JP2003243037A - Lithium ion battery - Google Patents

Lithium ion battery

Info

Publication number
JP2003243037A
JP2003243037A JP2002040482A JP2002040482A JP2003243037A JP 2003243037 A JP2003243037 A JP 2003243037A JP 2002040482 A JP2002040482 A JP 2002040482A JP 2002040482 A JP2002040482 A JP 2002040482A JP 2003243037 A JP2003243037 A JP 2003243037A
Authority
JP
Japan
Prior art keywords
separator
battery
electrode
lithium
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002040482A
Other languages
Japanese (ja)
Inventor
Katsunori Suzuki
克典 鈴木
Kenji Hara
賢二 原
Takeshi Nakano
剛 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002040482A priority Critical patent/JP2003243037A/en
Publication of JP2003243037A publication Critical patent/JP2003243037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion battery having a very high safety despite its high capacity and high output. <P>SOLUTION: The lithium ion battery 20 has a bunch 6' of electrode windings such that a positive electrode plate and a negative electrode plate are wound centering on a core 11 with a polyethylene separator S1 interposed, in which the periphery of the electrode bunch 6' is enwrapped with the separator S1 more than one turn. On the periphery thereof a second electrode couple 25 is provided approximately half one turn, of such a structure that an aluminum foil 21 and a copper foil 22 are arranged with a separator S2 having a lower melting point than the separator S1 interposed, and further one turn or more the separator S1 is wound round. The aluminum foil 21 and copper foil 22 are connected electrically with the positive and negative electrode plates, respectively. When the battery temperature rises, the separator S2 melts to cause the two sorts of foils 21 and 22 to be shortcircuited. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン電池
に係り、特に、正極活物質に充放電によりリチウムイオ
ンを吸蔵・放出可能なリチウム遷移金属複酸化物を用い
た正極と、充放電によりリチウムイオンを放出・吸蔵可
能な負極と、をセパレータを介して対峙させた電極群を
電解液に浸潤させて電池容器内に収容したリチウムイオ
ン電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion battery, and more particularly, to a positive electrode using a lithium transition metal complex oxide capable of inserting and extracting lithium ions as a positive electrode active material by charging and discharging, and a lithium ion as a result of charging and discharging. The present invention relates to a lithium-ion battery in which a negative electrode capable of discharging and occluding hydrogen and a group of electrodes facing each other through a separator are soaked in an electrolytic solution and housed in a battery container.

【0002】[0002]

【従来の技術】リチウムイオン2次電池は、高エネルギ
ー密度であるメリットを活かして、主にVTRカメラや
ノートパソコン、携帯電話等のポータブル機器の電源に
使用されている。このリチウムイオン2次電池の内部構
造は通常以下に示されるような捲回式にされている。電
極は正極、負極共に活物質が金属箔に塗着された帯状で
あり、セパレータを挟んで正極、負極が直接接触しない
ように断面が渦巻状に捲回され、捲回群を形成してい
る。そして電池容器となる円筒形の缶に捲回群が収納さ
れ、電解液注液後、封口されている。
2. Description of the Related Art Lithium-ion secondary batteries are mainly used as power sources for portable equipment such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. The internal structure of this lithium ion secondary battery is usually of the wound type as shown below. Both the positive electrode and the negative electrode have a strip shape in which the active material is applied to the metal foil, and the cross section is spirally wound to form a winding group so that the positive electrode and the negative electrode do not come into direct contact with each other with the separator interposed therebetween. . Then, the winding group is housed in a cylindrical can that serves as a battery container, filled with the electrolyte, and then sealed.

【0003】一般的な円筒型リチウムイオン2次電池の
寸法は、直径が18mm、高さが65mmとされ、18
650型と呼ばれ小形民生用リチウムイオン2次電池と
して広く普及している。18650型リチウムイオン2
次電池の正極活物質には、高容量、長寿命を特徴とする
コバルト酸リチウムが主として用いられており、電池容
量は、おおむね1.3Ah〜1.7Ah、出力はおよそ
10W程度である。
The dimensions of a general cylindrical lithium ion secondary battery are 18 mm in diameter and 65 mm in height.
It is called 650 type and is widely used as a small-sized consumer lithium-ion secondary battery. 18650 type lithium ion 2
Lithium cobalt oxide, which is characterized by high capacity and long life, is mainly used for the positive electrode active material of the secondary battery. The battery capacity is about 1.3 Ah to 1.7 Ah, and the output is about 10 W.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
にした電気自動車や、内燃機関エンジンと電池との両方
を動力源とするハイブリッド(電気)自動車の開発が加
速され、一部実用化の段階にきている。電気自動車の電
源となる電池には当然高出力、高エネルギーが得られる
特性が要求され、この要求にマッチした電池としてリチ
ウムイオン電池が注目されている。このような要求特性
を満たすために、例えば、特許第2701347号に
は、リチウム複合酸化物を用いた正極活物質層の厚さと
炭素質材料を用いた負極活物質層の厚さとを所定範囲と
することにより、エネルギー密度の高い非水電解液2次
電池を得る技術が開示されている。
On the other hand, in the automobile industry, in order to deal with environmental problems, an electric vehicle without exhaust gas and a battery whose power source is completely a battery, or a hybrid engine using both an internal combustion engine and a battery ( The development of electric vehicles has accelerated, and some of them are in the stage of practical application. Naturally, a battery that serves as a power source for an electric vehicle is required to have characteristics such that high output and high energy can be obtained, and a lithium ion battery is drawing attention as a battery that meets this requirement. In order to satisfy such required characteristics, for example, in Japanese Patent No. 2701347, the thickness of the positive electrode active material layer using the lithium composite oxide and the thickness of the negative electrode active material layer using the carbonaceous material are set within a predetermined range. By doing so, a technique for obtaining a non-aqueous electrolyte secondary battery having a high energy density is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン電池の場合、高出力になればなるほど安全性が
低下する傾向にあり、特に電気自動車用電源に用いられ
るような高容量、高出力のリチウムイオン電池において
は、必ずしも上述した特許第2701347号に記載さ
れている範囲で安全性が確保されるとは限らない。人を
乗せて走る電気自動車の場合、充電制御システムが故障
してしまった場合の過充電時、不慮の衝突事故の場合に
遭遇する可能性のある電池のクラッシュ時あるいは、異
物突き刺し時、外部短絡時等の電池自体の安全性を確保
することは、最低限必要な、非常に重要な電池特性であ
る。ここで言う電池の安全性とは、電池が異常な状態に
さらされた場合の電池の挙動が、人に身体的損害を与え
ないことは当然のことながら、車両への損傷を最小限に
抑えることを意味する。
However, in the case of a lithium-ion battery, the higher the output, the lower the safety tends to be. Particularly, the lithium-ion battery having a high capacity and a high output, such as used for a power source for electric vehicles, is used. In a battery, safety is not always ensured within the range described in Japanese Patent No. 2701347 mentioned above. In the case of an electric vehicle that carries passengers, overcharging when the charging control system fails, a battery crash that may occur in the event of an accidental collision, a foreign object stab, or an external short circuit Ensuring the safety of the battery itself, such as when it is time, is a minimum and very important battery characteristic. Battery safety here means that the behavior of the battery when it is exposed to abnormal conditions does not cause any physical damage to people, but it also minimizes damage to the vehicle. Means that.

【0006】また、高容量、高出力のリチウムイオン電
池ともなると、大電流充電、大電流放電がなされるた
め、一般に18650型リチウムイオン電池に採用され
ているような、異常時の電池内圧上昇に応じて作動する
電流遮断機構(一種の切断スイッチ)を電池構造内に設
けることは実質的に不可能である。
Further, a high capacity, high output lithium ion battery is charged with a large current and discharged with a large current, so that the internal pressure of the battery rises at the time of an abnormality, which is generally adopted in a 18650 type lithium ion battery. It is virtually impossible to provide a corresponding current interruption mechanism (a type of disconnect switch) in the battery structure.

【0007】本発明は上記事案に鑑み、高容量、高出力
でありながらも、極めて安全性の高いリチウムイオン電
池を提供することを課題とする。
In view of the above problems, it is an object of the present invention to provide a lithium ion battery which has a high capacity and a high output, but is extremely safe.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の態様は、正極活物質に充放電により
リチウムイオンを吸蔵・放出可能なリチウム遷移金属複
酸化物を用いた正極と、充放電によりリチウムイオンを
放出・吸蔵可能な負極とがセパレータを介した電極群を
電解液に浸潤させて電池容器内に収容したリチウムイオ
ン電池において、前記セパレータより溶融温度の低い第
2のセパレータを介して前記正極及び前記負極にそれぞ
れ電気的に接続されリチウムイオンを吸蔵・放出しない
第2の電極対を備えたことを特徴とする。
In order to solve the above problems, the first aspect of the present invention uses a lithium transition metal composite oxide capable of inserting and extracting lithium ions by charging and discharging as a positive electrode active material. In a lithium ion battery in which a positive electrode and a negative electrode capable of releasing and occluding lithium ions by charging and discharging are soaked in an electrolyte solution and housed in a battery container, a second melting point lower than the separator is used. And a second electrode pair that is electrically connected to the positive electrode and the negative electrode via the separator and does not absorb and desorb lithium ions.

【0009】本態様では、正極活物質に充放電によりリ
チウムイオンを吸蔵・放出可能なリチウム遷移金属複酸
化物を用いた正極と、充放電によりリチウムイオンを放
出・吸蔵可能な負極とがセパレータを介した電極群を電
解液に浸潤させて電池容器内に収容することで、リチウ
ムイオン電池の高出力、高容量を確保している。通常充
放電時には、第2の電極対は第2のセパレータにより絶
縁されており、電池異常時には、電解液と活物質との化
学反応で電池温度が上昇することにより電極群のセパレ
ータより溶融温度の低い第2のセパレータが早く溶融し
第2の電極対間が短絡して正負極間の電流の流れが阻止
されるので、電解液と活物質との化学反応が促進されな
いためリチウムイオン電池の安全性を確保することがで
きる。
In this embodiment, a positive electrode using a lithium transition metal composite oxide capable of absorbing and desorbing lithium ions by charging and discharging as a positive electrode active material and a negative electrode capable of desorbing and storing lithium ions by charging and discharging form a separator. The high output and high capacity of the lithium ion battery are ensured by immersing the intervening electrode group in the electrolytic solution and housing it in the battery container. During normal charging / discharging, the second electrode pair is insulated by the second separator, and when the battery is abnormal, the temperature of the battery rises due to the chemical reaction between the electrolytic solution and the active material. Since the low second separator melts quickly and the second electrode pair is short-circuited to prevent the flow of current between the positive and negative electrodes, the chemical reaction between the electrolytic solution and the active material is not promoted, so that the safety of the lithium ion battery is improved. It is possible to secure the sex.

【0010】また、上記課題を解決するために、本発明
の第2の態様は、正極活物質に充放電によりリチウムイ
オンを吸蔵・放出可能なリチウム遷移金属複酸化物を用
いた正極と、充放電によりリチウムイオンを放出・吸蔵
可能な負極とがセパレータを介した電極群を電解液に浸
潤させて電池容器内に収容したリチウムイオン電池にお
いて、リチウムイオンを吸蔵・放出しない第2の電極対
を備え、該電極対は、前記セパレータの熱収縮率より大
きく電池異常時に前記電極対を短絡させる熱収縮率を有
する第2のセパレータを介して前記正極及び前記負極に
それぞれ電気的に接続されたことを特徴とする。
In order to solve the above-mentioned problems, the second aspect of the present invention is to charge a positive electrode using a positive electrode using a lithium transition metal complex oxide capable of inserting and extracting lithium ions by charging and discharging. In a lithium-ion battery in which a negative electrode capable of discharging and occluding lithium ions by discharge is soaked in an electrolyte through an electrode group via a separator and housed in a battery container, a second electrode pair that does not occlude and discharge lithium ions is used. The electrode pair is electrically connected to the positive electrode and the negative electrode via a second separator having a thermal contraction rate that is greater than the thermal contraction rate of the separator and short-circuits the electrode pair when the battery is abnormal. Is characterized by.

【0011】本態様では、リチウムイオンを吸蔵・放出
しない第2の電極対が、電極群のセパレータの熱収縮率
より大きく電池異常時に第2の電極対を短絡させる熱収
縮率を有する第2のセパレータを介して正極及び負極に
それぞれ電気的に接続されているので、通常充放電時に
は、第2の電極対は第2のセパレータにより絶縁されて
おり、電池異常時には、電解液と活物質との化学反応で
電池温度が上昇することにより、電極群のセパレータよ
り熱収縮率の大きい第2のセパレータが熱収縮し第2の
電極対間が短絡して正負極間の電流の流れが阻止され
る。従って、上述した第1の態様と同様の効果を得るこ
とができる。
In the present aspect, the second electrode pair that does not occlude / desorb lithium ions has a heat contraction rate that is greater than the heat contraction rate of the separator of the electrode group and short-circuits the second electrode pair when the battery is abnormal. Since the positive electrode and the negative electrode are electrically connected via the separator, the second electrode pair is normally insulated by the second separator during charging / discharging, and when the battery is abnormal, the electrolytic solution and the active material are separated from each other. As the battery temperature rises due to the chemical reaction, the second separator having a higher heat shrinkage rate than the separator of the electrode group thermally contracts, and the second electrode pair is short-circuited to prevent the current flow between the positive and negative electrodes. . Therefore, the same effect as that of the above-described first aspect can be obtained.

【0012】上記第1の態様及び第2の態様において、
電極群が中心に導電性軸芯を有する捲回電極群であり、
該軸芯を第2の電極対のいずれか一方の電極とすれば、
軸芯が第2の電極対のいずれか一方の電極を兼ねるの
で、第2の電極対の占める体積が小さくなりエネルギー
密度を高めることができる。また、第2の電極対の少な
くとも一方の電極を金属箔とすることで、第2の電極対
の占める体積を小さくすることができる。
In the above first and second aspects,
The electrode group is a wound electrode group having a conductive shaft core in the center,
If the shaft core is one of the electrodes of the second electrode pair,
Since the axis serves also as one of the electrodes of the second electrode pair, the volume occupied by the second electrode pair is reduced and the energy density can be increased. Further, by using at least one electrode of the second electrode pair as a metal foil, the volume occupied by the second electrode pair can be reduced.

【0013】[0013]

【発明の実施の形態】(第1実施形態)以下、図面を参
照して、本発明を電気自動車用に用いられる円筒型リチ
ウムイオン電池に適用した第1の実施の形態について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) A first embodiment in which the present invention is applied to a cylindrical lithium ion battery used for an electric vehicle will be described below with reference to the drawings.

【0014】(正極板の作製)正極活物質としてのマン
ガン酸リチウム(化学式LiMn)粉末100重
量部に対し、導電剤として10重量部の鱗片状黒鉛(平
均粒径20μm)と、結着剤として10重量部のポリフ
ッ化ビニリデンとを混合し、これに分散溶媒のN―メチ
ルー2―ピロリドンを添加、混練した正極合剤(スラ
リ)を厚さ20μmのアルミニウム箔の両面に塗布し
た。このとき、正極板長寸方向の一方の側縁に幅50m
mの未塗布部を残した。その後乾燥、プレス、裁断して
幅300mm、所定長さ、正極合剤塗布部所定厚さの正
極板を得た。正極合剤層のかさ密度は2.65g/cm
とした。上記未塗布部に切り欠きを入れ、切り欠き残
部をリード片とした。隣り合うリード片を20mm間隔
とし、リード片の幅を10mmとした。
(Preparation of Positive Electrode Plate) 10 parts by weight of scaly graphite (average particle size 20 μm) as a conductive agent was combined with 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) powder as a positive electrode active material. As a binder, 10 parts by weight of polyvinylidene fluoride was mixed, to which N-methyl-2-pyrrolidone as a dispersion solvent was added, and the kneaded positive electrode mixture (slurry) was applied on both sides of an aluminum foil having a thickness of 20 μm. At this time, the width of the positive electrode plate is 50 m at one side edge in the longitudinal direction.
The uncoated part of m was left. Then, it was dried, pressed and cut to obtain a positive electrode plate having a width of 300 mm, a predetermined length, and a predetermined thickness of the positive electrode mixture application portion. The bulk density of the positive electrode material mixture layer is 2.65 g / cm.
It was set to 3 . A notch was made in the uncoated portion, and the remaining notch was used as a lead piece. Adjacent lead pieces were spaced at 20 mm, and the width of the lead pieces was 10 mm.

【0015】(負極板の作製)負極活物質の非晶質炭素
粉末(呉羽化学工業株式会社製、商品名;カーボトロン
P)92重量部に結着剤として8重量部のポリフッ化ビ
ニリデンを添加し、これに分散溶媒のN―メチルー2一
ピロリドンを添加、混練した負極合剤(スラリ)を厚さ
10μmの圧延銅箔の両面に塗布した。このとき、負極
板長寸方向の一方の側縁に幅50mmの未塗布部を残し
た。その後乾燥、プレス、裁断して幅305mm、所定
長さ、負極合剤塗布部所定厚さの負極板を得た。負極合
剤層のかさ密度は1.0g/cmとした。上記未塗布
部に正極板と同様に切り欠きを入れ、切り欠き残部をリ
ード片とした。隣り合うリード片を20mm間隔とし、
リード片の幅を10mmとした。
(Preparation of Negative Electrode Plate) 8 parts by weight of polyvinylidene fluoride as a binder was added to 92 parts by weight of an amorphous carbon powder (trade name; Carbotron P, manufactured by Kureha Chemical Industry Co., Ltd.) as an anode active material. Then, N-methyl-21-pyrrolidone as a dispersion solvent was added thereto, and the negative electrode mixture (slurry) kneaded and kneaded was applied to both surfaces of a rolled copper foil having a thickness of 10 μm. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the lengthwise direction of the negative electrode plate. Then, it was dried, pressed and cut to obtain a negative electrode plate having a width of 305 mm, a predetermined length, and a predetermined thickness of the negative electrode mixture application portion. The bulk density of the negative electrode mixture layer was 1.0 g / cm 3 . A notch was made in the uncoated portion similarly to the positive electrode plate, and the remaining notch was used as a lead piece. Adjacent lead pieces are 20 mm apart,
The width of the lead piece was 10 mm.

【0016】(第2の電極対の作製)厚さ20μmのア
ルミニウム箔を、幅300mm、長さ100mmに裁断
し、アルミニウム箔の長さ方向の一方の側縁に切り欠き
を入れて、幅10mm、長さ50mmのリード片を20
mm間隔で形成した。一方、厚さ10μmの銅箔を、幅
300mm、長さ100mmに裁断し、銅箔の長さ方向
の一方の側縁に切り欠きを入れ、幅10mm、長さ50
mmのリード片を20mm間隔で形成した。図2(A)
に示すように、リード片が形成されたアルミニウム箔2
1と銅箔22とを、厚さ15μmの第2のセパレータと
してのポリエチレン製のフィルム状セパレータS2を介
して配置し、第2の電極対25を作製した。セパレータ
S2には、後述する電極捲回群6’に用いられるセパレ
ータS1より溶融温度が低いセパレータを用いた。セパ
レータS2とセパレータS1との溶融温度を調製するに
は、セパレータS1の材質より融点の低い材質をセパレ
ータS2の材質として選択してもよいし、セパレータS
1、S2を同一融点の材質(同一材質)としてセパレー
タS2の厚さをセパレータS1の厚さより薄くする(例
えば、1/2以下の厚さとする)ようにしてもよい。
(Production of the Second Electrode Pair) An aluminum foil having a thickness of 20 μm is cut into a width of 300 mm and a length of 100 mm, and a notch is formed on one side edge in the length direction of the aluminum foil to obtain a width of 10 mm. , 20 pieces of 50 mm long lead pieces
It was formed at mm intervals. On the other hand, a copper foil with a thickness of 10 μm is cut into a width of 300 mm and a length of 100 mm, and a notch is formed on one side edge in the length direction of the copper foil to provide a width of 10 mm and a length of 50 mm.
mm lead pieces were formed at 20 mm intervals. Figure 2 (A)
As shown in, the aluminum foil 2 on which the lead pieces are formed
1 and the copper foil 22 were arranged via a polyethylene film separator S2 as a second separator having a thickness of 15 μm, and a second electrode pair 25 was produced. As the separator S2, a separator having a melting temperature lower than that of the separator S1 used for the electrode winding group 6'described later was used. In order to adjust the melting temperatures of the separator S2 and the separator S1, a material having a lower melting point than that of the separator S1 may be selected as the material of the separator S2.
It is also possible to use 1 and S2 as materials having the same melting point (the same material) so that the thickness of the separator S2 is smaller than that of the separator S1 (for example, 1/2 or less).

【0017】(捲回群の作製)図1に示すように、正極
板P及び負極板Nを、ポリエチレン製の軸芯11を中心
として、正極板Pと負極板Nとが直接接触しないよう
に、2枚の厚さ40μm、長さ150mmのポリエチレ
ン製セパレータS1を介して捲回した電極捲回群6’を
作製した。セパレータS1の捲回開始端は軸芯11に熱
溶着した。このとき、電極捲回群6’の外周にはセパレ
ータS1が1周以上捲回されており、電極捲回群6’に
捲回された正極板P及び負極板Nからは、それぞれ電極
捲回群6’の互いに反対側にリード片9が導出されてい
る。
(Preparation of Winding Group) As shown in FIG. 1, the positive electrode plate P and the negative electrode plate N are arranged so that the positive electrode plate P and the negative electrode plate N do not come into direct contact with each other around the polyethylene shaft core 11. An electrode winding group 6 ′ was prepared by winding two sheets of polyethylene separator S1 having a thickness of 40 μm and a length of 150 mm. The winding start end of the separator S1 was heat-welded to the shaft core 11. At this time, the separator S1 is wound one or more times around the outer circumference of the electrode winding group 6 ′, and the electrode winding is performed from the positive electrode plate P and the negative electrode plate N wound around the electrode winding group 6 ′. Lead pieces 9 are led out to the opposite sides of the group 6 '.

【0018】図2(A)、(B)に示すように、セパレ
ータS1が1周以上捲回された電極捲回群6’の外周
に、上記第2の電極対25を約半周に亘って捲回し、更
に、セパレータS1を1周以上捲回して捲回群6を作製
した。セパレータS1の捲回終了端は片面テープでセパ
レータS1に接着した。従って、捲回群6は、電極捲回
群6’の外周となる2層のセパレータS1の間に第2の
電極対25が挿入・捲回された構成を有している。第2
の電極対25は両面テープでセパレータS1に接着し
た。第2の電極対25のアルミニウム箔21及び銅箔2
2から導出されたリード片は、電極捲回群6’の両極か
ら導出されたリード片9と同様に、それぞれ捲回群6の
互いに反対側に位置させた。捲回群6の直径を、正極板
P、負極板N、セパレータS1の長さを調整すること
で、65±0.1mmとした。
As shown in FIGS. 2 (A) and 2 (B), the second electrode pair 25 is provided on the outer circumference of the electrode winding group 6'in which the separator S1 is wound one or more times over about half a circumference. The wound group 6 was wound, and further, the separator S1 was wound once or more to form a wound group 6. The winding end of the separator S1 was bonded to the separator S1 with a single-sided tape. Therefore, the winding group 6 has a configuration in which the second electrode pair 25 is inserted and wound between the two-layer separator S1 that is the outer periphery of the electrode winding group 6 ′. Second
The electrode pair 25 was attached to the separator S1 with double-sided tape. Aluminum foil 21 and copper foil 2 of the second electrode pair 25
The lead pieces led out from No. 2 were located on the opposite sides of the winding group 6 in the same manner as the lead pieces 9 led out from both electrodes of the electrode winding group 6 ′. The diameter of the winding group 6 was set to 65 ± 0.1 mm by adjusting the lengths of the positive electrode plate P, the negative electrode plate N, and the separator S1.

【0019】(電池の作製)正極板Pから導出されたリ
ード片9及びアルミニウム箔21から導出されたリード
片を変形させ、その全て(以下、全リード片という。)
を、軸芯11のほぼ延長線上にある極柱(正極外部端子
1)周囲から一体に張り出した鍔部7周面付近に集合、
接触させた後、全リード片と鍔部7周面とを超音波溶接
して全リード片を鍔部7周面に接続して固定した。これ
により、正極板Pとアルミニウム箔21とは電気的に接
続される。
(Production of Battery) The lead pieces 9 led out from the positive electrode plate P and the lead pieces led out from the aluminum foil 21 are all deformed (hereinafter referred to as all lead pieces).
Are gathered in the vicinity of the peripheral surface of the collar portion 7 that integrally projects from the periphery of the pole column (positive electrode external terminal 1) that is almost on the extension line of the shaft core 11,
After the contact, all the lead pieces and the peripheral surface of the collar portion 7 were ultrasonically welded to connect and fix all the lead pieces to the peripheral surface of the collar portion 7. As a result, the positive electrode plate P and the aluminum foil 21 are electrically connected.

【0020】負極外部端子1’と、負極板N及び銅箔2
2から導出されているリード片との接続も、正極と同様
に行った。これにより、負極板Nと銅箔22とは電気的
に接続される。
Negative electrode external terminal 1 ', negative electrode plate N and copper foil 2
The connection with the lead piece derived from No. 2 was performed in the same manner as the positive electrode. As a result, the negative electrode plate N and the copper foil 22 are electrically connected.

【0021】その後正極外部端子1及び負極外部端子
1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁
被覆8は、捲回群6の外周面全周にも及ぼした。絶縁被
覆8には、基材がポリイミドで、その片面にヘキサメタ
アクリレートからなる粘着剤を塗布した粘着テープを用
いた。この粘着テープを鍔部7周面から捲回群6外周面
に亘って何重にも巻いて絶縁被覆8とした。捲回群6の
最大径部が絶縁被覆8存在部となるように巻き数を調整
し、該最大径をステンレス製の電池容器5内径よりも僅
かに小さくして捲回群6を電池容器5内に挿入した。電
池容器5には、外径67mm、内径66mmのものを用
いた。
After that, an insulating coating 8 was applied to the entire circumference of the flange 7 of the positive electrode external terminal 1 and the negative electrode external terminal 1 '. The insulating coating 8 also applied to the entire outer peripheral surface of the winding group 6. As the insulating coating 8, an adhesive tape was used in which the base material was polyimide, and one surface of which was coated with an adhesive made of hexamethacrylate. This adhesive tape was wound in multiple layers from the peripheral surface of the collar portion 7 to the outer peripheral surface of the winding group 6 to form the insulating coating 8. The number of windings is adjusted so that the maximum diameter portion of the winding group 6 becomes the insulating coating 8 existing portion, and the maximum diameter is set to be slightly smaller than the inner diameter of the battery container 5 made of stainless steel so that the winding group 6 is changed to the battery container 5 Inserted inside. The battery container 5 used had an outer diameter of 67 mm and an inner diameter of 66 mm.

【0022】次いで、第2のセラミックワッシャ3’
(アルミナ製、電池蓋4裏面と当接する部分の厚さ2m
m、内径16mm、外径25mm)を、先端が正極外部
端子1を構成する極柱、先端が負極外部端子1’を構成
する極柱にそれぞれ嵌め込んだ。また、第1のセラミッ
クワッシャ3を電池蓋4に載置し、正極外部端子1、負
極外部端子1’をそれぞれ第1のセラミックワッシャ3
に通した。その後円盤状電池蓋4周端面を電池容器5開
口部に嵌合し、双方の接触部全域をレーザ溶接した。こ
のとき、正極外部端子1、負極外部端子1’は、電池蓋
4の中心にある穴を貫通して電池蓋4外部に突出してい
る。そして、平状の第1のセラミックワッシャ3(アル
ミナ製、厚さ2mm、内径16mm、外径28mm)、
ナット2底面よりも平滑な金属ワッシャ14を、この順
に正極外部端子1、負極外部端子1’にそれぞれ嵌め込
んだ。電池蓋4には、電池の内圧上昇に応じて開裂する
開裂弁10が配設されている。開裂弁10の開裂圧を、
1.3〜1.8MPaに設定した。
Next, the second ceramic washer 3 '
(Alumina, thickness of the part that contacts the back surface of the battery lid 4 is 2 m
m, inner diameter 16 mm, and outer diameter 25 mm) were respectively fitted into the pole columns whose tip constitutes the positive electrode external terminal 1 and whose tip constitutes the negative electrode external terminal 1 '. Also, the first ceramic washer 3 is placed on the battery lid 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ are respectively placed in the first ceramic washer 3
Passed through. Thereafter, the peripheral end surface of the disk-shaped battery lid 4 was fitted into the opening of the battery container 5, and the entire contact portions of both were laser-welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ penetrate the hole in the center of the battery lid 4 and project to the outside of the battery lid 4. And a flat first ceramic washer 3 (made of alumina, thickness 2 mm, inner diameter 16 mm, outer diameter 28 mm),
A metal washer 14 that was smoother than the bottom surface of the nut 2 was fitted into the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ in this order. The battery lid 4 is provided with a cleaving valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 is
It was set to 1.3 to 1.8 MPa.

【0023】次に、金属製のナット2を正極外部端子
1、負極外部端子1’にそれぞれ螺着し、第2のセラミ
ックワッシャ3’、第1のセラミックワッシャ3、金属
ワッシャ14を介して電池蓋4を鍔部7とナット2の間
で締め付けにより固定した。このときの締め付けトルク
値は686N・cmとした。締め付け作業が終了するま
で金属ワッシャ14は回転しなかった。この状態で、電
池容器5内部の発電要素は、電池蓋4裏面と鍔部7との
間に介在させたゴム(EPDM)製Oリング16の圧縮
により外気から遮断されている。
Next, a metal nut 2 is screwed to each of the positive electrode external terminal 1 and the negative electrode external terminal 1 ', and the battery is inserted through the second ceramic washer 3', the first ceramic washer 3 and the metal washer 14. The lid 4 was fixed between the collar portion 7 and the nut 2 by tightening. The tightening torque value at this time was 686 N · cm. The metal washer 14 did not rotate until the tightening work was completed. In this state, the power generation element inside the battery container 5 is shielded from the outside air by the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the collar portion 7.

【0024】その後、電池蓋4に形成した注液口13か
ら電解液を所定量電池容器5内に注入し、注液口13を
封止することにより円筒型リチウムイオン電池20を完
成させた。なお、電解液にはエチレンカーボネートとジ
メチルカーボネートとジエチルカーボネートの体積比
1:1:1の混合溶媒中へ6フッ化リン酸リチウム(L
iPF)を1モル/リットル溶解したものを用いた。
また、円筒型リチウムイオン電池20は、電池内圧の上
昇に応じて作動する電流遮断機構は有していない。
After that, a predetermined amount of electrolytic solution was injected into the battery container 5 from the liquid injection port 13 formed in the battery lid 4, and the liquid injection port 13 was sealed to complete the cylindrical lithium ion battery 20. The electrolytic solution was prepared by mixing lithium hexafluorophosphate (L) into a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1.
iPF 6 ) was used at a concentration of 1 mol / liter.
Further, the cylindrical lithium-ion battery 20 does not have a current interruption mechanism that operates in response to an increase in battery internal pressure.

【0025】次に、本実施形態の円筒型リチウムイオン
電池20の作用について説明する。電池20は、正極活
物質にマンガン酸リチウムを用いた正極板Pと負極活物
質に非晶質炭素を用いた負極板Nとを捲回した電極捲回
群6’を備えており、設計容量が70〜90Ah程度、
設計出力が3500〜4500W程度の電池特性を有し
ている。また、電池20は、アルミニウム箔21と銅箔
22との間に、セパレータS1より溶融温度の低いセパ
レータS2を有している。このため、電池20の通常の
充放電時に、リチウムイオンを吸蔵・放出しない第2の
電極対25を構成するアルミニウム箔21及び銅箔22
間はセパレータS2により絶縁されている。電池20が
過充電等の電池異常状態に至ると、電解液と活物質との
化学反応により電池20内の温度が上昇し、電池容器5
内でガスが発生して電池内圧が上昇する。電池温度が上
昇することにより、電解液と活物質との化学反応は更に
促進され、急激な温度上昇(熱暴走)を起こし、これに
伴い電解液が分解して急激かつ大量にガスが発生するた
め電池内圧も急激に上昇する。温度が上昇したときに、
電池20では、セパレータS2がセパレータS1より早
く溶融するので、アルミニウム箔21と銅箔22とが短
絡し第2の電極対25間に電流が流れ、正極板Pと負極
板Nとの間の電流の流れが阻止される。従って、外部か
ら投入され続けている電力は、第2の電極対25の短絡
のために、電解液と活物質との化学反応をそれ以上は促
進しない。また、電池内圧が上述した設定圧に至ると、
開裂弁10が開裂して内圧は外部に解放される。このた
め、円筒型リチウムイオン電池20は、電池異常時に、
熱暴走状態が終了し穏やかに電池の機能を失うので、安
全性を確保することができる。
Next, the operation of the cylindrical lithium ion battery 20 of this embodiment will be described. The battery 20 is provided with an electrode winding group 6 ′ in which a positive electrode plate P using lithium manganate as a positive electrode active material and a negative electrode plate N using amorphous carbon as a negative electrode active material are wound, and has a designed capacity. Is about 70 to 90 Ah,
It has battery characteristics with a design output of about 3500 to 4500W. Further, the battery 20 has a separator S2 having a lower melting temperature than the separator S1 between the aluminum foil 21 and the copper foil 22. Therefore, during normal charge / discharge of the battery 20, the aluminum foil 21 and the copper foil 22 that form the second electrode pair 25 that does not store or release lithium ions.
The spaces are insulated by the separator S2. When the battery 20 reaches an abnormal battery state such as overcharge, the temperature inside the battery 20 rises due to the chemical reaction between the electrolytic solution and the active material, and the battery container 5
Gas is generated inside and the internal pressure of the battery rises. As the battery temperature rises, the chemical reaction between the electrolytic solution and the active material is further promoted, causing a rapid temperature rise (thermal runaway), which causes the electrolytic solution to decompose and generate a large amount of gas rapidly. Therefore, the internal pressure of the battery also rises sharply. When the temperature rises,
In the battery 20, since the separator S2 melts faster than the separator S1, the aluminum foil 21 and the copper foil 22 are short-circuited, a current flows between the second electrode pair 25, and a current between the positive electrode plate P and the negative electrode plate N. Is blocked. Therefore, the electric power continuously supplied from the outside does not further promote the chemical reaction between the electrolytic solution and the active material due to the short circuit of the second electrode pair 25. Further, when the battery internal pressure reaches the above-mentioned set pressure,
The cleaving valve 10 cleaves and the internal pressure is released to the outside. Therefore, the cylindrical lithium-ion battery 20 is
Since the thermal runaway state ends and the battery function is gently lost, safety can be ensured.

【0026】また、電池20では、第2の電極対25を
構成するアルミニウム箔21、セパレータS2、銅箔2
2の厚さは、それぞれ、20μm、15μm、10μm
であり、第2の電極対25の厚さは45μmである。従
って、第2の電極対25がセパレータS1に挿入されて
も、電池容器5内で第2の電極対25の占める体積は小
さいので、電池20は高エネルギー密度を確保すること
ができる。換言すれば、正極板P、負極板Nの体積削減
することがないので、高容量、高出力でありながらも、
安全性を確保することができる。
Further, in the battery 20, the aluminum foil 21, the separator S2, and the copper foil 2 which form the second electrode pair 25.
The thicknesses of 2 are 20 μm, 15 μm, and 10 μm, respectively.
And the thickness of the second electrode pair 25 is 45 μm. Therefore, even if the second electrode pair 25 is inserted into the separator S1, the volume occupied by the second electrode pair 25 in the battery container 5 is small, so that the battery 20 can secure a high energy density. In other words, since the positive electrode plate P and the negative electrode plate N are not reduced in volume, they have high capacity and high output,
It is possible to ensure safety.

【0027】(第2実施形態)次に、本発明を円筒型リ
チウムイオン電池に適用した第2の実施の形態について
説明する。本実施形態は、第2のセパレータに、セパレ
ータS1より熱収縮率の大きなセパレータを用いたもの
である。なお、本実施形態以下の実施形態において、第
1実施形態と同一の部材には同一の符号を付してその説
明を省略し、異なる箇所のみ説明する。
(Second Embodiment) Next, a second embodiment in which the present invention is applied to a cylindrical lithium ion battery will be described. In this embodiment, a separator having a larger heat shrinkage ratio than the separator S1 is used as the second separator. In the following embodiments, the same members as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only different portions will be described.

【0028】本実施形態の円筒型リチウムイオン電池で
は、セパレータS2として、第1実施形態の溶融温度の
低いセパレータS2に代えて、厚さ15μmで120°
Cにおける熱収縮率が50%のポリエチレン製セパレー
タが用いられている。このセパレータは、電極捲回群
6’のセパレータS1よりも熱収縮率が大きく、電池異
常時に第2の電極対を短絡させるように熱収縮する。
In the cylindrical lithium ion battery of the present embodiment, as the separator S2, instead of the separator S2 having a low melting temperature of the first embodiment, the thickness of 15 μm is 120 °.
A polyethylene separator having a heat shrinkage rate in C of 50% is used. This separator has a larger heat shrinkage ratio than the separator S1 of the electrode winding group 6'and heat shrinks so as to short-circuit the second electrode pair when the battery is abnormal.

【0029】通常の充放電時には、第2の電極対25は
熱収縮率50%のセパレータにより絶縁されている。電
池異常時に、電解液と活物質との化学反応により電池温
度及び電池内圧が急激に上昇すると、熱収縮率50%の
セパレータが熱収縮してアルミニウム箔21と銅箔22
とを短絡させる。従って、本実施形態の電池は、第1実
施形態の電池20と同様に、安全性を確保することがで
きる。
During normal charging and discharging, the second electrode pair 25 is insulated by a separator having a heat shrinkage rate of 50%. When the battery temperature and the battery internal pressure rapidly increase due to a chemical reaction between the electrolytic solution and the active material when the battery is abnormal, the separator having a heat shrinkage ratio of 50% thermally shrinks, and the aluminum foil 21 and the copper foil 22 are
Short circuit and. Therefore, the battery according to the present embodiment can ensure safety as in the battery 20 according to the first embodiment.

【0030】(第3実施形態)次に、本発明を円筒型リ
チウムイオン電池に適用した第3の実施の形態について
説明する。本実施形態は、金属製の軸芯11を用いて捲
回群6を作製したものである。
(Third Embodiment) Next, a third embodiment in which the present invention is applied to a cylindrical lithium ion battery will be described. In this embodiment, the winding group 6 is manufactured by using the metal shaft core 11.

【0031】図3に示すように、本実施形態の円筒型リ
チウムイオン電池20’は、第1実施形態のポリエチレ
ン製の軸芯11に代えて、金属製の軸芯11が用いられ
ている。本実施形態では、予めセパレータS1より溶融
温度の低いセパレータS2で両面を覆った厚さ10μm
の銅箔22(以下、絶縁負極電極という。)が準備され
る。軸芯11の外周に、2枚のセパレータS1の捲回開
始端が片面テープで接着され、軸芯11に絶縁負極電極
が両面テープで接着された後、セパレータS1が、絶縁
負極電極を挿入した状態で1周以上捲回される。その
後、2枚のセパレータS1を介して所定長さの正極板P
と負極板Nとをこれらが接触しないように挿入され、正
極板P、負極板N、セパレータS1が捲回されて捲回群
6が形成される。捲回群6の最外周にはセパレータS1
が1周以上捲回され、セパレータS1の捲回終了端は捲
回群6の最外側面にテープで固定されている。なお、軸
芯11内に挿入された負極外部端子1’の極柱との間に
は、正負極間の短絡を防止するために、図示しない絶縁
部材を介在させている。
As shown in FIG. 3, the cylindrical lithium ion battery 20 'of the present embodiment uses a metal shaft core 11 instead of the polyethylene shaft core 11 of the first embodiment. In the present embodiment, a thickness of 10 μm in which both surfaces are previously covered with a separator S2 having a melting temperature lower than that of the separator S1.
Copper foil 22 (hereinafter referred to as an insulated negative electrode) is prepared. The winding start ends of the two separators S1 are adhered to the outer periphery of the shaft core 11 with a single-sided tape, the insulated negative electrode is adhered to the shaft core 11 with a double-sided tape, and then the separator S1 inserts the insulated negative electrode. It is wound one or more times in a state. After that, the positive electrode plate P having a predetermined length is inserted through the two separators S1.
The positive electrode plate P, the negative electrode plate N, and the separator S1 are wound so that the positive electrode plate P, the negative electrode plate N, and the negative electrode plate N are not in contact with each other, and the winding group 6 is formed. A separator S1 is provided on the outermost circumference of the winding group 6.
Is wound one or more times, and the winding end end of the separator S1 is fixed to the outermost surface of the winding group 6 with a tape. An insulating member (not shown) is interposed between the pole of the negative electrode external terminal 1 ′ inserted in the shaft core 11 and the positive and negative electrodes to prevent a short circuit.

【0032】本実施形態の円筒型リチウムイオン電池2
0’では、軸芯11が第2の電極対25の正極を兼ねる
と共に、第2の電極対25の負極には銅箔22が用いら
れている。このため、電池容器5内で第2の電極対25
の占める体積が小さくなるので、電池20’は高エネル
ギー密度を確保することができる。
The cylindrical lithium-ion battery 2 of this embodiment
In 0 ′, the shaft core 11 also serves as the positive electrode of the second electrode pair 25, and the copper foil 22 is used for the negative electrode of the second electrode pair 25. Therefore, in the battery container 5, the second electrode pair 25
Since the volume occupied by the battery is small, the battery 20 'can secure a high energy density.

【0033】なお、上記実施形態では電気自動車用電源
等に用いられる大形の2次電池を例示したが、本発明
は、電池の大きさ、電池容量に限定されるものではな
い。また、有底筒状容器(缶)に電池上蓋がかしめによ
って封口されている構造の円筒型電池にも適用可能であ
る。特に、電気自動車用電源に用いる電池は、比較的高
容量、高出力な特性が要求されるため、本発明の適用は
好ましい。更に、電池形状についても上記実施形態に例
示した円筒型に制限されるものではなく、角型や多角形
状としてもよい。
Although a large-sized secondary battery used as a power source for an electric vehicle or the like has been illustrated in the above embodiment, the present invention is not limited to the size and capacity of the battery. Further, it is also applicable to a cylindrical battery having a structure in which a battery upper lid is closed by caulking in a bottomed cylindrical container (can). In particular, a battery used as a power source for an electric vehicle is required to have relatively high capacity and high output characteristics, and thus the application of the present invention is preferable. Further, the battery shape is not limited to the cylindrical shape exemplified in the above embodiment, and may be a square shape or a polygonal shape.

【0034】また、上記実施形態では、第2の電極対2
5の負極として銅箔22を用いた例を示したが、第2の
電極対25には導電性を有する材質が絶縁状態で用いら
れればよいので、銅箔に限ることなく、例えば、ステン
レス箔、ニッケル箔等の他の金属箔を使用してもよい。
In the above embodiment, the second electrode pair 2
Although the example in which the copper foil 22 is used as the negative electrode of No. 5 is shown, the second electrode pair 25 may be made of a conductive material in an insulated state. Other metal foils such as nickel foil may be used.

【0035】更に、上記第1、第2実施形態では、正極
板Pと負極板Nとを捲回した後に電極捲回群6’の外周
に第2の電極対25を挿入した例を示したが、本発明
は、第2の電極対25の挿入(配置)位置に制限される
ものではない。例えば、第3実施形態に示したように、
軸芯11の直近に位置するようにしてもよい。軸芯11
の近くでは、電池異常時に捲回群6の外周部より高温と
なり、第2の電極対25を捲回群6の外周部に配置した
場合に比べ、第2の電極対25が短時間で短絡させるこ
とができる(熱感応性を向上させることができる)。更
に、第1、第2実施形態では、捲回式の捲回群6を例示
したが、本発明は、積層式の捲回群にも適用可能であ
る。
Further, in the first and second embodiments, an example in which the second electrode pair 25 is inserted around the outer circumference of the electrode winding group 6'after winding the positive electrode plate P and the negative electrode plate N has been shown. However, the present invention is not limited to the insertion (arrangement) position of the second electrode pair 25. For example, as shown in the third embodiment,
It may be located in the immediate vicinity of the axis 11. Axis 11
In the vicinity of, the temperature becomes higher than the outer peripheral portion of the winding group 6 when the battery is abnormal, and the second electrode pair 25 is short-circuited in a short time compared to the case where the second electrode pair 25 is arranged on the outer peripheral portion of the winding group 6. Can be made (heat sensitivity can be improved). Furthermore, in the first and second embodiments, the winding type winding group 6 is illustrated, but the present invention is also applicable to a laminated winding group.

【0036】また、上記第1実施形態では、セパレータ
S2として厚さ15μmのポリエチレン製セパレータを
例示したが、電池動作に影響がなく、電池異常時にセパ
レータS1の溶融温度より低い温度で溶融するものであ
ればよく、材質としては、例えば、ポリプロピレン等で
あってもよい。更に、第2実施形態では、セパレータS
2に120°Cで熱収縮率50%のポリエチレン製セパ
レータを例示したが、本発明はこれに限定されることな
く、上記特許請求の範囲に記載のものであればよい。
In the first embodiment, the separator S2 is a polyethylene separator having a thickness of 15 μm. However, it does not affect the battery operation and melts at a temperature lower than the melting temperature of the separator S1 when the battery malfunctions. The material may be, for example, polypropylene or the like. Further, in the second embodiment, the separator S
2 illustrates a polyethylene separator having a heat shrinkage rate of 50% at 120 ° C., the present invention is not limited to this, and may be any one described in the above claims.

【0037】更に、上記第3実施形態では、軸芯11を
正極とした例を示したが、軸芯11を負極とし、セパレ
ータS2を介してアルミニウム箔を捲回するようにして
もよい。この場合には、軸芯11内に挿入された正極外
部端子1の極柱との間に、絶縁部材を介在させればよ
い。もっとも、軸芯11内に挿入される正極外部端子1
の極柱の部分を絶縁性の樹脂とするようにしてもよい。
Further, in the third embodiment, the example in which the shaft core 11 is the positive electrode has been shown, but the shaft core 11 may be the negative electrode and the aluminum foil may be wound via the separator S2. In this case, an insulating member may be interposed between the positive pole external terminal 1 and the pole column inserted in the shaft core 11. However, the positive electrode external terminal 1 inserted in the shaft core 11
You may make it the insulating resin the part of the pole.

【0038】更にまた、上記実施形態では、正極活物質
としてマンガン酸リチウム、負極活物質として非晶質炭
素を用いた例を示したが、正極活物質としては、電池の
充放電によりリチウムイオンを吸蔵・放出可能なリチウ
ム遷移金属複酸化物であればよく、例えば、リチウム・
コバルト複合酸化物、リチウム・ニッケル複合酸化物等
を用いてもよい。また、負極活物質としては、電池の充
放電によりリチウムイオンを吸蔵・放出可能な材料であ
ればよく、例えば、天然黒鉛や、人造の各種黒鉛材、コ
ークスなどの炭素質材料等でよく、その粒子形状におい
ても、鱗片状、球状、繊維状、塊状等を用いてもよい。
Furthermore, in the above embodiment, an example using lithium manganate as the positive electrode active material and amorphous carbon as the negative electrode active material has been shown. However, as the positive electrode active material, lithium ions are used by charging and discharging the battery. Any lithium transition metal complex oxide that can store and release can be used.
You may use cobalt complex oxide, lithium nickel complex oxide, etc. Further, the negative electrode active material may be any material capable of inserting and extracting lithium ions by charging and discharging the battery, for example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke, etc., Also in the particle shape, a scaly shape, a spherical shape, a fibrous shape, a lump shape or the like may be used.

【0039】また更に、上記実施形態では、絶縁被覆8
に、基材がポリイミドで、その片面にヘキサメタアクリ
レートからなる粘着剤を塗布した粘着テープを用いた例
を示したが、本発明はこれに限定されない。例えば、基
材がポリプロピレンやポリエチレン等のポリオレフィン
で、その片面又は両面にヘキサメタアクリレートやブチ
ルアクリレート等のアクリル系粘着剤を塗布した粘着テ
ープや、粘着剤を塗布しないポリオレフィンやポリイミ
ドからなるテープ等も好適に使用することができる。
Furthermore, in the above embodiment, the insulating coating 8
In the above, an example using a pressure-sensitive adhesive tape in which the base material is polyimide and one surface of which is coated with a pressure-sensitive adhesive made of hexamethacrylate is shown, but the present invention is not limited to this. For example, an adhesive tape whose base material is a polyolefin such as polypropylene or polyethylene and one or both surfaces of which is coated with an acrylic adhesive such as hexamethacrylate or butyl acrylate, or a tape made of a polyolefin or polyimide without an adhesive is also available. It can be used preferably.

【0040】また、上記実施形態では、結着剤としてポ
リフッ化ビニリデン、電解液としてエチレンカーボネー
トとジメチルカーボネートとジエチルカーボネートの体
積比1:1:1の混合溶媒中へ6フッ化リン酸リチウム
を1モル/リットル溶解したものを例示したが、本発明
のリチウムイオン電池の製造方法には特に制限はなく、
通常用いられているいずれのものも使用可能である。上
記実施形態以外で用いることのできる結着剤としては、
例えば、ポリテトラフルオロエチレン(PTFE)、ポ
リエチレン、ポリスチレン、ポリブタジエン、ブチルゴ
ム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化
ゴム、ニトロセルロース、シアノエチルセルロース、各
種ラテックス、アクリロニトリル、フッ化ビニル、フッ
化ビニリデン、フッ化プロピレン、フッ化クロロプレン
等の重合体及びこれらの混合体などが挙げられる。
In the above embodiment, 1 part of lithium hexafluorophosphate is added to polyvinylidene fluoride as a binder and a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1 as an electrolytic solution. Although the one dissolved in mol / liter is exemplified, the method for producing the lithium ion battery of the present invention is not particularly limited,
Any of the commonly used ones can be used. As the binder that can be used in other embodiments,
For example, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, fluorine Examples thereof include polymers such as propylene oxide and chloroprene fluoride, and mixtures thereof.

【0041】更に、上記実施形態以外で用いることので
きる電解液としては、一般的なリチウム塩を電解質と
し、これを有機溶媒に溶解した電解液を用いることがで
き、用いられるリチウム塩や有機溶媒は特に制限されな
い。例えば、電解質としては、LiClO、LiAs
、LiPF、LiBF、LiB(C
、CHSOLi、CFSOLi等や
これらの混合物が挙げられる。また、有機溶媒として
は、プロピレンカーボネート、エチレンカーボネート、
1,2―ジメトキシエタン、1,2―ジエトキシエタ
ン、γ―ブチロラクトン、テトラヒドロフラン、1,3
―ジオキソラン、4―メチルー1,3―ジオキソラン、
ジエチルエーテル、スルホラン、メチルスルホラン、ア
セトニトリル、プロピオニトリル等又はこれら2種類以
上の混合溶媒が挙げられ、混合配合比についても限定さ
れるものではない。
Further, as an electrolytic solution which can be used in the embodiments other than the above-mentioned embodiment, an electrolytic solution in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent can be used. The lithium salt or the organic solvent used can be used. Is not particularly limited. For example, as the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li and the like and mixtures thereof. Further, as the organic solvent, propylene carbonate, ethylene carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3
-Dioxolane, 4-methyl-1,3-dioxolane,
Examples thereof include diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like, or a mixed solvent of two or more kinds of these, and the mixing ratio is not limited.

【0042】[0042]

【実施例】次に、上述した第1実施形態に従い捲回群6
内で第2の電極対25の位置を変えて作製した円筒型リ
チウムイオン電池20の実施例について説明する。な
お、比較のために作製した比較例の電池についても併記
する。
EXAMPLE Next, the winding group 6 according to the first embodiment described above.
An example of the cylindrical lithium-ion battery 20 manufactured by changing the position of the second electrode pair 25 will be described. The battery of the comparative example prepared for comparison is also shown.

【0043】(実施例1)実施例1では、第2の電極対
25を、軸芯11にセパレータS1を30mm捲回した
後にセパレータS1の間に挿入した。実施例1の円筒型
リチウムイオン電池20では、第2の電極対25は軸芯
11の直近に挿入されている。
(Example 1) In Example 1, the second electrode pair 25 was inserted between the separators S1 after the separator S1 was wound around the shaft core 11 by 30 mm. In the cylindrical lithium-ion battery 20 of Example 1, the second electrode pair 25 is inserted near the shaft core 11.

【0044】(実施例2)実施例2では、第2の電極対
25を、電極捲回群6’の外周部にセパレータS1の間
に挿入した。
(Example 2) In Example 2, the second electrode pair 25 was inserted between the separators S1 on the outer periphery of the electrode winding group 6 '.

【0045】(比較例1)比較例1では、第2の電極対
を装着しない以外は実施例1と同様に円筒型リチウムイ
オン電池を作製した。
Comparative Example 1 In Comparative Example 1, a cylindrical lithium ion battery was manufactured in the same manner as in Example 1 except that the second electrode pair was not attached.

【0046】(測定/試験)次に、このようにして完成
した実施例及び比較例の電池について、以下の測定、試
験を行った。
(Measurement / Test) Next, the following measurements and tests were performed on the batteries of Examples and Comparative Examples thus completed.

【0047】室温にて充電した後放電し、放電容量を測
定した。充電条件は、4.2V定電圧、制限電流80
A、3.5時間とした。放電条件は、20A定電流、終
止電圧2.5Vとした。その後、室温にて80A定電流
で連続充電試験を行い、電池挙動を観察した。連続充電
時には、電池の開裂弁10が開裂した後、ガス放出の現
象が起こる。このガス放出の程度を示すために、現象発
生後の電池重量を測定し、試験開始前の電池重量に対す
る百分率(単位%)で示した。また、ガス放出後、電池
容器の変形の有無を確認し、過充電時の内部短絡に至る
時間も測定した。下表1に測定、評価結果を示す。
The battery was charged at room temperature and then discharged to measure the discharge capacity. Charging condition is 4.2V constant voltage, limiting current 80
A, 3.5 hours. The discharge conditions were a constant current of 20 A and a final voltage of 2.5V. Then, a continuous charge test was performed at a constant current of 80 A at room temperature to observe the battery behavior. During continuous charging, the phenomenon of gas release occurs after the cleaving valve 10 of the battery is cleaved. In order to show the extent of this gas release, the battery weight after the occurrence of the phenomenon was measured and expressed as a percentage (unit%) with respect to the battery weight before the start of the test. In addition, after the gas was released, the presence or absence of deformation of the battery container was confirmed, and the time to internal short circuit during overcharge was also measured. The measurement and evaluation results are shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】表1に示すように、実施例1及び実施例2
の円筒型リチウムイオン電池20では、それぞれ41
分、53分の早期に内部短絡現象が起こった。開裂弁1
0の開裂後はガスの穏やかな放出のみで、電池の変形も
なく、電池重量は80%以上を保持していた(電池内容
物は殆ど放出されていなかった)。従って、実施例1及
び実施例2の電池は、異常時に極めて穏やかな挙動を示
した。更に、これらの電池では、連続充電時の挙動に差
はなかったが、内部短絡に至る時間については、実施例
1の電池の方が若干短かい。実施例1の電池は、第2の
電極対25の挿入位置が、過充電時の温度上昇が早い電
池中心部に近い位置であるためと考えられる。これに対
し、比較例1の電池では、開裂弁10の開裂後、開裂弁
10から電池内容物の一部の放出を伴って比較的激しく
ガスを放出した。現象後の電池重量は71%となり、電
池容器が変形した。
As shown in Table 1, Example 1 and Example 2
In the cylindrical lithium ion battery 20 of
An internal short-circuit phenomenon occurred in the early minutes of 53 minutes. Cleavage valve 1
After the cleavage of 0, the gas was released only gently, the battery was not deformed, and the battery weight was maintained at 80% or more (the battery contents were hardly released). Therefore, the batteries of Example 1 and Example 2 exhibited extremely gentle behavior at abnormal times. Furthermore, although there was no difference in behavior between these batteries during continuous charging, the battery of Example 1 had a slightly shorter time to reach an internal short circuit. It is considered that in the battery of Example 1, the insertion position of the second electrode pair 25 is close to the center of the battery where the temperature rises rapidly during overcharge. On the other hand, in the battery of Comparative Example 1, after the cleaving valve 10 was cleaved, gas was relatively violently emitted from the cleaving valve 10 with the release of a part of the battery contents. The battery weight after the phenomenon was 71%, and the battery container was deformed.

【0050】以上の試験結果から、セパレータS1より
も溶融温度の低いセパレータS2が過充電時の電池温度
の上昇により溶融し、第2の電極対25が早期に内部短
絡を起こすので、円筒型リチウムイオン電池20が異常
な状態にさらされた場合の挙動が極めて穏やかで、安全
性を確保することができることが判明した。
From the above test results, the separator S2, which has a lower melting temperature than the separator S1, melts due to the rise in the battery temperature during overcharge, and the second electrode pair 25 causes an internal short circuit at an early stage. It was found that the behavior when the ion battery 20 is exposed to an abnormal state is extremely gentle, and safety can be ensured.

【0051】[0051]

【発明の効果】上述したように、本発明によれば、正極
活物質に充放電によりリチウムイオンを吸蔵・放出可能
なリチウム遷移金属複酸化物を用いた正極と、充放電に
よりリチウムイオンを放出・吸蔵可能な負極とがセパレ
ータを介した電極群を電解液に浸潤させて電池容器内に
収容することで、リチウムイオン電池の高出力、高容量
を確保することができると共に、通常充放電時には、第
2の電極対が第2のセパレータにより絶縁され電池機能
が保持され、電池異常時には、電解液と活物質との化学
反応で電池温度が上昇することで電極群のセパレータよ
り溶融温度の低い第2のセパレータが早く溶融し第2の
電極対間が短絡して正負極間の電流の流れが阻止される
ので、電解液と活物質との化学反応が促進されないため
リチウムイオン電池の安全性を確保することができる、
という効果を得ることができる。
As described above, according to the present invention, a positive electrode using a lithium transition metal complex oxide capable of inserting and extracting lithium ions in the positive electrode active material by charging and discharging, and releasing lithium ions by charging and discharging. -By immersing the electrode group with the storable negative electrode through the separator into the electrolytic solution and storing it in the battery container, it is possible to secure high output and high capacity of the lithium ion battery, and at the time of normal charging and discharging. , The second electrode pair is insulated by the second separator to maintain the battery function, and when the battery is abnormal, the battery temperature rises due to the chemical reaction between the electrolytic solution and the active material, so that the melting temperature is lower than that of the separator of the electrode group. Since the second separator melts quickly and the second electrode pair is short-circuited to block the flow of current between the positive and negative electrodes, the chemical reaction between the electrolytic solution and the active material is not promoted, so that the lithium ion electrode It is possible to secure the safety,
The effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した第1の実施の形態の円筒型リ
チウムイオン電池の側断面図である。
FIG. 1 is a side sectional view of a cylindrical lithium ion battery according to a first embodiment of the present invention.

【図2】第1の実施の形態の円筒型リチウムイオン電池
のセパレータの位置を模式的に示し、(A)は図1の2
(A)部の拡大図、(B)は図1の2(B)−2(B)
線断面図である。
FIG. 2 schematically shows the position of the separator of the cylindrical lithium-ion battery of the first embodiment, (A) of FIG.
An enlarged view of (A) part, (B) is 2 (B) -2 (B) of FIG.
It is a line sectional view.

【図3】本発明を適用した第3の実施の形態の円筒型リ
チウムイオン電池の、図2(B)に対応する断面図であ
る。
FIG. 3 is a cross-sectional view of a cylindrical lithium ion battery according to a third embodiment of the present invention, corresponding to FIG. 2 (B).

【符号の説明】[Explanation of symbols]

5 電池容器 6 捲回群 6’ 電極捲回群(電極群) 11 軸芯 20 円筒型リチウムイオン電池 21 アルミニウム箔 22 銅箔 25 第2の電極対 S1 セパレータ S2 第2のセパレータ 5 battery container 6 winding group 6'electrode winding group (electrode group) 11 shaft core 20 Cylindrical lithium-ion battery 21 Aluminum foil 22 Copper foil 25 Second electrode pair S1 separator S2 Second separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 剛 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H021 AA06 CC15 EE04 HH06 5H029 AJ12 AK03 AL06 AL08 AM03 AM05 AM07 BJ02 BJ14 BJ27 CJ13 DJ04 DJ06 EJ01 EJ04 EJ12 HJ14 5H050 AA15 BA17 CA09 CB07 CB09 DA19 EA09 EA24 FA01 FA05 GA13 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsuyoshi Nakano             2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo             Inside Shin-Kobe Electric Machinery Co., Ltd. F-term (reference) 5H021 AA06 CC15 EE04 HH06                 5H029 AJ12 AK03 AL06 AL08 AM03                       AM05 AM07 BJ02 BJ14 BJ27                       CJ13 DJ04 DJ06 EJ01 EJ04                       EJ12 HJ14                 5H050 AA15 BA17 CA09 CB07 CB09                       DA19 EA09 EA24 FA01 FA05                       GA13 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質に充放電によりリチウムイオ
ンを吸蔵・放出可能なリチウム遷移金属複酸化物を用い
た正極と、充放電によりリチウムイオンを放出・吸蔵可
能な負極とがセパレータを介した電極群を電解液に浸潤
させて電池容器内に収容したリチウムイオン電池におい
て、前記セパレータより溶融温度の低い第2のセパレー
タを介して前記正極及び前記負極にそれぞれ電気的に接
続されリチウムイオンを吸蔵・放出しない第2の電極対
を備えたことを特徴とするリチウムイオン電池。
1. A positive electrode using a lithium transition metal complex oxide capable of absorbing and desorbing lithium ions as a positive electrode active material by charging and discharging, and a negative electrode capable of desorbing and storing lithium ions as a result of charging and discharging via a separator. In a lithium ion battery in which an electrode group is soaked in an electrolytic solution and accommodated in a battery container, a lithium ion is occluded by being electrically connected to the positive electrode and the negative electrode through a second separator having a lower melting temperature than the separator. A lithium ion battery having a second electrode pair that does not emit.
【請求項2】 正極活物質に充放電によりリチウムイオ
ンを吸蔵・放出可能なリチウム遷移金属複酸化物を用い
た正極と、充放電によりリチウムイオンを放出・吸蔵可
能な負極とがセパレータを介した電極群を電解液に浸潤
させて電池容器内に収容したリチウムイオン電池におい
て、リチウムイオンを吸蔵・放出しない第2の電極対を
備え、該電極対は、前記セパレータの熱収縮率より大き
く電池異常時に前記電極対を短絡させる熱収縮率を有す
る第2のセパレータを介して前記正極及び前記負極にそ
れぞれ電気的に接続されたことを特徴とするリチウムイ
オン電池。
2. A positive electrode using a lithium transition metal composite oxide capable of absorbing and desorbing lithium ions by charging and discharging as a positive electrode active material, and a negative electrode capable of desorbing and storing lithium ions by charging and discharging via a separator. A lithium ion battery in which an electrode group is soaked in an electrolytic solution and housed in a battery container is provided with a second electrode pair that does not absorb or release lithium ions, and the electrode pair has a thermal contraction rate higher than that of the separator and a battery abnormality. A lithium-ion battery characterized in that it is electrically connected to the positive electrode and the negative electrode through a second separator having a thermal contraction rate that sometimes short-circuits the electrode pair.
【請求項3】 前記電極群は中心に導電性軸芯を有する
捲回電極群であり、前記軸芯を前記第2の電極対のいず
れか一方の電極としたことを特徴とする請求項1又は請
求項2に記載のリチウムイオン電池。
3. The electrode group is a wound electrode group having a conductive shaft core in the center, and the shaft core is any one electrode of the second electrode pair. Alternatively, the lithium ion battery according to claim 2.
【請求項4】 前記第2の電極対の少なくとも一方の電
極が金属箔であることを特徴とする請求項1乃至請求項
3のいずれか1項に記載のリチウムイオン電池。
4. The lithium ion battery according to claim 1, wherein at least one electrode of the second electrode pair is a metal foil.
JP2002040482A 2002-02-18 2002-02-18 Lithium ion battery Pending JP2003243037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040482A JP2003243037A (en) 2002-02-18 2002-02-18 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040482A JP2003243037A (en) 2002-02-18 2002-02-18 Lithium ion battery

Publications (1)

Publication Number Publication Date
JP2003243037A true JP2003243037A (en) 2003-08-29

Family

ID=27781214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040482A Pending JP2003243037A (en) 2002-02-18 2002-02-18 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2003243037A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004280A1 (en) * 2004-03-29 2006-01-12 Lg Chem, Ltd. Electrochemical cell with two types of separators
JP2007053055A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Battery
JP2009146810A (en) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd Battery and electronic device
US7976977B2 (en) 2005-08-16 2011-07-12 Lg Chem, Ltd. Electrochemical device with alternative separator system
CN103259051A (en) * 2013-05-07 2013-08-21 杭州金色能源科技有限公司 Winding-type lithium battery and battery cell thereof
CN112563681A (en) * 2019-09-26 2021-03-26 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112864474A (en) * 2021-01-05 2021-05-28 国联汽车动力电池研究院有限责任公司 High-safety battery structure and battery
CN113764835A (en) * 2020-05-27 2021-12-07 荣盛盟固利新能源科技有限公司 Battery safety protection device and laminated lithium ion battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1730799A1 (en) * 2004-03-29 2006-12-13 LG Chemical Co. Ltd Electrochemical cell with two types of separators
JP2007531234A (en) * 2004-03-29 2007-11-01 エルジー・ケム・リミテッド Electrochemical battery with two types of separators
WO2006004280A1 (en) * 2004-03-29 2006-01-12 Lg Chem, Ltd. Electrochemical cell with two types of separators
US7604895B2 (en) 2004-03-29 2009-10-20 Lg Chem, Ltd. Electrochemical cell with two types of separators
EP1730799A4 (en) * 2004-03-29 2010-06-02 Lg Chemical Ltd Electrochemical cell with two types of separators
EP2393143A1 (en) 2004-03-29 2011-12-07 LG Chem, Ltd. Electrochemical cell with two types of separators
US8574743B2 (en) 2005-08-16 2013-11-05 Lg Chem, Ltd. Electrochemical device with alternative separator system
US7976977B2 (en) 2005-08-16 2011-07-12 Lg Chem, Ltd. Electrochemical device with alternative separator system
JP2007053055A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Battery
JP2009146810A (en) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd Battery and electronic device
CN103259051A (en) * 2013-05-07 2013-08-21 杭州金色能源科技有限公司 Winding-type lithium battery and battery cell thereof
CN112563681A (en) * 2019-09-26 2021-03-26 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112563681B (en) * 2019-09-26 2023-05-12 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN113764835A (en) * 2020-05-27 2021-12-07 荣盛盟固利新能源科技有限公司 Battery safety protection device and laminated lithium ion battery
CN112864474A (en) * 2021-01-05 2021-05-28 国联汽车动力电池研究院有限责任公司 High-safety battery structure and battery
CN112864474B (en) * 2021-01-05 2022-10-11 国联汽车动力电池研究院有限责任公司 High-safety battery structure and battery

Similar Documents

Publication Publication Date Title
JP3368877B2 (en) Cylindrical lithium-ion battery
JP3541723B2 (en) Cylindrical lithium-ion battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP2004273139A (en) Lithium secondary battery
JP2004006264A (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP5232751B2 (en) Lithium ion secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2011076785A (en) Rectangular lithium secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2003243037A (en) Lithium ion battery
JP2000277176A (en) Lithium secondary battery and method for using the same
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP5503882B2 (en) Lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2000311705A (en) Cylindrical lithium ion battery
JP2003051340A (en) Lithium secondary battery
JP2006040772A (en) Lithium ion battery
JP4026587B2 (en) Lithium ion battery
JP2016012499A (en) Secondary battery
JP2001357888A (en) Cylindrical lithium secondary battery
JP2004319308A (en) Lithium secondary battery
JP3518484B2 (en) Lithium ion battery