JP2014116180A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014116180A
JP2014116180A JP2012269081A JP2012269081A JP2014116180A JP 2014116180 A JP2014116180 A JP 2014116180A JP 2012269081 A JP2012269081 A JP 2012269081A JP 2012269081 A JP2012269081 A JP 2012269081A JP 2014116180 A JP2014116180 A JP 2014116180A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
mixture layer
battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269081A
Other languages
Japanese (ja)
Other versions
JP5905817B2 (en
Inventor
Kyoku Kobayashi
極 小林
Yoshio Matsuyama
嘉夫 松山
Tomoyasu Furuta
知康 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Toyota Motor Corp
Original Assignee
Nachi Fujikoshi Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Toyota Motor Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2012269081A priority Critical patent/JP5905817B2/en
Publication of JP2014116180A publication Critical patent/JP2014116180A/en
Application granted granted Critical
Publication of JP5905817B2 publication Critical patent/JP5905817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress, while performing aging, the melting and deposition of a cathode active material which occurs during manufacture of a nonaqueous electrolyte secondary battery.SOLUTION: A method of the present invention for manufacturing a nonaqueous electrolyte secondary battery comprises a lamination step, a winding step, an assembly step, and an aging step. In the lamination step, a cathode 1 is provided with a cathode collector 7 and cathode mixture layers 3 and 5 positioned on both sides of the cathode collector 7, and an anode 2 is provided with an anode collector 8, anode mixture layers 4 and 6 positioned on both sides of the anode collector 8, and an anode end face 22 in which an end face of the anode collector 8 and end faces of the anode mixture layers 4 and 6 are substantially flush with each other. In the winding step, the laminate is wound in a manner that the anode mixture layer 4 on the outer circumferential side does not face the cathode mixture layers 3 and 5 on the outermost circumference of the anode positioned on the outer circumferential side of the outermost circumference of the cathode. In the aging step, the laminate is held in place while kept in storage by covering at least part of a side end portion of the cathode mixture layer 5 facing the anode mixture layer 6 in proximity to the anode end face 22 with a nonaqueous electrolyte.

Description

本発明は非水電解質二次電池の製造方法に関する。   The present invention relates to a method for producing a nonaqueous electrolyte secondary battery.

リチウムイオン二次電池を初めとする非水電解質二次電池の製造工程では、電極群を電池ケースに収容し、さらに非水電解質の注入を行った後に、充放電を行う必要がある。さらに特許文献1に示されるように、上記製造工程では、充放電に加えて、電池を60℃以上の温度域でエージング処理を行うこともできる。   In the manufacturing process of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, it is necessary to charge and discharge after accommodating the electrode group in a battery case and further injecting the non-aqueous electrolyte. Furthermore, as shown in Patent Document 1, in the manufacturing process, in addition to charging and discharging, the battery can be subjected to an aging treatment in a temperature range of 60 ° C. or higher.

特開2000−340262号公報JP 2000-340262 A

特許文献1に記載の発明は、非水電解質二次電池の、初期放電容量、または充放電サイクル特性を改善する優れたものである。しかしながら、エージング処理をすると、該電池の正極活物質中の金属が溶出する場合がある。かかる金属の溶出は電池内部の短絡を発生するので、電池が所望の性能を発揮しない場合がある。   The invention described in Patent Document 1 is excellent in improving the initial discharge capacity or charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery. However, when the aging treatment is performed, the metal in the positive electrode active material of the battery may be eluted. Such metal elution causes a short circuit inside the battery, and the battery may not exhibit the desired performance.

本発明は、エージング処理を行いつつ、非水電解質二次電池の製造中に生じる正極活物質の溶解・析出を抑制する、非水電解質二次電池の製造方法を提供することを目的とするものである。   An object of the present invention is to provide a method for producing a non-aqueous electrolyte secondary battery that suppresses dissolution and precipitation of a positive electrode active material that occurs during the production of a non-aqueous electrolyte secondary battery while performing an aging treatment. It is.

本発明の非水電解質二次電池の製造方法は、正極、セパレータ及び負極を積層し積層体を作成する、積層工程と、前記積層体を捲回し捲回体を作成する、捲回工程と、前記捲回体をケースに収納し電池を組み立てる、組立工程と、非水電解質を前記ケース内に注入する注入工程と、電池を充電する初期充電工程と、前記正極及び前記負極の間に電圧を印加せず、前記充電した電池を30℃以上の温度域で保管する、エージング工程と、を備える。   The method for producing a nonaqueous electrolyte secondary battery of the present invention includes a lamination step of laminating a positive electrode, a separator, and a negative electrode to create a laminate, and a winding step of winding the laminate to create a wound body. A battery is assembled by housing the wound body in a case, an assembling step, an injecting step of injecting a nonaqueous electrolyte into the case, an initial charging step of charging the battery, and a voltage between the positive electrode and the negative electrode. And an aging step of storing the charged battery in a temperature range of 30 ° C. or higher without applying.

前記積層工程では、前記正極は、正極集電体、及び正極集電体の両面に位置する正極合剤層を備え、前記負極は、負極集電体、負極集電体の両面に位置する負極合剤層、及び前記負極集電体の端面と負極合剤層の端面が実質的に面一となっている負極端面を備える。前記捲回工程では、正極最外周の外周側に位置する負極最外周において、外周側の前記負極合剤層は前記正極合剤層と対向しない態様で、前記積層体を捲回し、前記エージング工程では、保管中、前記負極端面に近接する負極合剤層の端部と対向する正極合剤層の側端部の少なくとも一部を前記非水電解質で覆った状態で保持する。   In the stacking step, the positive electrode includes a positive electrode current collector and a positive electrode mixture layer located on both surfaces of the positive electrode current collector, and the negative electrode is located on both sides of the negative electrode current collector and the negative electrode current collector. And a negative electrode end face in which the end face of the negative electrode current collector and the end face of the negative electrode mixture layer are substantially flush with each other. In the winding step, in the outermost negative electrode outer periphery located on the outer peripheral side of the positive electrode outermost periphery, the negative electrode mixture layer on the outer peripheral side does not face the positive electrode mixture layer, and the laminate is wound, and the aging step Then, during storage, at least a part of the side end portion of the positive electrode mixture layer facing the end portion of the negative electrode mixture layer adjacent to the negative electrode end surface is held in a state of being covered with the nonaqueous electrolyte.

前記温度域は60℃以上であることが好ましい。前記捲回工程の後、前記組立工程の前に、前記捲回体を押圧変形し、扁平形状とする、変形工程をさらに備え、前記エージング工程では、保管中、前記扁平形状の捲回体の、前記正極方向端かつ捲回方向の両端の湾曲部に位置し、外周の前記負極に対向する、最外周の前記正極合剤層の側端部の少なくとも一部を、前記非水電解質に浸漬した状態で保持する、ことが好ましい。   The temperature range is preferably 60 ° C. or higher. After the winding step, before the assembly step, the winding body is further deformed by pressing and deforming into a flat shape, and the aging step further includes a deformation step of the flat-shaped winding body during storage. In the nonaqueous electrolyte, at least a part of the side end portion of the positive electrode mixture layer on the outermost periphery, which is located at the curved portion at both ends in the positive electrode direction and in the winding direction and faces the negative electrode on the outer periphery, is immersed in the nonaqueous electrolyte. It is preferable to hold in the state.

前記エージング工程では、前記側端部の全部を、前記非水電解質に浸漬した状態で保持する、ことが好ましい。前記エージング工程では、保管中、前記側端部のダレ部の全部を、前記非水電解質に浸漬した状態で保持する、ことが好ましい。   In the aging step, it is preferable that all of the side end portions are held in a state of being immersed in the nonaqueous electrolyte. In the aging step, it is preferable that all of the sagging portions of the side end portions are kept in a state of being immersed in the nonaqueous electrolyte during storage.

前記エージング工程では、前記正極合剤層の側端部の全部を、前記非水電解質に浸漬した状態で保持する、ことが好ましい。前記エージング工程では、前記正極合剤層の側端部が、前記捲回体の捲回軸の方向の下方に位置する、ことが好ましい。   In the aging step, it is preferable that the entire side end portion of the positive electrode mixture layer is held in a state immersed in the nonaqueous electrolyte. In the aging step, it is preferable that a side end portion of the positive electrode mixture layer is positioned below in a direction of a winding axis of the wound body.

前記エージング工程では、角型のケースの一の開口面と嵌合する面状部材と、前記面状部材に接続する正極端子及び負極端子と、前記開口面と実質的に平行な捲回軸、前記正極端子と接続する正極方向端、及び該正極方向端に対して捲回軸方向の反対側に位置し前記負極端子と接続する負極方向端を有する前記捲回体と、を備える前記電池を、前記正極方向端が前記負極方向端の下方に位置する状態で保持する、ことが好ましい。   In the aging step, a planar member fitted to one opening surface of a square case, a positive terminal and a negative terminal connected to the planar member, a winding shaft substantially parallel to the opening surface, The battery comprising: a positive electrode direction end connected to the positive electrode terminal; and the wound body having a negative electrode direction end connected to the negative electrode terminal and located on the opposite side of the winding axis direction with respect to the positive electrode direction end. It is preferable that the positive electrode end is held in a state located below the negative electrode end.

本発明の製造方法により、エージング処理を行いつつ、非水電解質二次電池の製造中に生じる正極活物質の溶解・析出を抑制することができる。   According to the production method of the present invention, dissolution / deposition of the positive electrode active material that occurs during the production of the nonaqueous electrolyte secondary battery can be suppressed while performing the aging treatment.

実施の形態の製造方法にかかるフローチャートである。It is a flowchart concerning the manufacturing method of an embodiment. 実施の形態及び実施例の製造方法にかかる電池の組立後の図である。It is the figure after the assembly of the battery concerning the manufacturing method of embodiment and an Example. 実施の形態の製造方法にかかる注入工程後の押圧の模式図である。It is a schematic diagram of the press after the injection | pouring process concerning the manufacturing method of embodiment. 実施の形態の製造方法にかかる電池の設置図である。It is an installation figure of the battery concerning the manufacturing method of an embodiment. 実施の形態の製造方法にかかる電池の捲回体断面の模式図である。It is a schematic diagram of the winding body cross section of the battery concerning the manufacturing method of embodiment. 比較対象の製造方法にかかる電池の設置図である。It is an installation figure of the battery concerning the manufacturing method of a comparison object. 正極溶出による短絡発生のメカニズムを表す模式図である。It is a schematic diagram showing the mechanism of the short circuit generation | occurrence | production by a positive electrode elution. 実施例の製造方法にかかる電池のエージング後の図である。It is the figure after the aging of the battery concerning the manufacturing method of an Example. 比較例1の製造方法にかかる電池のエージング後の図である。6 is a view after aging of a battery according to the manufacturing method of Comparative Example 1. FIG. 比較例2の製造方法にかかる電池のエージング後の図である。6 is a view after aging of a battery according to a manufacturing method of Comparative Example 2. FIG. 比較例3の製造方法にかかる電池のエージング後の図である。10 is a view after aging of a battery according to a manufacturing method of Comparative Example 3. FIG. 比較例4の製造方法にかかる電池のエージング後の図である。10 is a view after aging of a battery according to a manufacturing method of Comparative Example 4. FIG. 比較例5の製造方法にかかる電池のエージング後の図である。FIG. 10 is a view after aging of the battery according to the manufacturing method of Comparative Example 5. 比較例5の製造方法にかかる電池のエージング後の図である。FIG. 10 is a view after aging of the battery according to the manufacturing method of Comparative Example 5. 比較例6の製造方法にかかる電池のエージング後の図である。10 is a view after aging of a battery according to a manufacturing method of Comparative Example 6. FIG. 比較例4の製造方法にかかる電池のエージング後の図である。10 is a view after aging of a battery according to a manufacturing method of Comparative Example 4. FIG. 比較例5の製造方法にかかる電池のコンディショニング後の図である。10 is a diagram after conditioning of a battery according to the manufacturing method of Comparative Example 5. FIG. 比較例5の製造方法にかかる電池のコンディショニング前の図である。FIG. 10 is a diagram before conditioning a battery according to the manufacturing method of Comparative Example 5; 比較例5の製造方法にかかる電池のコンディショニング後の図である。10 is a diagram after conditioning of a battery according to the manufacturing method of Comparative Example 5. FIG. 比較例4の製造方法にかかる電池のエージング後の図である。10 is a view after aging of a battery according to a manufacturing method of Comparative Example 4. FIG.

本発明の実施の形態にかかる非水電解質二次電池(以下、単に電池という場合がある。)はリチウムイオン二次電池である。以下、本実施の形態の製造方法について、エージング処理に重点をおいて説明する。   A non-aqueous electrolyte secondary battery (hereinafter sometimes simply referred to as a battery) according to an embodiment of the present invention is a lithium ion secondary battery. Hereinafter, the manufacturing method of the present embodiment will be described with emphasis on aging processing.

[電池の製造]
<積層体作製からエージングまで>
正極、セパレータ、及び負極等の、電池の各部材の製造工程については、後述する。図1に示すように、本実施の形態では、積層工程(ステップS11)にて、正極、セパレータ及び負極を積層し積層体を作製する。
[Manufacture of batteries]
<From laminate production to aging>
The manufacturing process of each member of the battery such as the positive electrode, the separator, and the negative electrode will be described later. As shown in FIG. 1, in the present embodiment, in the stacking step (step S <b> 11), a positive electrode, a separator, and a negative electrode are stacked to produce a stacked body.

ステップS11では、例えば図2に示すように負極方向端24が、正極方向端23に対して捲回体13の捲回軸25となるべき方向の反対側に位置するように、積層体を作成する。正極方向端23とは、捲回体13上の、正極端子11との端子接続面となる正極集電体7の部位が露出している側である。後述する図5に示すように、正極方向端23では正極端子11の端子接続面に近接する正極合剤層5の部位と、後述する負極端面22に近接する負極合剤層6の部位が対向している。   In step S11, for example, as shown in FIG. 2, the laminate is prepared so that the negative electrode direction end 24 is positioned on the opposite side of the positive electrode direction end 23 in the direction to be the winding shaft 25 of the winding body 13. To do. The positive electrode direction end 23 is a side where a portion of the positive electrode current collector 7 which is a terminal connection surface with the positive electrode terminal 11 on the wound body 13 is exposed. As shown in FIG. 5 to be described later, at the positive electrode direction end 23, the portion of the positive electrode mixture layer 5 close to the terminal connection surface of the positive electrode terminal 11 and the portion of the negative electrode mixture layer 6 close to the negative electrode end surface 22 to be described later are opposed. doing.

同様に、負極方向端24とは、捲回体13上の、正極端子12との端子接続面となる負極集電体8の部位が露出している側である。負極方向端24では正極端子12の端子接続面に近接する負極合剤層6の部位と、後述する正極端面21に近接する正極合剤層5の部位が対向している。このように正極及び負極を分離することで、簡易な構造でありながら、正極及び負極の間での、リード又は端子間の短絡を予防できる。   Similarly, the negative electrode direction end 24 is a side where a part of the negative electrode current collector 8 which is a terminal connection surface with the positive electrode terminal 12 on the wound body 13 is exposed. At the negative electrode end 24, the portion of the negative electrode mixture layer 6 that is close to the terminal connection surface of the positive electrode terminal 12 faces the portion of the positive electrode mixture layer 5 that is close to the positive electrode end surface 21 described later. By separating the positive electrode and the negative electrode in this manner, a short circuit between the lead or the terminal between the positive electrode and the negative electrode can be prevented while having a simple structure.

次に捲回工程(ステップS12)にて、正極最外周の外周側に位置する負極最外周において、外周側の負極合剤層は正極合剤層と対向しない態様で、積層体を捲回し捲回体を作成する。すなわち、正負極のうち最外周が負極となるよう積層体を捲回し捲回体を作成する。仮にこれとは逆に捲回した場合、対抗する負極面の無い最外周の正極面が生じる。そのため、負極方向端でのリチウムの供給が過剰となりリチウムが析出する可能性がある。上記捲回方法は、このようなリチウム析出による短絡を生じないようにするために行う。捲回工程の後、変形工程を設け、捲回体を押圧変形し、扁平形状とすることもできる。   Next, in the winding step (step S12), the negative electrode mixture layer on the outer peripheral side does not face the positive electrode mixture layer on the outer periphery of the negative electrode located on the outer peripheral side of the positive electrode outermost periphery. Create a circular body. That is, the laminated body is wound so that the outermost periphery of the positive and negative electrodes is the negative electrode, thereby creating a wound body. If it is wound on the contrary, the outermost positive electrode surface without the opposing negative electrode surface is generated. Therefore, the supply of lithium at the end in the negative electrode direction becomes excessive, and lithium may be deposited. The winding method is performed so as not to cause such a short circuit due to lithium deposition. After the winding process, a deforming process may be provided, and the wound body may be pressed and deformed to have a flat shape.

次に図2に示すように、組立工程(ステップS13)にて、捲回体13をケースに収納し電池10を組み立てる。本実施の形態では、扁平形状の捲回体13を角型のケース15に収納して角型の電池10を作製する。組立工程では、正極端子11及び負極端子12が捲回体13に接合する(内部は不図示)。捲回体13を、その扁平方向が図中の上下方向となるように、ケース15内に収納する。収納後、封口体19といった面状部材でケース15の開口部を閉じる。捲回体13の表層に最も近い合剤層は、後述する負極合剤層4である。   Next, as shown in FIG. 2, in the assembly process (step S <b> 13), the wound body 13 is housed in a case and the battery 10 is assembled. In the present embodiment, the rectangular battery 10 is manufactured by housing the flat wound body 13 in the rectangular case 15. In the assembly process, the positive electrode terminal 11 and the negative electrode terminal 12 are joined to the wound body 13 (the inside is not shown). The wound body 13 is housed in the case 15 so that the flat direction is the vertical direction in the figure. After storage, the opening of the case 15 is closed with a planar member such as the sealing body 19. The mixture layer closest to the surface layer of the wound body 13 is a negative electrode mixture layer 4 described later.

ステップS13では、捲回体13の捲回軸25が、角型のケース15の開口面と実質的に平行となるように、扁平形状の捲回体13を角型のケース15に収納することができる。また、一の開口面と嵌合する封口体19の正極方向端に、正極集電体7の端子接続面を介して、正極端子11を接続することができる。同様に、負極集電体8の端子接続面を介して、負極端子12を封口体19の負極方向端に接続することができる。正極端子11及び負極端子12の構成については実施例で詳細に説明する。   In step S <b> 13, the flat wound body 13 is accommodated in the rectangular case 15 so that the winding shaft 25 of the wound body 13 is substantially parallel to the opening surface of the rectangular case 15. Can do. Moreover, the positive electrode terminal 11 can be connected to the positive electrode end of the sealing body 19 fitted to one opening surface through the terminal connection surface of the positive electrode current collector 7. Similarly, the negative electrode terminal 12 can be connected to the negative electrode direction end of the sealing body 19 through the terminal connection surface of the negative electrode current collector 8. The configuration of the positive electrode terminal 11 and the negative electrode terminal 12 will be described in detail in Examples.

このように正極端子及び負極端子と接続する封口体を作製し、正極端子及び負極端子を引き回すことで、電池を簡易な構造とすることができる。また、正極端子及び負極端子は封口体又はケースに設けた孔にカシメることができる。電池の構造が簡易になることから、かかるカシメ面は正極端子及び負極端子について同一面であることが好ましい。   Thus, the sealing body connected to the positive electrode terminal and the negative electrode terminal is prepared, and the battery can be made a simple structure by drawing the positive electrode terminal and the negative electrode terminal. Further, the positive electrode terminal and the negative electrode terminal can be caulked into holes provided in the sealing body or the case. Such a caulking surface is preferably the same surface for the positive electrode terminal and the negative electrode terminal because the structure of the battery becomes simple.

ステップ14中の注入工程にて、非水電解質を封口体の注入口よりケース内に注入する。注入すべき非水電解質の量は、上述のとおり、エージング時、捲回体の捲回軸方向の正極方向端の少なくとも一部を浸漬可能な量以上であることが好ましい。非水電解質の量は、捲回体が保持可能な量、正極方向端の浸漬に必要な量、及び長期間使用後の揮発量等を考慮して、調整可能である。   In the injection step in step 14, the nonaqueous electrolyte is injected into the case from the inlet of the sealing body. As described above, the amount of the non-aqueous electrolyte to be injected is preferably equal to or larger than the amount capable of immersing at least a part of the positive electrode end in the winding axis direction of the wound body during aging. The amount of the non-aqueous electrolyte can be adjusted in consideration of the amount that the wound body can hold, the amount necessary for immersion in the positive electrode direction end, the volatilization amount after long-term use, and the like.

また捲回体が保持可能な非水電解質の量はコンディショニング前後で変化する場合がある。このため、コンディショニング前に捲回体が保持していた非水電解質が、コンディショニングにより押し出される分を考慮して調整することもできる。これらの量は実験的に求めることができる。   In addition, the amount of non-aqueous electrolyte that the wound body can hold may change before and after conditioning. For this reason, it can also adjust in consideration of the part by which the nonaqueous electrolyte which the winding body hold | maintained before conditioning is extruded by conditioning. These quantities can be determined experimentally.

注入後、ステップ14中の浸漬工程にて、所定の時間、捲回体を非水電解質に浸漬する。セパレータ等で生じる毛細管現象によって、捲回体が、非水電解質を吸収する。上記のとおり捲回体を浸漬することで、正極及び負極は隈なく非水電解質と接触するので、充電可能となる。   After the injection, the wound body is immersed in the non-aqueous electrolyte in a dipping process in step 14 for a predetermined time. The wound body absorbs the non-aqueous electrolyte by a capillary phenomenon generated in a separator or the like. By immersing the wound body as described above, the positive electrode and the negative electrode are in contact with the non-aqueous electrolyte without any defects, and thus can be charged.

図3に示すとおり、扁平捲回体を角型ケースに挿入した場合は、ステップ14中の押圧工程にて、浸漬した捲回体13を押圧してもよい。押圧工程は、捲回体13を内蔵するケース15を押圧することで行う。扁平形状の捲回体13は角型のケース15内で拘束される。電池10は、正極1及び負極2を備える捲回体13と、捲回体13を取り囲む絶縁体9と、捲回体13及び絶縁体9を収納するケース15とを備えている。   As shown in FIG. 3, when the flat wound body is inserted into the square case, the immersed wound body 13 may be pressed in the pressing step in step 14. The pressing step is performed by pressing the case 15 that houses the wound body 13. The flat wound body 13 is restrained in a square case 15. The battery 10 includes a wound body 13 including the positive electrode 1 and the negative electrode 2, an insulator 9 that surrounds the wound body 13, and a case 15 that houses the wound body 13 and the insulator 9.

押圧は、捲回体13がそれ自身で膨らもうとする力で、ケース15を内側から押して膨らませている場合に、ケース15を所望の形状にするために行う。所望の形状とは、例えばケース15がもともと有していた直方体等の角型形状をいう。なお図3にかかる短絡発生個所と捲回体の押圧の関係については効果の説明にて、詳述する。   The pressing is performed in order to make the case 15 have a desired shape when the wound body 13 is inflated by pushing the case 15 from the inside with a force that causes the wound body 13 to swell by itself. The desired shape refers to a rectangular shape such as a rectangular parallelepiped that the case 15 originally had. In addition, the relationship between the short-circuit occurrence location and the press of the wound body according to FIG. 3 will be described in detail in the description of the effect.

押圧する力17は、ケースの材料及び形状、電極の大きさ、又は捲回時の電極の巻き数、その他の要素に基づいて選択できる。例えば、幅が10cm、長さが5mの電極を、50回巻いて捲回して捲回体を作製した場合、好ましくは100〜1000kg重、さらに好ましくは500kg重の力でケース(捲回体)を押圧する。押圧は所望の時間行うことができる。上記の捲回体の例であれば、20秒間行うことで所望の扁平形状にすることができる。   The pressing force 17 can be selected based on the material and shape of the case, the size of the electrode, the number of turns of the electrode during winding, and other factors. For example, when a wound body is produced by winding an electrode having a width of 10 cm and a length of 5 m and winding it 50 times, the case (rolled body) is preferably 100 to 1000 kg weight, more preferably 500 kg weight. Press. The pressing can be performed for a desired time. If it is an example of said winding body, it can be made a desired flat shape by performing for 20 seconds.

ケースを押圧する力17の方向としては、捲回体を扁平に広げるべき方向、及び捲回軸方向、に対し実質的に垂直の方向が好ましい。ここで、実質的に垂直とは、垂直との誤差を許容できる範囲の角度をいう。許容できる範囲とは、例えば、ケース15が変形したり、ケース15を押圧する機材が位置ずれを起こしたり、又はその他の電池10の構造に支障をきたす恐れのないことをいう。   The direction of the force 17 for pressing the case is preferably a direction substantially perpendicular to the direction in which the wound body should be flattened and the winding axis direction. Here, “substantially vertical” refers to an angle within a range in which an error from the vertical can be allowed. The allowable range means, for example, that there is no possibility that the case 15 is deformed, a device that presses the case 15 is displaced, or the structure of the other battery 10 is not hindered.

押圧の実施は複数回に分けても良い。また各回の押圧する力17の大きさは異なってもよい。押圧工程では、ケース全体に均等に押圧してもよい。また、押圧工程では、捲回体の捲回軸に重なる部分18を重点的に押圧してもよい。かかる押圧工程により、ケース及び捲回体は所望の形状を有するようになる。このため本実施の形態の方法で製造した電池は、角型電池として、好ましい空間利用効率を得ることができる。   The pressing may be divided into a plurality of times. Moreover, the magnitude | size of the force 17 to press each time may differ. In the pressing step, the entire case may be pressed evenly. In the pressing step, the portion 18 that overlaps the winding axis of the wound body may be pressed with priority. By the pressing step, the case and the wound body have a desired shape. For this reason, the battery manufactured by the method of the present embodiment can obtain preferable space utilization efficiency as a prismatic battery.

コンディショニング工程(ステップS15)では、注入の終わった電池に所望の電圧を印加し充放電する。前述した、捲回体が保持可能な非水電解質の量は、ステップS15に依存する。ステップS15では、電極が膨張するため、非水電解質が染み出る。ステップS15では、まずリチウムイオン二次電池を所定の容量まで充電する(初期充電工程)。充電は定電流定電圧充電(CCCV充電)で行うことが好ましい。   In the conditioning process (step S15), a desired voltage is applied to the charged battery to charge and discharge. The amount of the non-aqueous electrolyte that can be held by the wound body described above depends on step S15. In step S15, since the electrode expands, the nonaqueous electrolyte oozes out. In step S15, the lithium ion secondary battery is first charged to a predetermined capacity (initial charging step). Charging is preferably performed by constant current constant voltage charging (CCCV charging).

例えば、常温において、3Aの電流値で、0V(放電状態)から4V(SOC100%、満充電状態)まで、2時間かけて充電することができる。さらに、例えば、常温において、3Aの電流値で、4V(満充電状態)から3Vまで、2時間かけて放電することができる。   For example, at room temperature, the battery can be charged for 2 hours from 0 V (discharged state) to 4 V (SOC 100%, fully charged state) at a current value of 3 A. Further, for example, at room temperature, the battery can be discharged from 4 V (fully charged state) to 3 V over 2 hours at a current value of 3 A.

エージング工程(ステップS16)では、電池を所定の温度域で保管する。ステップS16では、正極及び負極に電圧を印加しない、又は電池は充放電しないことが好ましい。ステップS16では非水電解質の組成に応じて、30℃以上の温度域で保管することが好ましい。非水電解質の組成が許す限り、温度域は、45℃以上であることが好ましく、50℃以上であることがさらに好ましく、60℃以上であることが特に好ましい。温度域は80℃以下であることが好ましい。   In the aging process (step S16), the battery is stored in a predetermined temperature range. In step S16, it is preferable not to apply a voltage to the positive electrode and the negative electrode, or to charge / discharge the battery. In step S16, it is preferable to store in a temperature range of 30 ° C. or higher according to the composition of the nonaqueous electrolyte. As long as the composition of the non-aqueous electrolyte permits, the temperature range is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 60 ° C. or higher. It is preferable that a temperature range is 80 degrees C or less.

温度が高いほどエージングに要する時間が少なくなり、電池の製造効率が向上する。一方で、後述する通り、高温のため電極間で短絡の発生する可能性が高いため、本実施の形態の方法は60℃以上で高温保管する場合に特に好適である。高温保管は0〜500時間程度行うことが好ましい。例えば、85℃でエージングする場合は、20時間程度行うことが好ましい。また、常圧下で高温保管することが好ましい。   The higher the temperature, the less time is required for aging and the battery manufacturing efficiency is improved. On the other hand, as described later, since there is a high possibility that a short circuit occurs between the electrodes due to the high temperature, the method of the present embodiment is particularly suitable for high-temperature storage at 60 ° C. or higher. High temperature storage is preferably performed for about 0 to 500 hours. For example, when aging at 85 ° C., it is preferably performed for about 20 hours. Moreover, it is preferable to store at high temperature under normal pressure.

図4は本実施の形態中、ステップS16での電池の設置方法を示す。図4の電池10の構成は、図2と同様である。高温保管中、捲回体13の捲回軸25方向の正極方向端23の少なくとも一部を、非水電解質に浸漬した状態で保持する。好ましくは、後述する負極端面に近接する負極合剤層と対向する正極合剤層の側端部を非水電解質で覆った状態で保持する。本実施の形態の方法は、図4に示すように、角型電池を端子の取り付け方向について横置きに設置してエージングするものである。かかる電池は一般的には、図2のように、端子の取り付け方向について縦置きに設置したままエージングしてもよいものである。   FIG. 4 shows a battery installation method in step S16 in the present embodiment. The configuration of the battery 10 of FIG. 4 is the same as that of FIG. During high-temperature storage, at least a part of the positive electrode direction end 23 in the direction of the winding axis 25 of the wound body 13 is held in a state of being immersed in a nonaqueous electrolyte. Preferably, the side edge part of the positive mix layer facing the negative mix layer which adjoins the negative electrode end surface mentioned later is hold | maintained in the state covered with the nonaqueous electrolyte. As shown in FIG. 4, the method of the present embodiment is a method in which a square battery is placed sideways in the terminal mounting direction and aged. In general, such a battery may be aged while being installed vertically in the terminal mounting direction as shown in FIG.

ステップS16の前に、捲回体13が非水電解質に含浸することで、捲回体13は非水電解質の一部を吸収している。捲回体13が保持可能な分以外の非水電解質は、余剰電解質としてケース15内の空隙に位置している。図中、余剰電解質は界面14の高さまでケース15内を満たしている。   Before step S16, the wound body 13 impregnates the nonaqueous electrolyte, so that the wound body 13 absorbs a part of the nonaqueous electrolyte. The nonaqueous electrolyte other than that which can be held by the wound body 13 is located in the gap in the case 15 as an excess electrolyte. In the figure, the excess electrolyte fills the case 15 up to the height of the interface 14.

図3を用いて、ケース15内を図4中の下方から見た様子を説明する。絶縁体9は捲回体13を取り囲み、捲回体13がケース15と短絡することを防止している。捲回体13は、正極1、負極2、及び不図示のセパレータを備える。正極1は不図示の正極集電体7の両面に不図示の正極合剤層を備えている。負極2は不図示の負極集電体8の両面に負極合剤層を備えている。負極2の最外周は正極1の最外周の外周に位置する。   A state in which the inside of the case 15 is viewed from below in FIG. 4 will be described with reference to FIG. The insulator 9 surrounds the wound body 13 and prevents the wound body 13 from being short-circuited with the case 15. The wound body 13 includes a positive electrode 1, a negative electrode 2, and a separator (not shown). The positive electrode 1 includes a positive electrode mixture layer (not shown) on both surfaces of a positive electrode current collector 7 (not shown). The negative electrode 2 includes a negative electrode mixture layer on both surfaces of a negative electrode current collector 8 (not shown). The outermost periphery of the negative electrode 2 is located on the outer periphery of the outermost periphery of the positive electrode 1.

負極2が上記の図3のように配置されるため、図4中、捲回体の表層に位置する負極合剤層4は正極と対向していない。この負極合剤層4に起因するエージング中の短絡を予防するため、捲回体13の扁平方向の両端の湾曲部16の正極方向端は、非水電解質に浸漬することが好ましい。負極合剤層4に起因する短絡については後述する。図4に示すように捲回体13の捲回軸25を実質的に鉛直方向と平行に保持することで、捲回体13の正極方向端23は界面14の下に位置し、非水電解質に浸漬する。   Since the negative electrode 2 is arranged as shown in FIG. 3, the negative electrode mixture layer 4 located on the surface layer of the wound body in FIG. 4 does not face the positive electrode. In order to prevent a short circuit during aging caused by the negative electrode mixture layer 4, it is preferable that the positive electrode ends of the curved portions 16 at both ends in the flat direction of the wound body 13 are immersed in a nonaqueous electrolyte. The short circuit caused by the negative electrode mixture layer 4 will be described later. As shown in FIG. 4, by holding the winding shaft 25 of the winding body 13 substantially in parallel with the vertical direction, the positive electrode direction end 23 of the winding body 13 is located below the interface 14, and the nonaqueous electrolyte Immerse in.

図5に捲回体13の最外周付近の正極1及び負極2の並びにこれらの間に位置するセパレータ20の断面を模式的に示す。図5の正極1及び負極2はそれぞれの最外周の層を表す。負極2が外周側となり、その内周側に正極1が位置するのは前述のとおりである。また、シート状の正極1及び負極2はセパレータ20を介して、双方の端子接続面が、正極方向端23と負極方向端24に分かれて、互い違いなるように積層している。エージング中の短絡を予防するため、捲回体13の最外周の正極1は、下記のとおり非水電解質に浸漬することが好ましい。   FIG. 5 schematically shows a cross section of the positive electrode 1 and the negative electrode 2 near the outermost periphery of the wound body 13 and the separator 20 positioned between them. The positive electrode 1 and the negative electrode 2 in FIG. 5 represent the outermost peripheral layers. As described above, the negative electrode 2 is on the outer peripheral side, and the positive electrode 1 is located on the inner peripheral side. In addition, the sheet-like positive electrode 1 and the negative electrode 2 are laminated such that both terminal connection surfaces are divided into a positive electrode direction end 23 and a negative electrode direction end 24 through the separator 20 and are alternately arranged. In order to prevent a short circuit during aging, the outermost positive electrode 1 of the wound body 13 is preferably immersed in a nonaqueous electrolyte as described below.

図中の下方にあたる捲回体13の正極方向端23側では、正極集電体7は正極合剤層3及び正極合剤層5と接しておらず、未塗工部として露出している。正極合剤層3は正極1の内周側に位置する。正極合剤層5は正極1の外周側に位置し、負極2の内周側に位置する負極合剤層6と対向している。   The positive electrode current collector 7 is not in contact with the positive electrode mixture layer 3 and the positive electrode mixture layer 5 on the positive electrode direction end 23 side of the wound body 13 corresponding to the lower side in the figure, and is exposed as an uncoated part. The positive electrode mixture layer 3 is located on the inner peripheral side of the positive electrode 1. The positive electrode mixture layer 5 is located on the outer peripheral side of the positive electrode 1 and faces the negative electrode mixture layer 6 located on the inner peripheral side of the negative electrode 2.

正極集電体7に露出した未塗工部を端子接続面として、正極端子11と正極1が接している。図中の下方の正極方向端23(+)側の、正極合剤層3及び正極合剤層5の側端部は非水電解質の界面14の下方にある。図中の上方の負極方向端24(−)側の、上記側端部は非水電解質の界面14の上方にある。   The positive electrode terminal 11 and the positive electrode 1 are in contact with each other with the uncoated portion exposed to the positive electrode current collector 7 as a terminal connection surface. The side ends of the positive electrode mixture layer 3 and the positive electrode mixture layer 5 on the lower positive electrode direction end 23 (+) side in the drawing are below the interface 14 of the nonaqueous electrolyte. The side end portion on the negative electrode direction end 24 (−) side in the upper side in the drawing is above the interface 14 of the nonaqueous electrolyte.

図中の上方にあたる捲回体13の負極方向端24側では、負極集電体8は負極合剤層4及び負極合剤層6と接しておらず、未塗工部として露出している。負極合剤層4は正極1の外周側に位置し、正極合剤層と対向していない。このため、充電時にリチウムを吸収する機会が極めて少ない。負極合剤層6は正極合剤層5と対向している。   The negative electrode current collector 8 is not in contact with the negative electrode mixture layer 4 and the negative electrode mixture layer 6 on the negative electrode direction end 24 side of the winding body 13 corresponding to the upper side in the drawing, and is exposed as an uncoated portion. The negative electrode mixture layer 4 is located on the outer peripheral side of the positive electrode 1 and does not face the positive electrode mixture layer. For this reason, there is very little opportunity to absorb lithium during charging. The negative electrode mixture layer 6 faces the positive electrode mixture layer 5.

負極集電体8に露出した未塗工部を端子接続面として、負極端子12と負極2が接している。図中の下方の正極方向端23(+)側の、負極合剤層4及び負極合剤層6の側端部は非水電解質の界面14の下にある。図中の上方の負極方向端24(−)側の、上記側端部は非水電解質の界面14の上方にある。   The negative electrode terminal 12 and the negative electrode 2 are in contact with each other with the uncoated portion exposed at the negative electrode current collector 8 as the terminal connection surface. The side ends of the negative electrode mixture layer 4 and the negative electrode mixture layer 6 on the lower positive electrode direction end 23 (+) side in the figure are below the interface 14 of the nonaqueous electrolyte. The side end portion on the negative electrode direction end 24 (−) side in the upper side in the drawing is above the interface 14 of the nonaqueous electrolyte.

高温保管中、図5の正極合剤層5の側端部の円で囲んだ部位のうち、正極最外周に位置するものの少なくとも一部、好ましくは全部を非水電解質に浸漬することが好ましい。かかる部位は扁平形状の捲回体の、正極方向端23に位置する。該部位はより好ましくは扁平方向の両端の湾曲部に位置する。該部位はさらに好ましくは外周の負極に対向する。該部位は特に好ましくは正極の最外周に位置する。   During high-temperature storage, it is preferable to immerse at least a part, preferably all, of the portion located on the outermost periphery of the positive electrode among the portions surrounded by the circles at the side end of the positive electrode mixture layer 5 in FIG. Such a portion is located at the positive electrode direction end 23 of the flat wound body. The part is more preferably located at the curved portions at both ends in the flat direction. The part is more preferably opposed to the outer peripheral negative electrode. This part is particularly preferably located on the outermost periphery of the positive electrode.

かかる部位を浸漬することで、特に効果的に短絡を予防することができる。また、かかる部位を浸漬する方法として、正極方向端の、外周の正極合剤層、又は内周及び外周の正極合剤層の側端部の全部を、非水電解質に浸漬してもよい。かかる方法により、正極合剤層からの金属溶出に起因して、正極方向端で発生する短絡のほとんどを抑制できる。   By dipping such a part, a short circuit can be prevented particularly effectively. In addition, as a method for immersing the part, all of the outer peripheral positive electrode mixture layer or the inner peripheral and outer peripheral positive electrode mixture layer at the end in the positive electrode direction may be immersed in the nonaqueous electrolyte. By such a method, it is possible to suppress most of the short circuit that occurs at the end in the positive electrode direction due to metal elution from the positive electrode mixture layer.

上記側端部は、後述する正極形成工程で生ずるダレ部を有するものとすることができる。かかるダレ部は、短絡を生ずる部位となりやすいため、かかるダレ部全部を非水電解質に浸漬した状態で保持することが好ましい。かかる方法により短絡の予防効果はさらに高まる。   The said side edge part shall have a sagging part which arises in the positive electrode formation process mentioned later. Since such a sag part is likely to be a part that causes a short circuit, it is preferable to hold the entire sag part in a state of being immersed in a nonaqueous electrolyte. Such a method further enhances the short-circuit prevention effect.

エージング工程では、正極方向端が、捲回体の正極方向端に対して捲回軸の方向の反対側に位置する端部よりも下方に位置することが好ましい。かかる場合、エージング時に非水電解質は捲回体全体を浸漬せずとも、短絡を予防することができる。本実施の形態では、注入する非水電解質の量は、エージング時に正極の最外周全体を浸漬可能な量より少なくても済む。   In the aging process, it is preferable that the positive electrode end is located below the end of the winding body on the opposite side of the winding axis direction with respect to the positive electrode direction end. In such a case, the nonaqueous electrolyte can prevent a short circuit without immersing the entire wound body during aging. In the present embodiment, the amount of nonaqueous electrolyte to be injected may be smaller than the amount capable of immersing the entire outermost periphery of the positive electrode during aging.

また、上述のように、正極方向端に対して、捲回軸方向の反対側に負極方向端を備える電池では、例えば、正極方向端が負極方向端の下方に位置する状態で電池を保持する、ことができる。かかる場合、作業者は浸漬すべき捲回体の部位を意識することなく、単に電池を図4に表される向きに配置することのみで、エージング工程での短絡発生を効果的に予防できる。   Further, as described above, in a battery having a negative electrode direction end opposite to the winding axis direction with respect to the positive electrode direction end, for example, the battery is held in a state where the positive electrode direction end is positioned below the negative electrode direction end. ,be able to. In such a case, the operator can effectively prevent the occurrence of a short circuit in the aging process by simply arranging the battery in the direction shown in FIG. 4 without being aware of the portion of the wound body to be immersed.

本実施の形態の方法は、エージング時に電池を特定の向きに置くという、極めて簡便な方法であるため、実施にあたり電池の設計や構成の制限を受けない。このため幅広い分野の電池に応用可能である。   Since the method of this embodiment is a very simple method of placing a battery in a specific direction during aging, the battery design and configuration are not limited in implementation. Therefore, it can be applied to batteries in a wide range of fields.

ステップS16終了後、最終検査工程にて、電池の容量や電気抵抗が所望の範囲に収まっているかを判定することができる。最終検査工程後、作製した電池を使用するが、電池の使用方法は特に限定されない。例えば複数の電池を組んで電池パックとし、当該電池パックを自動車に搭載して、その駆動電源とすることができる。具体的には、例えば電気自動車(EV)又はプラグインハイブリット自動車(PHV)等の動力機械に搭載して、作動電源として使用することができる。   After step S16 is completed, it can be determined in the final inspection step whether the capacity and electric resistance of the battery are within a desired range. Although the produced battery is used after the final inspection process, the method of using the battery is not particularly limited. For example, a plurality of batteries can be assembled into a battery pack, and the battery pack can be mounted on an automobile and used as a driving power source. Specifically, it can be mounted on a power machine such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHV) and used as an operating power source.

<電池の各部材の製造>
正極形成工程では、正極合剤層を正極集電体に積層し、正極を形成する。例えば、アルミニウム箔などの正極集電体に正極活物質を塗布して、正極を製造する。本実施の形態では、正極活物質に特に制限はない。
<Manufacture of battery components>
In the positive electrode forming step, the positive electrode mixture layer is laminated on the positive electrode current collector to form the positive electrode. For example, a positive electrode active material is applied to a positive electrode current collector such as an aluminum foil to produce a positive electrode. In the present embodiment, the positive electrode active material is not particularly limited.

正極活物質としては、例えば、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−x)、及びLiNiMnCo(1−x−y)等のリチウム含有複合酸化物等が使用可能である(0<x<1,0<y<1)。LiNiCoMn(1−x−y)で表される三元系の活物質としては、LiNi1/3Co1/3Mn1/3が好ましい。 As the positive electrode active material, for example, LiCoO 2, LiMnO 2, LiMn 2 O 4, LiNiO 2, LiNi x Co (1-x) O 2, and LiNi x Mn y Co (1- x-y) O 2 , etc. Lithium-containing composite oxides can be used (0 <x <1, 0 <y <1). As a ternary active material represented by LiNi x Co y Mn (1-xy) O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferable.

正極活物質の塗布方法としては、まず、N−メチル−2−ピロリドン等の分散剤を用い、上記の正極活物質と、アセチレンブラック(AB)等の導電助剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合して、スラリー様のペーストを得る。このペーストをアルミニウム箔等の正極集電体上に塗布し、乾燥し、プレス加工することで、正極合剤層を得る。   As a method for applying the positive electrode active material, first, using a dispersant such as N-methyl-2-pyrrolidone, the above positive electrode active material, a conductive auxiliary agent such as acetylene black (AB), and polyvinylidene fluoride (PVDF) A binder like slurry is mixed to obtain a slurry-like paste. This paste is applied onto a positive electrode current collector such as an aluminum foil, dried, and pressed to obtain a positive electrode mixture layer.

正極合剤ペーストは、所定の流動性を有するので、塗布時、側端部にダレ部を生ずる。図5では正極合剤層3及び5の、図中の下方の正極方向端23側に、斜め形状のダレ部が表れている。本実施の形態では負極方向端24側の正極合剤層3及び5の側端部は、正極合剤層と正極集電体からなる積層体を切断することで作成している。このため、正極合剤層3及び5の切断面は、正極集電体7の切断面と揃っている。すなわち正極1は、正極集電体7の端面と正極合剤層3及び5の端面が実質的に面一となっている正極端面21を備える。かかる構成とすることで、負極方向端24側に正極集電体7の露出部分の現れることが無くなる。   Since the positive electrode mixture paste has a predetermined fluidity, a sagging portion is generated at the side end portion during application. In FIG. 5, a slanted sagging portion appears on the positive electrode mixture layers 3 and 5 on the lower positive electrode direction end 23 side in the drawing. In the present embodiment, the side end portions of the positive electrode mixture layers 3 and 5 on the negative electrode direction end 24 side are formed by cutting a laminate composed of the positive electrode mixture layer and the positive electrode current collector. For this reason, the cut surfaces of the positive electrode mixture layers 3 and 5 are aligned with the cut surface of the positive electrode current collector 7. That is, the positive electrode 1 includes a positive electrode end surface 21 in which the end surface of the positive electrode current collector 7 and the end surfaces of the positive electrode mixture layers 3 and 5 are substantially flush. With this configuration, the exposed portion of the positive electrode current collector 7 does not appear on the negative electrode direction end 24 side.

負極形成工程では、負極合剤層を負極集電体に積層し、負極を形成する。負極の負極形成工程として、例えば、銅箔などの負極集電体に負極活物質を塗布して、負極を製造する。負極活物質としては、金属リチウム、リチウム合金、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物/遷移金属窒化物/遷移金属硫化物、及びグラファイト等のカーボン系素材、これらの組み合わせ等が挙げられる。   In the negative electrode forming step, the negative electrode mixture layer is laminated on the negative electrode current collector to form the negative electrode. As a negative electrode formation process of a negative electrode, a negative electrode active material is apply | coated to negative electrode collectors, such as copper foil, for example, and a negative electrode is manufactured. Negative electrode active materials include metallic lithium, lithium alloys, transition metal oxides / transition metal nitrides / transition metal sulfides capable of doping / dedoping lithium ions, and carbon-based materials such as graphite, etc. And the like.

負極活物質の塗布方法としては、まず、水等の分散剤を用いて、グラファイトと、変性スチレン−ブタジエン共重合体ラテックス(SBR)等の結着剤と、カルボキシメチルセルロースNa塩(CMC)等の増粘剤とを混合して、スラリーを得る。このスラリーを銅箔等の負極集電体上に塗布し、乾燥し、プレス加工することで、負極合剤層を得る。負極合剤層の側端部も正極合剤層の側端部と同様の構成を有する。このため、負極合剤層4及び6の切断面は、負極集電体8の切断面と揃っている。すなわち負極2は、負極集電体8の端面と負極合剤層4及び6の端面が実質的に面一となっている負極端面22を備える。   As a method for applying the negative electrode active material, first, using a dispersant such as water, graphite, a binder such as modified styrene-butadiene copolymer latex (SBR), carboxymethylcellulose Na salt (CMC), etc. Mix with thickener to obtain slurry. This slurry is applied onto a negative electrode current collector such as a copper foil, dried, and pressed to obtain a negative electrode mixture layer. The side end portion of the negative electrode mixture layer also has the same configuration as the side end portion of the positive electrode mixture layer. For this reason, the cut surfaces of the negative electrode mixture layers 4 and 6 are aligned with the cut surface of the negative electrode current collector 8. That is, the negative electrode 2 includes a negative electrode end surface 22 in which the end surface of the negative electrode current collector 8 and the end surfaces of the negative electrode mixture layers 4 and 6 are substantially flush.

非水電解質としては、プロピレンカーボネ−トあるいはエチレンカーボネ−ト等の高誘電率カーボネート溶媒と、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒との混合溶媒に、リチウム含有電解質を溶解した非水電解質が好ましい。混合溶媒としては、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)の混合溶媒が好ましい。   The non-aqueous electrolyte includes a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate or ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, or dimethyl carbonate, and a lithium-containing electrolyte. A non-aqueous electrolyte in which is dissolved is preferable. As the mixed solvent, a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) is preferable.

支持塩としては、リチウム含有電解質が好ましい。リチウム含有電解質としては例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)等のリチウム塩、及びこれらの組み合わせが好ましい。リチウム塩としてはLiPFが好ましい。 As the supporting salt, a lithium-containing electrolyte is preferable. Examples of the lithium-containing electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) )} (6-n) ( n = 1~5 integer, k = 1 to 8 integer) lithium salts, and the like, and combinations thereof are preferred. LiPF 6 is preferred as the lithium salt.

セパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜であればよい。セパレータとしては、多孔質高分子フィルムが好ましい。セパレータとしては、PP(ポリプロピレン)製多孔質フィルム、PE(ポリエチレン)製多孔質フィルム、あるいは、PP(ポリプロピレン)−PE(ポリエチレン)の積層型多孔質フィルム等のポリオレフィン製多孔質フィルムが好ましい。   The separator may be a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions. As the separator, a porous polymer film is preferable. The separator is preferably a polyolefin porous film such as a PP (polypropylene) porous film, a PE (polyethylene) porous film, or a laminated porous film of PP (polypropylene) -PE (polyethylene).

二次電池の型としては、円筒型、コイン型、角型、あるいはフィルム型等がある。所望の型に合わせてケースを選定することができる。角型電池は、例えば円筒型電池に比べると、電池を集合して電池パックを作る際、空間の利用効率に優れる。また、ケースと捲回体を絶縁する絶縁層を設けることができる。   Secondary battery types include cylindrical, coin, rectangular, and film types. The case can be selected according to the desired mold. The square battery is superior in space utilization efficiency when the batteries are assembled to form a battery pack as compared with, for example, a cylindrical battery. In addition, an insulating layer for insulating the case and the wound body can be provided.

また、封口体として、上記ケースに嵌合可能なものを選定できる。本実施の形態では、封口体は、正極に接続する正極端子及び負極に接続する負極端子が通ることのできる孔を有する。また封口体は、一又は複数の注入口を有する。   Moreover, the thing which can be fitted to the said case can be selected as a sealing body. In the present embodiment, the sealing body has a hole through which a positive electrode terminal connected to the positive electrode and a negative electrode terminal connected to the negative electrode can pass. The sealing body has one or a plurality of injection ports.

封口体がかかる構造を有することで、ケースの備える一の開口部より、捲回体、正極及び負極端子、ならびに非水電解質を収納し、また封止することができる。また封口体の加工のみで済み、ケースの側に穿孔等の加工が不要となるため、生産効率が向上する。   When the sealing body has such a structure, the wound body, the positive electrode and the negative electrode terminal, and the nonaqueous electrolyte can be accommodated and sealed from one opening provided in the case. In addition, only the sealing body needs to be processed, and processing such as perforation is unnecessary on the side of the case, so that the production efficiency is improved.

正極端子及び負極端子としては、電池の構造すなわち、ケースの形状、捲回体のケースへの挿入方向、ケース及び封口体の表面上の両端子を設けるべき位置に適合するよう、所望の形状のものを選択できる。電池の構造としては、図4のものが角型電池の構造として簡易であるため、好ましい。より具体的な構造としては、下記実施例にて説明する、図2のものが挙げられる。   The positive electrode terminal and the negative electrode terminal have a desired shape so as to conform to the structure of the battery, that is, the shape of the case, the direction in which the wound body is inserted into the case, and the positions where both terminals on the surface of the case and the sealing body should be provided. You can choose one. As the structure of the battery, the structure shown in FIG. 4 is preferable because the structure of the prismatic battery is simple. As a more specific structure, the thing of FIG. 2 demonstrated in the following Example is mentioned.

かかる電池は、正極方向端に対して捲回軸の方向の反対側に位置する負極方向端24と、角型のケースの開口面と実質的に平行な捲回軸方向を有する捲回体と、開口面と嵌合する一の封口体に接続する正極端子及び負極端子と、を備えるものである。   Such a battery includes a negative electrode direction end 24 positioned opposite to the positive electrode direction end in the direction of the winding axis, and a winding body having a winding axis direction substantially parallel to the opening surface of the rectangular case. And a positive electrode terminal and a negative electrode terminal connected to the one sealing member fitted to the opening surface.

その特徴としては、捲回体の捲回軸がケースの開口面と実質的に平行な向きを有する。また、捲回体の、捲回軸方向の両端にそれぞれ正極及び負極端子が接続する。また、両端子は封口体の捲回軸と平行な方向の両端、又は両側に設けた孔を貫通する。 As a feature thereof, the winding axis of the winding body has a direction substantially parallel to the opening surface of the case. Moreover, a positive electrode and a negative electrode terminal are respectively connected to both ends of the wound body in the winding axis direction. Moreover, both terminals penetrate the hole provided in the both ends of the direction parallel to the winding axis | shaft of a sealing body, or both sides.

かかる電池の構造とすることで、正極及び負極端子を、ケース内で引き回す必要が無くなる。このため、両端子の形状を短めの棒状のような、簡易なものとすることができ、電池の生産効率が向上する。本実施の形態の方法は、上記の構造を有する電池に特に好適に使用できる。   With such a battery structure, there is no need to route the positive electrode and the negative electrode terminal within the case. For this reason, the shape of both terminals can be as simple as a short rod shape, and the production efficiency of the battery is improved. The method of the present embodiment can be particularly suitably used for a battery having the above structure.

<実施の形態の変形>
本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本実施の形態では、エージング工程で、捲回体の正極方向端を非水電解質に浸漬するよう電池の設置方向を保持した。これに対して、注入工程、浸漬工程、押圧工程、又はコンディショニング工程等、他のいずれの工程でも同様に電池の向きを保持してもよい。または、組み立てた電池をエージング工程が終了するまで一貫して、正極方向端が下方になるように設置することもできる。かかる場合には電池の設置方向を変える作業を減らすことができる。
<Modification of Embodiment>
The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. In the present embodiment, in the aging process, the installation direction of the battery is maintained so that the positive electrode end of the wound body is immersed in the nonaqueous electrolyte. On the other hand, you may hold | maintain the direction of a battery similarly in any other processes, such as an injection | pouring process, an immersion process, a press process, or a conditioning process. Alternatively, the assembled battery may be installed so that the end in the positive electrode direction is downward until the aging process is completed. In such a case, the work of changing the installation direction of the battery can be reduced.

本実施の形態では、電池を端子の取り付け方向について横置きに設置した。これは設置の簡易性と、電池の転倒の予防の観点から好ましいためである。本実施の形態の変形として、上述の部位が非水電解質に浸漬している限り、電池を所望の角度まで傾けて設置することができる。この場合、傾いた側を支持部材で支えるようにすることで、平面に置くよりも電池全体を安定的に支持することができる。   In this embodiment, the battery is installed horizontally in the terminal mounting direction. This is because it is preferable from the viewpoint of easy installation and prevention of battery overturn. As a modification of the present embodiment, as long as the above-described part is immersed in the nonaqueous electrolyte, the battery can be inclined to a desired angle. In this case, by supporting the inclined side with the support member, the entire battery can be stably supported rather than placing it on a flat surface.

[効果の説明]
<概要>
図6の電池10は、図4のものと同様であり、置き方のみ異なる。正極端子11及び負極端子12は図中の上方に位置している。図中では、正極端子11及び負極端子12の備わる開口面側又は封口体側と反対側の面が底面となっている。非水電解質は、かかる底面上に、界面14の高さまで溜まっている。捲回体13は界面14よりも高い位置にあるため、非水電解質に浸漬していない。
[Description of effects]
<Overview>
The battery 10 shown in FIG. 6 is the same as that shown in FIG. The positive electrode terminal 11 and the negative electrode terminal 12 are located above in the figure. In the drawing, the surface on the side opposite to the opening surface side or the sealing body side where the positive electrode terminal 11 and the negative electrode terminal 12 are provided is the bottom surface. The nonaqueous electrolyte is accumulated up to the height of the interface 14 on the bottom surface. Since the wound body 13 is located higher than the interface 14, it is not immersed in the nonaqueous electrolyte.

図6の置き方は、図中に示される構造を有する角型電池の置き方として一般的なものである。例えば、角型電池かかる向きで置いたものを、捲回軸方向と鉛直方向と平行な面で重ね合わせて並べることで電池パックを作ることができる。   6 is a general method for placing a prismatic battery having the structure shown in the figure. For example, a battery pack can be made by stacking and putting the rectangular batteries placed in such a direction on a plane parallel to the winding axis direction and the vertical direction.

図6の置き方で電池を置いてエージングを行うと、星形で示した電池の短絡が発生する場合がある。発明者らは、かかる短絡の発生個所に共通の特徴を見出した。共通の特徴とは、局所的な過充電及び高温並びに酸素の存在である。発明者らは、これらが正極活物質の溶解・溶出を招いていると考えた。短絡発生のメカニズムについては後述する。   When a battery is placed in the manner shown in FIG. 6 and aging is performed, a short circuit of the battery indicated by a star may occur. The inventors have found a common feature in the location where such a short circuit occurs. Common features are local overcharge and high temperature and the presence of oxygen. The inventors considered that these caused dissolution / elution of the positive electrode active material. The mechanism of occurrence of a short circuit will be described later.

発明者らは、局所的な高電位は、初期コンディショニング時に非水電解質が局所的に多いことに由来することを見出した。通常、電極とケースの導通を防止するため、捲回体の最外層にはセパレータが位置する。また捲回体の湾曲部は後述するように拘束力がかかりにくい。このため湾曲部の最外層では、非水電解質を含みやすいセパレータがさらに余剰な非水電解質を蓄えやすい。   The inventors have found that the local high potential is due to the local high amount of non-aqueous electrolyte during initial conditioning. Usually, in order to prevent conduction between the electrode and the case, a separator is located on the outermost layer of the wound body. Further, the curved portion of the wound body is less likely to be restrained as will be described later. For this reason, in the outermost layer of the curved portion, a separator that easily contains a non-aqueous electrolyte is more likely to store surplus non-aqueous electrolyte.

このことから、発明者らは高電位に起因する短絡は、その短絡の発生しやすい個所での大量の非水電解質の存在に起因することを見出した。しかしながら、コンディショニング処理には非水電解質が不可欠であるから、これを短絡の発生しやすい個所から除去することは相応の工夫を要する。短絡の発生しやすい個所は後述する。   From this, the inventors have found that the short circuit due to the high potential is due to the presence of a large amount of non-aqueous electrolyte at the place where the short circuit is likely to occur. However, since a non-aqueous electrolyte is indispensable for the conditioning treatment, it is necessary to devise appropriate measures to remove it from a place where a short circuit is likely to occur. The part where the short circuit is likely to occur will be described later.

また、エージングは、高温での保管により、電池の使用初期の電池特性を向上することを目的としている。電池特性の向上とは、使用初期の電池内部の電気抵抗が低減し、容量が向上することである。このため、高温要因を除去することは困難である。   Aging is intended to improve battery characteristics at the initial use of the battery by storage at high temperature. The improvement of the battery characteristics means that the electric resistance inside the battery at the initial use is reduced and the capacity is improved. For this reason, it is difficult to remove the high temperature factor.

そこで、発明者らは、セル封函時、ケース内の雰囲気中に混入する酸素に着目した。酸素を短絡発生しやすい個所に触れさせない方法として、非水電解質に着目した。通常、非水電解質は、長期間使用後の揮発を考慮して、捲回体に保持可能な量よりも多くケース内に注入される。   Therefore, the inventors paid attention to oxygen mixed in the atmosphere in the case at the time of cell sealing. We paid attention to non-aqueous electrolytes as a method of preventing oxygen from touching places where short-circuiting is likely to occur. Usually, the non-aqueous electrolyte is injected into the case more than the amount that can be held in the wound body in consideration of volatilization after long-term use.

本実施の形態の方法では、かかる余剰電解質により、局所的な過充電が起こりやすい部分と酸素が互いに接触しないようにした。かかる方法により正極活物質の溶解・溶出を抑制し、高温保管時の短絡発生を予防可能なことを見出した。   In the method of the present embodiment, such excess electrolyte prevents oxygen from being in contact with a portion where local overcharge is likely to occur. It has been found that this method can prevent dissolution and elution of the positive electrode active material and prevent occurrence of a short circuit during high temperature storage.

本実施の形態の方法を簡潔に表すと、主として角型電池を、図4に示すように、電池の端子面と垂直な方向に対して横置きにしてエージングするものである。電池の置き方を別の視点で見れば、電池の長手方向対して縦置きにするものである。   When the method of this embodiment is simply expressed, as shown in FIG. 4, the rectangular battery is aged by being placed horizontally with respect to a direction perpendicular to the terminal surface of the battery. From another viewpoint, the battery is placed vertically with respect to the longitudinal direction of the battery.

<短絡発生のメカニズム>
図7は、上述の正極活物質の溶解・析出のメカニズムを推定したものである。図7では、正極1と負極2が、捲回体の最外周付近で対向している。図5と同様、シート状の正極1及び負極2は不図示のセパレータを介して、双方の端子接続面が、正極端子11側の正極方向端と、負極端子12側の負極方向端に分かれて、互い違いなるように積層している。正極合剤層3は捲回体内の内側の負極合剤層と対向している。正極合剤層3は負極合剤層6と対向している。
<Mechanism of short circuit occurrence>
FIG. 7 estimates the dissolution / deposition mechanism of the positive electrode active material described above. In FIG. 7, the positive electrode 1 and the negative electrode 2 face each other in the vicinity of the outermost periphery of the wound body. As in FIG. 5, the sheet-like positive electrode 1 and negative electrode 2 are divided into a positive electrode direction end on the positive electrode terminal 11 side and a negative electrode direction end on the negative electrode terminal 12 side through a separator (not shown). The layers are stacked in a staggered manner. The positive electrode mixture layer 3 faces the inner negative electrode mixture layer in the wound body. The positive electrode mixture layer 3 faces the negative electrode mixture layer 6.

これらの合剤層ではリチウムイオンの脱離と吸収が起こっているので、充電が行われている。図7中、正極集電体7は、正極合剤層3及び正極合剤層5の間に位置する。図7中の右側には正極集電体7が余っており、正極端子11と結合する。また、負極集電体8は、負極合剤層4及び負極合剤層6の間に位置している。図7中の左側には負極集電体8が余っており、負極端子12と結合する。   In these mixture layers, lithium ions are desorbed and absorbed, so that charging is performed. In FIG. 7, the positive electrode current collector 7 is located between the positive electrode mixture layer 3 and the positive electrode mixture layer 5. In FIG. 7, the positive electrode current collector 7 is left on the right side and is coupled to the positive electrode terminal 11. The negative electrode current collector 8 is positioned between the negative electrode mixture layer 4 and the negative electrode mixture layer 6. On the left side in FIG. 7, the negative electrode current collector 8 is left and is coupled to the negative electrode terminal 12.

図7中、セパレータは省略している。正極活物質はLiNi1/3Co1/3Mn1/3等のMnを含む材料である。支持塩はLiPFである。また、最も外側にある負極合剤層4に対向している正極合剤層は無い。このため、負極合剤層4はリチウムイオンを受け取ることができず、未充電のまま残される。 In FIG. 7, the separator is omitted. The positive electrode active material is a material containing Mn such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 . Supporting salt is LiPF 6. Further, there is no positive electrode mixture layer facing the outermost negative electrode mixture layer 4. For this reason, the negative electrode mixture layer 4 cannot receive lithium ions and remains uncharged.

金属溶出が生じるメカニズムとしては、以下のとおり推測される。すなわち、上記の構成より、正極1及び負極2の右側端部では、負極活物質に対して、正極活物質が大きく不足している。さらに正極合剤層5から脱離したリチウムイオンは、負極2の図中の右側の端部を回り込んで、未充電の負極合剤層4に到達する場合がある。   The mechanism by which metal elution occurs is estimated as follows. That is, from the above configuration, the positive electrode active material is largely lacking with respect to the negative electrode active material at the right end portions of the positive electrode 1 and the negative electrode 2. Further, the lithium ions desorbed from the positive electrode mixture layer 5 may wrap around the right end of the negative electrode 2 in the drawing and reach the uncharged negative electrode mixture layer 4 in some cases.

このため、正極合剤層5の右側端部からは正極活物質量に比べて、多くのリチウムイオンが脱離しやすい。初期充電工程中の、かかるリチウムイオンの脱離は、正極1の右側端部に局所的な高電位を生じる。かかる局所的な高電位に、エージング工程のような高温環境が加わることで、正極金属が溶出することが推測される。正極活物質中の金属としてはマンガンが特に溶出しやすいと推測される。また、このような溶出は内部短絡を生じる原因となることが推測される。   For this reason, many lithium ions are easily detached from the right end portion of the positive electrode mixture layer 5 as compared with the amount of the positive electrode active material. Such desorption of lithium ions during the initial charging step generates a local high potential at the right end of the positive electrode 1. It is estimated that the positive electrode metal is eluted by adding a high temperature environment such as an aging process to such a local high potential. As a metal in the positive electrode active material, it is estimated that manganese is particularly easily eluted. Moreover, it is estimated that such elution causes an internal short circuit.

<短絡の発生しやすい個所について>
発明者らは捲回体最外周が、短絡の発生しやすい個所となることを見出した。図3に示すように、負極最外周は正極最外周の外周側に位置する。上述のとおり、捲回体表層にある負極合剤層は未充電のまま残される。このため、その内側で対向する正極からリチウムイオンを引き抜く可能性が高い。このため、捲回された正極のうち最外周に位置する部分は、過充電状態になりやすく、局所的な高電位が発生して正極活物質が溶出しやすい。
<Locations where short circuits are likely to occur>
The inventors have found that the outermost periphery of the wound body is a place where a short circuit is likely to occur. As shown in FIG. 3, the outermost periphery of the negative electrode is located on the outer peripheral side of the outermost periphery of the positive electrode. As described above, the negative electrode mixture layer on the wound body surface layer is left uncharged. For this reason, there is a high possibility that lithium ions are extracted from the positive electrode facing inside. For this reason, the part located in the outermost periphery among the wound positive electrodes tends to be in an overcharged state, and a local high potential is generated and the positive electrode active material is easily eluted.

発明者らは正極方向端が短絡の発生しやすい個所となることを見出した。図7を用いて短絡の発生する正極溶出箇所を説明する。図7の各符号の部材は図5と共通である。図7に示すように、捲回体最外周の正極方向端では、負極2の未塗工部がなく、負極合剤層4及び6と負極集電体8の切断面が表れている。このため、移動の障害となるものはないため、正極1より生じるリチウムイオンは、正極1と対向していない未充電の負極合剤層4まで到達する。一方、負極方向端にある正極合剤層5から生じるリチウムイオンは、負極集電体8の未塗工部に妨げられて、負極合剤層4まで到達できない。   The inventors have found that the end in the positive electrode direction is a place where a short circuit is likely to occur. The positive electrode elution location where a short circuit occurs will be described with reference to FIG. 7 are the same as those in FIG. As shown in FIG. 7, there is no uncoated portion of the negative electrode 2 at the end of the winding body on the outermost periphery, and the cut surfaces of the negative electrode mixture layers 4 and 6 and the negative electrode current collector 8 appear. For this reason, since there is nothing that hinders movement, lithium ions generated from the positive electrode 1 reach the uncharged negative electrode mixture layer 4 that does not face the positive electrode 1. On the other hand, lithium ions generated from the positive electrode mixture layer 5 at the negative electrode end are blocked by the uncoated portion of the negative electrode current collector 8 and cannot reach the negative electrode mixture layer 4.

発明者らは、特に扁平形状の捲回体を備える電池において、拘束荷重のかかっていない部位が短絡の発生しやすい個所となることを見出した。図3に示すように、扁平形状の捲回体を備える電池では、力17の押圧によって、平端部を拘束する。これに対して、図中の上下の湾曲部では、破線で表すように、拘束荷重がかかっていない。   The inventors have found that, in a battery including a flat-shaped winding body in particular, a portion where no restraining load is applied becomes a place where a short circuit is likely to occur. As shown in FIG. 3, in the battery including the flat wound body, the flat end portion is restrained by the pressing of the force 17. On the other hand, in the upper and lower curved portions in the drawing, no restraint load is applied as shown by the broken line.

また捲回体13はケースの底面又は開口面の封口体と接しておらず、ケース15内で宙づりになっているのが一般的である。このため湾曲部に拘束荷重がかかることは稀である。なお、円筒形の捲回体を備える円筒形電池では、捲回体に対してケース全体で拘束荷重を均等に与えることが一般的である。   Further, the wound body 13 is not in contact with the sealing body on the bottom surface or the opening surface of the case, and is generally suspended in the case 15. For this reason, it is rare that a restraint load is applied to the curved portion. Note that, in a cylindrical battery including a cylindrical winding body, it is common to apply a restraining load evenly to the winding body throughout the case.

このため本実施の形態の方法は、拘束荷重のかかっていない、又は弱い拘束荷重のみ受ける部位を有する捲回体を備える電池において、特に短絡抑制効果が大きい。このような電池の代表例が扁平形状の捲回体を備える角型電池である。   For this reason, the method of the present embodiment has a particularly large short-circuit suppressing effect in a battery including a wound body having a portion that is not subjected to a restraining load or receives only a weak restraining load. A typical example of such a battery is a prismatic battery including a flat wound body.

上記をまとめると、発明者らはエージング工程での高温保管中、扁平形状の捲回体の、正極方向端の、両端の湾曲部の、前記正極の最外周に属する、正極合剤層の側端部で短絡が発生しやすいことを見出した。   Summing up the above, the inventors are in the side of the positive electrode mixture layer belonging to the outermost periphery of the positive electrode of the curved portion at both ends of the flat-shaped wound body at the positive electrode end during high-temperature storage in the aging process. It was found that a short circuit is likely to occur at the end.

実施例の説明に際しては、エージング工程に着目して説明する。本実施例の電池の正極は、正極活物質としてLiNi1/3Co1/3Mn1/3を、導電助剤としてアセチレンブラックを、結着剤としてPVDFを含むものとした。負極は、負極活物質としてグラファイトを、結着剤としてSBRを、増粘剤としてCMCを含むものとした。正極及び負極集電体に上記各材料を含む正極及び負極合剤層を形成し、正極及び負極とした。 In the description of the embodiments, the aging process will be described. The positive electrode of the battery of this example contains LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black as a conductive additive, and PVDF as a binder. The negative electrode contained graphite as a negative electrode active material, SBR as a binder, and CMC as a thickener. A positive electrode and a negative electrode mixture layer containing each of the above materials were formed on the positive electrode and the negative electrode current collector to form a positive electrode and a negative electrode.

次に図2に示すとおり電池10を組み立てた。扁平形状を有する捲回体13を角型のケース15に収納した。捲回体13の挿入方向は、捲回体13の捲回軸25がケース15の図中の上方にある開口面と平行になるものとした。   Next, the battery 10 was assembled as shown in FIG. A wound body 13 having a flat shape was accommodated in a rectangular case 15. The insertion direction of the wound body 13 is such that the winding shaft 25 of the wound body 13 is parallel to the opening surface above the case 15 in the drawing.

また、正極端子11を正極集電体7の未塗工部に取り付けた。また負極端子12を負極集電体8の未塗工部に取り付けた。さらに封口体19をケース15の図中の上方にある開口面に嵌合した。   Further, the positive electrode terminal 11 was attached to an uncoated portion of the positive electrode current collector 7. Further, the negative electrode terminal 12 was attached to an uncoated portion of the negative electrode current collector 8. Further, the sealing body 19 was fitted into the opening surface of the case 15 at the upper side in the figure.

正極端子11は、外部正極端子40、内部正極端子45等を備えた。外部正極端子40は、ボルト41、連結部材42、カシメ部材43等を備えた。連結部材42は、ボルト41が螺合する螺合孔部を備えた。ボルト41が当該螺合孔部に螺合することにより、ボルト41と連結部材42とが連結した。   The positive terminal 11 includes an external positive terminal 40, an internal positive terminal 45, and the like. The external positive terminal 40 includes a bolt 41, a connecting member 42, a caulking member 43, and the like. The connecting member 42 includes a screw hole portion into which the bolt 41 is screwed. The bolt 41 and the connecting member 42 are connected by screwing the bolt 41 into the screw hole.

連結部材42、封口体19、絶縁部材60は、カシメ孔部を備えた。そして、絶縁部材60、封口体19、連結部材42のカシメ孔部に、カシメ部材43をカシメることにより、絶縁部材60と封口体19と連結部材42とが互いに連結した。また、外部正極端子40は、封口体19に絶縁部材60を介して連結した。 The connecting member 42, the sealing body 19, and the insulating member 60 were provided with a caulking hole. And the insulating member 60, the sealing body 19, and the connection member 42 were mutually connected by crimping the crimping member 43 in the crimping hole part of the insulating member 60, the sealing body 19, and the connection member 42. FIG. In addition, the external positive terminal 40 was connected to the sealing body 19 via an insulating member 60.

負極端子12は、外部負極端子50、内部負極端子55等を備えた。外部負極端子50は、ボルト51、連結部材52、カシメ部材53等を備えた。連結部材52は、ボルト51が螺合する螺合孔部を備えた。ボルト51が当該螺合孔部に螺合することにより、ボルト51と連結部材52とが連結した。   The negative electrode terminal 12 includes an external negative electrode terminal 50, an internal negative electrode terminal 55, and the like. The external negative electrode terminal 50 includes a bolt 51, a connecting member 52, a caulking member 53, and the like. The connecting member 52 includes a screw hole portion into which the bolt 51 is screwed. The bolt 51 and the connecting member 52 are connected by screwing the bolt 51 into the screw hole.

連結部材52、封口体19、絶縁部材70は、カシメ孔部を備えた。そして、絶縁部材70、封口体19、連結部材52のカシメ孔部に、カシメ部材53をカシメることにより、絶縁部材70と封口体19と連結部材52とが互いに連結した。また、外部負極端子50は、封口体19に絶縁部材70を介して連結した。以上により電池を組み立てた後、不図示の注入口より非水電解質を注ぎ、注入を行った。非水電解質の支持塩は、LiPFとした。 The connecting member 52, the sealing body 19, and the insulating member 70 have crimped holes. The insulating member 70, the sealing body 19, and the connecting member 52 are connected to each other by caulking the caulking member 53 in the caulking hole portions of the insulating member 70, the sealing body 19, and the connecting member 52. The external negative electrode terminal 50 was connected to the sealing body 19 via an insulating member 70. After the battery was assembled as described above, a nonaqueous electrolyte was poured from an injection port (not shown) and injection was performed. Supporting salt in the nonaqueous electrolyte was LiPF 6.

電池を、常温にて、所定時間保管し、捲回体を非水電解質に含浸した。含浸後、電池を500kg重で押圧した。押圧方向は、図3のように捲回体を扁平に広げるべき方向、及び捲回軸方向に対し垂直な方向とした。押圧後、非水電解質が捲回体から染み出ることは無かった。押圧後、コンディショニング処理をした。まず、CCCV充電をおこなった。常温にて、5A程度の電流値で、終止電圧4V程度まで充電した。   The battery was stored at room temperature for a predetermined time, and the wound body was impregnated with a nonaqueous electrolyte. After impregnation, the battery was pressed with a weight of 500 kg. The pressing direction was a direction in which the wound body should be flattened as shown in FIG. 3 and a direction perpendicular to the winding axis direction. After pressing, the non-aqueous electrolyte did not exude from the wound body. After pressing, conditioning treatment was performed. First, CCCV charge was performed. The battery was charged to a final voltage of about 4 V at a current value of about 5 A at room temperature.

充放電後、図8に示すように、正極端子11及び負極端子12を開放し、60℃以上の高温にて、常圧下で、20時間保管し、エージング処理をした。エージング時の設置方向は図8のとおり、正極方向端が下方になるようケース15を横向きにした。図8中、図2と共通の部材には同じ符号を付した。非水電解質は界面14に示される通り、最外周の正極の正極合剤層5の正極方向端側の側端部よりも上側まで捲回体を浸漬した。捲回体13中、正極集電体等は図示していない。なお捲回体は巻止めテープ30により捲回状態を固定してある。   After charging and discharging, as shown in FIG. 8, the positive electrode terminal 11 and the negative electrode terminal 12 were opened, stored at a high temperature of 60 ° C. or higher under normal pressure for 20 hours, and subjected to an aging treatment. As shown in FIG. 8, the case 15 was placed sideways so that the positive electrode direction end was downward as shown in FIG. In FIG. 8, the same members as those in FIG. As shown by the interface 14, the nonaqueous electrolyte was immersed in the wound body to the upper side of the side end portion on the positive electrode direction end side of the positive electrode mixture layer 5 of the outermost positive electrode. In the wound body 13, a positive electrode current collector and the like are not shown. The wound body is fixed in a wound state by a winding tape 30.

最後に短絡の発生の有無を確認した。特に短絡の発生個所と、非水電解質の界面及び捲回体の位置関係との相関について調べた。短絡の発生個所は下記の通り調べた。まずエージング後の電池を解体し、捲回体を取り出した。次に捲回体を確認し、短絡の起きた個所に、正極活物質の析出が元素分析により検出された場合、短絡が発生したものと判定した。図8に示すように、実施例では短絡が発生しなかった。なお、界面の高さは、各段階の電池をX線CT装置で撮影した透過像から判断した(図14〜20)。   Finally, the presence or absence of a short circuit was confirmed. In particular, the correlation between the location of the short circuit and the positional relationship between the nonaqueous electrolyte interface and the wound body was investigated. The location where the short circuit occurred was examined as follows. First, the battery after aging was disassembled, and the wound body was taken out. Next, the wound body was confirmed, and when the deposition of the positive electrode active material was detected by elemental analysis at the location where the short circuit occurred, it was determined that the short circuit occurred. As shown in FIG. 8, no short circuit occurred in the example. In addition, the height of the interface was judged from the transmission image which image | photographed the battery of each step with the X-ray CT apparatus (FIGS. 14-20).

<比較例1>
実施例と同様に電池を組み立てた。電池の設置方向を図9に示すように、端子側を上方にした上で、エージングした以外は、実施例と同様に処置した。図9に示すように、捲回体の正極方向端の、非水電解質に接していない方の湾曲部の、最外周に短絡が発生したことが分かった。
<Comparative Example 1>
A battery was assembled as in the example. As shown in FIG. 9, the battery was installed in the same manner as in the example except that the terminal side was turned upward and aging was performed. As shown in FIG. 9, it was found that a short circuit occurred at the outermost periphery of the curved portion at the positive electrode end of the wound body that was not in contact with the nonaqueous electrolyte.

<比較例2>
実施例と同様に電池を組み立てた。電池の設置方向を図10に示すように、負極方向端を下方にした上で、エージングした以外は、実施例と同様に処置した。図10に示すように、捲回体の非水電解質に接していない正極方向端の、両端の湾曲部の、最外周に短絡が発生したことが分かった。
<Comparative example 2>
A battery was assembled as in the example. As shown in FIG. 10, the battery was installed in the same manner as in the example except that the end in the negative electrode direction was lowered and aging was performed. As shown in FIG. 10, it was found that a short circuit occurred at the outermost periphery of the curved portions at both ends of the end in the positive electrode direction not in contact with the nonaqueous electrolyte of the wound body.

<比較例3>
実施例と同様に電池を組み立てた。電池の設置方向を図11に示すように、端子側を下方にした上で、エージングした以外は、実施例と同様に処置した。図11に示すように、正極方向端の、両端の湾曲部の、最外周に短絡が発生したことが分かった。なおケースの構造上、端子側の空間が大きいため、比較例3では下方となった湾曲部が非水電解質に浸漬することは無かった。このため、比較例1と異なり両端の湾曲部に短絡が発生した。
<Comparative Example 3>
A battery was assembled as in the example. As shown in FIG. 11, the battery was installed in the same manner as in Example except that the terminal side was lowered and aging was performed. As shown in FIG. 11, it was found that a short circuit occurred at the outermost periphery of the curved portions at both ends at the end in the positive electrode direction. In addition, since the space on the terminal side is large due to the structure of the case, in the comparative example 3, the curved portion that was on the lower side was not immersed in the nonaqueous electrolyte. For this reason, unlike Comparative Example 1, a short circuit occurred at the curved portions at both ends.

<比較例4>
注入量を33gとした以外は、実施例と同様に電池を作製した。電池の設置方向を図12に示すように、端子側を上方にした上で、エージングした以外は、実施例と同様に処置した。エージング後の非水電解質は図12及び図16に示すとおり全て捲回体に保持された。図12に示すように、正極方向端の、両端の湾曲部の、最外周に短絡が発生したことが分かった。
<Comparative example 4>
A battery was fabricated in the same manner as in Example except that the injection amount was 33 g. As shown in FIG. 12, the battery was installed in the same manner as in the example except that the terminal side was turned upward and aging was performed. The non-aqueous electrolyte after aging was all retained in the wound body as shown in FIGS. As shown in FIG. 12, it was found that a short circuit occurred at the outermost periphery of the curved portions at both ends at the end in the positive electrode direction.

<比較例5>
注入量を55gとした以外は、実施例と同様に電池を作製した。電池の設置方向を図13に示すように、端子側を上方にした上で、エージングした以外は、実施例と同様に処置した。端子を上方にして電池を設置した場合、エージング後の非水電解質の界面は図13及び図14に示すとおり捲回体の半分以上の高さになった。
<Comparative Example 5>
A battery was fabricated in the same manner as in Example except that the injection amount was 55 g. As shown in FIG. 13, the battery was disposed in the same manner as in the example except that the terminal side was turned upward and aging was performed. When the battery was installed with the terminals facing upwards, the interface of the non-aqueous electrolyte after aging was more than half the height of the wound body as shown in FIGS.

図17に示すとおり、コンディショニング後の非水電解質の界面は、正極方向端を下方にして電池を設置した場合、捲回体の半分以下の高さになった。また、図18に示すとおり、押圧後、コンディショニング前の非水電解質は全て捲回体に保持された。図19に示すとおり、コンディショニング後の非水電解質の界面は、端子を上方にして電池を設置した場合、捲回体の半分以下の高さになった。   As shown in FIG. 17, the interface of the nonaqueous electrolyte after conditioning was less than half the height of the wound body when the battery was installed with the end in the positive electrode direction down. Moreover, as shown in FIG. 18, all the nonaqueous electrolytes after pressing and before conditioning were held by the wound body. As shown in FIG. 19, the interface of the nonaqueous electrolyte after conditioning was less than half the height of the wound body when the battery was installed with the terminals facing upward.

コンディショニング工程により、捲回体は膨張し、捲回体内から非水電解質を押し出したものと考えられる。このため、実施の形態に記載のとおり、注入すべき非水電解質の量を調整することが好ましいことが分かった。図13に示すように、捲回体の正極方向端の、非水電解質に接していない方の湾曲部の、最外周に短絡が発生したことが分かった。短絡の徴候は小さかった。   It is considered that the wound body expanded due to the conditioning process, and the nonaqueous electrolyte was pushed out of the wound body. For this reason, it turned out that it is preferable to adjust the quantity of the nonaqueous electrolyte which should be inject | poured as described in embodiment. As shown in FIG. 13, it was found that a short circuit occurred at the outermost periphery of the curved portion at the positive electrode end of the wound body that was not in contact with the nonaqueous electrolyte. The signs of short circuit were small.

<比較例6>
注入量を40gとした以外は、実施例と同様に電池を作製した。エージング時の電池の設置方向を含めて、実施例と同様に処置した。図15に示すとおり、エージング後の非水電解質の界面は、端子を上方にして電池を設置した場合、捲回体の半分以下の高さになった。また、図20に示すとおり、エージング後の非水電解質の界面は、正極方向端を下方にして電池を設置した場合、正極合剤層の側端部に届かなかった。短絡の発生を確認したところ、捲回体の正極方向端の、両端の湾曲部の、最外周に短絡が発生したことが分かった。
<Comparative Example 6>
A battery was produced in the same manner as in Example except that the injection amount was 40 g. The treatment was performed in the same manner as in the example, including the direction of battery installation during aging. As shown in FIG. 15, the interface of the non-aqueous electrolyte after aging was less than half the height of the wound body when the battery was installed with the terminals facing upward. Further, as shown in FIG. 20, the interface of the non-aqueous electrolyte after aging did not reach the side edge of the positive electrode mixture layer when the battery was installed with the positive electrode end facing downward. When the occurrence of a short circuit was confirmed, it was found that a short circuit occurred at the outermost periphery of the curved portions at both ends at the positive electrode end of the wound body.

以上、本発明は、上記実施形態又は実施例の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。   As described above, the present invention is not limited to the configurations of the above-described embodiments or examples, and various modifications, corrections, and combinations that can be made by those skilled in the art within the scope of the invention of the claims of the claims of the present application. Of course.

1 正極 2 負極
3 正極合剤層 4 負極合剤層
5 正極合剤層 6 負極合剤層
7 正極集電体 8 負極集電体
10 電池(非水電解質二次電池) 11 正極端子
12 負極端子 13 捲回体
15 ケース 19 封口体(面状部材)
20 セパレータ 21 正極端面
22 負極端面 23 正極方向端
24 負極方向端 25 捲回軸
S11 積層工程 S12 捲回工程
S13 組立工程 S14 注入工程(・浸漬工程・押圧工程)
S15 コンディショニング工程 S16 エージング工程
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Positive electrode mixture layer 4 Negative electrode mixture layer 5 Positive electrode mixture layer 6 Negative electrode mixture layer 7 Positive electrode collector 8 Negative electrode collector 10 Battery (nonaqueous electrolyte secondary battery) 11 Positive electrode terminal 12 Negative electrode terminal 13 Winding body 15 Case 19 Sealing body (planar member)
20 Separator 21 Positive End Face 22 Negative End Face 23 Positive Direction End 24 Negative Direction End 25 Winding Shaft S11 Lamination Process S12 Winding Process S13 Assembly Process S14 Injection Process (-Immersion Process / Pressing Process)
S15 Conditioning process S16 Aging process

Claims (8)

正極、セパレータ、及び負極を積層し積層体を作成する、積層工程と、
前記積層体を捲回し捲回体を作成する、捲回工程と、
前記捲回体をケースに収納し電池を組み立てる、組立工程と、
非水電解質を前記ケース内に注入する注入工程と、
電池を充電する初期充電工程と、
前記正極及び前記負極の間に電圧を印加せず、前記充電した電池を30℃以上の温度域で保管する、エージング工程と、を備え、
前記積層工程では、
前記正極は、正極集電体、及び正極集電体の両面に位置する正極合剤層を備え、
前記負極は、負極集電体、負極集電体の両面に位置する負極合剤層、及び前記負極集電体の端面と負極合剤層の端面が実質的に面一となっている負極端面を備え、
前記捲回工程では、正極最外周の外周側に位置する負極最外周において、外周側の前記負極合剤層は前記正極合剤層と対向しない態様で、前記積層体を捲回し、
前記エージング工程では、保管中、前記負極端面に近接する負極合剤層の端部と対向する正極合剤層の側端部の少なくとも一部を前記非水電解質で覆った状態で保持する、
非水電解質二次電池の製造方法。
A lamination step of laminating a positive electrode, a separator, and a negative electrode to create a laminate; and
Winding the laminate to create a wound body, and a winding step;
Assembling a battery by storing the wound body in a case; and
An injection step of injecting a non-aqueous electrolyte into the case;
An initial charging step for charging the battery;
An aging step of storing the charged battery in a temperature range of 30 ° C. or higher without applying a voltage between the positive electrode and the negative electrode,
In the lamination step,
The positive electrode comprises a positive electrode current collector, and a positive electrode mixture layer located on both sides of the positive electrode current collector,
The negative electrode includes a negative electrode current collector, a negative electrode mixture layer positioned on both sides of the negative electrode current collector, and a negative electrode end surface in which an end surface of the negative electrode current collector and an end surface of the negative electrode mixture layer are substantially flush with each other With
In the winding step, in the negative electrode outermost periphery located on the outer peripheral side of the positive electrode outermost periphery, the negative electrode mixture layer on the outer peripheral side does not face the positive electrode mixture layer, and the laminate is wound,
In the aging step, during storage, it is held in a state in which at least a part of the side end portion of the positive electrode mixture layer facing the end portion of the negative electrode mixture layer adjacent to the negative electrode end surface is covered with the nonaqueous electrolyte.
A method for producing a non-aqueous electrolyte secondary battery.
前記温度域は60℃以上である、請求項1に記載の非水電解質二次電池の製造方法。   The method for manufacturing a nonaqueous electrolyte secondary battery according to claim 1, wherein the temperature range is 60 ° C. or higher. 前記捲回工程の後、前記組立工程の前に、前記捲回体を押圧変形し、扁平形状とする、変形工程をさらに備え、
前記エージング工程では、保管中、前記扁平形状の捲回体の、扁平方向の両端の湾曲部に位置し、外周の前記負極に対向する、前記正極最外周の前記正極合剤層の側端部の少なくとも一部を、前記非水電解質に浸漬した状態で保持する、請求項1又は2に記載の非水電解質二次電池の製造方法。
After the winding step and before the assembly step, the winding body is pressed and deformed to have a flat shape, further comprising a deformation step,
In the aging process, during storage, the side ends of the positive electrode mixture layer on the outermost periphery of the positive electrode located at the curved portions at both ends in the flat direction of the flat wound body and facing the negative electrode on the outer periphery The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein at least a part of the non-aqueous electrolyte is held in a state immersed in the non-aqueous electrolyte.
前記エージング工程では、前記側端部の全部を、前記非水電解質に浸漬した状態で保持する、請求項3に記載の非水電解質二次電池の製造方法。   The manufacturing method of the non-aqueous electrolyte secondary battery according to claim 3, wherein in the aging step, all of the side end portions are held in a state of being immersed in the non-aqueous electrolyte. 前記エージング工程では、保管中、前記側端部のダレ部の全部を、前記非水電解質に浸漬した状態で保持する、請求項3に記載の非水電解質二次電池の製造方法。   The manufacturing method of the nonaqueous electrolyte secondary battery according to claim 3, wherein in the aging step, all of the sagging portions of the side end portions are held in a state of being immersed in the nonaqueous electrolyte during storage. 前記エージング工程では、前記正極合剤層の側端部の全部を、前記非水電解質に浸漬した状態で保持する、請求項1〜5のいずれかに記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein in the aging step, all of the side end portions of the positive electrode mixture layer are held in a state of being immersed in the nonaqueous electrolyte. . 前記エージング工程では、前記正極合剤層の側端部が、前記捲回体の捲回軸の方向の下方に位置する、請求項6に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 6, wherein in the aging step, a side end portion of the positive electrode mixture layer is positioned below in a direction of a winding axis of the wound body. 前記エージング工程では、
角型のケースの一の開口面と嵌合する面状部材と、
前記面状部材に接続する正極端子及び負極端子と、
前記開口面と実質的に平行な捲回軸、前記正極端子と接続する正極方向端、及び該正極方向端に対して捲回軸方向の反対側に位置し前記負極端子と接続する負極方向端を有する前記捲回体と、
を備える前記電池を、前記正極方向端が前記負極方向端の下方に位置する状態で保持する、請求項6又は7に記載の非水電解質二次電池の製造方法。
In the aging process,
A planar member that fits into one opening surface of the square case;
A positive electrode terminal and a negative electrode terminal connected to the planar member;
A winding axis substantially parallel to the opening surface, a positive electrode end connected to the positive electrode terminal, and a negative electrode end connected to the negative electrode terminal on the opposite side of the winding axis direction with respect to the positive electrode end. The wound body having
The manufacturing method of the nonaqueous electrolyte secondary battery according to claim 6 or 7, wherein the battery including the battery is held in a state where the positive electrode direction end is positioned below the negative electrode direction end.
JP2012269081A 2012-12-10 2012-12-10 Method for producing non-aqueous electrolyte secondary battery Active JP5905817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269081A JP5905817B2 (en) 2012-12-10 2012-12-10 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269081A JP5905817B2 (en) 2012-12-10 2012-12-10 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014116180A true JP2014116180A (en) 2014-06-26
JP5905817B2 JP5905817B2 (en) 2016-04-20

Family

ID=51171976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269081A Active JP5905817B2 (en) 2012-12-10 2012-12-10 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5905817B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220216A (en) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2019067653A (en) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN114447342A (en) * 2022-04-08 2022-05-06 宁德新能源科技有限公司 Electrochemical device and electronic device
JP2023041495A (en) * 2021-09-13 2023-03-24 プライムアースEvエナジー株式会社 Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251614A (en) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd Manufacturing method for nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251614A (en) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd Manufacturing method for nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220216A (en) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2019067653A (en) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2023041495A (en) * 2021-09-13 2023-03-24 プライムアースEvエナジー株式会社 Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP7398413B2 (en) 2021-09-13 2023-12-14 プライムアースEvエナジー株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
CN114447342A (en) * 2022-04-08 2022-05-06 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP5905817B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP7329803B2 (en) lithium secondary battery
US9559350B2 (en) Method for producing nonaqueous electrolyte secondary battery
WO2012132060A1 (en) Secondary battery and electrolyte
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
JP2011198530A (en) Nonaqueous electrolyte secondary battery
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5931643B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
US20210065992A1 (en) Electrochemical cells including sulfur-containing capacitors
JP7378033B2 (en) lithium metal secondary battery
US20220173377A1 (en) Thick electrodes for electrochemical cells
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
US20240290973A1 (en) Electrode plate, lithium-ion battery, battery module, battery pack and electric device
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5905817B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5905816B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2015220216A (en) Method for manufacturing nonaqueous electrolyte secondary battery
US20220181629A1 (en) Elastic binding polymers for electrochemical cells
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP2015002043A (en) Lithium ion secondary battery
JP2014035940A (en) Nonaqueous electrolyte secondary battery
JP2018067482A (en) Lithium ion secondary battery and method for manufacturing the same
JP2016201231A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

R151 Written notification of patent or utility model registration

Ref document number: 5905817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250