JP2016201231A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016201231A
JP2016201231A JP2015079896A JP2015079896A JP2016201231A JP 2016201231 A JP2016201231 A JP 2016201231A JP 2015079896 A JP2015079896 A JP 2015079896A JP 2015079896 A JP2015079896 A JP 2015079896A JP 2016201231 A JP2016201231 A JP 2016201231A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode active
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015079896A
Other languages
Japanese (ja)
Inventor
覚 水野
Satoru Mizuno
覚 水野
広規 田代
Hiroki Tashiro
広規 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2015079896A priority Critical patent/JP2016201231A/en
Publication of JP2016201231A publication Critical patent/JP2016201231A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which discharge of nonaqueous electrolyte from a wound electrode body is suppressed.SOLUTION: A nonaqueous electrolyte secondary battery includes a wound electrode body 20 formed by winding a long positive electrode 50 having a positive electrode active material layer 54, a long separator 70, and a long negative electrode 60 having a negative electrode active material layer 64, in the longitudinal direction, while superposing. In at least one of the positive electrode active material layer 54, separator 70, and negative electrode active material layer 64, regions 56, 66, 76 containing a solid electrolyte are provided at the opposite ends in the winding axis direction orthogonal to the longitudinal direction.SELECTED DRAWING: Figure 3

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池)等の非水電解液二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used as a driving power source. Particularly, lithium ion secondary batteries that are lightweight and obtain high energy density are preferably used as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Yes.

非水電解液二次電池の一典型例として、長尺な正極シート、長尺な負極シート、および長尺なセパレータシートを重ね合わせて長手方向に捲回してなる捲回電極体を有する形態のものが挙げられる。かかる形態の非水電解液二次電池をハイレートで繰り返して充放電すると、捲回電極体が膨張と収縮を繰り返すうちに捲回電極体に浸透した非水電解液が捲回電極体の捲回軸方向(前記長手方向に直交する方向をいう。以下同じ。)の端部(開口端部)から排出されていき、捲回電極体内部の非水電解液量が不足するという現象(いわゆる「液枯れ」)が起こる場合がある。この液枯れが起こると、電池容量の低下などの電池性能の劣化が起こる。   As a typical example of a non-aqueous electrolyte secondary battery, a long electrode sheet, a long negative electrode sheet, and a wound electrode body formed by winding a long separator sheet in the longitudinal direction are stacked. Things. When the non-aqueous electrolyte secondary battery in such a form is repeatedly charged and discharged at a high rate, the non-aqueous electrolyte that permeates the wound electrode body while the wound electrode body repeatedly expands and contracts is wound on the wound electrode body. A phenomenon (so-called “so-called“ amount of non-aqueous electrolyte ”that is discharged from the end portion (open end portion) of the axial direction (referred to as a direction orthogonal to the longitudinal direction; the same applies hereinafter) and the inside of the wound electrode body is insufficient. Liquid drainage ") may occur. When this liquid withering occurs, the battery performance deteriorates, such as a reduction in battery capacity.

これに対し、特許文献1には、捲回電極体を有する二次電池を複数個拘束して組電池とする際に、電池ケースの扁平面の電極集電端子のある領域に荷重をかけることによって、すなわち捲回電極体の捲回軸方向の端部領域に荷重をかけることによって、捲回電極体から非水電解液が排出されるのを防止する方法が提案されている。   On the other hand, in Patent Document 1, when a plurality of secondary batteries having wound electrode bodies are constrained to form an assembled battery, a load is applied to a region where the flat electrode collecting terminals of the battery case are present. That is, a method for preventing discharge of the non-aqueous electrolyte from the wound electrode body by applying a load to the end region in the winding axis direction of the wound electrode body has been proposed.

特開2012−230837号公報JP 2012-230837 A

しかしながら、本発明者らの検討によれば、特許文献1の方法によって、ハイレートで充放電を繰り返したときの捲回電極体からの非水電解液の排出は低減され、電池性能の劣化が低減されるものの、未だ改善の余地があることがわかった。   However, according to the study by the present inventors, the discharge of the non-aqueous electrolyte from the wound electrode body when charging / discharging is repeated at a high rate is reduced by the method of Patent Document 1, and the deterioration of battery performance is reduced. However, it has been found that there is still room for improvement.

そこで本発明の目的は、捲回電極体からの非水電解液の排出が高度に抑制された非水電解液二次電池を提供することにある。   Therefore, an object of the present invention is to provide a nonaqueous electrolyte secondary battery in which discharge of the nonaqueous electrolyte from the wound electrode body is highly suppressed.

本発明者らは鋭意検討した結果、捲回電極体を構成する正極活物質層、セパレータ、および負極活物質層の少なくともいずれかの捲回軸方向の両端部に固体電解質を含む領域を設けることにより、固体電解質が、捲回電極体の捲回軸方向端部において非水電解液が排出されるのを塞き止める障害物として働いて、捲回電極体からの非水電解液の排出を高度に抑制できることを見出した。
すなわち、ここに開示される非水電解液二次電池は、正極活物質層を有する長尺な正極、長尺なセパレータ、および負極活物質層を有する長尺な負極が重ね合わされ、長手方向に捲回されてなる捲回電極体を備える。前記正極活物質層、前記セパレータ、および前記負極活物質層のうちの少なくとも1つにおいて、前記長手方向に直交する捲回軸方向の両端部に固体電解質を含む領域が設けられている。
このような構成によれば、捲回電極体からの非水電解液の排出が高度に抑制された非水電解液二次電池を提供することができる。また、捲回電極体の捲回軸方向端部において非水電解液の排出を抑止する物質(障害物)として固体電解質が採用されているため、当該物質(障害物)を含むことによる電池内抵抗の増大を抑制することができる。
As a result of intensive studies, the inventors have provided a region containing a solid electrolyte at both ends in the winding axis direction of at least one of the positive electrode active material layer, the separator, and the negative electrode active material layer constituting the wound electrode body. Thus, the solid electrolyte works as an obstacle to block the discharge of the non-aqueous electrolyte at the winding axial end of the wound electrode body, and discharges the non-aqueous electrolyte from the wound electrode body. We found that it can be highly controlled.
In other words, the non-aqueous electrolyte secondary battery disclosed herein has a long positive electrode having a positive electrode active material layer, a long separator, and a long negative electrode having a negative electrode active material layer superimposed on each other in the longitudinal direction. A wound electrode body that is wound is provided. In at least one of the positive electrode active material layer, the separator, and the negative electrode active material layer, regions including a solid electrolyte are provided at both ends in the winding axis direction orthogonal to the longitudinal direction.
According to such a configuration, it is possible to provide a non-aqueous electrolyte secondary battery in which discharge of the non-aqueous electrolyte from the wound electrode body is highly suppressed. In addition, since a solid electrolyte is used as a substance (obstacle) that suppresses discharge of the non-aqueous electrolyte at the winding axial end of the wound electrode body, the inside of the battery due to the inclusion of the substance (obstacle) An increase in resistance can be suppressed.

本発明の一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the non-aqueous-electrolyte secondary battery which concerns on one Embodiment of this invention. 図1中のII−II線に沿う断面構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the cross-sectional structure which follows the II-II line | wire in FIG. 一実施形態の第1の実施態様で用いられる捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the wound electrode body used by the 1st aspect of one embodiment. 一実施形態の第1の実施態様で用いられる捲回電極体の断面の一部を模式的に示す図である。It is a figure which shows typically a part of cross section of the wound electrode body used by the 1st aspect of one Embodiment. 一実施形態の第2の実施態様で用いられる捲回電極体の断面の一部を模式的に示す図である。It is a figure which shows typically a part of cross section of the wound electrode body used by the 2nd implementation mode of one embodiment. 例1および例2の電池の、充放電サイクルに対する容量維持率の変化を示すグラフである。It is a graph which shows the change of the capacity | capacitance maintenance factor with respect to the charging / discharging cycle of the battery of Example 1 and Example 2.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, a general configuration and manufacturing process of a battery that does not characterize the present invention) It can be grasped as a design matter of those skilled in the art based on the prior art. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。以下、リチウムイオン二次電池を例にして本発明について詳細に説明する。なお、本発明をかかる実施形態に記載されたものに限定することを意図したものではなく、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の非水電解液二次電池(例えばナトリウムイオン二次電池)にも適用される。   In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. Hereinafter, the present invention will be described in detail by taking a lithium ion secondary battery as an example. It should be noted that the present invention is not intended to be limited to the one described in the embodiment, and the technical idea of the present invention is that other secondary nonaqueous electrolyte solutions having other charge carriers (for example, sodium ions) are used. The present invention is also applied to a battery (for example, a sodium ion secondary battery).

図1および図2に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型の電池100である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。正負極端子42,44はそれぞれ正負極集電板42a,44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。   The lithium ion secondary battery 100 shown in FIG. 1 and FIG. 2 is accommodated in a flat rectangular battery case (that is, an exterior container) 30 having a flat wound electrode body 20 and a non-aqueous electrolyte (not shown). This is a sealed battery 100 constructed by the above. The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection, and a thin safety valve 36 set so as to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Yes. The positive and negative terminals 42 and 44 are electrically connected to the positive and negative current collectors 42a and 44a, respectively. As the material of the battery case 30, for example, a light metal material having good thermal conductivity such as aluminum is used.

