そこで、セパレータを複数枚重ねにするこ
とによりピンホールの短絡を抑える手法が検討されてい
る。しかしながら、この方法を用いると、セパレータ、
正極板、負極板の位置合わせが難しくなることや、また
捲回時には巻ずれを起こしやすいため、生産効率が落ち
るという問題点がある。
[0005] In view of this, a method of suppressing a short circuit of a pinhole by stacking a plurality of separators has been studied. However, using this method, the separator,
There are problems in that the positioning of the positive electrode plate and the negative electrode plate becomes difficult, and that the winding is likely to be displaced at the time of winding, thereby lowering production efficiency.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、セパ
レータ、正極板、負極板の位置合わせが容易であり、捲
回時に巻ずれや短絡が起こりにくい円筒形リチウムイオ
ン電池を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cylindrical lithium ion battery in which a separator, a positive electrode plate, and a negative electrode plate can be easily aligned, and winding or short circuit does not easily occur during winding. is there.

【0007】[0007]

【課題を解決するための手段】そこで、上記した課題を
解決するために、第一の発明は、正極板、負極板をセパ
レータを介して軸芯のまわりに捲回して捲回群を作成
し、該捲回群を円筒形電池容器に収納した円筒形リチウ
ムイオン電池において、前記捲回群は、前記正極板と前
記負極板との間に2枚重ねをしたセパレータを2組用
い、該セパレータのそれぞれの先端部分は溶着により一
体化されており、該一体化された先端部分のそれぞれは
前記軸芯の異なる位置に接合されていることを特徴とし
ている。
In order to solve the above-mentioned problems, a first invention is to form a winding group by winding a positive electrode plate and a negative electrode plate around an axis through a separator. A cylindrical lithium-ion battery in which the winding group is housed in a cylindrical battery container, wherein the winding group uses two sets of separators stacked between the positive electrode plate and the negative electrode plate; Are integrated by welding, and each of the integrated distal portions is joined to a different position of the axis.

【0008】第二の発明は、前記セパレータの一体化さ
れた先端部分は、前記軸芯に溶着により接合されている
ことを特徴とし、第三の発明は、前記セパレータの一体
化された先端部分は、前記軸芯に粘着テープにより接合
されていることを特徴とするものである。
[0008] A second invention is characterized in that the integrated tip portion of the separator is joined to the shaft core by welding, and the third invention is characterized in that the integrated tip portion of the separator is provided. Is characterized by being joined to the shaft core by an adhesive tape.

【0009】[0009]

【発明の実施の形態】1.正極板の作製 正極用活物質であるマンガン酸リチウム(LiMn2O4)粉
末と、導電剤として鱗片状黒鉛(平均粒径:20μm)
と、結着剤としてポリフッ化ビニリデンとを、質量比が
90:4.5:5.5で混合し、この混合物に分散溶媒としてN
−メチル−2−ピロリドンを添加した後、混練してスラ
リを作成する。このスラリを厚み20μmのアルミニウム
箔(正極集電体)の両面に塗布して正極合剤層とした。
スラリの塗布の際には、アルミニウム箔の長寸方向に対
して、側縁の一方に幅50mmの未塗布部分を残した。その
後、乾燥、プレス、裁断して幅300mm、長さが5500mmの
正極板を得た。なお、正極合剤層の厚さ(ただし、集電
体の厚さは含まない)を260μm、集電体片面あたりの
正極活物質塗布量を344g/m2とした。
BEST MODE FOR CARRYING OUT THE INVENTION Preparation of positive electrode plate Lithium manganate (LiMn 2 O 4 ) powder, which is an active material for the positive electrode, and flaky graphite as a conductive agent (average particle size: 20 μm)
And polyvinylidene fluoride as a binder, and the mass ratio is
90: 4.5: 5.5, and this mixture was mixed with N
After adding -methyl-2-pyrrolidone, knead to form a slurry. This slurry was applied to both sides of a 20 μm-thick aluminum foil (positive electrode current collector) to form a positive electrode mixture layer.
When the slurry was applied, an uncoated portion having a width of 50 mm was left on one of the side edges in the longitudinal direction of the aluminum foil. Thereafter, drying, pressing and cutting were performed to obtain a positive electrode plate having a width of 300 mm and a length of 5500 mm. The thickness of the positive electrode mixture layer (however, the thickness of the current collector was not included) was 260 μm, and the coating amount of the positive electrode active material per one side of the current collector was 344 g / m 2 .

【0010】上記した、正極板に形成した幅50mmの未塗
布部の一部を除去し、矩形状の部分を形成して集電用の
リード片9として用いた。なお、リード片9の幅を約10m
m、隣り合うリード片9の間隔を約20mmにした。
A portion of the uncoated portion having a width of 50 mm formed on the positive electrode plate was removed to form a rectangular portion, which was used as a lead piece 9 for current collection. Note that the width of the lead piece 9 is about 10 m
m, the interval between adjacent lead pieces 9 was set to about 20 mm.

【0011】2.負極板の作製 負極用活物質として、非晶質炭素であるカーボトロンP
(商品名:呉羽化学工業株式会社製)87.6質量部に、導
電助剤として気相成長炭素繊維(商品名:VGCF、昭
和電工(株)社製、以下VGCFと略す)を4.8質量
部、結着剤として7.6質量部のポリフッ化ビニリデンを
添加し、これに分散溶媒のN−メチル−2−ピロリドン
を添加後、混練してスラリを作成する。このスラリを、
厚みが10μmの圧延銅箔(負極集電体)の両面に塗布し
た。スラリの塗布の際には、銅箔の長寸方向に対して、
側縁の一方に幅50mmの未塗布部を残した。その後乾燥、
プレス、裁断して幅305mm、所定長さの負極板を得た。
負極合剤層の厚さ(集電体厚さは含まない。)を167μ
m、長さを5680mm、集電体片面あたりの負極活物質塗布
量を81.8g/m2とした負極板を作製した。負極合剤層のか
さ密度は0.98g/cm3とした。
2. Preparation of negative electrode plate Carbotron P which is amorphous carbon as the negative electrode active material
4.8 parts by mass of a vapor-grown carbon fiber (trade name: VGCF, manufactured by Showa Denko KK, hereinafter abbreviated as VGCF) as a conductive additive to 87.6 parts by mass (trade name: manufactured by Kureha Chemical Industry Co., Ltd.) A slurry is prepared by adding 7.6 parts by mass of polyvinylidene fluoride as a binder, adding N-methyl-2-pyrrolidone as a dispersion solvent to the mixture, and kneading the mixture. This slurry,
It was applied to both sides of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. When applying the slurry,
An uncoated portion having a width of 50 mm was left on one of the side edges. Then drying,
The negative electrode plate having a width of 305 mm and a predetermined length was obtained by pressing and cutting.
The thickness of the negative electrode mixture layer (not including the current collector thickness) is 167 μm
m, a length of 5680 mm, and a negative electrode plate having a negative electrode active material application amount of 81.8 g / m 2 per one surface of the current collector were produced. The bulk density of the negative electrode mixture layer was 0.98 g / cm 3 .

【0012】上記した、負極板に形成した幅50mmの未塗
布部に切り欠きを入れて、その一部を除去し、矩形状の
部分を形成して集電用のリード片9として用いた。な
お、リード片9の幅を約10mm、隣り合うリード片9の間隔
を約20mmにした。
A cutout was made in the above-mentioned uncoated portion having a width of 50 mm formed on the negative electrode plate, a part thereof was removed, and a rectangular portion was formed to be used as a lead piece 9 for current collection. The width of the lead pieces 9 was set to about 10 mm, and the interval between the adjacent lead pieces 9 was set to about 20 mm.

【0013】なお、正極板と負極板の幅方向において
も、正極用活物質の塗布部と負極用活物質の塗布部と対
向に位置ズレが起きないように、負極用活物質の塗布部
の幅は、正極用活物質の塗布部の幅よりも大きくした。
In the width direction of the positive electrode plate and the negative electrode plate, the application area of the negative electrode active material is applied so that the application area of the positive electrode active material and the application area of the negative electrode active material do not shift. The width was larger than the width of the coated portion of the positive electrode active material.

【0014】3.電池の作製 上記した正極板と負極板を、後述する作成方法で厚みが
40μmのポリエチレン製セパレータを挟んだ状態で捲回
して捲回群6を作成する。正極板のリード片9と負極板の
リード片9が、それぞれ捲回群6の反対側に位置するよう
に捲回した。捲回時に正極板、負極板又はセパレ−タを
適当な長さで切断することにより、前記捲回群6の直径
を65±0.1mmとした。
3. Production of Battery The above positive electrode plate and negative electrode plate were
A group of windings 6 is formed by winding with a polyethylene separator of 40 μm sandwiched therebetween. The lead pieces 9 of the positive electrode plate and the lead pieces 9 of the negative electrode plate were wound so as to be located on opposite sides of the winding group 6, respectively. By cutting the positive electrode plate, the negative electrode plate or the separator at an appropriate length during winding, the diameter of the winding group 6 was set to 65 ± 0.1 mm.

【0015】図1に示すように、正極板から導出されて
いるリード片9は、集めて束にした状態で折り曲げて変
形させた後、正極外部端子1aに形成した鍔部7に接触さ
せる。そして、リード片9と鍔部7とを、超音波溶接装置
を用いて溶接して電気的に接続する。なお、負極板につ
いても同様に、リード片9と負極外部端子1bに形成した
鍔部7とを超音波溶接して電気的に接続した。
As shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are bent and deformed in a state of being collected and bundled, and then brought into contact with a flange 7 formed on the positive electrode external terminal 1a. Then, the lead piece 9 and the flange 7 are welded using an ultrasonic welding device to be electrically connected. In the same manner, for the negative electrode plate, the lead piece 9 and the flange portion 7 formed on the negative electrode external terminal 1b were electrically connected by ultrasonic welding.

【0016】その後、正極外部端子1aの鍔部7、負極外
部端子1bの鍔部7及び捲回群6の外周面全体を絶縁被覆8
で覆う。この絶縁被覆8として、片面にヘキサメタアク
リレートからなる粘着剤を塗布したポリイミド製の粘着
テープを用いた。捲回群6の外周部分が絶縁被覆8で覆わ
れ、ステンレス製の電池容器5の内径よりも僅かに小さ
くなるように前記粘着テープの巻き数を調整した後、前
記捲回群6を電池容器5内に挿入する。なお、電池容器5
は、外形が67mm、内径が66mmの円筒形状をしたものであ
る。
Thereafter, the entire outer peripheral surface of the flange portion 7 of the positive electrode external terminal 1a, the flange portion 7 of the negative electrode external terminal 1b, and the winding group 6 is insulated 8
Cover with. As the insulating coating 8, an adhesive tape made of polyimide having an adhesive made of hexamethacrylate coated on one side was used. After adjusting the number of turns of the adhesive tape so that the outer peripheral portion of the winding group 6 is covered with the insulating coating 8 and slightly smaller than the inner diameter of the stainless steel battery container 5, the winding group 6 is removed from the battery container. Insert into 5. The battery container 5
Has a cylindrical shape with an outer shape of 67 mm and an inner diameter of 66 mm.

【0017】次に、電池蓋4の外側の面と当接する部分
の厚さが2mm、内径が16mm、外径が25mmの第2のセラミ
ックワッシャ3bを、正極外部端子1a及び負極外部端子1b
のそれぞれの先端に嵌め込む。そして、第1のセラミッ
クワッシャ3aを電池蓋4に載置し、正極外部端子1a、負
極外部端子1bのそれぞれを第1のセラミックワッシャ3a
に通す。
Next, a second ceramic washer 3b having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm at a portion in contact with the outer surface of the battery cover 4 is connected to the positive external terminal 1a and the negative external terminal 1b.
Into each tip. Then, the first ceramic washer 3a is placed on the battery cover 4, and each of the positive external terminal 1a and the negative external terminal 1b is connected to the first ceramic washer 3a.
Through.

【0018】その後、円盤状をした電池蓋4の周端面を
電池容器5の開口部に嵌合し、電池蓋4と電池容器5の接
触部分の全域をレ−ザ溶接する。このとき正極外部端子
1a、負極外部端子1bは、電池蓋4の中心にある穴を貫通
して外部に突出している。そして、厚みが2mm、内径が1
6mm、外径が28mm平板状の第1のセラミックワッシャ3
a、ナット2底面よりも平滑な金属ワッシャ11を、この順
に正極外部端子1a、負極外部端子1bのそれぞれ嵌め込
む。電池蓋4には、電池の内部圧力の上昇に応じて開裂
する開裂弁10が設けられており、その開裂圧力は13〜18
kg/cm2とした。なお、上記したように本電池には、電池
内部の圧力上昇に応じて作動する電流遮断機構は設けら
れていない。
Thereafter, the peripheral end surface of the battery lid 4 having a disk shape is fitted into the opening of the battery container 5 and the entire area of the contact portion between the battery lid 4 and the battery container 5 is laser-welded. At this time, the positive external terminal
1a, the negative electrode external terminal 1b protrudes outside through a hole in the center of the battery lid 4. And the thickness is 2mm, inner diameter is 1
6mm, 28mm outside diameter plate-shaped first ceramic washer 3
a, a metal washer 11 smoother than the bottom surface of the nut 2 is fitted into the positive external terminal 1a and the negative external terminal 1b in this order. The battery lid 4 is provided with a cleavage valve 10 that is cleaved in response to an increase in the internal pressure of the battery.
kg / cm 2 . As described above, the present battery is not provided with a current cutoff mechanism that operates in response to a rise in pressure inside the battery.

【0019】金属製のナット2を、正極外部端子1a、負
極外部端子1bにそれぞれ螺着し、第2のセラミックワッ
シャ3b、第1のセラミックワッシャ3aを介して電池蓋4
を鍔部7とナット2の間で締め付けて固定する。この時の
締め付けトルク値は、6.86N・mである。電池蓋4の裏面と
鍔部7の間に介在させたゴム製(EPDM製)のOリン
グ12を締め付け時に圧縮することにより、電池容器内部
の発電要素等は外気から遮断される。
A metal nut 2 is screwed to the positive external terminal 1a and the negative external terminal 1b, respectively, and the battery cover 4 is connected via the second ceramic washer 3b and the first ceramic washer 3a.
Is fixed between the collar 7 and the nut 2. The tightening torque value at this time is 6.86 N · m. By compressing the O-ring 12 made of rubber (made of EPDM) interposed between the back surface of the battery lid 4 and the flange portion 7 at the time of tightening, the power generating elements and the like inside the battery container are shut off from the outside air.

【0020】電池蓋4に設けた注液口13から、所定量の
電解液を電池容器5内に注入した後、注液口13を封止す
ることにより円筒形リチウムイオン電池が完成する。電
解液は、エチレンカーボネート、ジメチルカーボネー
ト、ジエチルカ−ボネ−トを体積比が1:1:1で混合
した後、6フッ化リン酸リチウム(LiPF6)を1mol
/l溶解した有機電解液を用いた。
After a predetermined amount of electrolyte is injected into the battery container 5 from the liquid inlet 13 provided in the battery cover 4, the liquid inlet 13 is sealed to complete a cylindrical lithium ion battery. The electrolyte was prepared by mixing ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1, and then adding 1 mol of lithium hexafluorophosphate (LiPF 6 ).
/ l dissolved organic electrolyte was used.

【0021】4.充放電サイクル試験 作製した円筒形リチウムイオン電池は、25℃にて、以下
の条件で初期の充放電試験をして初期の放電容量を測定
する。 充電条件:4.2V(定電圧充電)、90A(制限電流)、3.5
h、25℃ 放電条件:30A(定電流放電)、終止電圧2.7V、25℃ 初期の放電容量を測定した円筒形リチウムイオン電池の
一部は、25℃にて、上記した条件で充放電サイクル試験
をし、200サイクル目の放電容量を測定した。また、200
サイクル充放電をした後、満充電状態で放置することに
より微少な短絡発生の状況についても測定した。
4. Charge / discharge cycle test The prepared cylindrical lithium ion battery is subjected to an initial charge / discharge test at 25 ° C under the following conditions to measure an initial discharge capacity. Charging conditions: 4.2V (constant voltage charging), 90A (limit current), 3.5
h, 25 ° C Discharge conditions: 30A (constant current discharge), cut-off voltage 2.7V, 25 ° C A part of the cylindrical lithium ion battery whose initial discharge capacity was measured was charged and discharged at 25 ° C under the above conditions. A test was performed and the discharge capacity at the 200th cycle was measured. Also, 200
After cycling charge and discharge, the state of the occurrence of a minute short circuit was measured by being left in a fully charged state.

【0022】5.放置試験 初期の放電試験をした円筒形リチウムイオン電池の一部
は、50℃、満充電状態にて4週間放置した後、25℃にて
30A(定電流放電)、終止電圧2.7Vまで放電する。そし
て、以下の条件で充放電試験をして放電容量を測定し
た。 充電条件:4.2V(定電圧充電)、90A(制限電流)、3.5
h、25℃ 放電条件:30A(定電流放電)、終止電圧2.7V、25℃
5. Leaving test Part of the cylindrical lithium-ion battery that was subjected to the initial discharge test was left at 50 ° C and fully charged for 4 weeks, and then left at 25 ° C.
Discharge to 30A (constant current discharge), 2.7V cutoff voltage. Then, a charge / discharge test was performed under the following conditions to measure a discharge capacity. Charging conditions: 4.2V (constant voltage charging), 90A (limit current), 3.5
h, 25 ° C Discharge conditions: 30A (constant current discharge), final voltage 2.7V, 25 ° C

【0023】[0023]

【実施例】以下に本発明を実施した結果を詳細に説明す
る。 (比較例1)図3に示すように、前記ポリエチレン製の
セパレータ24を折った状態で使用した。そして、軸芯21
にこのセパレータ24の先端部分を接触させ、正極板22及
び負極板23の間のセパレータ24を1枚とした状態で捲回
して捲回群6を作製した。その他の円筒形リチウムイオ
ン電池の作製条件や試験条件は上記したものである。 (比較例2)図4に示すように、前記ポリエチレン製の
セパレータ24を2枚重ねた状態で使用した。そして、軸
芯21にこのセパレータ24の先端部分を接触させ、正極板
22及び負極板23の間のセパレータ24を1枚とした状態で
捲回して捲回群6を作製した。その他の円筒形リチウム
イオン電池の作製条件や試験条件は上記したものであ
る。なお、従来はこの手法で捲回群を作製していた。 (比較例3)図5に示すように、前記ポリエチレン製の
セパレータ24を4枚重ねた状態で使用した。そして、軸
芯21にこのセパレータ24の先端部分を接触させ、正極板
22及び負極板23の間のセパレータ24を2枚とした状態で
捲回して捲回群6を作製した。その他の円筒形リチウム
イオン電池の作製条件や試験条件は上記したものであ
る。 (実施例1)前記ポリエチレン製のセパレータ24を2枚
重ねた後に、その先端を溶着して一体化したものを2組
用いる。そして、図1に示すように、軸芯21の2ヶ所に
前記一体化したそれぞれのセパレータ24の先端部分を溶
着して接合した後、正極板22及び負極板23を挿入した状
態で捲回して捲回群6を作製した。その他の円筒形リチ
ウムイオン電池の作製条件や試験条件は上記したもので
ある。 (実施例2)前記ポリエチレン製のセパレータ24を2枚
重ねた後に、その先端を溶着して一体化したものを2組
用いる。そして、図2に示すように、軸芯21の2ヶ所に
前記一体化したそれぞれのセパレータ24の先端部分を粘
着テープ27で接合した後、正極板22及び負極板23を挿入
した状態で捲回して捲回群6を作製した。その他の円筒
形リチウムイオン電池の作製条件や試験条件は上記した
ものである。
The results of the present invention will be described in detail below. Comparative Example 1 As shown in FIG. 3, the polyethylene separator 24 was used in a folded state. And the axis 21
Then, the leading end portion of the separator 24 was brought into contact with the separator 24, and the separator 24 between the positive electrode plate 22 and the negative electrode plate 23 was wound into a single sheet to form a winding group 6. Other fabrication conditions and test conditions for the cylindrical lithium ion battery are as described above. Comparative Example 2 As shown in FIG. 4, two polyethylene separators 24 were used. Then, the front end portion of the separator 24 is brought into contact with the shaft core 21 and the positive electrode plate
The winding group 6 was prepared by winding the separator 24 between the 22 and the negative electrode plate 23 into one sheet. Other fabrication conditions and test conditions for the cylindrical lithium ion battery are as described above. Heretofore, a winding group has been produced by this method. Comparative Example 3 As shown in FIG. 5, four polyethylene separators 24 were used. Then, the front end portion of the separator 24 is brought into contact with the shaft core 21 and the positive electrode plate
The winding group 6 was prepared by winding the separator 24 between the 22 and the negative electrode plate 23 in two sheets. Other fabrication conditions and test conditions for the cylindrical lithium ion battery are as described above. (Embodiment 1) After two polyethylene separators 24 are stacked, two sets are used in which the ends are welded and integrated. Then, as shown in FIG. 1, after welding and joining the tip portions of the respective integrated separators 24 to two places of the shaft core 21, the positive electrode plate 22 and the negative electrode plate 23 are inserted and wound. A winding group 6 was produced. Other fabrication conditions and test conditions for the cylindrical lithium ion battery are as described above. (Embodiment 2) After two sheets of the above-mentioned polyethylene separator 24 are stacked, two sets are used in which the ends are welded and integrated. Then, as shown in FIG. 2, after joining the tip portions of the integrated separators 24 at two places of the shaft core 21 with an adhesive tape 27, winding is performed with the positive electrode plate 22 and the negative electrode plate 23 inserted. To form a winding group 6. Other fabrication conditions and test conditions for the cylindrical lithium ion battery are as described above.

【0024】表1に上記した条件で試験した結果を示
す。表1より、比較例1のセパレータ24を折り込んだも
のよりも、比較例2、3のセパレータ24を2枚重ねた方
が、捲回時の巻きずれが少なくなっている。しかしなが
ら、詳細に比較すると比較例3は比較例2に比べて、捲
回時の巻きずれの発生率がやや高くなっており好ましく
ない。
Table 1 shows the results of the test performed under the above conditions. As shown in Table 1, when two separators 24 of Comparative Examples 2 and 3 are stacked, the misalignment at the time of winding is smaller than that obtained by folding the separator 24 of Comparative Example 1. However, when compared in detail, Comparative Example 3 is not preferable because the rate of occurrence of winding deviation during winding is slightly higher than that of Comparative Example 2.

【0025】また、比較例2のセパレータ24を2枚重ね
たものよりも、比較例3のセパレータ24を4枚重ねたも
のの方が200サイクル充放電後及び4週間放置後におけ
る短絡の発生が少ない。これらの理由は、それぞれのセ
パレータ24のピンホールの位置が異なっており、2枚重
ねることにより微少な短絡が起こりにくくなっているた
めと考えられる。
In addition, when two separators 24 of Comparative Example 3 are stacked, the occurrence of short-circuits after 200 cycles of charge / discharge and after standing for 4 weeks is smaller in the case where four separators 24 in Comparative Example 2 are stacked. . It is considered that the reason for this is that the positions of the pin holes of the separators 24 are different from each other, and it is difficult to cause a minute short circuit by overlapping two sheets.

【0026】本発明を用いた実施例1、2は、比較例1
〜3に比べて、セパレータ24、正極板22、負極板23の捲
回時における位置合わせが容易であるとともに、捲回時
の巻きずれや短絡率が少なく、きわめて優れている。ま
た、本発明を用いると200サイクル充放電後及び4週間
放置後における短絡の発生を大幅に抑えることができる
とともに放電容量が高い。この理由は、2枚重ねたセパ
レータ24のそれぞれを軸芯21の異なる位置に接合して作
製したため、捲回時の巻きずれが少なくなったこと及
び、セパレータ24を2枚重ねて用いることによって、そ
れぞれのセパレータ24が有するピンホールの位置がずれ
てくるため、正極板22と負極板23との間の微少な短絡が
起こりにくくなったためと考えられる。
Examples 1 and 2 using the present invention are comparative examples 1
Compared with Nos. 1 to 3, the positioning of the separator 24, the positive electrode plate 22, and the negative electrode plate 23 at the time of winding is easier, and the winding displacement and the short-circuit rate at the time of winding are small, which is extremely excellent. Further, when the present invention is used, occurrence of a short circuit after charge / discharge for 200 cycles and after standing for 4 weeks can be significantly suppressed, and the discharge capacity is high. The reason for this is that since the two separators 24 were bonded to each other at different positions of the shaft core 21 and produced, the winding deviation at the time of winding was reduced, and by using two separators 24, It is considered that the pinholes of the respective separators 24 were shifted in position, so that a minute short circuit between the positive electrode plate 22 and the negative electrode plate 23 was unlikely to occur.

【0027】[0027]

【表1】 [Table 1]

【0028】また本実施例では、大形の円筒形リチウム
イオン電池の例を示したが、有底筒状の電池容器を用
い、上蓋をかしめによって封口する比較的小形のリチウ
ムイオン電池でも同様の良好な結果が得られた。
In this embodiment, an example of a large-sized cylindrical lithium-ion battery has been described. However, the same applies to a relatively small-sized lithium-ion battery in which a bottomed cylindrical battery container is used and the upper lid is closed by caulking. Good results were obtained.

【0029】また本実施例では、片面にヘキサメタアク
リレートからなる粘着剤を塗布したポリイミド製の粘着
テープを絶縁被覆8に用いたが、これに制限されるもの
ではない。すなわち、ポリプロピレンやポリエチレン等
のポリオレフィンの片面又は両面にヘキサメタアクリレ
ートやブチルアクリレート等のアクリル系粘着剤を塗布
した粘着テープや、粘着剤を塗布しないポリオレフィン
やポリイミドからなるテープなども同様に使用できる。
In this embodiment, a polyimide adhesive tape coated with an adhesive made of hexamethacrylate on one side is used for the insulating coating 8, but the present invention is not limited to this. That is, an adhesive tape in which an acrylic adhesive such as hexamethacrylate or butyl acrylate is applied to one or both surfaces of a polyolefin such as polypropylene or polyethylene, or a tape made of polyolefin or polyimide to which no adhesive is applied can also be used.

【0030】本実施例では、正極活物質としてマンガン
酸リチウムを用いた例を示したが、リチウム・コバルト
複合酸化物やリチウム・ニッケル複合酸化物なども使用
できる。また、負極用活物質として、天然黒鉛、人造黒
鉛、コークスなどの炭素質材料等も使用でき、それらの
粒子形状においても特に制限されるものではない。
In this embodiment, an example in which lithium manganate is used as the positive electrode active material has been described, but a lithium-cobalt composite oxide, a lithium-nickel composite oxide, or the like can also be used. Further, as the negative electrode active material, carbonaceous materials such as natural graphite, artificial graphite, and coke can be used, and their particle shapes are not particularly limited.

【0031】本実施例では結着剤としてポリフッ化ブニ
リデンを使用したが、テフロン、ポリエチレン、ポリス
チレン、ポリブタジエン、ブチルゴム、ニトリルゴム、
スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロ
ース、シアノエチルセルロース、各種ラテックス、アク
リロニトリル、フッ化ビニル、フッ化ビニリデン、フッ
化プロピレン、フッ化クロロプレン等の重合体やこれら
の混合物も使用できる。
In this embodiment, poly (vinylidene fluoride) was used as the binder, but Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber,
Styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene and mixtures thereof can also be used.

【0032】電解質としては、本実施例以外でもLiCl
O4、LiAsF6、LiBF4、LiB(C6H5)4、CH3SO3Li、CF3SO3Li
等やこれらの混合物を用いることができる。なお、有機
溶媒としては、プロピレンカーボネート、エチレンカー
ボネート、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、1,3
−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエ
チルエーテル、スルホラン、メチルスルホラン、アセト
ニトリル、プロピオニトニル、または、これらの2種類
以上の混合溶媒も用いられる。
As an electrolyte, LiCl
O 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li
And mixtures thereof. In addition, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3
Dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl, or a mixed solvent of two or more of these is also used.

【0033】[0033]

【発明の効果】本発明を用いた円筒形リチウムイオン電
池は、セパレータ、正極板、負極板の位置合わせが容易
であり、捲回時に巻ずれを起こりにくくできる。さら
に、捲回時や200サイクル充放電後及び4週間放置後に
おける短絡の発生を大幅に抑えることができるととも
に、200サイクル後や4週間放置後における放電容量を
高くすることができ優れたものである。
According to the cylindrical lithium ion battery using the present invention, the positioning of the separator, the positive electrode plate, and the negative electrode plate is easy, and the winding deviation during winding can be suppressed. Furthermore, it is possible to greatly suppress the occurrence of short circuit at the time of winding, after 200 cycles of charge / discharge, and after leaving for 4 weeks, and to increase the discharge capacity after 200 cycles or after leaving for 4 weeks. is there.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の捲回開始時における概略図である。FIG. 1 is a schematic diagram of Example 1 at the start of winding.

【図2】実施例2の捲回開始時における概略図である。FIG. 2 is a schematic diagram of Example 2 at the start of winding.

【図3】比較例1の捲回開始時における概略図である。FIG. 3 is a schematic diagram of Comparative Example 1 at the start of winding.

【図4】比較例2の捲回開始時における概略図である。FIG. 4 is a schematic diagram of Comparative Example 2 at the start of winding.

【図5】比較例3の捲回開始時における概略図である。FIG. 5 is a schematic diagram of Comparative Example 3 at the start of winding.

【図6】電気自動車用の円筒形リチウムイオン電池の断
面図である。
FIG. 6 is a cross-sectional view of a cylindrical lithium ion battery for an electric vehicle.

【符号の説明】[Explanation of symbols]

1a:正極外部端子、 1b:負極外部端子、 2:ナッ
ト、3a:第1のセラミックワッシャ、 3b:第2の
セラミックワッシャ、4:電池蓋、 5:電池容器、
6:捲回群、 7:鍔部、 9:リード片、10:開裂
弁、 11:金属ワッシャ、 12:Oリング、 13:注
液口、20:円筒形リチウムイオン電池、 21:軸
芯、 22:正極板、 23:負極板、24:セパレー
タ、 25:溶着部、 26:接着部、 27:粘着テー
1a: positive external terminal, 1b: negative external terminal, 2: nut, 3a: first ceramic washer, 3b: second ceramic washer, 4: battery cover, 5: battery container,
6: wound group, 7: flange, 9: lead piece, 10: cleavage valve, 11: metal washer, 12: O-ring, 13: injection port, 20: cylindrical lithium ion battery, 21: shaft core, 22: positive electrode plate, 23: negative electrode plate, 24: separator, 25: welded part, 26: adhesive part, 27: adhesive tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 克典 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ14 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ05 CJ07 HJ12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Katsunori Suzuki 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H029 AJ14 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 CJ05 CJ07 HJ12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極板、負極板をセパレータを介して軸芯
のまわりに捲回して捲回群を作成し、該捲回群を円筒形
電池容器に収納した円筒形リチウムイオン電池におい
て、前記捲回群は、前記正極板と前記負極板との間に2
枚重ねをしたセパレータを2組用い、該セパレータのそ
れぞれの先端部分は溶着により一体化されており、該一
体化された先端部分のそれぞれは前記軸芯の異なる位置
に接合されていることを特徴とする円筒形リチウムイオ
ン電池。
1. A cylindrical lithium ion battery in which a positive electrode plate and a negative electrode plate are wound around an axis through a separator to form a winding group, and the winding group is housed in a cylindrical battery container. The winding group has a distance of 2 between the positive electrode plate and the negative electrode plate.
It is characterized in that two sets of stacked separators are used, and the respective tip portions of the separators are integrated by welding, and each of the integrated tip portions is joined to a different position of the axis. Cylindrical lithium ion battery.
【請求項2】前記セパレータの一体化された先端部分
は、前記軸芯に溶着により接合されていることを特徴と
する請求項1記載の円筒形リチウムイオン電池。
2. The cylindrical lithium ion battery according to claim 1, wherein an integrated front end portion of the separator is joined to the shaft core by welding.
【請求項3】前記セパレータの一体化された先端部分
は、前記軸芯に粘着テープにより接合されていることを
特徴とする請求項1記載の円筒形リチウムイオン電池。
3. The cylindrical lithium ion battery according to claim 1, wherein the integrated front end of the separator is joined to the shaft core with an adhesive tape.
JP2000037470A 2000-02-16 2000-02-16 Cylindrical lithium battery Pending JP2001229970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037470A JP2001229970A (en) 2000-02-16 2000-02-16 Cylindrical lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037470A JP2001229970A (en) 2000-02-16 2000-02-16 Cylindrical lithium battery

Publications (1)

Publication Number Publication Date
JP2001229970A true JP2001229970A (en) 2001-08-24

Family

ID=18561355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037470A Pending JP2001229970A (en) 2000-02-16 2000-02-16 Cylindrical lithium battery

Country Status (1)

Country Link
JP (1) JP2001229970A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224038A (en) * 2008-03-13 2009-10-01 Hitachi Vehicle Energy Ltd Wound battery, and manufacturing method of wound battery
JP2009289661A (en) * 2008-05-30 2009-12-10 Katoh Kiko Co Ltd Tape wound body manufacturing device
US8257849B2 (en) 2008-05-29 2012-09-04 Sony Corporation Winding electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing winding electrode body
WO2013108372A1 (en) * 2012-01-18 2013-07-25 日立ビークルエナジー株式会社 Secondary battery
JPWO2012004886A1 (en) * 2010-07-09 2013-09-02 日立ビークルエナジー株式会社 Secondary battery and method of manufacturing flat wound electrode group
JP2014026768A (en) * 2012-07-25 2014-02-06 Hitachi Vehicle Energy Ltd Secondary battery
JP2014216252A (en) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 Square secondary battery
JP2016110768A (en) * 2014-12-04 2016-06-20 Ckd株式会社 Winding device
WO2023035763A1 (en) * 2021-09-10 2023-03-16 宁德时代新能源科技股份有限公司 Electrode assembly and battery cell related to same, and battery, apparatus and manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224038A (en) * 2008-03-13 2009-10-01 Hitachi Vehicle Energy Ltd Wound battery, and manufacturing method of wound battery
US8257849B2 (en) 2008-05-29 2012-09-04 Sony Corporation Winding electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing winding electrode body
JP2009289661A (en) * 2008-05-30 2009-12-10 Katoh Kiko Co Ltd Tape wound body manufacturing device
JPWO2012004886A1 (en) * 2010-07-09 2013-09-02 日立ビークルエナジー株式会社 Secondary battery and method of manufacturing flat wound electrode group
WO2013108372A1 (en) * 2012-01-18 2013-07-25 日立ビークルエナジー株式会社 Secondary battery
JPWO2013108372A1 (en) * 2012-01-18 2015-05-11 日立オートモティブシステムズ株式会社 Secondary battery
JP2014026768A (en) * 2012-07-25 2014-02-06 Hitachi Vehicle Energy Ltd Secondary battery
JP2014216252A (en) * 2013-04-26 2014-11-17 日立オートモティブシステムズ株式会社 Square secondary battery
JP2016110768A (en) * 2014-12-04 2016-06-20 Ckd株式会社 Winding device
WO2023035763A1 (en) * 2021-09-10 2023-03-16 宁德时代新能源科技股份有限公司 Electrode assembly and battery cell related to same, and battery, apparatus and manufacturing method

Similar Documents

Publication Publication Date Title
JP2000311676A (en) Cylindrical lithium ion battery
JP2001143762A (en) Cylindrical lithium ion battery
JP4305111B2 (en) Battery pack and electric vehicle
WO2012004886A1 (en) Secondary battery and method for manufacturing flat wound electrode group
JP2004006264A (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4934318B2 (en) Secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP5433164B2 (en) Lithium ion secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2001229970A (en) Cylindrical lithium battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP2001185220A (en) Cylindrical lithium ion battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP2001229974A (en) Cylindrical lithium ion battery
JP2005100955A (en) Winding type lithium ion battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3783503B2 (en) Lithium secondary battery
JP5433484B2 (en) Lithium ion secondary battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery