JP3511966B2 - Cylindrical lithium-ion battery - Google Patents

Cylindrical lithium-ion battery

Info

Publication number
JP3511966B2
JP3511966B2 JP2000012619A JP2000012619A JP3511966B2 JP 3511966 B2 JP3511966 B2 JP 3511966B2 JP 2000012619 A JP2000012619 A JP 2000012619A JP 2000012619 A JP2000012619 A JP 2000012619A JP 3511966 B2 JP3511966 B2 JP 3511966B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
electrode plate
winding group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000012619A
Other languages
Japanese (ja)
Other versions
JP2001202997A (en
Inventor
賢治 中井
佳正 小石川
克典 鈴木
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000012619A priority Critical patent/JP3511966B2/en
Publication of JP2001202997A publication Critical patent/JP2001202997A/en
Application granted granted Critical
Publication of JP3511966B2 publication Critical patent/JP3511966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は円筒形リチウムイオ
ン電池に係り、特に、正極集電体に充放電によりリチウ
ムを放出・収容可能な正極活物質を塗着した帯状の正極
と、負極集電体に充放電によりリチウムを収容・放出可
能な負極活物質を塗着した帯状の負極とが、リチウムイ
オンが通過可能な帯状のセパレータを介して軸芯の回り
に捲回された電極捲回群を備え、電極捲回群が円筒形電
池容器内で支持又は固定された構造の容量30Ah以上
円筒形リチウムイオン電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical lithium ion battery, and more particularly to a strip-shaped positive electrode having a positive electrode current collector coated with a positive electrode active material capable of releasing and storing lithium by charging and discharging, and a negative electrode current collector. An electrode winding group in which a strip-shaped negative electrode coated with a negative electrode active material capable of accommodating / releasing lithium by charging / discharging the body is wound around a shaft core through a strip-shaped separator through which lithium ions can pass. And a structure in which the electrode winding group is supported or fixed in the cylindrical battery container, the capacity is 30 Ah or more.
The present invention relates to a cylindrical lithium ion battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、高出力、高
エネルギー密度という利点から、EV(電気自動車)用
電源として注目されている。リチウムイオン二次電池は
その形状で、円筒形と角形とに分類することができる。
通常、円筒形電池の内部には、電極が正極、負極共に活
物質が金属箔に塗着された帯状であり、正極、負極が直
接接触しないようにセパレータを挟んで円筒状の軸芯の
回りに断面が渦巻状に捲回された電極捲回群が形成され
ている。そして、電池容器となる円筒形の缶又は容器に
電極捲回群が収納され、電解液注液後、封口し、初充電
することで電池としての機能が付与される。
2. Description of the Related Art Lithium ion secondary batteries have attracted attention as a power source for EVs (electric vehicles) because of their advantages of high output and high energy density. The lithium ion secondary battery can be classified into a cylindrical shape and a prismatic shape according to its shape.
Usually, inside a cylindrical battery, both the positive electrode and the negative electrode have a strip shape in which the active material is applied to the metal foil, and the separator is sandwiched so that the positive electrode and the negative electrode do not come into direct contact with each other, and the circumference of the cylindrical axis is surrounded. An electrode winding group having a spirally wound cross section is formed on. Then, the electrode winding group is housed in a cylindrical can or container that serves as a battery container, and after the electrolytic solution is injected, the electrode winding group is sealed and charged for the first time to impart a function as a battery.

【0003】EV用電源用途に適した概ねの容量30A
h以上の高容量、高出力のリチウムイオン二次電池にお
いては、電池長さ、電池径ともに大きくなる。活物質が
金属箔に塗着された上述の帯状の電極を、大きな電池径
に対応させるべく活物質の塗着量を増やして厚くする
と、活物質層が金属箔から剥離、脱落して電極形状を維
持することができなくなる。このため、帯状の電極の捲
回回数を多くすることで電極捲回群の径を大きくしてい
る。
Approximate capacity of 30 A suitable for use as a power source for EV
In a high-capacity, high-power lithium ion secondary battery of h or more, both the battery length and the battery diameter are large. When the above-mentioned strip-shaped electrode coated with the active material on the metal foil is thickened by increasing the coating amount of the active material to accommodate a large battery diameter, the active material layer peels off from the metal foil and falls off to form the electrode shape. Can no longer be maintained. Therefore, the diameter of the electrode winding group is increased by increasing the number of windings of the strip-shaped electrode.

【0004】一方、大電流放電が可能で高出力の電池を
得るために、例えば、特開平第9−92335号公報の
技術では、電極から数多くのリードを取り出し、それら
のリードを集結させて電池端子を兼ねる集電部材を電池
内に構成する提案がなされている。
On the other hand, in order to obtain a high output battery capable of discharging a large amount of current, for example, in the technique disclosed in Japanese Patent Laid-Open No. 9-92335, a large number of leads are taken out from an electrode and the leads are assembled to form a battery. Proposals have been made to construct a current collecting member that also serves as a terminal in a battery.

【0005】[0005]

【発明が解決しようとする課題】ところが、前述のよう
な捲回構造を有する電極捲回群では、充放電に伴う正極
活物質及び負極活物質の体積の膨張・収縮によって電極
捲回群に応力が掛かり、充放電の繰り返しによって電極
捲回群の緊束力が低下するので、充放電容量等の電池特
性の低下を招くことになる。とりわけ、電極捲回群が長
く、多数回捲回された電極捲回群においては、電池特性
の低下はより顕著に現れる。これを防止するために、電
極捲回群の周囲に粘着固定テープ等の緊束部材を巻き付
けて、電極捲回群全体の緊束力を維持する工夫がなされ
ている。
However, in the electrode winding group having the winding structure as described above, stress is applied to the electrode winding group due to expansion / contraction of the volumes of the positive electrode active material and the negative electrode active material due to charging / discharging. As a result, the tight binding force of the electrode winding group decreases due to repeated charging / discharging, which leads to deterioration of battery characteristics such as charge / discharge capacity. In particular, in the electrode winding group in which the electrode winding group is long and the electrode winding group is wound many times, the deterioration of the battery characteristics becomes more remarkable. In order to prevent this, a device for maintaining a tight binding force of the whole electrode winding group by winding a tight binding member such as an adhesive fixing tape around the electrode winding group has been made.

【0006】しかし、比較的大容量、高出力の円筒形リ
チウムイオン電池においては、電極捲回群のサイズも大
きくなり、電池が過充電等異常な状態に陥った際に電極
捲回群内部から発生するガスが速やかに抜けきらず、電
池容器や電池缶の開裂に至る可能性があった。
However, in a cylindrical lithium-ion battery having a relatively large capacity and a high output, the size of the electrode winding group also becomes large, and when the battery falls into an abnormal state such as overcharge, the electrode winding group is discharged from the inside. The generated gas could not be exhausted promptly, and the battery container or the battery can could be cleaved.

【0007】本発明は上記事案に鑑み、高容量・高出力
でありながらも、安全性に優れ、かつ、長寿命の円筒形
リチウムイオン二次電池を提供することを課題とする。
In view of the above problems, it is an object of the present invention to provide a cylindrical lithium ion secondary battery having a high capacity and a high output, excellent safety, and a long life.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極集電体に充放電によりリチウムを放
出・収容可能な正極活物質を塗着した帯状の正極と、負
極集電体に充放電によりリチウムを収容・放出可能な負
極活物質を塗着した帯状の負極とが、リチウムイオンが
通過可能な帯状のセパレータを介して軸芯の回りに捲回
された電極捲回群を備え、前記電極捲回群が円筒形電池
容器内で支持又は固定された構造の容量30Ah以上の
円筒形リチウムイオン電池において、前記電池容器の内
径は前記電極捲回群の直径の1.03倍以上で、前記電
極捲回群の外周に亘って前記電池容器との間に隙間が形
成されており、前記電極捲回群の最外周に引っ張り強度
が2×10 Pa以下のセパレータが3層以上捲回され
たことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a strip-shaped positive electrode in which a positive electrode current collector is coated with a positive electrode active material capable of releasing and storing lithium by charging and discharging, and a negative electrode collector. Electrode winding in which a strip-shaped negative electrode coated with a negative electrode active material capable of accommodating and discharging lithium by charge and discharge is wound around an axis through a strip-shaped separator through which lithium ions can pass In a cylindrical lithium-ion battery having a capacity of 30 Ah or more, which has a structure in which the electrode winding group is supported or fixed in the cylindrical battery container, the inner diameter of the battery container is 1. 03 times or more, a gap is formed, tension on the outermost periphery of the electrode winding group strength between the battery container over the outer periphery of the electrode winding group
Of 2 × 10 8 Pa or less is wound in three layers or more.

【0009】本発明では、電極捲回群が円筒形電池容器
内で支持又は固定されている。電池容器の内径は電極捲
回群の直径の1.03倍以上とされ、電極捲回群の外周
に亘って電池容器の間には隙間が形成されている。この
隙間を経由して電池異常時に電極捲回群内部で発生した
ガスが電池上部方向へ案内される。このような構造を有
する円筒形リチウムイオン電池の電極捲回群の周囲に緊
束力を高めるテープ等の緊束部材を配置すると、電池異
常時にガス抜けが悪くなる。一方、緊束部材を配置せず
電極捲回群の最外周に1層又は2層のセパレータを配置
すると、電極捲回群は緊束力が低下し、充放電容量の低
下やサイクル寿命の低下を招く。そこで、本発明では、
緊束部材を配置せず電極捲回群の最外周にセパレータを
3層以上捲回することにより、電池異常時にスムーズな
ガス抜けを図ると共に、緊束力の低下から生ずる充放電
容量の低下及びサイクル寿命の低下を防止することとし
た。また、セパレータの引っ張り強度を2×10 Pa
以下とすることで、電池異常時に電池外に排出される電
池内容物の量が少なくなり、安全性がより高まる。本発
明によれば、容量30Ah以上の円筒形リチウムイオン
電池において、電池異常時に電極捲回群内部で急激に発
生するガスを速やかに電池上部方向へ案内することがで
きると共に、電極捲回群の緊束力を保持することができ
るので、電極捲回群のサイズの大きい高容量・高出力の
電池において、安全性を確保することができると共に、
長いサイクル寿命を確保することができる。
In the present invention, the electrode winding group is supported or fixed in the cylindrical battery container. The inner diameter of the battery container is 1.03 times or more the diameter of the electrode winding group, and the outer circumference of the electrode winding group
A gap is formed between the battery containers. Gas generated inside the electrode winding group when the battery is abnormal is guided to the upper part of the battery through this gap. If a binding member such as a tape that enhances the binding force is arranged around the electrode winding group of the cylindrical lithium-ion battery having such a structure, gas leakage will be deteriorated when the battery is abnormal. On the other hand, when a one-layer or two-layer separator is arranged on the outermost periphery of the electrode winding group without arranging the binding member, the electrode winding group has a reduced binding force, which reduces charge / discharge capacity and cycle life. Invite. Therefore, in the present invention,
By winding three or more layers of the separator around the outermost periphery of the electrode winding group without arranging the binding member, smooth gas release can be achieved at the time of battery abnormality, and reduction in charge / discharge capacity caused by reduction in binding force and It was decided to prevent the cycle life from decreasing. Also, the tensile strength of the separator is 2 × 10 8 Pa
By doing the following, the power discharged to the outside of the battery when the battery is abnormal
The amount of pond contents is reduced and safety is improved. According to the present invention, in a cylindrical lithium ion battery having a capacity of 30 Ah or more, gas that is rapidly generated inside the electrode winding group when the battery is abnormal can be quickly guided to the upper portion of the battery, and at the same time, Since the binding force can be maintained, safety can be ensured in a high capacity / high output battery with a large size of the electrode winding group.
A long cycle life can be secured.

【0010】この場合において、正極活物質にリチウム
マンガン複酸化物を用い、及び/又は、負極活物質に非
晶質炭素を用いるようにすれば、電池異常時の電池の挙
動を穏やかにすることができるので、更に安全性を高め
ることができる。
[0010] In this case, a lithium-manganese complex oxide in the positive electrode active material, and / or, if so use an amorphous carbon in the negative electrode active material, to moderate the behavior of the battery during battery abnormality Therefore, the safety can be further enhanced.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明をE
V搭載用円筒形リチウムイオン電池に適用した実施の形
態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described with reference to the drawings.
An embodiment applied to a V-mounting cylindrical lithium-ion battery will be described.

【0012】<正極板の作製>充放電によりリチウムを
放出・収容可能な活物質であるコバルト酸リチウム(L
iCoO)粉末やリチウムマンガン複酸化物であるマ
ンガン酸リチウム(LiMn)粉末87重量部
と、導電剤として鱗片状黒鉛(平均粒径:20μm)
8.7重量部と、結着剤としてポリフッ化ビニリデン
(PVdF)4.3重量部と、を混合し、これに分散溶
媒のN−メチル−2−ピロリドン(NMP)を添加、混
練したスラリを、厚さ20μmのアルミニウム箔(正極
集電体)の両面に塗布した。このとき、正極板長寸方向
の一方の側縁に幅50mmの未塗布部を残した。その後
乾燥、プレス、裁断して幅300mm、後述する所定長
さ及び正極活物質合剤塗布部所定厚さの帯状の正極板を
得た。正極活物質合剤層の空隙率はいずれも35±2%
とした。正極板のスラリ未塗布部に切り欠きを入れ、切
り欠き残部をリード片とした。また、隣り合うリード片
を20mm間隔とし、リード片の幅は10mmとした。
<Production of positive electrode plate> Lithium cobalt oxide (L
87 parts by weight of iCoO 2 ) powder or lithium manganate (LiMn 2 O 4 ) powder that is a lithium manganese mixed oxide, and scaly graphite (average particle size: 20 μm) as a conductive agent.
8.7 parts by weight and 4.3 parts by weight of polyvinylidene fluoride (PVdF) as a binder were mixed, to which N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added and kneaded into a slurry. It was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the lengthwise direction of the positive electrode plate. Then, it was dried, pressed and cut to obtain a strip-shaped positive electrode plate having a width of 300 mm, a predetermined length described later and a predetermined thickness of the positive electrode active material mixture application portion. Porosity of the positive electrode active material mixture layer is 35 ± 2%
And A notch was made in the uncoated portion of the positive electrode plate, and the remaining notch was used as a lead piece. In addition, adjacent lead pieces were spaced at 20 mm, and the width of the lead pieces was 10 mm.

【0013】<負極板の作製>充放電によりリチウムを
収容・放出可能な黒鉛質炭素である大阪ガスケミカル株
式会社(以下、大阪ガスケミカルという。)製のMCM
B(商品名)粉末や、非晶質炭素である呉羽化学工業株
式会社(以下、呉羽化学という。)製カーボトロンP
(商品名)粉末92重量部に結着剤として8重量部のポ
リフッ化ビニリデンを添加し、これに分散溶媒のN−メ
チル−2−ピロリドンを添加、混練したスラリを、厚さ
10μmの圧延銅箔(負極集電体)の両面に塗布した。
このとき、負極板長寸方向の一方の側縁に幅50mmの
未塗布部を残した。その後乾燥、プレス、裁断して幅3
05mm、後述する所定長さ及び負極活物質塗布部所定
厚さの帯状の負極板を得た。負極活物質層の空隙率はい
ずれも35±2%とした。負極板のスラリ未塗布部に正
極板と同様に切り欠きを入れ、切り欠き残部をリード片
とした。また、隣り合うリード片を20mm間隔とし、
リード片の幅を10mmとした。
<Production of Negative Electrode Plate> MCM manufactured by Osaka Gas Chemicals Co., Ltd. (hereinafter referred to as Osaka Gas Chemicals), which is a graphitic carbon capable of accommodating and releasing lithium by charging and discharging.
Carbtron P manufactured by Kureha Chemical Industry Co., Ltd. (hereinafter referred to as Kureha Chemical Co., Ltd.), which is B (trade name) powder or amorphous carbon.
(Brand name) To 92 parts by weight of powder, 8 parts by weight of polyvinylidene fluoride as a binder was added, and N-methyl-2-pyrrolidone as a dispersion solvent was added to the mixture, and the kneaded slurry was mixed with rolled copper having a thickness of 10 μm. It was applied to both sides of the foil (negative electrode current collector).
At this time, an uncoated portion having a width of 50 mm was left on one side edge in the lengthwise direction of the negative electrode plate. After that, dry, press, cut and width 3
A strip-shaped negative electrode plate having a length of 05 mm, which will be described later, and a predetermined thickness of the negative electrode active material coating portion was obtained. The porosities of the negative electrode active material layers were all 35 ± 2%. A notch was made in the uncoated portion of the negative electrode plate in the same manner as the positive electrode plate, and the remaining notch was used as a lead piece. In addition, the adjacent lead pieces are spaced by 20 mm,
The width of the lead piece was 10 mm.

【0014】<電池の作製>上記作製した帯状の正極板
と負極板とを、これら両極板が直接接触しないように厚
さ40μm、幅310mmのポリエチレン製セパレータ
を介して捲回した。このとき、捲回群(電極捲回群)の
最外周のセパレータは3層以上となるようにした。ま
た、正極板及び負極板のリード片(図1の符号9参照)
が、それぞれ捲回群の互いに反対側の両端面に位置する
ようにした。捲回中心となる軸芯は、例えばガラス繊維
をフィラーとして分散混入させたポリプロピレン等の電
気的絶縁性を有する樹脂で形成されており、直径14m
m、内径8mmの中空管である。捲回群径は、正極板、
負極板、セパレータの長さ及び正極板、負極板の厚さを
調整し、63±0.5mmとした。なお、捲回群には帯
状の正極板及び負極板が40回以上捲回されている。
<Production of Battery> The above-prepared strip-shaped positive electrode plate and negative electrode plate were wound with a polyethylene separator having a thickness of 40 μm and a width of 310 mm so as not to directly contact the both electrode plates. At this time, the separator on the outermost periphery of the wound group (electrode wound group) had three or more layers. Also, the lead pieces of the positive electrode plate and the negative electrode plate (see reference numeral 9 in FIG. 1).
Were located on opposite end surfaces of the winding group, respectively. The shaft center serving as the winding center is made of a resin having an electrically insulating property such as polypropylene in which glass fibers are dispersed and mixed as a filler, and has a diameter of 14 m.
m is a hollow tube having an inner diameter of 8 mm. The winding group diameter is the positive electrode plate,
The lengths of the negative electrode plate and the separator and the thicknesses of the positive electrode plate and the negative electrode plate were adjusted to 63 ± 0.5 mm. In addition, a strip-shaped positive electrode plate and a negative electrode plate are wound 40 times or more in the winding group.

【0015】図1に示すように、正極板から導出されて
いるリード片9を変形させ、その全てを、軸芯11のほ
ぼ延長線上にある極柱(正極外部端子1)周囲から一体
に張り出している鍔部7周面付近に集合、接触させた
後、リード片9と鍔部7周面とを超音波溶接してリード
片9を鍔部7周面に接続し固定した。また、負極外部端
子1’と負極板から導出されているリード片9との接続
操作も、正極外部端子1と正極板から導出されているリ
ード片9との接続操作と同様に行った。
As shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are integrally projected from the periphery of the pole (the positive electrode external terminal 1) substantially on the extension line of the shaft core 11. After gathering and contacting with the peripheral surface of the collar portion 7, the lead piece 9 and the peripheral surface of the collar portion 7 are ultrasonically welded, and the lead piece 9 is connected and fixed to the peripheral surface of the collar portion 7. Further, the connection operation between the negative electrode external terminal 1 ′ and the lead piece 9 led out from the negative electrode plate was performed in the same manner as the connection operation between the positive electrode external terminal 1 and the lead piece 9 led out from the positive electrode plate.

【0016】その後、正極外部端子1及び負極外部端子
1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁
被覆8は、捲回群6外周面全周にも及ぼした。絶縁被覆
8には、基材がポリプロピレンで、その片面にヘキサメ
タアクリレートからなる粘着剤を塗布した粘着テープを
用いた。この粘着テープを鍔部7周面から捲回群6外周
面に亘って少なくとも1周以上巻いて絶縁被覆8とし
た。電池容器5の外径は67mm、内径は66mmであ
る。なお、本実施形態の電池容器5の内径66mmは捲
回群6の平均直径63mmに対し、概ね1.05倍であ
る。
After that, an insulating coating 8 was applied to the entire circumference of the flange 7 of the positive electrode external terminal 1 and the negative electrode external terminal 1 '. The insulating coating 8 also applied to the entire outer peripheral surface of the winding group 6. For the insulating coating 8, a pressure sensitive adhesive tape was used in which the base material was polypropylene and one side of which was coated with a pressure sensitive adhesive made of hexamethacrylate. This adhesive tape was wound at least once over the circumference of the collar 7 and the outer circumference of the winding group 6 to form the insulating coating 8. The battery container 5 has an outer diameter of 67 mm and an inner diameter of 66 mm. The inner diameter 66 mm of the battery container 5 of the present embodiment is about 1.05 times the average diameter 63 mm of the winding group 6.

【0017】そして、アルミナ製で円盤状電池蓋4裏面
と当接する部分の厚さ2mm、内径16mm、外径25
mmの第2のセラミックワッシャ3’を、図1に示すよ
うに、先端が正極外部端子1を構成する極柱、先端が負
極外部端子1’を構成する極柱にそれぞれ嵌め込んだ。
また、アルミナ製で厚さ2mm、内径16mm、外径2
8mmの平板状の第1のセラミックワッシャ3を電池蓋
4に載置し、正極外部端子1、負極外部端子1’をそれ
ぞれ第1のセラミックワッシャ3に通した。その後、電
池蓋4周端面を電池容器5開口部に嵌合し、双方の接触
部全域をレーザ溶接した。このとき、正極外部端子1、
負極外部端子1’は、電池蓋4の中心に形成された穴を
貫通して電池蓋4外部に突出している。そして、図1に
示すように、第1のセラミックワッシャ3、金属製ナッ
ト2底面よりも平滑な金属ワッシャ14を、この順に正
極外部端子1、負極外部端子1’にそれぞれ嵌め込ん
だ。なお、電池蓋4には電池の内圧上昇に応じて開裂す
る開裂弁10が設けられている。開裂弁10の開裂圧
は、1.3×10〜1.8×10Paとした。
The thickness of the portion made of alumina that contacts the back surface of the disk-shaped battery lid 4 is 2 mm, the inner diameter is 16 mm, and the outer diameter is 25.
As shown in FIG. 1, the second ceramic washer 3 ′ having a size of 2 mm was fitted in the pole column whose tip constitutes the positive electrode external terminal 1 and the pole column whose tip constituted the negative electrode external terminal 1 ′.
Also made of alumina, thickness 2mm, inner diameter 16mm, outer diameter 2
The 8 mm flat plate-shaped first ceramic washer 3 was placed on the battery lid 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ were respectively passed through the first ceramic washer 3. After that, the peripheral end surface of the battery lid 4 was fitted into the opening of the battery container 5, and the entire contact portions of both were laser-welded. At this time, the positive electrode external terminal 1,
The negative electrode external terminal 1 ′ penetrates a hole formed at the center of the battery lid 4 and projects to the outside of the battery lid 4. Then, as shown in FIG. 1, the first ceramic washer 3 and the metal washer 14 that was smoother than the bottom surface of the metal nut 2 were fitted in this order to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, respectively. The battery lid 4 is provided with a cleaving valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 1.3 × 10 6 to 1.8 × 10 6 Pa.

【0018】次いで、ナット2を正極外部端子1、負極
外部端子1’にそれぞれ螺着し、第2のセラミックワッ
シャ3’、第1のセラミックワッシャ3、金属ワッシャ
14を介して電池蓋4を鍔部7とナット2の間で締め付
けにより固定した。このときの締め付けトルク値は5N
・mとした。なお、締め付け作業が終了するまで金属ワ
ッシャ14は回転しなかった。この状態で、電池蓋4裏
面と鍔部7の間に介在させたゴム(EPDM)製Oリン
グ16の圧縮により電池容器5内部の発電要素は外気か
ら遮断される。
Next, the nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ', respectively, and the battery lid 4 is fitted with the second ceramic washer 3', the first ceramic washer 3 and the metal washer 14 together. It was fixed by tightening between the portion 7 and the nut 2. The tightening torque value at this time is 5N
・ M. The metal washer 14 did not rotate until the tightening work was completed. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the collar portion 7.

【0019】その後、電池蓋4に設けた注液口15から
電解液を所定量電池容器5内に注入し、その後注液口1
5を封止することにより円筒形リチウムイオン電池20
を完成させた。
After that, a predetermined amount of electrolytic solution is injected into the battery container 5 through the liquid injection port 15 provided in the battery lid 4, and then the liquid injection port 1
Cylindrical lithium ion battery 20 by sealing 5
Was completed.

【0020】電解液には、エチレンカーボネートとジメ
チルカーボネートとジエチルカーボネートの体積比1:
1:1の混合溶液中へ6フッ化リン酸リチウム(LiP
)を1モル/リットル溶解したものを用いた。な
お、円筒形リチウムイオン電池20には、電池容器5の
内圧の上昇に応じて電流を遮断する電流遮断機構は設け
られていない。
The electrolytic solution contains ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1:
Lithium hexafluorophosphate (LiP
A solution obtained by dissolving 1 mol / liter of F 6 ) was used. It should be noted that the cylindrical lithium ion battery 20 is not provided with a current cutoff mechanism that cuts off current in accordance with an increase in the internal pressure of the battery container 5.

【0021】次に、本実施形態に従って作製した円筒形
リチウムイオン電池20の実施例について説明する。ま
ず、実施例の正極板及び負極板を次のように作製した。
Next, an example of the cylindrical lithium ion battery 20 manufactured according to this embodiment will be described. First, the positive electrode plate and the negative electrode plate of the example were manufactured as follows.

【0022】<正極板> [正極板C−1] 正極活物質に日本化学工業株式会社
(以下、日本化学という。)製セルシードC−10(商
品名)を用いたコバルト酸リチウムとし、正極集電体を
含んだ電極厚さ195μm、長さ636cmの正極板を
作製した(以下、この正極板を正極板C−1とい
う。)。このときの正極活物質合剤層のかさ密度は2.
77g/cmとした。 [正極板C−2] 正極活物質に日本化学製セルシードC
−10を用いたコバルト酸リチウムとし、正極集電体を
含んだ電極厚さ199μm、長さ629cmの正極板を
作製した(以下、この正極板を正極板C−2とい
う。)。このときの正極活物質合剤層のかさ密度は2.
77g/cmとした。 [正極板M−1] 正極活物質を三井金属株式会社(以
下、三井金属という。)製のマンガン酸リチウムとし、
正極集電体を含んだ電極厚さ240μm、長さ620c
mの正極板を作製した(以下、この正極板を正極板M−
1という。)。このときの正極活物質合剤層のかさ密度
は2.61g/cmとした。 [正極板M−2] 正極活物質を三井金属製のマンガン酸
リチウムとし、正極集電体を含んだ電極厚さ243μ
m、長さ618cmの正極板を作製した(以下、この正
極板を正極板M−2という。)。このときの正極活物質
合剤層のかさ密度は2.61g/cmとした。
<Positive Electrode Plate> [Positive Electrode Plate C-1] A positive electrode active material is made of cell seed C-10 (trade name) manufactured by Nippon Chemical Industry Co., Ltd. A positive electrode plate including an electric body having an electrode thickness of 195 μm and a length of 636 cm was produced (hereinafter, this positive electrode plate is referred to as positive electrode plate C-1). The bulk density of the positive electrode active material mixture layer at this time is 2.
It was set to 77 g / cm 3 . [Cathode C-2] Nihon Kagaku Cell Seed C is used as the cathode active material.
Using -10 as a lithium cobalt oxide, a positive electrode plate including a positive electrode current collector and having an electrode thickness of 199 μm and a length of 629 cm was produced (hereinafter, this positive electrode plate is referred to as positive electrode plate C-2). The bulk density of the positive electrode active material mixture layer at this time is 2.
It was set to 77 g / cm 3 . [Positive electrode plate M-1] The positive electrode active material is lithium manganate manufactured by Mitsui Metal Co., Ltd. (hereinafter referred to as Mitsui Metal Co., Ltd.),
Electrode thickness including positive electrode current collector 240 μm, length 620c
m positive electrode plate was produced (hereinafter, this positive electrode plate is referred to as positive electrode plate M-
1 ). The bulk density of the positive electrode active material mixture layer at this time was 2.61 g / cm 3 . [Positive electrode plate M-2] The positive electrode active material is lithium manganate manufactured by Mitsui Metals, and the electrode thickness including the positive electrode current collector is 243 μm.
A positive electrode plate having a length of m and a length of 618 cm was produced (hereinafter, this positive electrode plate is referred to as a positive electrode plate M-2). The bulk density of the positive electrode active material mixture layer at this time was 2.61 g / cm 3 .

【0023】<負極板> [負極板B−1] 黒鉛質炭素として、大阪ガスケミカル
製のMCMBを用い、負極集電体を含んだ電極厚さ17
3μm、長さ654cmの負極板を作製した(以下、こ
の負極板を負極板B−1という。)。このときの負極活
物質合剤層のかさ密度は1.35g/cmとした。 [負極板B−2] 黒鉛質炭素として、大阪ガスケミカル
製のMCMBを用い、負極集電体を含んだ電極厚さ14
1μm、長さ638cmの負極板を作製した(以下、こ
の負極板を負極板B−2という。)。このときの負極活
物質合剤層のかさ密度は1.35g/cmとした。 [負極板P−1] 非晶質炭素として、呉羽化学製カーボ
トロンPを用い、負極集電体を含んだ電極厚さ175μ
m、長さ647cmの負極板を作製した(以下、この負
極板を負極板P−1という。)。このときの負極活物質
合剤層のかさ密度は0.98g/cmとした。 [負極板P−2] 非晶質炭素として、呉羽化学製カーボ
トロンPを用い、負極集電体を含んだ電極厚さ140μ
m、長さ636cmの負極板を作製した(以下、この負
極板を負極板P−2という。)。このときの負極活物質
合剤層のかさ密度は0.98g/cmとした。
<Negative Electrode Plate> [Negative Electrode Plate B-1] MCMB manufactured by Osaka Gas Chemicals was used as the graphitic carbon, and the electrode thickness 17 including the negative electrode current collector was used.
A negative electrode plate having a size of 3 μm and a length of 654 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate B-1). The bulk density of the negative electrode active material mixture layer at this time was 1.35 g / cm 3 . [Negative Electrode Plate B-2] MCMB manufactured by Osaka Gas Chemicals was used as the graphitic carbon, and the electrode thickness 14 including the negative electrode current collector was 14
A negative electrode plate having a size of 1 μm and a length of 638 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate B-2). The bulk density of the negative electrode active material mixture layer at this time was 1.35 g / cm 3 . [Negative Electrode Plate P-1] As amorphous carbon, a carbon nanotube P manufactured by Kureha Chemical was used, and an electrode thickness including a negative electrode current collector was 175 μm.
A negative electrode plate having a length of m and a length of 647 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate P-1). The bulk density of the negative electrode active material mixture layer at this time was 0.98 g / cm 3 . [Negative Electrode Plate P-2] Carbotron P manufactured by Kureha Chemical Co., Ltd. was used as the amorphous carbon, and the electrode thickness including the negative electrode current collector was 140 μm.
A negative electrode plate having a length of m and a length of 636 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate P-2). The bulk density of the negative electrode active material mixture layer at this time was 0.98 g / cm 3 .

【0024】<構成>以下、各々の実施例の電池仕様を
記す。なお、各実施例において、軸芯11とセパレータ
との固定には、いずれもアクリル系粘着テープを使用し
た。
<Structure> The battery specifications of each embodiment will be described below. In each of the examples, an acrylic adhesive tape was used to fix the shaft core 11 and the separator.

【0025】(実施例1)下表1に示すように、正極板
M−2、負極板P−2を組み合わせ、長さ方向の引っ張
り強度1.8×10Pa(N/m)の帯状のセパレ
ータを用い、図2に示すように、正極板31と負極板3
2との間にセパレータ33を介して捲回し、捲回群6の
最外周のセパレータ33を3層とした電池20を作製し
た。
Example 1 As shown in Table 1 below, a positive electrode plate M-2 and a negative electrode plate P-2 were combined to obtain a tensile strength of 1.8 × 10 8 Pa (N / m 2 ) in the longitudinal direction. Using a strip-shaped separator, as shown in FIG. 2, the positive electrode plate 31 and the negative electrode plate 3
A battery 20 was manufactured by winding the separator 33 between the first and second electrodes via a separator 33 to form the outermost separator 33 of the winding group 6 in three layers.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2)表1に示すように、正極板M
−2、負極板P−2を組み合わせ、長さ方向の引っ張り
強度1.8×10Paの帯状のセパレータを用い、図
3に示すように、正極板31と負極板32との間にセパ
レータ33を介して捲回し、捲回群6の最外周のセパレ
ータ33を5層とした電池20を作製した。 (実施例3)表1に示すように、正極板C−1、負極板
B−1を組み合わせ、それ以外は上述した実施例1と同
様に電池20を作製した。 (実施例4)表1に示すように、正極板M−1、負極板
B−2を組み合わせ、それ以外は実施例1と同様に電池
20を作製した。 (実施例5)表1に示すように、正極板C−2、負極板
P−1を組み合わせ、それ以外は実施例1と同様に電池
20を作製した。 (実施例6)表1に示すように、正極板C−1、負極板
B−1を組み合わせ、それ以外は実施例1と同様に電池
20を作製した。 (実施例7)表1に示すように、正極板M−2、負極板
P−2を組み合わせ、長さ方向の引っ張り強度2.2×
10Paの帯状のセパレータを用い、図2に示すよう
に、正極板31と負極板32との間にセパレータ33を
介して捲回し、捲回群6の最外周のセパレータ33を3
層とした電池20を作製した。
Example 2 As shown in Table 1, the positive electrode plate M
-2, the negative electrode plate P-2 is combined, a strip-shaped separator having a tensile strength of 1.8 × 10 8 Pa in the length direction is used, and as shown in FIG. 3, a separator is provided between the positive electrode plate 31 and the negative electrode plate 32. The battery 20 was wound with 33 layers, and the outermost separator 33 of the winding group 6 was made into five layers to prepare a battery 20. (Example 3) As shown in Table 1, a positive electrode plate C-1 and a negative electrode plate
A battery 20 was produced in the same manner as in Example 1 described above except that B-1 was combined. (Example 4) As shown in Table 1, a battery 20 was produced in the same manner as in Example 1 except that the positive electrode plate M-1 and the negative electrode plate B-2 were combined. (Example 5) As shown in Table 1, a battery 20 was produced in the same manner as in Example 1 except that the positive electrode plate C-2 and the negative electrode plate P-1 were combined. (Example 6) As shown in Table 1, a battery 20 was produced in the same manner as in Example 1 except that the positive electrode plate C-1 and the negative electrode plate B-1 were combined. (Example 7) As shown in Table 1, a positive electrode plate M-2 and a negative electrode plate P-2 were combined, and the tensile strength in the length direction was 2.2 ×.
Using a strip-shaped separator of 10 8 Pa, as shown in FIG. 2, the positive electrode plate 31 and the negative electrode plate 32 are wound with a separator 33 interposed therebetween, and the outermost separator 33 of the winding group 6 is set to 3 pieces.
A layered battery 20 was prepared.

【0028】<比較例の構成>また、以上の実施例と比
較するために、以下の比較例の円筒形リチウムイオン電
池を併せて作製した。
<Structure of Comparative Example> Further, in order to compare with the above example, a cylindrical lithium ion battery of the following comparative example was also produced.

【0029】(比較例1)表1に示すように、正極板M
−2、負極板P−2を組み合わせ、長さ方向の引っ張り
強度1.8×10Paの帯状のセパレータを用い、図
4に示すように、正極板31と負極板32との間にセパ
レータ33を介して捲回し、捲回群6の最外周のセパレ
ータ33を1層とし、更にその外周に、厚さ50μm、
幅280mmのポリプロピレン製粘着テープ34を巻き
付けた電池を作製した。テープの粘着剤はアクリル系粘
着剤である。 (比較例2)表1に示すように、正極板M−2、負極板
P−2を組み合わせ、長さ方向の引っ張り強度1.8×
10Paの帯状のセパレータを用い、図5に示すよう
に、正極板31と負極板32との間にセパレータ33を
介して捲回し、捲回群6の最外周のセパレータ33を2
層とした電池を作製した。 (比較例3)表1に示すように、正極板M−2、負極板
P−2を組み合わせ、長さ方向の引っ張り強度1.8×
10Paの帯状のセパレータを用い、図6に示すよう
に、正極板31と負極板32との間にセパレータ33を
介して捲回し、捲回群6の最外周のセパレータ33を1
層とした電池を作製した。
Comparative Example 1 As shown in Table 1, the positive electrode plate M
-2, the negative electrode plate P-2 is combined, a strip-shaped separator having a tensile strength of 1.8 × 10 8 Pa in the length direction is used, and as shown in FIG. 4, a separator is provided between the positive electrode plate 31 and the negative electrode plate 32. It winds through 33, the separator 33 of the outermost periphery of the winding group 6 is made into one layer, and further 50 micrometers in thickness is provided in the outer periphery.
A battery in which a polypropylene adhesive tape 34 having a width of 280 mm was wound was produced. The adhesive of the tape is an acrylic adhesive. (Comparative Example 2) As shown in Table 1, a positive electrode plate M-2 and a negative electrode plate P-2 were combined and the tensile strength in the length direction was 1.8 ×.
Using a strip-shaped separator of 10 8 Pa, as shown in FIG. 5, the separator 33 is wound between the positive electrode plate 31 and the negative electrode plate 32 with the separator 33 interposed therebetween.
A layered battery was prepared. (Comparative Example 3) As shown in Table 1, a positive electrode plate M-2 and a negative electrode plate P-2 were combined and the tensile strength in the length direction was 1.8 ×.
Using a strip-shaped separator of 10 8 Pa, as shown in FIG. 6, the positive electrode plate 31 and the negative electrode plate 32 are wound with a separator 33 in between, and the outermost peripheral separator 33 of the winding group 6 is set to 1
A layered battery was prepared.

【0030】<試験・評価> [試験]次に、以上のように作製した実施例及び比較例の
各電池について、25±3°Cにて、4.2V定電圧、
電流制限(上限)30A、5時間の充電の後、30A定
電流、終止電圧2.5Vの条件で放電し、初期放電容量
を計測した。
<Test / Evaluation> [Test] Next, with respect to each of the batteries of Examples and Comparative Examples produced as described above, a constant voltage of 4.2 V at 25 ± 3 ° C.
After charging with a current limit (upper limit) of 30 A for 5 hours, the battery was discharged under the conditions of a constant current of 30 A and an end voltage of 2.5 V, and the initial discharge capacity was measured.

【0031】その後、電池温度を60±3°Cまで加温
し、環境温度60±3°Cにて、4.2V定電圧、電流
制限(上限)60A、3時間の充電、0.5時間休止の
後、60A定電流、終止電圧2.5Vの条件で放電、
0.5時間休止する充放電サイクルを繰り返し、200
サイクル時点での放電容量を計測し、初期放電容量に対
する放電容量維持率を求めた。
Thereafter, the battery temperature is heated to 60 ± 3 ° C., and at an environmental temperature of 60 ± 3 ° C., a constant voltage of 4.2 V, a current limit (upper limit) 60 A, charging for 3 hours, 0.5 hour After rest, discharge under the condition of 60A constant current, final voltage 2.5V,
Repeated charging / discharging cycle of 0.5 hour, 200
The discharge capacity at the time of the cycle was measured, and the discharge capacity retention ratio with respect to the initial discharge capacity was obtained.

【0032】また、作製した各電池について、25±3
°Cにて30A定電流で連続的に充電する、いわゆる過
充電試験を実施し、開裂弁10の開裂及び内部ガス噴出
後の電池重量を計量して過充電前の電池重量に対する割
合(百分率)を求めた。過充電時の現象が穏やかでない
場合には、内容物(例えば、活物質粉末等)もガスと同
時に電池外に噴出されるので、現象発現後の電池重量は
軽くなる。更に、現象発現後の電池外観について目視に
より観察した。
For each of the batteries produced, 25 ± 3
Percentage of battery weight before overcharging by measuring the battery weight after the so-called overcharge test, in which the battery is continuously charged at a constant current of 30 A at ° C, and after cleaving the cleavage valve 10 and blowing out internal gas. I asked. If the phenomenon at the time of overcharging is not gentle, the contents (for example, active material powder etc.) are also ejected to the outside of the battery at the same time as the gas, so the weight of the battery after the occurrence of the phenomenon becomes light. Furthermore, the appearance of the battery after the occurrence of the phenomenon was visually observed.

【0033】[試験結果] 下表2にこれら一連の試験の
試験結果を示す。
[Test Results] Table 2 below shows the test results of these series of tests.

【0034】[0034]

【表2】 [Table 2]

【0035】[評価]表1及び表2に示すように、比較例
2及び比較例3の電池のように、最外周のセパレータ3
3が3層未満の電池では、3層以上の実施例の各電池に
比べ放電容量維持率、換言すれば、サイクル寿命が大き
く低下することが分かる。また、セパレータ33を1層
としその外周に粘着テープを巻き付けた比較例1の電池
では、放電容量維持率は実施例の各電池に遜色ないもの
の、過充電試験の結果、電池重量が57%と大きく低下
し、また、電池の外観に容器の膨れが見られたことか
ら、安全性が低下していることが分かる。従って、サイ
クル寿命及び安全性双方を満たすには、捲回群6の最外
周のセパレータ33は3層以上とする必要があることが
分かる。
[Evaluation] As shown in Tables 1 and 2, as in the batteries of Comparative Examples 2 and 3, the outermost peripheral separator 3 was used.
It can be seen that in a battery in which 3 is less than 3 layers, the discharge capacity retention ratio, in other words, the cycle life is greatly reduced, as compared with each battery of Examples having 3 or more layers. Further, in the battery of Comparative Example 1 in which the separator 33 was one layer and the adhesive tape was wrapped around the outer periphery thereof, the discharge capacity retention ratio was comparable to the batteries of the Examples, but as a result of the overcharge test, the battery weight was 57%. It can be seen that the safety is lowered because of the large decrease and the swelling of the container on the appearance of the battery. Therefore, in order to satisfy both cycle life and safety, it is understood that the outermost peripheral separator 33 of the winding group 6 needs to have three or more layers.

【0036】また、実施例7の電池のように、セパレー
タ33の引っ張り強度が2×10Paを超えると、放
電容量維持率の点では他の実施例に遜色ないものの、過
充電後の電池重量に若干の低下が認められた。従って、
安全性をより高めるためには、セパレータ33の引っ張
り強度を2×10Pa以下とすることが好ましいこと
が分かる。
When the tensile strength of the separator 33 exceeds 2 × 10 8 Pa as in the battery of Example 7, the discharge capacity retention ratio is comparable to that of the other Examples, but the battery after overcharging is not affected. A slight decrease in weight was observed. Therefore,
It can be seen that the tensile strength of the separator 33 is preferably 2 × 10 8 Pa or less in order to further enhance safety.

【0037】更に、実施例の各電池の中でも、正極活物
質にコバルト酸リチウムを用いた電池よりもマンガン酸
リチウムを用いた電池の方が、また、負極活物質に黒鉛
質炭素を用いた電池よりも非晶質炭素を用いた電池の方
が、過充電後の電池重量の低下が小さく(電池異常時の
電池の挙動が穏やかで)、より安全性に優れていること
が分かる。正極活物質にマンガン酸リチウムを用い、負
極活物質に非晶質炭素を用いた実施例1、2の電池は、
過充電後の電池重量の減少が最も少なく、安全性に優れ
ることが分かる。
Further, among the batteries of the examples, the battery using lithium manganate was more preferable than the battery using lithium cobalt oxide as the positive electrode active material, and the battery using graphite carbon as the negative electrode active material. It can be seen that the battery using amorphous carbon has a smaller decrease in battery weight after overcharging (the battery behaves more gently when the battery is abnormal) and is more safe than the battery using amorphous carbon. The batteries of Examples 1 and 2 in which lithium manganate was used as the positive electrode active material and amorphous carbon was used as the negative electrode active material were
It can be seen that the battery weight decreases the least after overcharging, and the safety is excellent.

【0038】以上のように、本実施形態の円筒形リチウ
ムイオン電池20は、高容量、高出力でありながらも、
安全性に優れ、かつ、長寿命であるので、特にEV用の
電源としてふさわしい。
As described above, the cylindrical lithium-ion battery 20 of this embodiment has high capacity and high output,
Since it is excellent in safety and has a long life, it is particularly suitable as a power source for EV.

【0039】なお、本実施形態では、EV搭載用の大形
二次電池について例示したが、実質容量30Ah以上の
電池であれば、電池の用途や大きさには限定されないこ
とはいうまでもない。また、有底筒状容器(缶)に電池
上蓋がカシメによって封口されている構造の円筒形リチ
ウムイオン電池にも本発明の適用が可能である。
In the present embodiment, the large-sized secondary battery for EV mounting is exemplified, but it goes without saying that the battery is not limited in application and size as long as the battery has a substantial capacity of 30 Ah or more. . Further, the present invention can be applied to a cylindrical lithium ion battery having a structure in which a battery upper lid is closed by caulking in a bottomed cylindrical container (can).

【0040】更に、本実施形態では、電流遮断機構を備
えない円筒形リチウムイオン電池について例示したが、
本発明は電流遮断機構を備えた電池に適用するようにし
てもよい。このようにすれば、車両衝突事故等の異常時
に電気系の電流遮断機構が作動しなくても機械系の開裂
弁10等の内圧低減機構が作動するので、車載電池のよ
り高い安全性が確保される。
Further, in the present embodiment, the cylindrical lithium ion battery having no current cutoff mechanism has been exemplified.
The present invention may be applied to a battery provided with a current interruption mechanism. By doing so, the internal pressure reduction mechanism such as the mechanical decompression valve 10 operates even if the electric current interruption mechanism does not operate at the time of an abnormality such as a vehicle collision accident, thus ensuring higher safety of the on-vehicle battery. To be done.

【0041】また、本実施形態では、絶縁被覆8に、基
材がポリプロピレンで、その片面にヘキサメタアクリレ
ートからなる粘着剤を塗布した粘着テープを用いたが、
これに限定されるものではなく、例えば、基材がポリイ
ミドやポリエチレン等のポリオレフィンで、その片面又
は両面にヘキサメタアクリレートやブチルアクリレート
等のアクリル系粘着剤を塗布した粘着テープや、粘着剤
を塗布しないポリオレフィンやポリイミドからなるテー
プ等を好適に使用することができる。
Further, in the present embodiment, the insulating coating 8 uses the adhesive tape in which the base material is polypropylene and the adhesive agent of hexamethacrylate is applied to one surface thereof.
The present invention is not limited to this. For example, a base material is a polyolefin such as polyimide or polyethylene, and one side or both sides thereof is coated with an acrylic pressure sensitive adhesive such as hexamethacrylate or butyl acrylate, or a pressure sensitive adhesive is applied. A tape or the like made of a non-polyolefin or polyimide can be preferably used.

【0042】更に、本実施形態では、リチウムイオン電
池用の正極にコバルト酸リチウムやマンガン酸リチウ
ム、負極に黒鉛質炭素や非晶質炭素、電解液にエチレン
カーボネートとジメチルカーボネートとジエチルカーボ
ネートの体積比1:1:1の混合液中へ6フッ化リン酸
リチウムを1モル/リットル溶解したものを用いたが、
本発明の電池の製造方法には特に制限はなく、また結着
剤、負極活物質、非水電解液も通常用いられているいず
れのものも使用可能である。EV用途向け高容量、高出
力の電池で、かつ安全性を確実に確保するためには、正
極活物質としてリチウム・コバルト複合酸化物やリチウ
ム・ニッケル複合酸化物を用いるよりも、リチウムマン
ガン複酸化物であるマンガン酸リチウムを用いることが
より望ましい。
Further, in this embodiment, lithium cobalt oxide or lithium manganate is used for the positive electrode of the lithium ion battery, graphitic carbon or amorphous carbon is used for the negative electrode, and the volume ratio of ethylene carbonate, dimethyl carbonate, and diethyl carbonate is used for the electrolytic solution. A mixture of 1: 1: 1 lithium hexafluorophosphate dissolved in 1 mol / liter was used.
The method for producing the battery of the present invention is not particularly limited, and any of the commonly used binders, negative electrode active materials, and non-aqueous electrolytes can be used. In order to ensure the safety in a high-capacity, high-output battery for EV applications, it is necessary to use lithium manganese compound oxide rather than lithium-cobalt compound oxide or lithium-nickel compound oxide as the positive electrode active material. It is more preferable to use lithium manganate, which is a substance.

【0043】また、本実施形態ではポリフッ化ビニリデ
ンを結着剤として使用したが、リチウムイオン電池用極
板活物質結着剤としては、テフロン、ポリエチレン、ポ
リスチレン、ポリブタジエン、ブチルゴム、ニトリルゴ
ム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセ
ルロース、シアノエチルセルロース、各種ラテックス、
アクリロニトリル、フッ化ビニル、フッ化ビニリデン、
フッ化プロピレン、フッ化クロロプレン等の重合体及び
これらの混合体等を用いてもよい。
Although polyvinylidene fluoride is used as the binder in this embodiment, the electrode active material binder for lithium ion batteries may be made of Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / Butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latex,
Acrylonitrile, vinyl fluoride, vinylidene fluoride,
Polymers such as propylene fluoride and chloroprene fluoride and mixtures thereof may be used.

【0044】更に、本実施形態に示した以外のリチウム
二次電池用正極活物質としては、リチウムを挿入・脱離
可能な材料であり、予め十分な量のリチウムを挿入した
リチウムマンガン複酸化物が好ましく、スピネル構造を
有したマンガン酸リチウムや、結晶中のマンガンやリチ
ウムの一部をそれら以外の元素で置換又はドープした材
料を使用してもよい。また、リチウムとマンガンとの原
子比が化学量論比からずれた活物質を使用しても本実施
形態と同様の効果を得ることができる。
Further, as a positive electrode active material for a lithium secondary battery other than those shown in this embodiment, a lithium manganese compound oxide is a material into which lithium can be inserted / released and in which a sufficient amount of lithium has been inserted in advance. However, lithium manganate having a spinel structure or a material in which a part of manganese or lithium in the crystal is replaced or doped with an element other than these may be used. Further, even when an active material in which the atomic ratio of lithium to manganese deviates from the stoichiometric ratio is used, the same effect as this embodiment can be obtained.

【0045】また更に、本実施形態に示した以外のリチ
ウムイオン電池用負極活物質を使用しても本発明の適用
は制限されない。例えば、天然黒鉛や、人造の各種黒鉛
材、コークスなどの炭素質材料等を使用してもよく、そ
の粒子形状においても、鱗片状、球状、繊維状、塊状
等、特に制限されるものではない。
Furthermore, the use of the present invention is not limited even if a negative electrode active material for lithium ion batteries other than those shown in this embodiment is used. For example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke, and the like may be used, and the particle shape thereof is not particularly limited, such as scaly, spherical, fibrous, and lumpy. .

【0046】また、電解液としては、一般的なリチウム
塩を電解質とし、これを有機溶媒に溶解した電解液を使
用してもく、リチウム塩や有機溶媒にも特に制限される
ものではない。例えば、電解質としては、LiCl
、LiAsF、LiPF、LiBF、LiB
(C、CHSOLi、CFSOLi
等やこれらの混合物を用いることができる。
As the electrolytic solution, a general lithium salt may be used as an electrolyte and an electrolytic solution obtained by dissolving this in an organic solvent may be used. The lithium salt and the organic solvent are not particularly limited. For example, as the electrolyte, LiCl
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB
(C 6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li
Etc. and mixtures thereof can be used.

【0047】そして、本実施形態以外の非水電解液有機
溶媒としては、プロピレンカーボネート、エチレンカー
ボネート、エチルメチルカーボネート、ビニレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等又はこれら2
種類以上の混合溶媒を用いることができ、更に、混合配
合比についても限定されるものではない。
As the non-aqueous electrolyte organic solvent other than this embodiment, propylene carbonate, ethylene carbonate, ethylmethyl carbonate, vinylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone is used. , Tetrahydrofuran,
1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. or these 2
A mixed solvent of more than one kind can be used, and the mixing ratio is not limited.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
容量30Ah以上の円筒形リチウムイオン電池におい
て、電極捲回群の外周に形成された隙間から電池異常時
に電極捲回群内部で急激に発生するガスを速やかに電池
上部方向へ案内することができると共に、電極捲回群の
緊束力を保持することができるので、電極捲回群のサイ
ズの大きい高容量・高出力の電池において、安全性を確
保することができると共に、長いサイクル寿命を確保す
ることができる、という効果を得ることができる。
As described above, according to the present invention,
For cylindrical lithium-ion batteries with a capacity of 30 Ah or more
The gas generated suddenly inside the electrode winding group when the battery is abnormal can be quickly guided from the gap formed on the outer periphery of the electrode winding group to the upper direction of the battery, and the tight binding force of the electrode winding group can be provided. it is possible to hold the at large high capacity, high output battery sizes electrode winding group, the co-if it is possible to ensure safety, it is possible to ensure a long cycle life, the effect of Obtainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用可能な実施の形態のEV搭載用円
筒形リチウムイオン電池の縦断面図である。
FIG. 1 is a vertical cross-sectional view of an EV mounting cylindrical lithium-ion battery according to an embodiment to which the present invention is applicable.

【図2】実施例の円筒形リチウムイオン電池の捲回群の
横断面図であり、捲回群の最外周にセパレータが3層捲
回された構造を示す図である。
FIG. 2 is a cross-sectional view of a wound group of a cylindrical lithium ion battery of an example, showing a structure in which three layers of separators are wound around the outermost circumference of the wound group.

【図3】他の実施例の円筒形リチウムイオン電池の捲回
群の横断面図であり、捲回群の最外周にセパレータが5
層捲回された構造を示す図である。
FIG. 3 is a cross-sectional view of a winding group of a cylindrical lithium-ion battery of another example, in which the separator has 5 separators at the outermost periphery of the winding group.
It is a figure which shows the structure wound by layers.

【図4】比較例の円筒形リチウムイオン電池の捲回群の
横断面図であり、捲回群の最外周にセパレータが1層捲
回され、更に、テープが巻き付けられた構造を示す図で
ある。
FIG. 4 is a cross-sectional view of a winding group of a cylindrical lithium ion battery of a comparative example, showing a structure in which one layer of a separator is wound around the outermost circumference of the winding group and further a tape is wound around the winding group. is there.

【図5】他の比較例の円筒形リチウムイオン電池の捲回
群の横断面図であり、捲回群の最外周にセパレータが2
層捲回された構造を示す図である。
FIG. 5 is a cross-sectional view of a winding group of a cylindrical lithium-ion battery of another comparative example, in which two separators are provided on the outermost periphery of the winding group.
It is a figure which shows the structure wound by layers.

【図6】別の比較例の円筒形リチウムイオン電池の捲回
群の横断面図であり、捲回群の最外周にセパレータが1
層捲回された構造を示す図である。
FIG. 6 is a cross-sectional view of a winding group of a cylindrical lithium-ion battery of another comparative example, in which a separator is placed at the outermost periphery of the winding group.
It is a figure which shows the structure wound by layers.

【符号の説明】[Explanation of symbols]

5 電池容器 6 捲回群(電極捲回群) 7 鍔部 9 リード片 10 開裂弁 11 軸芯 20 円筒形リチウムイオン電池 31 正極板 32 負極板 33 セパレータ 5 battery container 6 winding group (electrode winding group) 7 collar part 9 lead pieces 10 Cleavage valve 11 shaft core 20 Cylindrical lithium-ion battery 31 Positive plate 32 negative plate 33 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (56)参考文献 特開 平11−224693(JP,A) 特開 平5−74495(JP,A) 特開 平9−266010(JP,A) 特開2000−306324(JP,A) 特開2001−35537(JP,A) 特開 平9−283178(JP,A) 特開 平11−260419(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/14 - 2/18 H01M 4/02 - 4/04 H01M 4/38 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kensuke Hironaka 2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo Shin-Kobe Electric Machinery Co., Ltd. (56) Reference JP-A-11-224693 (JP, A) JP-A 5-74495 (JP, A) JP 9-266010 (JP, A) JP 2000-306324 (JP, A) JP 2001-35537 (JP, A) JP 9-283178 (JP, A) JP-A-11-260419 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40 H01M 2/14-2/18 H01M 4/02-4/04 H01M 4 / 38-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極集電体に充放電によりリチウムを放
出・収容可能な正極活物質を塗着した帯状の正極と、負
極集電体に充放電によりリチウムを収容・放出可能な負
極活物質を塗着した帯状の負極とが、リチウムイオンが
通過可能な帯状のセパレータを介して軸芯の回りに捲回
された電極捲回群を備え、前記電極捲回群が円筒形電池
容器内で支持又は固定された構造の容量30Ah以上の
円筒形リチウムイオン電池において、前記電池容器の内
径は前記電極捲回群の直径の1.03倍以上で、前記電
極捲回群の外周に亘って前記電池容器との間に隙間が形
成されており、前記電極捲回群の最外周に引っ張り強度
が2×10 Pa以下のセパレータが3層以上捲回され
たことを特徴とする円筒形リチウムイオン電池。
1. A strip-shaped positive electrode in which a positive electrode current collector is coated with a positive electrode active material capable of releasing / accommodating lithium by charging / discharging, and a negative electrode active material capable of accommodating / releasing lithium in a negative electrode current collector by charging / discharging. The strip-shaped negative electrode coated with, comprises an electrode winding group wound around the axis through a strip-shaped separator capable of passing lithium ions, the electrode winding group in the cylindrical battery container In a cylindrical lithium ion battery having a supported or fixed structure and a capacity of 30 Ah or more, the inner diameter of the battery container is 1.03 times or more the diameter of the electrode winding group, and A gap is formed between the battery container and the electrode winding group, and the tensile strength is
A cylindrical lithium-ion battery, characterized in that the separator of 2 × 10 8 Pa or less is wound in three layers or more.
【請求項2】 前記正極活物質は、リチウムマンガン複
酸化物であることを特徴とする請求項1に記載の円筒形
リチウムイオン電池。
2. The cylindrical lithium ion battery according to claim 1, wherein the positive electrode active material is a lithium manganese composite oxide.
【請求項3】 前記負極活物質は、非晶質炭素であるこ
とを特徴とする請求項1又は請求項2に記載の円筒形リ
チウムイオン電池。
Wherein the negative electrode active material, a cylindrical lithium ion battery according to claim 1 or claim 2, wherein the amorphous carbon.
JP2000012619A 2000-01-21 2000-01-21 Cylindrical lithium-ion battery Expired - Fee Related JP3511966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012619A JP3511966B2 (en) 2000-01-21 2000-01-21 Cylindrical lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012619A JP3511966B2 (en) 2000-01-21 2000-01-21 Cylindrical lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2001202997A JP2001202997A (en) 2001-07-27
JP3511966B2 true JP3511966B2 (en) 2004-03-29

Family

ID=18540318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012619A Expired - Fee Related JP3511966B2 (en) 2000-01-21 2000-01-21 Cylindrical lithium-ion battery

Country Status (1)

Country Link
JP (1) JP3511966B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710230B2 (en) * 2004-01-21 2011-06-29 日本電気株式会社 Secondary battery electrolyte and secondary battery
JP5260857B2 (en) * 2006-11-13 2013-08-14 三洋電機株式会社 Square non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20140012081A (en) * 2011-03-16 2014-01-29 신코베덴키 가부시키가이샤 Lithium secondary cell
JP6413347B2 (en) 2014-05-26 2018-10-31 株式会社Gsユアサ Electricity storage element
KR101774014B1 (en) * 2014-06-19 2017-09-01 주식회사 엘지화학 Hollow packaging for a cable-type secondary battery and cable-type secondary battery including the same
KR102070369B1 (en) * 2015-09-03 2020-01-28 주식회사 엘지화학 Cable-type secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001202997A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3368877B2 (en) Cylindrical lithium-ion battery
US6733925B2 (en) Non-aqueous electrolytic solution secondary battery with electrodes having a specific thickness and porosity
JP4563264B2 (en) Lithium secondary battery
US6447946B1 (en) Lithium-ion battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2004006264A (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2001126769A (en) Cylindrical lithium ion battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2018147574A (en) Square Lithium Ion Secondary Battery
JP2001229970A (en) Cylindrical lithium battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP2003243037A (en) Lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2001185220A (en) Cylindrical lithium ion battery
JP3783503B2 (en) Lithium secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP2004319308A (en) Lithium secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

R150 Certificate of patent or registration of utility model

Ref document number: 3511966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees