JPWO2012004886A1 - Secondary battery and method of manufacturing flat wound electrode group - Google Patents

Secondary battery and method of manufacturing flat wound electrode group Download PDF

Info

Publication number
JPWO2012004886A1
JPWO2012004886A1 JP2012523483A JP2012523483A JPWO2012004886A1 JP WO2012004886 A1 JPWO2012004886 A1 JP WO2012004886A1 JP 2012523483 A JP2012523483 A JP 2012523483A JP 2012523483 A JP2012523483 A JP 2012523483A JP WO2012004886 A1 JPWO2012004886 A1 JP WO2012004886A1
Authority
JP
Japan
Prior art keywords
secondary battery
shaft core
electrode group
negative electrode
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012523483A
Other languages
Japanese (ja)
Inventor
平野 不二夫
不二夫 平野
石津 竹規
竹規 石津
浩一 梶原
浩一 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Publication of JPWO2012004886A1 publication Critical patent/JPWO2012004886A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

二次電池において、軸芯30は幅方向の両端部の肉厚TA0より、中央部の肉厚TB0が大きい。捲回時には、正極1、負極2、セパレータ3a,3bには長さ方向に張力A、A’が付与されるが、この張力A、A’にともなって、軸芯30の幅広面30Wにおいて、正極1、負極2、セパレータ3a,3bには、軸芯30に向かう、内向きの締付力Bが作用する。正極1、負極2、セパレータ3a,3bは、外周方向に広がる弾性力を有するが、締付力Bは、この弾性力に抗しつつ、正極1、負極2、セパレータ3a,3bは緊密に締め付ける。これによって、正極1、負極2の間に隙間が生じることはなく、扁平捲回形電極群4は密度が高められ、二次電池の容量を高めることができる。In the secondary battery, the shaft core 30 has a thickness TB0 at the center portion larger than the thickness TA0 at both end portions in the width direction. At the time of winding, the positive electrode 1, the negative electrode 2, and the separators 3a and 3b are given tensions A and A ′ in the length direction. With the tensions A and A ′, An inward tightening force B directed toward the shaft core 30 acts on the positive electrode 1, the negative electrode 2, and the separators 3a and 3b. The positive electrode 1, the negative electrode 2, and the separators 3 a and 3 b have elastic force spreading in the outer peripheral direction, but the positive force 1, the negative electrode 2, and the separators 3 a and 3 b are tightly tightened while the tightening force B resists this elastic force. . As a result, no gap is generated between the positive electrode 1 and the negative electrode 2, and the density of the flat wound electrode group 4 is increased, and the capacity of the secondary battery can be increased.

Description

本発明は、車両等に搭載される二次電池および二次電池に使用される扁平捲回形電極群の製造方法に関する。   The present invention relates to a secondary battery mounted on a vehicle or the like and a method of manufacturing a flat wound electrode group used for the secondary battery.

技術背景Technical background

地球環境保護の社会動向を受け、ハイブリッド車や電気自動車等の車両駆動用二次電池の実用化、普及が急務である。車両駆動用二次電池の構造としては、発電要素である正極、負極双方のシート(正負極板)と、正負極板間の絶縁用のセパレータと、電解液とが、金属製や樹脂製の密閉容器内に収容され、発電要素の両極とそれぞれ接合された外部端子を設けたものが広く知られている。   In response to social trends in global environmental protection, there is an urgent need for the practical use and popularization of secondary batteries for driving vehicles such as hybrid cars and electric cars. The structure of the secondary battery for driving a vehicle is that a positive and negative electrode sheet (positive and negative electrode plate), a separator for insulation between the positive and negative electrode plates, and an electrolyte solution are made of metal or resin. A device provided with an external terminal that is housed in an airtight container and joined to both electrodes of the power generation element is widely known.

これまでに実用化された二次電池では、その外形が円柱状をなしたものが殆どであったが、車両駆動用二次電池では、高出力、大容量が要求されるため、数十個から百超個の二次電池をまとめた組電池が必要とされた。そこで実装密度の向上を図るため、角型状の二次電池が盛んに実用化検討されており、この角型二次電池に使用する電極群の形状は扁平形が採用されている。   Most secondary batteries that have been put to practical use have a cylindrical outer shape. However, secondary batteries for driving vehicles require high output and large capacity. Therefore, an assembled battery in which more than 100 secondary batteries are combined is required. Therefore, in order to improve the mounting density, prismatic secondary batteries have been actively put into practical use, and the shape of the electrode group used in the prismatic secondary battery is flat.

特許文献1に記載の二次電池は、扁平捲回形電極群を構成する方法として、電極群の中心部に板状の芯材を配し、これに正極板、負極板およびこれらの間に介在配置されたセパレータを捲回して構成されている。   In the secondary battery described in Patent Document 1, as a method of forming a flat wound electrode group, a plate-shaped core material is arranged at the center of the electrode group, and a positive electrode plate, a negative electrode plate, and a gap between them are arranged. The separator is disposed by interposing and arranging.

特開2008-47304JP 2008-47304 A

特許文献1の二次電池にあっては、正負極板の両端部は電極間を隙間なく密着可能だが、平面部では、正負極板が半径方向に拘束されないため、正負極板間に隙間が生じて密度が低下し、容量低下を招く可能性がある。   In the secondary battery of Patent Document 1, both ends of the positive and negative electrode plates can be closely contacted between the electrodes, but in the flat portion, since the positive and negative electrode plates are not restrained in the radial direction, there is no gap between the positive and negative electrode plates. As a result, the density is lowered and the capacity may be reduced.

本発明の第1の態様による二次電池は、正極および負極をセパレータで絶縁しつつ軸芯に捲回して形成される扁平捲回形電極群を備える二次電池であって、正極、負極、およびセパレータの積層体は、軸芯の表裏面において、その捲回方向一端部から中央部へは上がり勾配で、中央部から捲回方向他端部へは下り勾配で捲回されている。この二次電池では、捲回により積層体に長手方向に発生した内力により、積層体は軸芯中心部に締付力を発生している。
軸芯には、その表裏面の中央部から捲回方向両端部に向かって下り勾配に傾斜する傾斜面を形成することができる。傾斜面は、中央部から両端部まで緩やかな円弧面として延在するのが好ましい。たとえば、軸芯の断面形状は扁平楕円形または略楕円形である。軸芯両端部は円弧面または平面とすることが好ましい。
軸芯は、その中央部断面形状を略長方形とし、その中央部から両端部に向かう傾斜面を平面または緩やかな円弧面としてもよい。この例では、傾斜面は、中央部から両端部まで平面として延在してもよい。この例でも、軸芯の両端部は円弧面または平面とすることが好ましい。また、軸芯の断面形状を略菱形としてもよい。
以上種々の形態の軸芯に肉抜きを設け、軽量化を図ることが好ましい。
本発明の第2の態様は、二次電池の捲回形電極群の製造方法である。捲回形電極群は、長尺物である正極および負極がセパレータで絶縁しつつ軸芯に積層しながら捲回され、軸芯の表裏面には、その中央部から両端部に向かって下り勾配で傾斜する捲回面が形成されている。このような捲回形電極群の製造方法において、捲回面に最内周のセパレータの一端を溶着し、セパレータの間に正極および負極を交互に積層しつつ張力を与えながら、軸芯を回転して捲回する。
正極、負極およびセパレータの積層体に張力を与えながら軸芯を回転する際、軸芯の一端部から中央部の間に延在する積層体にはその長手方向の一方向に内力が与えられ、軸芯の中央部から他端部の間に延在する積層体には長手方向の他方向に内力が与えられるように、軸芯を回転して積層体を捲回するのが好ましい。
A secondary battery according to the first aspect of the present invention is a secondary battery comprising a flat wound electrode group formed by winding a positive electrode and a negative electrode around a shaft while being insulated with a separator, the positive electrode, the negative electrode, The separator laminate is wound on the front and back surfaces of the shaft core with an upward gradient from one end portion in the winding direction to the central portion and with a downward gradient from the central portion to the other end portion in the winding direction. In this secondary battery, the laminated body generates a tightening force at the central portion of the shaft core by an internal force generated in the longitudinal direction of the laminated body by winding.
The shaft core can be formed with an inclined surface that is inclined downward from the center of the front and back surfaces toward both ends in the winding direction. It is preferable that the inclined surface extends as a gentle arc surface from the center to both ends. For example, the cross-sectional shape of the shaft core is a flat elliptical shape or a substantially elliptical shape. Both end portions of the shaft core are preferably arcuate surfaces or flat surfaces.
The shaft core may have a substantially rectangular cross-section at the center, and an inclined surface from the center toward both ends may be a flat surface or a gentle arc surface. In this example, the inclined surface may extend as a flat surface from the central portion to both end portions. Also in this example, it is preferable that both end portions of the shaft core are arc surfaces or flat surfaces. Further, the cross-sectional shape of the shaft core may be substantially rhombus.
As described above, it is preferable to reduce the weight by providing a hollow in the shaft core of various forms.
The second aspect of the present invention is a method for manufacturing a wound electrode group of a secondary battery. The wound electrode group is wound while the long positive electrode and the negative electrode are laminated on the shaft core while being insulated with a separator, and the front and back surfaces of the shaft core are inclined downward from the center to both ends. A winding surface inclined at is formed. In such a method of manufacturing a wound electrode group, one end of the innermost separator is welded to the winding surface, and the shaft core is rotated while applying tension while alternately laminating positive and negative electrodes between the separators. And turn around.
When rotating the shaft core while applying tension to the laminate of the positive electrode, the negative electrode and the separator, an internal force is applied to the laminate extending between one end portion of the shaft core and the central portion in one longitudinal direction thereof, The laminated body is preferably wound by rotating the shaft core so that an internal force is applied to the laminated body extending from the central portion of the shaft core to the other end in the other direction of the longitudinal direction.

本発明によれば、扁平捲回形電極群の密度を高めることができる。   According to the present invention, the density of the flat wound electrode group can be increased.

第1実施の形態による二次電池の外観を示す斜視図。The perspective view which shows the external appearance of the secondary battery by 1st Embodiment. 図1の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of FIG. 図1の扁平捲回形電極群の構成を示す斜視図。The perspective view which shows the structure of the flat wound electrode group of FIG. 図1の扁平捲回形電極群を示す斜視図。FIG. 2 is a perspective view showing the flat wound electrode group of FIG. 図1の二次電池の軸芯を示す斜視図。The perspective view which shows the axial center of the secondary battery of FIG. 図5の軸芯に正負極およびセパレータを配置した状態を示す斜視図。The perspective view which shows the state which has arrange | positioned the positive / negative electrode and the separator to the axial center of FIG. (a)は、図5の軸芯に正負極およびセパレータを巻き付ける時の状態を示す断面図、(b)は軸芯の仮想傾斜面を説明する断面模式図。(A) is sectional drawing which shows the state when winding a positive / negative electrode and a separator around the axial center of FIG. 5, (b) is a cross-sectional schematic diagram explaining the virtual inclined surface of an axial center. 図7(a)の状態よりも捲回を進めた状態を示す断面図。Sectional drawing which shows the state which advanced winding rather than the state of Fig.7 (a). 本発明による二次電池の第2実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 2nd Embodiment of the secondary battery by this invention. 本発明による二次電池の第3実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 3rd Embodiment of the secondary battery by this invention. 本発明による二次電池の第4実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 4th Embodiment of the secondary battery by this invention. 本発明による二次電池の第5実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 5th Embodiment of the secondary battery by this invention. 本発明による二次電池の第6実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 6th Embodiment of the secondary battery by this invention. 本発明による二次電池の第7実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 7th Embodiment of the secondary battery by this invention. 本発明による二次電池の第8実施形態における軸芯を示す断面図。Sectional drawing which shows the axial center in 8th Embodiment of the secondary battery by this invention. 本発明による二次電池の第9実施形態における軸芯を示す斜視図。The perspective view which shows the axial center in 9th Embodiment of the secondary battery by this invention. 本発明による二次電池の第10実施形態における軸芯を示す斜視図。The perspective view which shows the axial center in 10th Embodiment of the secondary battery by this invention. 本発明による二次電池の変形例を示す断面図。Sectional drawing which shows the modification of the secondary battery by this invention. 本発明による二次電池の変形例を示す断面図。Sectional drawing which shows the modification of the secondary battery by this invention.

[第1実施形態]
図1〜図8を参照して、本発明を扁平角形リチウムイオン二次電池に適用した第1実施形態について説明する。
[First embodiment]
A first embodiment in which the present invention is applied to a flat rectangular lithium ion secondary battery will be described with reference to FIGS.

[角形電池の全体構成]
図1〜図4において、角形電池20は、電池容器13内に絶縁シート12を介して扁平捲回形電極群4を収納して構成される。電池容器13の矩形開口は、矩形形状の電池蓋9を電池容器13にレーザ溶接して封止されている。電池蓋9には、正極外部端子7と、負極外部端子8とが設けられている。外部端子7,8を介して外部負荷に電力が供給され、あるいは、外部端子7,8を介して外部発電電力が捲回形電極群4に充電される。
[Overall configuration of prismatic battery]
1 to 4, a rectangular battery 20 is configured by housing a flat wound electrode group 4 in a battery container 13 via an insulating sheet 12. The rectangular opening of the battery container 13 is sealed by laser welding a rectangular battery lid 9 to the battery container 13. The battery lid 9 is provided with a positive external terminal 7 and a negative external terminal 8. Electric power is supplied to the external load via the external terminals 7 and 8, or external generated power is charged to the wound electrode group 4 via the external terminals 7 and 8.

図2に示すように、捲回形電極群4の正極リード1aには正極接続部材5が超音波溶接にて接続され、正極接続部材5は、扁平形リチウムイオン二次電池の正極外部端子7に接続されている。一方、捲回形電極群4の負極リード2aには負極接続部材6が超音波溶接にて接続され、負極接続部材6は扁平形リチウムイオン二次電池の負極外部端子8に接続されている。   As shown in FIG. 2, a positive electrode connection member 5 is connected to the positive electrode lead 1a of the wound electrode group 4 by ultrasonic welding, and the positive electrode connection member 5 is connected to the positive electrode external terminal 7 of the flat lithium ion secondary battery. It is connected to the. On the other hand, a negative electrode connection member 6 is connected to the negative electrode lead 2a of the wound electrode group 4 by ultrasonic welding, and the negative electrode connection member 6 is connected to the negative electrode external terminal 8 of the flat lithium ion secondary battery.

接続部材5,6と外部端子7,8は、図示しない絶縁材によって電池蓋9と電気的に絶縁されている。また、電池蓋9の貫通孔には図示しないシール材が設けられ、電池容器からの液漏れを防止している。   The connection members 5 and 6 and the external terminals 7 and 8 are electrically insulated from the battery lid 9 by an insulating material (not shown). In addition, a sealing material (not shown) is provided in the through hole of the battery lid 9 to prevent liquid leakage from the battery container.

電池蓋9には、電池容器13内に電解液を注入する注液口11が穿設され、注液口11は、電解液注入後に注液栓によって封止される。電池蓋9にはガス排出弁10も設けられている。電池容器内の圧力が上昇すると、ガス排出弁10が開いて内部からガスが排出され、電池容器内の圧力が低減される。   The battery lid 9 is provided with a liquid injection port 11 for injecting an electrolytic solution into the battery container 13, and the liquid injection port 11 is sealed with a liquid injection plug after the injection of the electrolytic solution. The battery cover 9 is also provided with a gas discharge valve 10. When the pressure in the battery container rises, the gas discharge valve 10 opens to discharge gas from the inside, and the pressure in the battery container is reduced.

電池容器13、電池蓋9は、共にアルミニウム合金で製作されている。正極側の接続部材5、外部端子7はアルミニウム合金で製作され、負極側の接続部材6、外部端子8は銅合金で製作されている。   Both the battery container 13 and the battery lid 9 are made of an aluminum alloy. The positive side connecting member 5 and the external terminal 7 are made of an aluminum alloy, and the negative side connecting member 6 and the external terminal 8 are made of a copper alloy.

[捲回形電極群全体構成]
捲回形電極群4は、図3,4に示すように、軸芯30の周りにセパレータ3a,3bを介在させつつ正負極1,2を互いに絶縁状態で扁平状に捲回して構成される。軸芯30は、図5に示すように断面が略扁平楕円形である。軸芯30の詳細は後述する。
[Entire configuration of wound electrode group]
As shown in FIGS. 3 and 4, the wound electrode group 4 is configured by winding the positive and negative electrodes 1 and 2 in a flat shape in an insulated state while interposing separators 3 a and 3 b around an axis 30. . As shown in FIG. 5, the shaft core 30 has a substantially flat elliptical cross section. Details of the shaft core 30 will be described later.

図3に示すように、正負極1,2は、シート状の正負極集電箔上に活物質合剤を塗布した電極層1b,2bを有し、各電極箔の幅方向(捲回方向に直交する方向)の一端部には、活物質合剤を塗布しない正負極リード1a,2aがそれぞれ設けられている。したがって、正負極リード1a,2aは、捲回形電極群4の幅方向(軸芯延在方向)の互いに反対側の位置にそれぞれ形成されている。図2により上述したように、捲回形電極群4の正極リード1aには正極接続部材5が超音波溶接にて接続され、正極接続部材5は、扁平形リチウムイオン二次電池の正極外部端子7に接続されている。一方、捲回形電極群4の負極リード2aには負極接続部材6が超音波溶接にて接続され、負極接続部材6は扁平形リチウムイオン二次電池の負極外部端子8に接続されている。   As shown in FIG. 3, the positive and negative electrodes 1 and 2 have electrode layers 1b and 2b obtained by applying an active material mixture on a sheet-like positive and negative electrode current collector foil, and the width direction (winding direction) of each electrode foil The positive and negative electrode leads 1a and 2a to which no active material mixture is applied are provided at one end in the direction perpendicular to each other. Accordingly, the positive and negative electrode leads 1a and 2a are formed at positions opposite to each other in the width direction (axial center extending direction) of the wound electrode group 4. As described above with reference to FIG. 2, the positive electrode connecting member 5 is connected to the positive electrode lead 1a of the wound electrode group 4 by ultrasonic welding, and the positive electrode connecting member 5 is connected to the positive electrode external terminal of the flat lithium ion secondary battery. 7 is connected. On the other hand, a negative electrode connection member 6 is connected to the negative electrode lead 2a of the wound electrode group 4 by ultrasonic welding, and the negative electrode connection member 6 is connected to the negative electrode external terminal 8 of the flat lithium ion secondary battery.

正極1の製作に際しては、正極活物質としてリチウム含有複酸化物粉末と、導電材として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)とを重量比85:10:5で混合し、これに分散溶媒のN−メチルピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布する。その後、乾燥、プレス、裁断することにより、活物質合剤層が配された部分の幅80mm、厚さ130μm、長さ4mの正極1を得た。
なお、アルミニウム箔の長手方向に延在する一端側には連続して形成した活物質合剤層が配されない部分を有し、その部分を正極リード1aとした。
In the production of the positive electrode 1, a lithium-containing double oxide powder as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are mixed at a weight ratio of 85: 10: 5, A slurry kneaded with N-methylpyrrolidone (NMP) as a dispersion solvent is applied to both sides of an aluminum foil having a thickness of 20 μm. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode 1 having a width of 80 mm, a thickness of 130 μm, and a length of 4 m at a portion where the active material mixture layer was disposed.
In addition, it has the part by which the active material mixture layer formed continuously was not distribute | arranged in the one end side extended in the longitudinal direction of aluminum foil, and let this part be the positive electrode lead 1a.

負極2の作製に際しては、負極活物質として非晶質炭素粉末、結着剤としてPVDFを添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの圧延銅箔の両面に塗布した。その後、乾燥プレス、裁断することにより活物質合剤層が配された部分の幅84mm、長さ4.4m、所定の厚さ、所定の密着強度とした負極2を得た。   In producing the negative electrode 2, amorphous carbon powder as a negative electrode active material, PVDF as a binder, and NMP as a dispersion solvent are added and kneaded slurry on both sides of a rolled copper foil having a thickness of 10 μm. Applied. Thereafter, the negative electrode 2 having a width of 84 mm, a length of 4.4 m, a predetermined thickness, and a predetermined adhesion strength at a portion where the active material mixture layer was disposed was obtained by dry pressing and cutting.

負極2の活物質合成層の片側厚みは60μm以上100μm以下が望ましい。60μm未満の場合、電池の容量が不十分であり、100μm以上の場合、最内周電極のコーナー部の活物質合剤層が剥離および脱落する恐れがある。   The thickness of one side of the active material synthesis layer of the negative electrode 2 is desirably 60 μm or more and 100 μm or less. When the thickness is less than 60 μm, the capacity of the battery is insufficient. When the thickness is 100 μm or more, the active material mixture layer at the corner of the innermost electrode may be peeled off and dropped off.

また、負極2の活物質合剤層と負極金属箔との密着強度は0.05N/mm以上1.00N/mmが望ましい。0.05N/mm未満の場合、最内周電極のコーナー部の活物質合剤層が剥離および脱落する恐れがある。1.00N/mm以上とするためには、結着剤の量を過剰に混合する必要があるため電池の性能が十分に発揮できなくなる。
なお、圧延銅箔の長手方向に延在する一端側には連続して形成した活物質合剤層が配されない部分を有し、その部分を負極リード2aとした。
The adhesion strength between the active material mixture layer of the negative electrode 2 and the negative electrode metal foil is preferably 0.05 N / mm or more and 1.00 N / mm. If it is less than 0.05 N / mm, the active material mixture layer at the corner portion of the innermost peripheral electrode may be peeled off and dropped off. In order to set it to 1.00 N / mm or more, since it is necessary to mix the quantity of a binder excessively, the performance of a battery cannot fully be exhibited.
In addition, it has the part by which the active material mixture layer formed continuously was not distribute | arranged to the one end side extended in the longitudinal direction of rolled copper foil, and let this part be the negative electrode lead 2a.

正極接続部材5、負極接続部材6は正極1、負極2にそれぞれ接続され、これによって扁平捲回形電極群4は、正極外部端子7、負極外部端子8に接続される。正極1と正極接続部材5との接続に際しては、正極リード1aを変形して正極接続部材5に接触させた後、正極リード1aと正極接続部材5とを超音波溶接した。負極2と負極接続部材6との接続工程も同様である。
このような接続工程によって、正負極接続部材5、6、電池蓋9、正負極外部端子7、8よりなる電池蓋組立て品に、扁平捲回形電極群4が取りつけられる。
The positive electrode connection member 5 and the negative electrode connection member 6 are connected to the positive electrode 1 and the negative electrode 2, respectively, whereby the flat wound electrode group 4 is connected to the positive electrode external terminal 7 and the negative electrode external terminal 8. When connecting the positive electrode 1 and the positive electrode connecting member 5, the positive electrode lead 1 a was deformed and brought into contact with the positive electrode connecting member 5, and then the positive electrode lead 1 a and the positive electrode connecting member 5 were ultrasonically welded. The connection process between the negative electrode 2 and the negative electrode connection member 6 is the same.
By such a connection process, the flat wound electrode group 4 is attached to the battery lid assembly including the positive and negative electrode connecting members 5 and 6, the battery lid 9 and the positive and negative electrode external terminals 7 and 8.

扁平捲回形電極群4の電池ケースへの収納に際しては、扁平捲回形電極群4を絶縁袋12に入れた後、電池ケース13内に挿入する。その後、電池蓋9を溶接等により電池ケース13に接合する。   When the flat wound electrode group 4 is stored in the battery case, the flat wound electrode group 4 is inserted into the battery case 13 after being put in the insulating bag 12. Thereafter, the battery lid 9 is joined to the battery case 13 by welding or the like.

なお、本明細書において、正負極1,2はシート状の金属箔を素材とした長尺物であり、正極シート、負極シートあるいは正極体、負極板とも呼ぶ。   In the present specification, the positive and negative electrodes 1 and 2 are long materials made of sheet metal foil, and are also referred to as a positive electrode sheet, a negative electrode sheet, a positive electrode body, or a negative electrode plate.

[軸芯の構成と捲回方法]
図5〜図8を参照して、軸芯30の形状と正負極1,2を軸芯30に捲回する捲回方法を説明する。なお、図7(a)および図8は、セパレータ3a、負極2、セパレータ3b、正極1が明瞭になるように、これらの厚さを誇張して示している。
[Axis core configuration and winding method]
The winding method of winding the shape of the shaft core 30 and the positive and negative electrodes 1 and 2 around the shaft core 30 will be described with reference to FIGS. 7A and 8 exaggerate the thickness of the separator 3a, the negative electrode 2, the separator 3b, and the positive electrode 1 so as to be clear.

図5に示すように、断面が略扁平楕円形である軸芯30は、捲回方向になだらかに(緩やかに)湾曲した1対の幅広面30Wと、これら幅広面30Wを連結する面取部30Rとを有する。幅広面30Wと面取部30Rは軸芯30の外周面に形成され、幅広面30Wは正負極1,2が密接に捲回される面となる。すなわち、正極1、負極2、およびセパレータ3a,3bが捲回される軸芯30の表裏面には、その中央部から両端部に向かって下り勾配で傾斜する捲回面30Wが形成されている。第1実施形態の二次電池では、捲回面30Wは、少なくとも軸芯中央部から両端部に下り勾配で広がる円弧面である。   As shown in FIG. 5, the shaft core 30 having a substantially flat oval cross section includes a pair of wide surfaces 30W that are gently (gradually) curved in the winding direction, and a chamfered portion that connects the wide surfaces 30W. 30R. The wide surface 30W and the chamfered portion 30R are formed on the outer peripheral surface of the shaft core 30, and the wide surface 30W is a surface on which the positive and negative electrodes 1 and 2 are wound closely. That is, winding surfaces 30 </ b> W are formed on the front and back surfaces of the shaft core 30 around which the positive electrode 1, the negative electrode 2, and the separators 3 a and 3 b are wound, so as to incline with a downward gradient from the central portion toward both ends. . In the secondary battery of the first embodiment, the winding surface 30W is an arc surface that spreads at a downward gradient from at least the central part of the shaft core to both ends.

軸芯30の軸方向の一端面(C矢視部)には、捲回装置(図示省略)の回転軸(図示省略)に係合する穴31が、回転中心から離間した位置に穿設されている。   A hole 31 that engages with a rotation shaft (not shown) of a winding device (not shown) is formed at one end face (a portion indicated by arrow C) in the axial direction of the shaft 30 at a position away from the rotation center. ing.

なお、軸芯30は絶縁性材料、例えばポリプロピレンで構成されているが、正負極1,2と互いに絶縁する構造を採用すれば金属材料で構成してもよい。   The shaft core 30 is made of an insulating material such as polypropylene, but may be made of a metal material if a structure that insulates the positive and negative electrodes 1 and 2 from each other is adopted.

図6,7は、軸芯30に正負極1,2およびセパレータ3a,3bを捲回し始めるときの様子を示す図である。なお、図7は、図6のVII−VII線断面図である。
図6,7に示すように、軸芯30に正負極1,2およびセパレータ3a,3bを捲回する際には、一方の幅広面30Wの幅方向中央部に、セパレータ3の端部3Eを熱溶着して固定し、内側から、セパレータ3a、負極2、セパレータ3b、正極1の順序で重ねる。積層に際しては、セパレータ3aの端部より少しずらした状態で、セパレータ3aの上に負極2の端部が配置される。負極2の上には、負極2の端部を覆うようセパレータ3bが配置され、セパレータ3bの上には、正極1が配置される。
6 and 7 are views showing a state in which the positive and negative electrodes 1 and 2 and the separators 3a and 3b are started to be wound around the shaft core 30. FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
As shown in FIGS. 6 and 7, when winding the positive and negative electrodes 1 and 2 and the separators 3 a and 3 b around the shaft core 30, the end portion 3 E of the separator 3 is placed at the center in the width direction of one wide surface 30 W. Heat-welded and fixed, and the separator 3a, the negative electrode 2, the separator 3b, and the positive electrode 1 are stacked in this order from the inside. At the time of lamination, the end of the negative electrode 2 is disposed on the separator 3a in a state slightly shifted from the end of the separator 3a. A separator 3b is disposed on the negative electrode 2 so as to cover an end of the negative electrode 2, and a positive electrode 1 is disposed on the separator 3b.

この積層状態で、軸芯30を回転軸中心にT方向に回転させて、正極1、負極2、セパレータ3a,3bを張力をかけながら渦巻き状に捲回して扁平捲回形電極群4が得られる。 正極1、負極2、およびセパレータ3a,3bの積層体は、軸芯30の表裏面において、その捲回方向一端部から中央部へは上がり勾配で、中央部から捲回方向他端部へは下り勾配で捲回されている。   In this laminated state, the shaft core 30 is rotated in the T direction about the rotation axis, and the positive electrode 1, the negative electrode 2, and the separators 3a and 3b are wound in a spiral while applying tension, thereby obtaining a flat wound electrode group 4. It is done. The laminate of the positive electrode 1, the negative electrode 2, and the separators 3 a and 3 b has a rising gradient from one end portion in the winding direction to the central portion on the front and back surfaces of the shaft core 30, and from the central portion to the other end portion in the winding direction. It is wound on a downward slope.

図5に示すように、軸芯30の回転軸方向の長さはL1、幅方向(捲回方向)の長さはL2(<L1)である。また、図7(a)に示すように、軸芯30の中央部の肉厚はTB0、幅方向の両端部の肉厚はTA0(<TB0)である。図7(b)を参照するに、幅広面30Wの最大厚みTB0を規定する軸芯外周面上の点P1と両端部の厚みTA0を規定する軸芯外周面上の点P2とを結ぶ仮想線VLの傾斜角θ1は、正負極1,2の締付力に影響を与える要因である。図7(b)において、L3は、軸芯両端の点P2間の距離である。   As shown in FIG. 5, the length of the axis 30 in the rotation axis direction is L1, and the length in the width direction (winding direction) is L2 (<L1). Further, as shown in FIG. 7A, the thickness of the central portion of the shaft core 30 is TB0, and the thickness of both end portions in the width direction is TA0 (<TB0). Referring to FIG. 7B, an imaginary line connecting a point P1 on the outer periphery of the shaft that defines the maximum thickness TB0 of the wide surface 30W and a point P2 on the outer surface of the shaft that defines the thickness TA0 of both ends. The inclination angle θ1 of VL is a factor that affects the tightening force of the positive and negative electrodes 1 and 2. In FIG. 7B, L3 is the distance between the points P2 on both ends of the shaft core.

図8に示すように、捲回時には、正極1、負極2、セパレータ3a,3bには長手方向に張力A、A’が付与されるが、この張力A、A’にともなって、軸芯30の幅広面30Wにおいて、正極1、負極2、セパレータ3a,3bの積層体には、軸芯30に向かう内向きの締付力Bが作用する。締付力Bは式(1)で表される。
締付力B=Asinθ1またはA’sinθ1 式(1)
As shown in FIG. 8, at the time of winding, the positive electrode 1, the negative electrode 2, and the separators 3a and 3b are given tensions A and A 'in the longitudinal direction. In the wide surface 30W, an inward tightening force B directed toward the shaft core 30 acts on the stacked body of the positive electrode 1, the negative electrode 2, and the separators 3a and 3b. The tightening force B is expressed by equation (1).
Tightening force B = Asin θ1 or A′sin θ1 Formula (1)

正極1、負極2、セパレータ3a,3bの積層体は、外周方向に広がる弾性力を有するが、式(1)で示される締付力Bは、この弾性力に抗しつつ、正極1、負極2、セパレータ3a,3bを緊密に締め付ける。すなわち、積層体に張力を与えながら軸芯30を回転する際、軸芯30の一端部から中央部の間の積層体には、その長手方向の一方向に内力Aが与えられ、一方、軸芯30の中央部から他端部の間の積層体には、長手方向の他方向に内力A’が与えられるように、軸芯30を回転して積層体を捲回する。   The laminate of the positive electrode 1, the negative electrode 2, and the separators 3a and 3b has an elastic force that spreads in the outer peripheral direction, but the clamping force B expressed by the equation (1) resists this elastic force, while the positive electrode 1, the negative electrode, 2. Tighten the separators 3a and 3b tightly. That is, when the shaft core 30 is rotated while tension is applied to the laminated body, an internal force A is applied to the laminated body between one end portion and the central portion of the shaft core 30 in one direction in the longitudinal direction. The laminated body between the center portion and the other end of the core 30 is rotated by rotating the shaft core 30 so that the internal force A ′ is applied in the other direction of the longitudinal direction.

このように、軸芯30の表裏面で積層されている正負極1,2は、それらの長手方向に作用する内力A,A’によって軸芯30の中心部に向けて締付力(付勢力)Bを発生する。これによって、正極1、負極2の間に隙間が生じることはなく、扁平捲回形電極群4は密度が高められ、二次電池の容量を高めることができる。締付力Bは、傾斜角θ1が大きいほど大きくできる。   Thus, the positive and negative electrodes 1 and 2 stacked on the front and back surfaces of the shaft core 30 are tightened toward the center portion of the shaft core 30 by the internal forces A and A ′ acting in the longitudinal direction (biasing force). ) B is generated. As a result, no gap is generated between the positive electrode 1 and the negative electrode 2, and the density of the flat wound electrode group 4 is increased, and the capacity of the secondary battery can be increased. The tightening force B can be increased as the inclination angle θ1 is increased.

幅広面30Wに沿った正負極1,2に、捲回時の張力で発生する内力A、A’にともなう締付力Bが生じるためには、図7(b)に示す仮想線VLが所定の傾斜角θ1で軸芯30の両端部に向かって傾斜するように、軸芯中央部の肉厚TB0を両端部の肉厚TA0よりも大きくすればよい。   In order for the positive and negative electrodes 1 and 2 along the wide surface 30W to have the tightening force B accompanying the internal forces A and A ′ generated by the tension during winding, the virtual line VL shown in FIG. The wall thickness TB0 at the central portion of the shaft core may be made larger than the wall thickness TA0 at both end portions so that it is inclined toward the both end portions of the shaft core 30 at the inclination angle θ1.

以上説明した第1実施形態の扁平捲回形電極群4の軸芯30には、正極1、負極2、およびセパレータ3a,3bの積層体が捲回される表裏面にその中央部から両端部に向かって下り勾配で傾斜する捲回面が形成されている。そして、上記扁平捲回形電極群の製造方法は、捲回面に積層体の一端であるセパレータの端部を溶着する工程と、積層体に張力を与えながら、軸芯30を回転して積層体を捲回する工程とを含む。そして、積層体に張力を与えながら軸芯30を回転する際、軸芯30の一端部から中央部の間の積層体には、その長手方向の一方向に内力Aが与えられ、軸芯30の中央部から他端部の間の積層体には、長手方向の他方向に内力A’が与えられる。軸芯30を繰り返し回転することにより、積層体が軸芯30に捲回される。   The axial core 30 of the flat wound electrode group 4 of the first embodiment described above has both ends from the center to the front and back surfaces on which the laminate of the positive electrode 1, the negative electrode 2, and the separators 3a and 3b is wound. A winding surface that is inclined downward is formed. And the manufacturing method of the said flat wound electrode group is the process which welds the edge part of the separator which is one end of a laminated body to the winding surface, and rotates the axis | shaft 30 while giving tension | tensile_strength to a laminated body, and is laminated | stacked Winding the body. When the shaft core 30 is rotated while tension is applied to the laminated body, an internal force A is applied to the laminated body between one end portion and the central portion of the shaft core 30 in one direction in the longitudinal direction. An internal force A ′ is applied to the laminated body between the center portion and the other end portion in the other direction in the longitudinal direction. The laminated body is wound around the shaft core 30 by repeatedly rotating the shaft core 30.

軸芯30の断面形状は第1実施形態に限定されるものではない。以下、図9〜図17を参照して第2〜第10実施形態による軸芯を説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。   The cross-sectional shape of the shaft core 30 is not limited to the first embodiment. Hereinafter, the shaft core according to the second to tenth embodiments will be described with reference to FIGS. 9 to 17. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

[第2実施形態]
図9に示すように、第2実施形態による捲回形電極群4の軸芯30の断面形状は略楕円状である。軸芯30の両端部の肉厚をTA1、中央部の肉厚TB1とするとき、締付力Bは、式(1)で示されるように、幅広面30Wの最大厚みTB1を規定する点P1と、両端部の厚みTA1を規定する点P2とを結ぶ仮想線VLの傾斜角θ2に依存する。
[Second Embodiment]
As shown in FIG. 9, the cross-sectional shape of the axial core 30 of the wound electrode group 4 according to the second embodiment is substantially elliptical. When the thickness of both end portions of the shaft core 30 is TA1, and the thickness TB1 of the central portion, the tightening force B is a point P1 that defines the maximum thickness TB1 of the wide surface 30W, as shown by the equation (1). And the inclination angle θ2 of the virtual line VL connecting the point P2 that defines the thickness TA1 at both ends.

第2実施形態による捲回形電極群4は、第1実施形態による捲回形電極群4と同様の効果を奏する。第2実施形態の軸芯30の傾斜角θ2を第1実施形態の軸芯30の傾斜角θ1と等価とすれば、同様の締付力Bが得られるし、傾斜角θ2<θ1とすれば締付力Bを小さくすることができる。   The wound electrode group 4 according to the second embodiment has the same effects as the wound electrode group 4 according to the first embodiment. If the tilt angle θ2 of the shaft core 30 of the second embodiment is equivalent to the tilt angle θ1 of the shaft core 30 of the first embodiment, a similar tightening force B can be obtained, and if the tilt angle θ2 <θ1. The tightening force B can be reduced.

なお、第2実施形態による捲回形電極群4では、軸芯30の諸寸法L1,L2,L3は第1実施形態による捲回形電極群4における諸寸法L1,L2,L3と等しい。   In the wound electrode group 4 according to the second embodiment, the dimensions L1, L2, L3 of the shaft core 30 are equal to the dimensions L1, L2, L3 in the wound electrode group 4 according to the first embodiment.

[第3実施形態]
第1および第2の軸芯の基本断面は扁平楕円または略楕円とした。図10に示すように、第3実施形態による捲回形電極群4の軸芯30は、基本断面を略長方形としたものである。軸芯30の周面は、捲回方向になだらかに湾曲した1対の幅広面30Wと、これら幅広面を連結する大径の円弧面30Aと、幅広面30Wと円弧面30Aとを連結する面取部30Rとよりなる。
[Third Embodiment]
The basic cross section of the first and second shaft cores was a flat ellipse or a substantially ellipse. As shown in FIG. 10, the axial core 30 of the wound electrode group 4 according to the third embodiment has a basic cross section that is substantially rectangular. The peripheral surface of the shaft core 30 is a pair of wide surfaces 30W that are gently curved in the winding direction, a large-diameter arc surface 30A that connects these wide surfaces, and a surface that connects the wide surface 30W and the arc surface 30A. It consists of the take part 30R.

軸芯30の両端部の肉厚をTA2、中央部の肉厚TB2とするとき、締付力Bは、式(1)で示されるように、幅広面30Wの最大厚み点P1と両端部の点P2とを結ぶ仮想線VLの傾斜角θ3に依存する。   When the wall thickness at both ends of the shaft core 30 is TA2 and the wall thickness TB2 at the center, the tightening force B is expressed by the maximum thickness point P1 of the wide surface 30W and the both ends as shown by the equation (1). It depends on the inclination angle θ3 of the virtual line VL connecting the point P2.

第3実施形態による捲回形電極群4は、第1実施形態による捲回形電極群4と同様の効果を奏する。第3実施形態の軸芯30の傾斜角θ3を第1実施形態の軸芯30の傾斜角θ1と等価とすれば、同様の締付力Bが得られるし、傾斜角θ2<θ1とすれば締付力Bを小さくすることができる。   The wound electrode group 4 according to the third embodiment has the same effects as the wound electrode group 4 according to the first embodiment. If the tilt angle θ3 of the shaft core 30 of the third embodiment is equivalent to the tilt angle θ1 of the shaft core 30 of the first embodiment, a similar tightening force B can be obtained, and if the tilt angle θ2 <θ1. The tightening force B can be reduced.

[第4実施形態]
図11に示すように、第4実施形態による捲回形電極群4の軸芯30は、断面が略菱形である。この軸芯30の周面は、中央部の最大厚みを規定する点P1から、両端部の厚みを規定する点P2に向かって傾斜角θ4で傾斜する山形の一対の幅広面30Wと、これら幅広面30Wを連結する大径の円弧面30Aと、幅広面30Wと円弧面30Aとを連結する面取部30Rとよりなる。幅広面30Wは、軸芯表裏中央部から両端部の表裏面にそれぞれ傾斜する平面である。
[Fourth Embodiment]
As shown in FIG. 11, the axial core 30 of the wound electrode group 4 according to the fourth embodiment has a substantially rhombus cross section. The peripheral surface of the shaft 30 has a pair of mountain-shaped wide surfaces 30W that are inclined at an inclination angle θ4 from a point P1 that defines the maximum thickness of the central portion toward a point P2 that defines the thickness of both ends, and these wide surfaces. It comprises a large-diameter arc surface 30A that couples the surface 30W, and a chamfered portion 30R that couples the wide surface 30W and the arc surface 30A. The wide surface 30 </ b> W is a flat surface that is inclined from the center portion of the shaft core to the front and back surfaces of both ends.

軸芯30の両端部の肉厚はTA3、中央部の肉厚はTB3である。幅広面30Wは、両端部方向に比較的急峻な角度θ4を有する傾斜平面であり、角度θ4は、第1実施形態による捲回形電極群4の傾斜角θ1よりも大きい。なお、幅広面30Wの山形の頂点P1はR面取りされ、正負極1,2等の捲回時に正負極1,2等と軸芯30との摩擦が軽減されている。   The wall thickness at both ends of the shaft core 30 is TA3, and the wall thickness at the center is TB3. The wide surface 30W is an inclined plane having a relatively steep angle θ4 in both end directions, and the angle θ4 is larger than the inclination angle θ1 of the wound electrode group 4 according to the first embodiment. The peak P1 of the chevron of the wide surface 30W is chamfered so that the friction between the positive and negative electrodes 1 and 2 and the shaft core 30 is reduced when the positive and negative electrodes 1 and 2 are wound.

第4実施形態による捲回形電極群4の傾斜角θ4は第1実施形態による捲回形電極群4の傾斜角θ1よりも大きいので、式(1)から分かるように、第4実施形態による捲回形電極群4は、第1実施形態による捲回形電極群4よりも締付力Bが大きくなる。   Since the inclination angle θ4 of the wound electrode group 4 according to the fourth embodiment is larger than the inclination angle θ1 of the wound electrode group 4 according to the first embodiment, as can be seen from the equation (1), according to the fourth embodiment. The wound electrode group 4 has a larger clamping force B than the wound electrode group 4 according to the first embodiment.

[第5実施形態]
図12に示すように、軸芯30は、断面が扁平な略八角形である。その外周面は、軸芯30の中央部領域L4に広がる厚みTB4一定の平面30W1と、この平面30W1の両側から軸芯両端部に延在する円弧面30W2と、軸芯表裏に広がるこれら円弧面30W2を連結する大径の円弧面30Aと、円弧面30W2と円弧面30Aとを連結する面取部30Rとを有する。平面30W1と円弧面30W2との連接点P1から、両端部の厚みTA4を規定する点P2を結ぶ仮想傾斜面VLの傾斜角θ5は図示の通りであり、締付力Bは傾斜角θ5の大きさに依存する。
[Fifth Embodiment]
As shown in FIG. 12, the shaft core 30 has a substantially octagonal shape with a flat cross section. The outer peripheral surface includes a flat surface 30W1 having a constant thickness TB4 extending in the central region L4 of the shaft core 30, arc surfaces 30W2 extending from both sides of the flat surface 30W1 to both ends of the shaft core, and these arc surfaces extending from the front and back of the shaft core. It has a large-diameter arc surface 30A that connects 30W2 and a chamfered portion 30R that connects the arc surface 30W2 and the arc surface 30A. The inclination angle θ5 of the virtual inclined surface VL that connects the point P2 that defines the thickness TA4 at both ends from the connecting point P1 between the flat surface 30W1 and the arcuate surface 30W2 is as shown in the figure, and the tightening force B is the magnitude of the inclination angle θ5. Depends on the size.

軸芯30の両端部の肉厚はTA4、中央部の肉厚はTB4である。平面30W1と円弧面30W2との連接点はR面取りされ、正負極1,2等の捲回時に正負極1,2等と軸芯30との摩擦が軽減されている。
第5実施形態による捲回形電極群4は、第1実施形態による捲回形電極群4と同様の効果を奏する。
The wall thickness at both ends of the shaft core 30 is TA4, and the wall thickness at the center is TB4. The continuous contact between the flat surface 30W1 and the arcuate surface 30W2 is rounded to reduce friction between the positive and negative electrodes 1 and 2 and the shaft core 30 when the positive and negative electrodes 1 and 2 are wound.
The wound electrode group 4 according to the fifth embodiment has the same effects as the wound electrode group 4 according to the first embodiment.

[第6実施形態]
図13に示すように、第6実施形態による捲回形電極群4の軸芯30は、第3実施形態による捲回形電極群4の軸芯30における円弧面30Aを平面30Fとしたものである。第6実施形態による捲回形電極群4は、第3実施形態による捲回形電極群4と同様の効果を奏する。
[Sixth Embodiment]
As shown in FIG. 13, the axial core 30 of the wound electrode group 4 according to the sixth embodiment is such that the arc surface 30A of the axial core 30 of the wound electrode group 4 according to the third embodiment is a plane 30F. is there. The wound electrode group 4 according to the sixth embodiment has the same effects as the wound electrode group 4 according to the third embodiment.

[第7実施形態]
図14に示すように、第7実施形態による捲回形電極群4の軸芯30は、第4実施形態による捲回形電極群4の軸芯30における円弧面30Aを平面30Fとしたものである。第7実施形態による捲回形電極群4は、第4実施形態による捲回形電極群4と同様の効果を奏する。
[Seventh Embodiment]
As shown in FIG. 14, the axial core 30 of the wound electrode group 4 according to the seventh embodiment has a circular surface 30A in the axial core 30 of the wound electrode group 4 according to the fourth embodiment as a flat surface 30F. is there. The wound electrode group 4 according to the seventh embodiment has the same effects as the wound electrode group 4 according to the fourth embodiment.

[第8実施形態]
図15に示すように、第8実施形態による捲回形電極群4の軸芯30は、第5実施形態による捲回形電極群4の軸芯30における円弧面30Aを平面30Fとしたものである。第8実施形態による捲回形電極群4は、第5実施形態による捲回形電極群4と同様の効果を奏する。
[Eighth Embodiment]
As shown in FIG. 15, the axial core 30 of the wound electrode group 4 according to the eighth embodiment is such that the arc surface 30A of the axial core 30 of the wound electrode group 4 according to the fifth embodiment is a plane 30F. is there. The wound electrode group 4 according to the eighth embodiment has the same effects as the wound electrode group 4 according to the fifth embodiment.

[第9実施形態]
図16に示すように、第9実施形態による捲回形電極群4の軸芯30は、第1実施形態による捲回形電極群4の軸芯30と同様な形状、寸法であり、その幅広面30Wに肉抜き101を穿設したものである。肉抜き101は、貫通孔あるいは凹部であり、これによって軸芯30は軽量化される。すなわち、第9実施形態による捲回形電極群4は第1実施形態による捲回形電極群4の効果に加え、二次電池を軽量化し得るという効果を奏する。
なお、第2〜第8実施形態による捲回形電極群4の軸芯30に同様の肉抜き110を穿設することも当然可能であり、同様の効果が得られる。
[Ninth Embodiment]
As shown in FIG. 16, the axial core 30 of the wound electrode group 4 according to the ninth embodiment has the same shape and dimensions as the axial core 30 of the wound electrode group 4 according to the first embodiment, and its wide width. In the surface 30W, the lightening 101 is formed. The lightening 101 is a through hole or a recess, and the shaft core 30 is reduced in weight by this. That is, the wound electrode group 4 according to the ninth embodiment has the effect of reducing the weight of the secondary battery in addition to the effect of the wound electrode group 4 according to the first embodiment.
In addition, it is naturally possible to make a similar thinning 110 in the axial core 30 of the wound electrode group 4 according to the second to eighth embodiments, and the same effect can be obtained.

[第10実施形態]
図17に示すように、第10実施形態による捲回形電極群4の軸芯30は、第1実施形態による捲回形電極群4の軸芯30と同様な形状、寸法であり、軸方向の両端面に肉抜き111を穿設したものである。肉抜き111は貫通孔あるいは凹部であり、これによって軸芯30は軽量化される。
[Tenth embodiment]
As shown in FIG. 17, the axial core 30 of the wound electrode group 4 according to the tenth embodiment has the same shape and dimensions as the axial core 30 of the wound electrode group 4 according to the first embodiment, and is axially oriented. In this case, the lightening 111 is formed on both end surfaces. The lightening 111 is a through hole or a recess, and the shaft core 30 is reduced in weight by this.

すなわち、第10実施形態による捲回形電極群4は第1実施形態による捲回形電極群4の効果に加え、二次電池を軽量化し得るという効果を奏する。
なお、第2〜第8実施形態による捲回形電極群4の軸芯30に同様の肉抜き111を穿設することも当然可能であり、同様の効果が得られる。
That is, the wound electrode group 4 according to the tenth embodiment has the effect of reducing the weight of the secondary battery in addition to the effect of the wound electrode group 4 according to the first embodiment.
In addition, it is naturally possible to make a similar cutout 111 in the shaft core 30 of the wound electrode group 4 according to the second to eighth embodiments, and the same effect can be obtained.

以上の実施形態では、バインダとしてPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体およびこれらの混合体などを使用するようにしてもよい。   In the above embodiment, PVDF is exemplified as the binder, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes Polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof may be used.

以上の実施形態では、EC、DEC、DMCの混合溶液中にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにしてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。In the above embodiment, the nonaqueous electrolytic solution in which LiPF 6 is dissolved in a mixed solution of EC, DEC, and DMC is exemplified. However, a nonaqueous electrolytic solution in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent. The present invention is not particularly limited to the lithium salt or organic solvent used.

例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではない。For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propiontonyl, etc., or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.

以上では、本発明による二次電池における軸芯30について第1〜10実施形態を説明した。しかし、本発明はそれらの実施形態に限定されない。すなわち、正負極1,2をセパレータ3a,3bで絶縁しつつ重ねて捲回して構成される扁平捲回形電極群において、正負極1,2および3a,3bの積層体の長手方向に発生する内力によって軸芯30の中心部に向かう締付力Bが発生するような軸芯の形状、寸法であれば、あらゆる形状、寸法の軸芯にも本発明を適用することができる。   In the above, 1st-10th embodiment was described about the axial center 30 in the secondary battery by this invention. However, the present invention is not limited to these embodiments. That is, in the flat wound electrode group formed by winding the positive and negative electrodes 1 and 2 while being insulated by the separators 3a and 3b, the positive and negative electrodes 1 and 2 are generated in the longitudinal direction of the laminate of the positive and negative electrodes 1, 2 and 3a and 3b. The present invention can be applied to shaft cores of any shape and size as long as the shaft core has a shape and dimensions that generate a tightening force B toward the center of the shaft core 30 due to internal force.

たとえば、第1〜第10実施形態の軸芯は一体的に形成されているが、図18に示すように、軸芯300は、軸芯本体301と、軸芯本体301の表裏面に設けた厚み形成部材302とを備え、軸芯中央部から両端部にかけて傾斜面RLを形成してもよい。あるいは、図19に示すように、軸芯300は、軸芯本体301と、軸芯本体301の表裏中央部に設けた厚み形成部材302とを備え、軸芯中央部から両端部にかけて仮想傾斜面VLを形成してもよい。   For example, the shaft cores of the first to tenth embodiments are integrally formed. As shown in FIG. 18, the shaft core 300 is provided on the shaft core body 301 and the front and back surfaces of the shaft core body 301. The thickness forming member 302 may be provided, and the inclined surface RL may be formed from the central part of the axial center to both end parts. Alternatively, as shown in FIG. 19, the shaft core 300 includes a shaft core body 301 and a thickness forming member 302 provided at the front and back center portions of the shaft core body 301, and a virtual inclined surface from the shaft core center portion to both ends. A VL may be formed.

産業上の利用分野Industrial application fields

本発明による二次電池は、特にハイブリッド自動車や電気自動車など中大容量(たとえば、4〜50Ah)の二次電池に用いて好適である。   The secondary battery according to the present invention is particularly suitable for a secondary battery having a medium to large capacity (for example, 4 to 50 Ah) such as a hybrid vehicle or an electric vehicle.

本発明の第1の態様による二次電池は、軸芯にセパレータを溶着で固定し、正極および負極を前記セパレータで絶縁しつつ軸芯に捲回して形成される扁平捲回形電極群を電池容器に収納した二次電池であって、正極、負極、およびセパレータの積層体は、軸芯の表裏面において、その捲回方向一端部から中央部へは上がり勾配で、中央部から捲回方向他端部へは下り勾配で捲回されている。この二次電池では、捲回により積層体に長手方向に発生した内力により、積層体は軸芯中心部に締付力を発生している。
軸芯には、その表裏面の中央部から捲回方向両端部に向かって下り勾配に傾斜する傾斜面を形成することができる。傾斜面は、中央部から両端部まで緩やかな円弧面として延在するのが好ましい。たとえば、軸芯の断面形状は扁平楕円形または略楕円形である。軸芯両端部は円弧面または平面とすることが好ましい。
軸芯は、その中央部断面形状を略長方形とし、その中央部から両端部に向かう傾斜面を平面または緩やかな円弧面としてもよい。この例では、傾斜面は、中央部から両端部まで平面として延在してもよい。この例でも、軸芯の両端部は円弧面または平面とすることが好ましい。また、軸芯の断面形状を略菱形としてもよい。
以上種々の形態の軸芯に肉抜きを設け、軽量化を図ることが好ましい。
本発明の第2の態様は、二次電池の捲回形電極群の製造方法である。捲回形電極群は、長尺物である正極および負極がセパレータで絶縁しつつ軸芯に積層しながら捲回され、軸芯の表裏面には、その中央部から両端部に向かって下り勾配で傾斜する捲回面が形成されている。このような捲回形電極群の製造方法において、捲回面に最内周のセパレータの一端を溶着し、セパレータの間に正極および負極を交互に積層しつつ張力を与えながら、軸芯を回転して捲回する。
正極、負極およびセパレータの積層体に張力を与えながら軸芯を回転する際、軸芯の一端部から中央部の間に延在する積層体にはその長手方向の一方向に内力が与えられ、軸芯の中央部から他端部の間に延在する積層体には長手方向の他方向に内力が与えられるように、軸芯を回転して積層体を捲回するのが好ましい。
Secondary battery according to the first aspect of the present invention, the separator is fixed in welding to the axis, a flat wound Kaigata electrode group formed by winding the axial core with insulating the positive electrode and the negative electrode with the separator cell A secondary battery housed in a container, wherein a laminate of a positive electrode, a negative electrode, and a separator has an upward gradient from one end portion in the winding direction to the central portion on the front and back surfaces of the shaft, and the winding direction from the central portion The other end is wound with a downward slope. In this secondary battery, the laminated body generates a tightening force at the central portion of the shaft core by an internal force generated in the longitudinal direction of the laminated body by winding.
The shaft core can be formed with an inclined surface that is inclined downward from the center of the front and back surfaces toward both ends in the winding direction. It is preferable that the inclined surface extends as a gentle arc surface from the center to both ends. For example, the cross-sectional shape of the shaft core is a flat elliptical shape or a substantially elliptical shape. Both end portions of the shaft core are preferably arcuate surfaces or flat surfaces.
The shaft core may have a substantially rectangular cross-section at the center, and an inclined surface from the center toward both ends may be a flat surface or a gentle arc surface. In this example, the inclined surface may extend as a flat surface from the central portion to both end portions. Also in this example, it is preferable that both end portions of the shaft core are arc surfaces or flat surfaces. Further, the cross-sectional shape of the shaft core may be substantially rhombus.
As described above, it is preferable to reduce the weight by providing a hollow in the shaft core of various forms.
The second aspect of the present invention is a method for manufacturing a wound electrode group of a secondary battery. The wound electrode group is wound while the long positive electrode and the negative electrode are laminated on the shaft core while being insulated with a separator, and the front and back surfaces of the shaft core are inclined downward from the center to both ends. A winding surface inclined at is formed. In such a method of manufacturing a wound electrode group, one end of the innermost separator is welded to the winding surface, and the shaft core is rotated while applying tension while alternately laminating positive and negative electrodes between the separators. And turn around.
When rotating the shaft core while applying tension to the laminate of the positive electrode, the negative electrode and the separator, an internal force is applied to the laminate extending between one end portion of the shaft core and the central portion in one longitudinal direction thereof, The laminated body is preferably wound by rotating the shaft core so that an internal force is applied to the laminated body extending from the central portion of the shaft core to the other end in the other direction of the longitudinal direction.

Claims (13)

正極および負極をセパレータで絶縁しつつ軸芯に捲回して形成される扁平捲回形電極群を備える二次電池であって、
前記正極、負極、およびセパレータの積層体は、前記軸芯の表裏面において、その捲回方向一端部から中央部へは上がり勾配で、中央部から捲回方向他端部へは下り勾配で捲回されている二次電池。
A secondary battery comprising a flat wound electrode group formed by winding on a shaft core while insulating a positive electrode and a negative electrode with a separator,
The laminate of the positive electrode, the negative electrode, and the separator has a rising gradient from one end portion in the winding direction to the central portion and a downward gradient from the central portion to the other end portion in the winding direction on the front and back surfaces of the shaft core. Secondary battery being turned.
請求項1記載の二次電池において、
前記捲回により前記積層体に長手方向に発生した内力により、前記積層体は軸芯中心部に締付力を発生している二次電池。
In the secondary battery according to claim 1,
A secondary battery in which the laminated body generates a tightening force at a central portion of an axial core by an internal force generated in a longitudinal direction of the laminated body by the winding.
請求項1記載の二次電池において、
前記軸芯には、その表裏面の中央部から捲回方向両端部に向かって下り勾配に傾斜する傾斜面が形成されている二次電池。
In the secondary battery according to claim 1,
A secondary battery in which the shaft core is formed with an inclined surface that is inclined downward from the center of the front and back surfaces toward both ends in the winding direction.
請求項3記載の二次電池において、
前記傾斜面は、前記中央部から前記両端部まで緩やかな円弧面として延在する二次電池。
The secondary battery according to claim 3,
The inclined surface is a secondary battery extending as a gentle arc surface from the central portion to the both end portions.
請求項4記載の二次電池において、
前記両端部は円弧面または平面である二次電池。
The secondary battery according to claim 4,
The secondary battery has a circular arc surface or a flat surface at both ends.
請求項4記載の二次電池において、
前記軸芯の断面形状は扁平楕円形または略楕円形である二次電池。
The secondary battery according to claim 4,
A secondary battery in which a cross-sectional shape of the shaft core is a flat elliptical shape or a substantially elliptical shape.
請求項1記載の二次電池において、
前記軸芯の中央部断面形状は略長方形であり、その中央部から前記両端部に向かう傾斜面は平面または緩やかな円弧面である二次電池。
The secondary battery according to claim 1,
A secondary battery in which the cross-sectional shape of the central portion of the shaft core is substantially rectangular, and the inclined surface from the central portion toward the both end portions is a flat surface or a gentle arc surface.
請求項3記載の二次電池において、
前記傾斜面は、前記中央部から前記両端部まで平面として延在する二次電池。
The secondary battery according to claim 3,
The inclined surface is a secondary battery extending as a flat surface from the central portion to the both end portions.
請求項8記載の二次電池において、
前記両端部は円弧面または平面である二次電池。
The secondary battery according to claim 8,
The secondary battery has a circular arc surface or a flat surface at both ends.
請求項8記載の二次電池において、
前記軸芯の断面形状は略菱形である二次電池。
The secondary battery according to claim 8,
A secondary battery in which a cross-sectional shape of the shaft core is substantially rhombus.
請求項1乃至10のいずれか1項記載の二次電池において、
前記軸芯には肉抜きが設けられている二次電池。
The secondary battery according to claim 1,
A secondary battery in which a hollow is provided on the shaft core.
二次電池の電極群であって、長尺物である正極および負極をセパレータで絶縁しつつ軸芯に積層しながら捲回され、前記軸芯の表裏面には、その中央部から両端部に向かって下り勾配で傾斜する捲回面が形成されている扁平捲回形電極群の製造方法において、
前記捲回面に最内周のセパレータの一端を溶着し、
前記セパレータの間に前記正極および負極を交互に積層しつつ張力を与えながら、前記軸芯を回転して捲回する扁平捲回形電極群の製造方法。
It is an electrode group of a secondary battery, and is wound while being stacked on a shaft core while insulating a positive electrode and a negative electrode, which are long objects, with a separator. In the method of manufacturing a flat wound electrode group in which a wound surface inclined at a downward slope is formed,
Welding one end of the innermost separator to the winding surface;
A method for producing a flat wound electrode group, in which the positive electrode and the negative electrode are alternately laminated between the separators and the tension is applied while rotating the shaft core.
請求項12記載の扁平捲回形電極群の製造方法において、
前記正極、負極およびセパレータの積層体に張力を与えながら前記軸芯を回転する際、前記軸芯の一端部から中央部の間に延在する積層体にはその長手方向の一方向に内力が与えられ、前記軸芯の中央部から他端部の間に延在する積層体には前記長手方向の他方向に内力が与えられるように、前記軸芯を回転して前記積層体を捲回する扁平捲回形電極群の製造方法。
In the manufacturing method of the flat wound electrode group according to claim 12,
When the shaft core is rotated while applying tension to the laminate of the positive electrode, the negative electrode, and the separator, the laminate extending between one end portion and the center portion of the shaft core has an internal force in one longitudinal direction. The laminate is wound by rotating the shaft core so that an internal force is applied in the other direction in the longitudinal direction to the laminate extending between the central portion and the other end of the shaft core. A method for manufacturing a flat wound electrode group.
JP2012523483A 2010-07-09 2010-07-09 Secondary battery and method of manufacturing flat wound electrode group Pending JPWO2012004886A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061690 WO2012004886A1 (en) 2010-07-09 2010-07-09 Secondary battery and method for manufacturing flat wound electrode group

Publications (1)

Publication Number Publication Date
JPWO2012004886A1 true JPWO2012004886A1 (en) 2013-09-02

Family

ID=45440885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523483A Pending JPWO2012004886A1 (en) 2010-07-09 2010-07-09 Secondary battery and method of manufacturing flat wound electrode group

Country Status (2)

Country Link
JP (1) JPWO2012004886A1 (en)
WO (1) WO2012004886A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136478A1 (en) * 2012-03-15 2013-09-19 日立ビークルエナジー株式会社 Rectangular secondary battery module
JP5802607B2 (en) * 2012-05-14 2015-10-28 日立オートモティブシステムズ株式会社 Lithium ion prismatic secondary battery
JP2014241208A (en) * 2013-06-11 2014-12-25 日立オートモティブシステムズ株式会社 Lithium ion secondary battery, and battery pack
JP6221383B2 (en) * 2013-06-14 2017-11-01 株式会社Gsユアサ Electric storage element, core material, and method of manufacturing electric storage element
DE102014214619A1 (en) * 2014-07-25 2016-01-28 Robert Bosch Gmbh Method for producing a prismatic battery cell
JP6198709B2 (en) * 2014-12-04 2017-09-20 Ckd株式会社 Winding device
JP6620970B2 (en) * 2015-03-24 2019-12-18 株式会社Gsユアサ Winding device, storage element manufacturing method, and storage element
WO2019235476A1 (en) * 2018-06-07 2019-12-12 株式会社Gsユアサ Power storage element
JP6694191B1 (en) * 2019-07-19 2020-05-13 株式会社皆藤製作所 Winding core, winding unit, and winding device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229970A (en) * 2000-02-16 2001-08-24 Shin Kobe Electric Mach Co Ltd Cylindrical lithium battery
JP2001236996A (en) * 2000-02-22 2001-08-31 Sony Corp Method of producing nonaqueous electrolyte battery
JP2002280055A (en) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd Flat wound group manufacturing method and winding device
JP2003068350A (en) * 2001-08-29 2003-03-07 Denso Corp Manufacturing method for flat electrode
JP2007026939A (en) * 2005-07-19 2007-02-01 Toyota Motor Corp Wound type battery and its manufacturing method
WO2007146872A2 (en) * 2006-06-12 2007-12-21 Dsm Solutions, Inc. Scalable process and structure for jfet for small and decreasing line widths
JP2010146872A (en) * 2008-12-19 2010-07-01 Hitachi Vehicle Energy Ltd Flat secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356685A (en) * 2006-02-21 2009-01-28 松下电器产业株式会社 Method of manufacturing square flat secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229970A (en) * 2000-02-16 2001-08-24 Shin Kobe Electric Mach Co Ltd Cylindrical lithium battery
JP2001236996A (en) * 2000-02-22 2001-08-31 Sony Corp Method of producing nonaqueous electrolyte battery
JP2002280055A (en) * 2001-03-21 2002-09-27 Shin Kobe Electric Mach Co Ltd Flat wound group manufacturing method and winding device
JP2003068350A (en) * 2001-08-29 2003-03-07 Denso Corp Manufacturing method for flat electrode
JP2007026939A (en) * 2005-07-19 2007-02-01 Toyota Motor Corp Wound type battery and its manufacturing method
WO2007146872A2 (en) * 2006-06-12 2007-12-21 Dsm Solutions, Inc. Scalable process and structure for jfet for small and decreasing line widths
JP2010146872A (en) * 2008-12-19 2010-07-01 Hitachi Vehicle Energy Ltd Flat secondary battery

Also Published As

Publication number Publication date
WO2012004886A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5456542B2 (en) Rectangular secondary battery and method for manufacturing prismatic secondary battery
WO2012004886A1 (en) Secondary battery and method for manufacturing flat wound electrode group
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
JP3368877B2 (en) Cylindrical lithium-ion battery
JP6198844B2 (en) Assembled battery
JP5651614B2 (en) Square secondary battery and module
JP5334894B2 (en) Lithium ion secondary battery
JP2012074287A (en) Rectangular secondary battery
JP6208258B2 (en) Prismatic secondary battery
JP2004006264A (en) Lithium secondary battery
JP5300274B2 (en) Lithium secondary battery
JP2013073809A (en) Lithium ion secondary battery
US20130323557A1 (en) Secondary battery and method for manufacturing same
JP2018147574A (en) Square Lithium Ion Secondary Battery
JP2001143759A (en) Cylindrical lithium ion cell
JP2001229970A (en) Cylindrical lithium battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP6382336B2 (en) Prismatic secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2001185220A (en) Cylindrical lithium ion battery
WO2016158398A1 (en) Rectangular secondary battery and production method therefor
JP2005100955A (en) Winding type lithium ion battery
JP2003308878A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701