ここではまず、捲回電極体20の一般的な部分について説明し、捲回電極体20の特徴的部分については後述する。捲回電極体20は、図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極60シートとを、2枚の長尺状のセパレータシート70を介して重ね合わせて長手方向に捲回されている。なお、捲回電極体20の捲回軸方向の両端から外方にはみ出すように形成された正極活物質非形成部分52a(すなわち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(すなわち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。   Here, first, general portions of the wound electrode body 20 will be described, and characteristic portions of the wound electrode body 20 will be described later. As shown in FIG. 2, the wound electrode body 20 includes a positive electrode sheet 50 in which a positive electrode active material layer 54 is formed on one or both surfaces (here, both surfaces) of a long positive electrode current collector 52 along the longitudinal direction. And the negative electrode 60 sheet in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62 and two long separator sheets. 70 are overlapped via 70 and wound in the longitudinal direction. It should be noted that the positive electrode active material non-formed portion 52a formed so as to protrude outward from both ends in the winding axis direction of the wound electrode body 20 (that is, the positive electrode current collector 52 is formed without forming the positive electrode active material layer 54). The exposed portion) and the negative electrode active material layer non-formed portion 62a (that is, the portion where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64) are the positive electrode current collector plate 42a and the negative electrode current collector plate, respectively. 44a is joined.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質としては、例えばリチウム遷移金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)や、リチウム遷移金属リン酸化合物(LiFePO等)が挙げられる。正極活物質層は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、アセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、ポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode sheet 50 include aluminum foil. Examples of the positive electrode active material include lithium transition metal oxides (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1 .5 O 4 etc.) and lithium transition metal phosphate compounds (LiFePO 4 etc.). The positive electrode active material layer can include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) and other (such as graphite) carbon materials can be suitably used. As the binder, polyvinylidene fluoride (PVDF) or the like can be used.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   Examples of the negative electrode current collector 62 constituting the negative electrode sheet 60 include copper foil. As the negative electrode active material, for example, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode active material layer can contain components other than the active material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

セパレータシート70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔性シート(フィルム)等を用いることができ、好ましくは、ポリオレフィン樹脂(例、PE、PP)からなる多孔性シートが用いられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   As the separator sheet 70, for example, a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, polyamide or the like can be used. Preferably, a polyolefin resin (eg, PE, A porous sheet made of PP) is used. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

また、非水電解液は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下(例えば1.0mol/L)が好ましい。 The non-aqueous electrolyte can be the same as the conventional lithium ion secondary battery, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. . As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 (preferably LiPF 6 ) can be suitably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less (for example, 1.0 mol / L).

なお、上記非水電解液中には、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒、支持塩以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)、フルオロエチレンカーボナート(FEC)等の被膜形成剤;分散剤;増粘剤;等の各種添加剤を含み得る。   In the non-aqueous electrolyte, gas generation of components other than the above-mentioned non-aqueous solvent and supporting salt, for example, biphenyl (BP), cyclohexylbenzene (CHB), etc., is provided as long as the effects of the present invention are not significantly impaired. Agents; film forming agents such as oxalato complex compounds containing boron and / or phosphorus atoms, vinylene carbonate (VC), fluoroethylene carbonate (FEC); dispersants; thickeners; .

次に、捲回電極体20の特徴的部分について説明する。捲回電極体20は、正極活物質層54、セパレータ70、および負極活物質層64の少なくとも1つにおいて、捲回軸方向の両端部に固体電解質を含む領域が設けられていることを特徴とする。リチウムイオン二次電池100をハイレートで充放電を繰り返すと、捲回電極体20に浸透した非水電解液が捲回電極体20の捲回軸方向端部(正極活物質層54、セパレータ70、および負極活物質層64の端面)から排出されようとするが、固体電解質は、捲回電極体20の捲回軸方向端部において、非水電解液が排出されるのを塞き止める障害物としての役割を果たす。したがってこのような特徴を有するリチウムイオン二次電池によれば、捲回電極体20の捲回軸方向端部からの非水電解液の排出が防止され、電池性能の劣化を抑制することができる。以下、具体的な実施態様を挙げて詳細に説明する。   Next, the characteristic part of the wound electrode body 20 will be described. The wound electrode body 20 is characterized in that in at least one of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, regions including a solid electrolyte are provided at both ends in the winding axis direction. To do. When the lithium ion secondary battery 100 is repeatedly charged and discharged at a high rate, the nonaqueous electrolytic solution that has permeated the wound electrode body 20 is wound on the winding axial end of the wound electrode body 20 (the positive electrode active material layer 54, the separator 70, And the end surface of the negative electrode active material layer 64), the solid electrolyte obstructs the discharge of the non-aqueous electrolyte at the end of the wound electrode body 20 in the winding axis direction. As a role. Therefore, according to the lithium ion secondary battery having such characteristics, discharge of the non-aqueous electrolyte from the winding axial end of the wound electrode body 20 is prevented, and deterioration of battery performance can be suppressed. . Hereinafter, specific embodiments will be described in detail.

〔第1の実施態様〕
第1の実施態様では、正極活物質層54、セパレータ70、および負極活物質層64の少なくとも1つにおいて、捲回軸方向の両端部から所定の位置までの空孔に固体電解質が充填されている。これにより、正極活物質層54、セパレータ70、および負極活物質層64の少なくとも1つにおいて、捲回軸方向の両端部に固体電解質を含む領域が設けられている。第1の実施態様の具体例を図3および図4に示す。
[First Embodiment]
In the first embodiment, in at least one of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, the solid electrolyte is filled in the holes from the both ends in the winding axis direction to a predetermined position. Yes. Thereby, in at least one of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, regions including the solid electrolyte are provided at both ends in the winding axis direction. Specific examples of the first embodiment are shown in FIGS.

図3および図4では、正極シート50、セパレータ70および負極シート60が積層され、セパレータの幅(捲回軸方向の長さ)は、負極活物質層64の幅(捲回軸方向の長さ)よりも大きく、負極活物質層64の幅は、正極活物質層54の幅(捲回軸方向の長さ)よりも大きくなっている。正極活物質層54の両端部から所定の位置までの空孔に固体電解質を含む第1の領域56が設けられている。また、負極活物質層64の両端部から所定の位置までの空孔に固体電解質を含む第2の領域66が設けられている。また、セパレータ70の両端部から所定の位置までの空孔に固体電解質を含む第3の領域76が設けられている。したがって、第1の実施形態では、固体電解質を含む領域56,66,76は、正極活物質層54、セパレータ70、および負極活物質層64の捲回軸方向の両端部から内側に向かって形成されている。正極活物質層54、セパレータ70、および負極活物質層64の両端部において空孔に充填された固体電解質は、非水電解液が正極活物質層54、セパレータ70、および負極活物質層64の端面から排出されるのを塞き止める障害物として働き、非水電解液の捲回電極体20からの排出を抑制する。   3 and 4, the positive electrode sheet 50, the separator 70, and the negative electrode sheet 60 are laminated, and the width of the separator (the length in the winding axis direction) is the width of the negative electrode active material layer 64 (the length in the winding axis direction). The width of the negative electrode active material layer 64 is larger than the width of the positive electrode active material layer 54 (length in the winding axis direction). A first region 56 containing a solid electrolyte is provided in the holes from both ends of the positive electrode active material layer 54 to a predetermined position. In addition, a second region 66 containing a solid electrolyte is provided in a hole from the both ends of the negative electrode active material layer 64 to a predetermined position. Further, a third region 76 containing a solid electrolyte is provided in the pores from both ends of the separator 70 to a predetermined position. Therefore, in the first embodiment, the regions 56, 66, and 76 including the solid electrolyte are formed from both ends in the winding axis direction of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 inward. Has been. The solid electrolyte filled in the voids at both ends of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 has a nonaqueous electrolyte solution of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64. It works as an obstacle to block the discharge from the end face, and suppresses the discharge of the non-aqueous electrolyte from the wound electrode body 20.

なお、図4では、正極活物質層54、セパレータ70、および負極活物質層64において、端部から空孔に固体電解質が充填される終点の位置が揃っている、すなわち正極活物質層54、セパレータ70、および負極活物質層64の両端部から同じ位置まで空孔に固体電解質が充填されているが、この終点の位置は揃っている必要はない。捲回軸方向についてみた場合に、正極活物質層54、セパレータ70、および負極活物質層64が重なり合った部分の端部から、上記終点の位置までの距離Dは、捲回電極体20の幅(捲回軸方向の長さ)の0.1〜10%の範囲内にあることが好ましい。   In FIG. 4, in the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, the positions of the end points where the solid electrolyte is filled from the end portions to the holes are aligned, that is, the positive electrode active material layer 54, Although the pores are filled with the solid electrolyte from both ends of the separator 70 and the negative electrode active material layer 64 to the same position, the positions of the end points need not be aligned. When viewed in the winding axis direction, the distance D from the end of the portion where the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 overlap to the position of the end point is the width of the wound electrode body 20. It is preferable to be within a range of 0.1 to 10% of (the length in the winding axis direction).

正極活物質層54、セパレータ70、および負極活物質層64の端部の空孔に固体電解質を充填する方法としては、正極活物質層54、セパレータ70、および負極活物質層64の長手方向に直交する幅方向の端部を、正極活物質層54、セパレータ70、および負極活物質層64の空孔よりも小さいナノオーダーの粒子径を有する固体電解質を含むスラリーに浸漬した後、或いは、当該端部に上記固体電解質を含むスラリーを塗布した後、乾燥して溶媒を除去する方法が挙げられる。固体電解質の充填率を上げるために、浸漬若しくは塗布および乾燥操作は何度か繰り返されてもよい。固体電解質としては、リチウムイオン二次電池に使用可能な公知の固体電解質を特に制限なく使用することができる。固体電解質の例としては、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等の無機固体電解質が挙げられる。なお、スラリーにはバインダを含有させてもよい。   As a method of filling the solid electrolyte in the vacancies at the ends of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 are arranged in the longitudinal direction. After immersing the end portions in the orthogonal width direction in a slurry containing a solid electrolyte having a nano-order particle size smaller than the pores of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, or A method of applying a slurry containing the solid electrolyte to the end and then drying to remove the solvent may be mentioned. In order to increase the filling rate of the solid electrolyte, the dipping or coating and drying operations may be repeated several times. As the solid electrolyte, a known solid electrolyte that can be used for a lithium ion secondary battery can be used without particular limitation. Examples of solid electrolytes include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and halide solid electrolytes. Note that the slurry may contain a binder.

なお、図3および図4の例では、正極活物質層54、セパレータ70、および負極活物質層64のすべてにおいて、両端部から所定の位置までの空孔に固体電解質が充填されているが、正極活物質層54、セパレータ70、および負極活物質層64のいずれかにおいて空孔に固体電解質が充填されていれば、非水電解液の排出抑制効果を得ることができる。よって例えば、正極活物質層54、セパレータ70、および負極活物質層64のうちの通気抵抗が一番低い部材に対してのみ、その空孔に固体電解質が充填されていてもよく、通気抵抗が一番低い部材と二番目に低い部材に対して、その空孔に固体電解質が充填されていてもよい。例えばセパレータ70のみ、若しくは正負いずれかの活物質層54,64のみ、あるいはセパレータ70と正負いずれかの活物質層54,64の両端部から所定の位置までの空孔に固体電解質が充填された形態であってもよい。   In the examples of FIGS. 3 and 4, in all of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, the solid electrolyte is filled in the holes from both ends to a predetermined position. If any of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 is filled with a solid electrolyte, an effect of suppressing discharge of the non-aqueous electrolyte can be obtained. Therefore, for example, only the member having the lowest ventilation resistance among the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 may have its pores filled with a solid electrolyte, and the ventilation resistance The pores may be filled with a solid electrolyte for the lowest member and the second lowest member. For example, the solid electrolyte is filled in the holes from the both ends of the separator 70 and either the positive or negative active material layers 54 and 64 or both ends of the separator 70 and the positive or negative active material layers 64 and 64 to predetermined positions. Form may be sufficient.

〔第2の実施態様〕
第2の実施態様では、正極集電体52および負極集電体62との間に、固体電解質が充填される。これにより、正極活物質層54、セパレータ70、および負極活物質層64において、捲回軸方向の両端部に固体電解質を含む領域86が設けられている。第2の実施態様具体例を図5に示す。
[Second Embodiment]
In the second embodiment, a solid electrolyte is filled between the positive electrode current collector 52 and the negative electrode current collector 62. Thereby, in the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64, the area | region 86 containing a solid electrolyte is provided in the both ends of the winding axis direction. A specific example of the second embodiment is shown in FIG.

図5に示すように、正極集電体52および負極集電体62との間に、正極活物質層54、セパレータ70、および負極活物質層64の端部から、負極集電体の62の端部まで固体電解質が充填されて、捲回軸方向の両端部に固体電解質を含む領域86が形成されている。したがって、第2の実施形態では、固体電解質を含む領域86は、正極活物質層54、セパレータ70、および負極活物質層64の捲回軸方向の両端部から外側に向かって形成されている。正極活物質層54、セパレータ70、および負極活物質層64の端部の外側に充填された固体電解質は、正極活物質層54、セパレータ70、および負極活物質層64の端面から排出されようとする非水電解液を塞き止める障害物として働き、非水電解液が捲回電極体20の外部に排出されることを抑制する。   As shown in FIG. 5, between the positive electrode current collector 52 and the negative electrode current collector 62, the ends of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 are connected to the negative electrode current collector 62. The solid electrolyte is filled to the end, and regions 86 containing the solid electrolyte are formed at both ends in the winding axis direction. Therefore, in the second embodiment, the region 86 including the solid electrolyte is formed outward from both ends of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 in the winding axis direction. The solid electrolyte filled outside the ends of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 is likely to be discharged from the end surfaces of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64. This acts as an obstacle to block the non-aqueous electrolyte, and prevents the non-aqueous electrolyte from being discharged outside the wound electrode body 20.

なお、図5では、負極集電体の62の端部まで固体電解質が充填されているが、正極活物質層54、セパレータ70、および負極活物質層64の端部の外側に形成された固体電解質が充填された領域がある限り、負極集電体の62の端部まで固体電解質を充填する必要はない。   In FIG. 5, the solid electrolyte is filled up to the end portion of the negative electrode current collector 62, but the solid formed outside the end portions of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64. As long as there is a region filled with the electrolyte, it is not necessary to fill the solid electrolyte up to the end 62 of the negative electrode current collector.

固体電解質を含む領域86を形成する方法としては、捲回電極体20の捲回軸方向の側面(即ち開口端面)から固体電解質を充填する方法が挙げられる。充填率を上げるために、充填の際、或いは充填後、固体電解質を圧縮してもよい。なお、第1の実施態様とは異なり、第2の実施態様では、正極活物質層54、セパレータ70、および負極活物質層64の空孔よりも粒子径の大きい固体電解質を使用することができる。   As a method of forming the region 86 including the solid electrolyte, a method of filling the solid electrolyte from the side surface (that is, the opening end surface) in the winding axis direction of the wound electrode body 20 can be cited. In order to increase the filling rate, the solid electrolyte may be compressed during or after filling. Unlike the first embodiment, in the second embodiment, a solid electrolyte having a particle diameter larger than the pores of the positive electrode active material layer 54, the separator 70, and the negative electrode active material layer 64 can be used. .

以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。特に大型電池として利用することが有利であり、好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。また、家庭用電源や工場用等の工業用電源としても利用可能である。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium ion secondary battery 100 configured as described above can be used for various applications. In particular, it is advantageous to use as a large-sized battery, and suitable applications include driving power sources mounted on vehicles such as electric vehicles (EV), hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and the like. . It can also be used as an industrial power source such as a household power source or a factory. The lithium ion secondary battery 100 can also be used in the form of an assembled battery formed by connecting a plurality of lithium ion secondary batteries 100 in series and / or in parallel.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<例1>
正極活物質粉末としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=92:5:3の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用スラリーを調製した。このスラリーを、長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥した後、プレスすることにより、正極を作製した。
また、負極活物質としての黒鉛(C)と、バインダとしてのSBRと、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。このスラリーを、長尺状の銅箔(負極集電体)の両面に帯状に塗布して乾燥した後、プレスすることにより、負極を作製した。
また、2枚のセパレータシート(多孔性ポリオレフィンシート)を用意した。
<Example 1>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as the positive electrode active material powder, AB as the conductive material, and PVDF as the binder are LNCM: AB: PVDF = 92: 5: 3 Was mixed with N-methylpyrrolidone (NMP) at a mass ratio of 2 to prepare a positive electrode active material layer forming slurry. The slurry was applied in a strip shape on both sides of a long aluminum foil (positive electrode current collector), dried, and then pressed to prepare a positive electrode.
Further, graphite (C) as a negative electrode active material, SBR as a binder, and CMC as a thickener are mixed with ion-exchanged water at a mass ratio of C: SBR: CMC = 98: 1: 1. A slurry for forming a negative electrode active material layer was prepared. The slurry was applied to both sides of a long copper foil (negative electrode current collector) in a strip shape, dried, and then pressed to prepare a negative electrode.
In addition, two separator sheets (porous polyolefin sheets) were prepared.

作製した正極と負極と用意した2枚のセパレータシートとを重ね合わせ、捲回して捲回電極体を作製した。このとき、正極と負極との間にセパレータが介在するようにした。
次に、固体電解質としてのLi10GeP12(硫化物系イオン伝導性固体電解質)とバインダとしてのSBRが分散したスラリーを準備した。捲回電極体の捲回軸方向の一方の端部をスラリーに浸漬して乾燥した。続いて捲回電極体の捲回軸方向の他方の端部をスラリーに浸漬して乾燥した。このようにして、捲回電極体の両端部から、正極活物質層、セパレータシート、負極活物質層の空孔内に固体電解質を充填させ、捲回電極体の捲回軸方向の両端部に固体電解質を含む領域を形成した。
The produced positive electrode and negative electrode and two prepared separator sheets were superposed and wound to produce a wound electrode body. At this time, a separator was interposed between the positive electrode and the negative electrode.
Next, a slurry was prepared in which Li 10 GeP 2 S 12 (sulfide-based ion conductive solid electrolyte) as a solid electrolyte and SBR as a binder were dispersed. One end of the wound electrode body in the winding axis direction was dipped in the slurry and dried. Subsequently, the other end of the wound electrode body in the winding axis direction was dipped in the slurry and dried. In this manner, the solid electrolyte is filled into the pores of the positive electrode active material layer, the separator sheet, and the negative electrode active material layer from both ends of the wound electrode body, and the wound electrode body has both ends in the winding axis direction. A region containing a solid electrolyte was formed.

上記のようにして正極活物質層、セパレータシートおよび負極活物質層の捲回軸方向の両端部に固体電解質を含む領域が設けられた捲回電極体を電池ケースに収容した。続いて、電池ケースの開口部から非水電解液を注入し、当該開口部を気密に封止して例1に係る非水電解液二次電池を作製した。なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。 As described above, the wound electrode body in which the regions including the solid electrolyte were provided at both ends in the winding axis direction of the positive electrode active material layer, the separator sheet, and the negative electrode active material layer was accommodated in the battery case. Subsequently, a non-aqueous electrolyte was injected from the opening of the battery case, and the opening was hermetically sealed to produce a non-aqueous electrolyte secondary battery according to Example 1. The non-aqueous electrolyte is supported by a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 1: 1: 1. of LiPF 6 as a salt were used as dissolved at a concentration of 1.0 mol / L.

上記作製した例1に係る非水電解液二次電池に対して、C/5の電流値(充電レート)で4.1Vまで定電流で充電を行った後、定電圧充電時の電流値がC/50になる点まで定電圧充電を行うことによって満充電(SOC100%)とした。その後、25℃の温度条件下において、C/5の電流値で3Vまで定電流で放電を行ったときの放電容量(初期電池容量)を測定した。ここで1Cとは、正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流値を意味する。
続いて、60℃の温度条件下において、2Cの充電レートで電圧4.1Vまで定電流充電行い、その後2Cの放電レートで電圧3Vまで定電流放電を行う充放電を1サイクルとし、この充放電サイクルを繰り返した。充放電300サイクル毎に放電容量(サイクル後電池容量)を測定し、{(サイクル後電池容量)/(初期電池容量)}×100から計算される値を容量維持率(%)として求めた。結果を図6に示す。
The non-aqueous electrolyte secondary battery according to Example 1 was charged with a constant current up to 4.1 V at a current value (charge rate) of C / 5, and then the current value during constant voltage charging was The battery was fully charged (SOC 100%) by performing constant voltage charging up to a point where C / 50 was reached. Thereafter, under a temperature condition of 25 ° C., a discharge capacity (initial battery capacity) was measured when discharging was performed at a constant current up to 3 V at a current value of C / 5. Here, 1C means a current value that can charge the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode in one hour.
Subsequently, under a temperature condition of 60 ° C., charging and discharging in which constant current charging is performed to a voltage of 4.1 V at a charging rate of 2 C and then constant current discharging is performed to a voltage of 3 V at a discharging rate of 2 C is defined as one cycle. The cycle was repeated. The discharge capacity (battery capacity after cycle) was measured every 300 cycles of charge / discharge, and the value calculated from {(battery capacity after cycle) / (initial battery capacity)} × 100 was determined as the capacity retention rate (%). The results are shown in FIG.

<例2>
例1と同様にして捲回電極体を作製した。この捲回電極体を固体電解質が分散したスラリーに浸漬することなく、電池ケースに収容した。続いて、電池ケースの開口部から非水電解液を注入し、当該開口部を気密に封止して例2に係る非水電解液二次電池を作製した(したがって、例2に係る非水電解液二次電池は、固体電解質を含む領域は設けられていない)。非水電解液には例1で使用したのと同じものを用いた。
上記例2に係る非水電解液二次電池の電池ケースの扁平面の電極集電端子のある領域(捲回電極体の捲回軸方向の端部領域)に、組電池を作製する際の拘束部材を用いて荷重をかけた。
続いて、例1と同様にして容量維持率(%)を測定した。結果を図6に示す。
<Example 2>
A wound electrode body was produced in the same manner as in Example 1. The wound electrode body was accommodated in the battery case without being immersed in the slurry in which the solid electrolyte was dispersed. Subsequently, a non-aqueous electrolyte was injected from the opening of the battery case, and the opening was hermetically sealed to produce a non-aqueous electrolyte secondary battery according to Example 2 (thus, the non-aqueous electrolyte according to Example 2). The electrolyte secondary battery is not provided with a region containing a solid electrolyte). The same nonaqueous electrolytic solution as used in Example 1 was used.
When producing an assembled battery in a region (end region in the winding axis direction of the wound electrode body) where the flat electrode collecting terminals of the battery case of the non-aqueous electrolyte secondary battery according to Example 2 are provided A load was applied using a restraining member.
Subsequently, the capacity retention rate (%) was measured in the same manner as in Example 1. The results are shown in FIG.

図6が示すように、捲回電極体において正極活物質層、セパレータ、および負極活物質層の捲回軸方向の両端部に固体電解質を含む領域を設けた例1に係る非水電解液二次電池は、当該固体電解質を含む領域を設けなかった例2に係る非水電解液二次電池よりも、容量維持率が高かった。このことから、当該固体電解質を含む領域によって、捲回電極体の端部からの非水電解液の排出が抑制され、電池性能の劣化が抑制されたことがわかる。   As shown in FIG. 6, in the wound electrode body, the non-aqueous electrolyte solution 2 according to Example 1 in which the positive electrode active material layer, the separator, and the negative electrode active material layer are provided with regions containing a solid electrolyte at both ends in the winding axis direction. The secondary battery had a higher capacity retention rate than the nonaqueous electrolyte secondary battery according to Example 2 in which the region containing the solid electrolyte was not provided. From this, it can be seen that the region containing the solid electrolyte suppresses the discharge of the non-aqueous electrolyte from the end of the wound electrode body and suppresses the deterioration of the battery performance.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
56 固体電解質を含む第1の領域
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
66 固体電解質を含む第2の領域
70 セパレータシート(セパレータ)
76 固体電解質を含む第3の領域
86 固体電解質を含む領域
100 非水電解液二次電池(リチウムイオン二次電池)
20 wound electrode body 30 battery case 36 safety valve 42 positive electrode terminal 42a positive electrode current collector plate 44 negative electrode terminal 44a negative electrode current collector plate 50 positive electrode sheet (positive electrode)
52 Positive electrode current collector 52a Positive electrode active material layer non-formed portion 54 Positive electrode active material layer 56 First region 60 containing solid electrolyte Negative electrode sheet (negative electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 66 Second region 70 containing solid electrolyte Separator sheet (separator)
76 3rd area | region 86 containing a solid electrolyte Area | region 100 containing a solid electrolyte 100 Nonaqueous electrolyte secondary battery (lithium ion secondary battery)

Claims (1)

正極活物質層を有する長尺な正極、長尺なセパレータ、および負極活物質層を有する長尺な負極が重ね合わされ、長手方向に捲回されてなる捲回電極体を備える非水電解液二次電池であって、
前記正極活物質層、前記セパレータ、および前記負極活物質層のうちの少なくとも1つにおいて、前記長手方向に直交する捲回軸方向の両端部に固体電解質を含む領域が設けられている、非水電解液二次電池。
A non-aqueous electrolyte comprising a wound electrode body in which a long positive electrode having a positive electrode active material layer, a long separator, and a long negative electrode having a negative electrode active material layer are stacked and wound in the longitudinal direction. A secondary battery,
In at least one of the positive electrode active material layer, the separator, and the negative electrode active material layer, regions containing a solid electrolyte are provided at both ends in the winding axis direction orthogonal to the longitudinal direction. Electrolyte secondary battery.
JP2015079896A 2015-04-09 2015-04-09 Nonaqueous electrolyte secondary battery Pending JP2016201231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079896A JP2016201231A (en) 2015-04-09 2015-04-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079896A JP2016201231A (en) 2015-04-09 2015-04-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2016201231A true JP2016201231A (en) 2016-12-01

Family

ID=57422657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079896A Pending JP2016201231A (en) 2015-04-09 2015-04-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2016201231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832190A (en) * 2022-08-26 2023-03-21 宁德时代新能源科技股份有限公司 Positive electrode sheet, electrode assembly, secondary battery, and power consumption device
WO2023087218A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery module, battery pack, and power-consuming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087218A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery module, battery pack, and power-consuming apparatus
CN115832190A (en) * 2022-08-26 2023-03-21 宁德时代新能源科技股份有限公司 Positive electrode sheet, electrode assembly, secondary battery, and power consumption device

Similar Documents

Publication Publication Date Title
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20190029455A (en) Nonaqueous electrolyte secondary battery
CN107148688B (en) Nonaqueous electrolyte secondary battery, electrode body for nonaqueous electrolyte secondary battery, and method for manufacturing electrode body
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP5787185B2 (en) Secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP2011154955A (en) Lithium ion secondary battery
JP7071698B2 (en) Non-aqueous electrolyte lithium ion secondary battery
US20160181591A1 (en) Method of manufacturing lithium ion secondary battery
JP2016201231A (en) Nonaqueous electrolyte secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
US20180097234A1 (en) Lithium ion secondary battery
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP2019057449A (en) Separator for non-aqueous electrolytic solution secondary battery
JP7054440B2 (en) Secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP2017123236A (en) Nonaqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP2020047481A (en) Nonaqueous liquid electrolyte for lithium ion secondary battery
JP2020095835A (en) Nonaqueous electrolyte secondary battery
CN114583244B (en) Lithium ion secondary battery
JP7377827B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7198257B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery