JP7054440B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP7054440B2
JP7054440B2 JP2018027147A JP2018027147A JP7054440B2 JP 7054440 B2 JP7054440 B2 JP 7054440B2 JP 2018027147 A JP2018027147 A JP 2018027147A JP 2018027147 A JP2018027147 A JP 2018027147A JP 7054440 B2 JP7054440 B2 JP 7054440B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
recess
mixture layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027147A
Other languages
Japanese (ja)
Other versions
JP2019145276A (en
Inventor
ももこ プロクター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018027147A priority Critical patent/JP7054440B2/en
Publication of JP2019145276A publication Critical patent/JP2019145276A/en
Application granted granted Critical
Publication of JP7054440B2 publication Critical patent/JP7054440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、二次電池に関する。 The present invention relates to a secondary battery.

リチウムイオン二次電池等の二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます普及していくことが期待されている。 Secondary batteries such as lithium-ion secondary batteries are lighter in weight and have a higher energy density than existing batteries, and have been used in recent years as so-called portable power sources for personal computers and mobile terminals and power sources for driving vehicles. In particular, lithium-ion secondary batteries, which are lightweight and have high energy density, will become more and more popular as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). It is expected to continue.

いわゆる液系の二次電池は、典型的には、正負の電極を有する電極体と、電解液とが、電池ケースに収容された構成を有する。電極は、典型的には、電極集電箔上に電極活物質を含有する電極合材層が設けられた構成を有する(例えば、特許文献1および2参照)。電極合材層は、電極活物質の粒子間に空隙を有しており、当該空隙に電解液を保持することができる。 A so-called liquid-based secondary battery typically has a configuration in which an electrode body having positive and negative electrodes and an electrolytic solution are housed in a battery case. The electrode typically has a configuration in which an electrode mixture layer containing an electrode active material is provided on an electrode current collector foil (see, for example, Patent Documents 1 and 2). The electrode mixture layer has voids between the particles of the electrode active material, and the electrolytic solution can be held in the voids.

国際公開第2012/124687号パンフレットInternational Publication No. 2012/1246887 Pamphlet 特開2015-043304号公報JP-A-2015-0433304

近年、二次電池には、エネルギー密度がより高いことが求められている。二次電池のエネルギー密度を高める方策としては、電極合材層の密度または目付け量を大きくすることが挙げられる。しかしながら、電極合材層の密度または目付量を大きくした場合、ハイレートで充放電の繰り返した際に、電極が膨張および収縮することによって電極体から電解液が押し出され、押し出された電解液が電極体に戻らなくなる。その結果、電極体中に含浸される電解液量が減少して抵抗が上昇するという問題がある。 In recent years, secondary batteries are required to have a higher energy density. As a measure for increasing the energy density of the secondary battery, increasing the density or the basis weight of the electrode mixture layer can be mentioned. However, when the density or the amount of the electrode mixture layer is increased, the electrolytic solution is extruded from the electrode body due to the expansion and contraction of the electrode when charging and discharging are repeated at a high rate, and the extruded electrolytic solution is used as the electrode. I can't get back to my body. As a result, there is a problem that the amount of the electrolytic solution impregnated in the electrode body is reduced and the resistance is increased.

そこで本発明の目的は、ハイレートで充放電を繰り返した際の抵抗の上昇が抑制された二次電池を提供することにある。 Therefore, an object of the present invention is to provide a secondary battery in which an increase in resistance is suppressed when charging and discharging are repeated at a high rate.

ここに開示される二次電池は、正負の電極を有する電極体と、非水電解液と、前記電極体および前記非水電解液を収容する電池ケースと、を備える。前記電極の少なくとも一方は、電極集電箔と、前記電極集電箔上に形成された電極合材層とを有する。前記電極集電箔は、前記電極合材層が形成される面に端部から連続する凹部を有する。前記電極合材層は、電極活物質を含有する。前記電極活物質の平均粒子径Bに対する前記凹部の幅Aの比(A/B)は、0.2<A/B<0.8を満たす。前記凹部の断面積に対する、前記凹部に入り込んでいる前記正極合材層を構成する固形成分の断面積の比は、0.6以下である。
このような構成によれば、凹部が、非水電解液の流路として機能することができる。よって、二次電池をハイレートで繰り返し充放電した際に、電極が膨張および収縮して電解液が電極体から押し出された場合、押し出された電解液は、凹部を通って電極体中に戻ることができるため、電極体中に含浸される電解液の量の減少を抑制することができる。その結果、電極体中に含浸される電解液の量の減少による抵抗の減少を抑制することができる。
The secondary battery disclosed herein includes an electrode body having positive and negative electrodes, a non-aqueous electrolytic solution, and a battery case for accommodating the electrode body and the non-aqueous electrolytic solution. At least one of the electrodes has an electrode current collector foil and an electrode mixture layer formed on the electrode current collector foil. The electrode current collector foil has a recess continuous from the end on the surface on which the electrode mixture layer is formed. The electrode mixture layer contains an electrode active material. The ratio (A / B) of the width A of the recess to the average particle diameter B of the electrode active material satisfies 0.2 <A / B <0.8. The ratio of the cross-sectional area of the solid component constituting the positive electrode mixture layer that has entered the recess to the cross-sectional area of the recess is 0.6 or less.
According to such a configuration, the recess can function as a flow path for the non-aqueous electrolytic solution. Therefore, when the electrode expands and contracts and the electrolytic solution is extruded from the electrode body when the secondary battery is repeatedly charged and discharged at a high rate, the extruded electrolytic solution returns to the inside of the electrode body through the recess. Therefore, it is possible to suppress a decrease in the amount of the electrolytic solution impregnated in the electrode body. As a result, it is possible to suppress a decrease in resistance due to a decrease in the amount of the electrolytic solution impregnated in the electrode body.

本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the winding electrode body of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の正極の正極集電箔と正極合材層の界面とその近傍を示す模式図である。It is a schematic diagram which shows the interface of the positive electrode current collector foil of the positive electrode of the positive electrode of the lithium ion secondary battery which concerns on one Embodiment of this invention and a positive electrode mixture layer, and the vicinity thereof. 本発明の一実施形態に係るリチウムイオン二次電池の正極の正極集電箔に設けられた凹部の形態を示す模式図である。It is a schematic diagram which shows the form of the recess provided in the positive electrode current collector foil of the positive electrode of the positive electrode of the lithium ion secondary battery which concerns on one Embodiment of this invention.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, general configurations and manufacturing processes of secondary batteries that do not characterize the present invention) are said to be relevant. It can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. Further, in the following drawings, members / parts having the same action are described with the same reference numerals. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
In the present specification, the "secondary battery" generally refers to a power storage device that can be repeatedly charged and discharged, and is a term that includes a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor.
Hereinafter, the present invention will be described in detail by taking a flat-angle type lithium ion secondary battery as an example, but the present invention is not intended to be limited to those described in such embodiments.

図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型のリチウムイオン二次電池100である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解液を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。 In the lithium ion secondary battery 100 shown in FIG. 1, a flat wound electrode body 20 and a non-aqueous electrolytic solution (not shown) are housed in a flat square battery case (that is, an outer container) 30. It is a closed-type lithium ion secondary battery 100 to be constructed. The battery case 30 is provided with a positive electrode terminal 42 and a negative electrode terminal 44 for external connection, and a thin-walled safety valve 36 set to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. There is. Further, the battery case 30 is provided with an injection port (not shown) for injecting a non-aqueous electrolytic solution. The positive electrode terminal 42 is electrically connected to the positive electrode current collector plate 42a. The negative electrode terminal 44 is electrically connected to the negative electrode current collector plate 44a. As the material of the battery case 30, for example, a lightweight metal material having good thermal conductivity such as aluminum is used.

捲回電極体20は、図1および図2に示すように、長尺状の正極集電箔52の片面または両面(ここでは両面)に長手方向に沿って正極合材層54が形成された正極シート50と、長尺状の負極集電箔62の片面または両面(ここでは両面)に長手方向に沿って負極合材層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成された正極合材層非形成部分52a(即ち、正極合材層54が形成されずに正極集電箔52が露出した部分)と負極合材層非形成部分62a(即ち、負極合材層64が形成されずに負極集電箔62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。 In the wound electrode body 20, as shown in FIGS. 1 and 2, a positive electrode mixture layer 54 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long positive electrode current collector foil 52. The positive electrode sheet 50 and the negative electrode sheet 60 in which the negative electrode mixture layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector foil 62 are two long sheets. It has a form of being overlapped with each other via a separator sheet 70 and wound in the longitudinal direction. The positive electrode mixture layer non-formed portion 52a (that is, the positive electrode combination) formed so as to protrude outward from both ends of the winding electrode body 20 in the winding axis direction (that is, the sheet width direction orthogonal to the longitudinal direction). A portion where the positive electrode current collector foil 52 is exposed without forming the material layer 54) and a portion 62a where the negative electrode mixture layer is not formed (that is, a portion where the negative electrode mixture layer 64 is not formed and the negative electrode current collector foil 62 is exposed). A positive electrode current collector plate 42a and a negative electrode current collector plate 44a are joined to each of the above.

正極シート50の正極集電箔52と正極合材層54の界面とその近傍を図3に模式的に示す。
正極シート50を構成する正極集電箔52としては、例えばアルミニウム箔等が挙げられる。
正極合材層54は、正極活物質56を含有する。正極活物質56としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等を用いることができる。正極活物質56の平均粒子径は、例えば1μm以上25μm以下であり、好ましくは2μm以上20μm以下である。なお、本明細書において「平均粒子径」とは、一般的なレーザ回折・光散乱法により求められる体積基準の粒度分布において、累積50%に相当する粒径(D50)を意味する。またなお、正極活物質56は、一次粒子の形態で存在していても良いし、二次粒子を形成していてもよい。
正極合材層54は、正極活物質56以外の成分、例えば導電材58やバインダ(図示せず)等を含み得る。導電材58としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
FIG. 3 schematically shows the interface between the positive electrode current collector foil 52 of the positive electrode sheet 50 and the positive electrode mixture layer 54 and its vicinity.
Examples of the positive electrode current collector foil 52 constituting the positive electrode sheet 50 include an aluminum foil and the like.
The positive electrode mixture layer 54 contains the positive electrode active material 56. Examples of the positive electrode active material 56 include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn). 1.5 O 4 etc.), lithium transition metal phosphate compounds (eg, LiFePO 4 etc.) and the like can be used. The average particle size of the positive electrode active material 56 is, for example, 1 μm or more and 25 μm or less, preferably 2 μm or more and 20 μm or less. In the present specification, the "average particle size" means a particle size (D50) corresponding to a cumulative 50% in the volume-based particle size distribution obtained by a general laser diffraction / light scattering method. Further, the positive electrode active material 56 may exist in the form of primary particles or may form secondary particles.
The positive electrode mixture layer 54 may contain components other than the positive electrode active material 56, such as a conductive material 58 and a binder (not shown). As the conductive material 58, for example, carbon black such as acetylene black (AB) or other carbon material (eg, graphite or the like) can be preferably used. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

図3に示されるように、正極集電箔52は、正極合材層54が形成される面において、凹部53を有する。図4に示されるように、凹部53は、正極集電箔52の端部から連続して形成されている。すなわち、凹部53は、正極集電箔52の端部から溝状に形成されている。
ここで凹部の幅をAとし、正極活物質56の平均粒子径をBとする。本実施形態では、正極活物質56の平均粒子径Bに対する凹部53の幅Aの比(A/B)が、0.2<A/B<0.8を満たす。
凹部53の断面積に対する、凹部53に入り込んでいる正極合材層54を構成する固形成分の断面積の比が、0.6以下である。
このような構成によれば、溝状に形成されたこの凹部53が、非水電解液の流路として機能することができる。つまり、上記比(A/B)が0.2以下だと、凹部53が導電材58等の小粒子径の成分により塞がれ易くなり、流路として十分に機能しなくなる。上記比(A/B)が0.8以上だと、凹部53が、正極活物質56の中でも比較的粒子径小さいものにより塞がれてしまい、流路として十分に機能しなくなる。また、正極合材層54は、正極活物質56以外にも固形成分(例、導電材58、バインダ等)を含み得る。凹部53の断面積に対する、凹部53に入り込んでいる正極合材層54を構成する固形成分(即ち、正極活物質56、導電材58、バインダ等)の断面積の比が0.6を超えると、凹部53が当該固形成分により塞がれてしまい、流路として十分に機能しなくなる。
そして、リチウムイオン二次電池100をハイレートで繰り返し充放電した際には、正極50および負極60が膨張および収縮して非水電解液が電極体20から押し出された場合、押し出された非水電解液は、凹部53を通って正極合材層54中に戻ることができる。すなわち、電極体20から押し出された非水電解液が電極体20中に戻ることができるため、電極体20中に含浸される非水電解液の量の減少を抑制することができ、これによる抵抗の減少を抑制することができる。
As shown in FIG. 3, the positive electrode current collector foil 52 has a recess 53 on the surface on which the positive electrode mixture layer 54 is formed. As shown in FIG. 4, the recess 53 is formed continuously from the end of the positive electrode current collector foil 52. That is, the recess 53 is formed in a groove shape from the end of the positive electrode current collector foil 52.
Here, the width of the recess is A, and the average particle size of the positive electrode active material 56 is B. In the present embodiment, the ratio (A / B) of the width A of the recess 53 to the average particle diameter B of the positive electrode active material 56 satisfies 0.2 <A / B <0.8.
The ratio of the cross-sectional area of the solid component constituting the positive electrode mixture layer 54 that has entered the recess 53 to the cross-sectional area of the recess 53 is 0.6 or less.
According to such a configuration, the groove-shaped recess 53 can function as a flow path for the non-aqueous electrolytic solution. That is, when the ratio (A / B) is 0.2 or less, the recess 53 is likely to be blocked by a component having a small particle diameter such as the conductive material 58, and does not sufficiently function as a flow path. When the ratio (A / B) is 0.8 or more, the recess 53 is blocked by a positive electrode active material 56 having a relatively small particle size, and does not sufficiently function as a flow path. Further, the positive electrode mixture layer 54 may contain a solid component (eg, conductive material 58, binder, etc.) in addition to the positive electrode active material 56. When the ratio of the cross-sectional area of the solid component (that is, the positive electrode active material 56, the conductive material 58, the binder, etc.) constituting the positive electrode mixture layer 54 that has entered the recess 53 to the cross-sectional area of the recess 53 exceeds 0.6. The recess 53 is blocked by the solid component, and does not function sufficiently as a flow path.
When the lithium ion secondary battery 100 is repeatedly charged and discharged at a high rate, the positive electrode 50 and the negative electrode 60 expand and contract, and when the non-aqueous electrolyte solution is extruded from the electrode body 20, the extruded non-aqueous electrolysis The liquid can return into the positive electrode mixture layer 54 through the recess 53. That is, since the non-aqueous electrolytic solution extruded from the electrode body 20 can return to the electrode body 20, it is possible to suppress a decrease in the amount of the non-aqueous electrolytic solution impregnated in the electrode body 20, which is a result. The decrease in resistance can be suppressed.

本実施形態では、凹部53の断面形状は、図3に示されるように方形状である。しかしながら凹部53の断面形状は、これに限られるものではない。凹部53の断面形状は、V字状、U字状、半円状等であってよい。 In the present embodiment, the cross-sectional shape of the recess 53 is rectangular as shown in FIG. However, the cross-sectional shape of the recess 53 is not limited to this. The cross-sectional shape of the recess 53 may be V-shaped, U-shaped, semicircular or the like.

本実施形態では、凹部53は、図4に示されるように正極集電箔52の一方の端部から他方の端部にまで連続している。しかしながら、凹部53の形態はこれに限られない。凹部53は、正極集電箔52の一方の端部から中央部まで設けられていてもよい。凹部53は、正極集電箔52の端部近傍のみに設けられていてもよい。しかしながら、連続する凹部53(即ち、溝)の長さが長いほど、正極合材層54の内部に非水電解液が戻りやすいため、本発明の効果が高くなる。
なお、凹部53は、電極集電箔のいずれの端部から連続的に設けられていてもよいが、本実施形態では、電極体20が捲回電極体であるため、凹部53は、電極体の開口端部となる電極集電箔の端部から連続的に形成されることが好ましい。
In the present embodiment, the recess 53 is continuous from one end to the other end of the positive electrode current collector foil 52 as shown in FIG. However, the form of the recess 53 is not limited to this. The recess 53 may be provided from one end to the center of the positive electrode current collector foil 52. The recess 53 may be provided only in the vicinity of the end portion of the positive electrode current collector foil 52. However, the longer the length of the continuous recess 53 (that is, the groove) is, the easier it is for the non-aqueous electrolytic solution to return to the inside of the positive electrode mixture layer 54, so that the effect of the present invention is enhanced.
The recess 53 may be continuously provided from any end of the electrode current collector foil, but in the present embodiment, since the electrode body 20 is a wound electrode body, the recess 53 is an electrode body. It is preferable that the electrode current collector foil is continuously formed from the end portion of the electrode current collector foil which is the open end portion of the above.

このような正極60は、例えば、次のようにして作製することができる。
少なくとも1つの主面に端部から連続する凹部(即ち、溝)を有する正極集電箔52を用意する。このとき、溝の幅Aを、正極活物質56の平均粒子径Bに対する凹部53の幅Aの比(A/B)が、0.2<A/B<0.8を満たすように選択する。
正極活物質56と導電材58とバインダとを適当な溶媒(例えば、N-メチルピロリドン)に分散させてなる正極ペーストを調製する。このとき、正極ペーストの固形分濃度(NV)をCとし、正極活物質56および導電材58を用いて吸油量測定をした際にトルクが最大となるときの固形分濃度(NV)をDとした場合に、-5%<C-D<8%を満たすように、正極ペーストの固形分濃度を選択することが好ましい。C-Dが-5%以下だと、正極ペーストの流動性が高くなりすぎて、粒子径の小さい導電材等によって溝が埋まるおそれがある。一方、C-Dが8%以上だと、正極ペーストを製膜できないおそれがある。
この正極ペーストを、正極集電箔52の溝のある面上に、正極合材層非形成部分52aとなる部分を除いて塗布する。これを、乾燥して溶媒を除去することにより、正極合材層54を形成する。必要に応じ、正極合材層の密度を調整するために、プレス処理を行う。このようにして正極60を作製ことができる。
Such a positive electrode 60 can be manufactured, for example, as follows.
A positive electrode current collector foil 52 having a recess (that is, a groove) continuous from the end on at least one main surface is prepared. At this time, the width A of the groove is selected so that the ratio (A / B) of the width A of the recess 53 to the average particle diameter B of the positive electrode active material 56 satisfies 0.2 <A / B <0.8. ..
A positive electrode paste is prepared by dispersing the positive electrode active material 56, the conductive material 58, and the binder in an appropriate solvent (for example, N-methylpyrrolidone). At this time, the solid content concentration (NV) of the positive electrode paste is C, and the solid content concentration (NV) when the torque is maximized when the oil absorption is measured using the positive electrode active material 56 and the conductive material 58 is D. In this case, it is preferable to select the solid content concentration of the positive electrode paste so as to satisfy -5% <CD <8%. If the CD is −5% or less, the fluidity of the positive electrode paste becomes too high, and the groove may be filled with a conductive material having a small particle size. On the other hand, if CD is 8% or more, there is a possibility that the positive electrode paste cannot be formed.
This positive electrode paste is applied on the grooved surface of the positive electrode current collector foil 52 except for the portion that becomes the positive electrode mixture layer non-forming portion 52a. This is dried to remove the solvent to form the positive electrode mixture layer 54. If necessary, a pressing process is performed to adjust the density of the positive electrode mixture layer. In this way, the positive electrode 60 can be manufactured.

負極シート60を構成する負極集電箔62としては、例えば銅箔等が挙げられる。負極合材層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極合材層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 Examples of the negative electrode current collector foil 62 constituting the negative electrode sheet 60 include a copper foil and the like. As the negative electrode active material contained in the negative electrode mixture layer 64, a carbon material such as graphite, hard carbon, or soft carbon can be used. The negative electrode mixture layer 64 may contain components other than the active material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.

本実施形態においては、図示しないが、負極60側も上述した構成を有している。すなわち、負極集電箔62は、負極合材層64が形成される面に端部から連続する凹部を有する。負極活物質の平均粒子径B’に対する当該凹部の幅A’の比(A’/B’)が、0.2<A’/B’<0.8を満たす。当該凹部の断面積に対する、当該凹部に入り込んでいる負極合材層64を構成する固形成分の断面積の比が、0.6以下である。
よって、負極60側においても、凹部が非水電解液の流路として機能し、リチウムイオン二次電池100をハイレートで繰り返し充放電した際に、非水電解液が電極体20から押し出されても、負極60側の凹部を通って押し出された非水電解液が電極体20中に戻ることができる。その結果、電極体20中に含浸される非水電解液の量の減少を抑制することができ、これによる抵抗の減少を抑制することができる。
なお、本実施形態では、正極50および負極60の両方が、電極集電箔に所定の凹部が形成された構成を有している。しかしながら、正極50および負極60のうちの一方のみが、上述した電極集電箔に所定の凹部が形成された構成を有していてもよい。
Although not shown in the present embodiment, the negative electrode 60 side also has the above-mentioned configuration. That is, the negative electrode current collector foil 62 has a recess continuous from the end on the surface on which the negative electrode mixture layer 64 is formed. The ratio (A'/ B') of the width A'of the recess to the average particle diameter B'of the negative electrode active material satisfies 0.2 <A'/ B'<0.8. The ratio of the cross-sectional area of the solid component constituting the negative electrode mixture layer 64 that has entered the recess to the cross-sectional area of the recess is 0.6 or less.
Therefore, even on the negative electrode 60 side, the recess functions as a flow path for the non-aqueous electrolytic solution, and even if the non-aqueous electrolytic solution is pushed out from the electrode body 20 when the lithium ion secondary battery 100 is repeatedly charged and discharged at a high rate. The non-aqueous electrolytic solution extruded through the recess on the negative electrode 60 side can return to the electrode body 20. As a result, it is possible to suppress a decrease in the amount of the non-aqueous electrolytic solution impregnated in the electrode body 20, and it is possible to suppress a decrease in resistance due to this.
In this embodiment, both the positive electrode 50 and the negative electrode 60 have a configuration in which a predetermined recess is formed in the electrode current collector foil. However, only one of the positive electrode 50 and the negative electrode 60 may have a configuration in which a predetermined recess is formed in the electrode current collector foil described above.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。 Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. The porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解液は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 As the non-aqueous electrolytic solution, the same as the conventional lithium ion secondary battery can be used, and typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones and lactones used in the electrolytic solution of a general lithium ion secondary battery shall be used without particular limitation. Can be done. As specific examples, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Examples thereof include monofluoromethyldifluoromethyl carbonate (F-DMC) and trifluorodimethyl carbonate (TFDMC). As such a non-aqueous solvent, one kind may be used alone, or two or more kinds may be used in combination as appropriate. As the supporting salt, for example, a lithium salt (preferably LiPF 6 ) such as LiPF 6 , LiBF 4 , and LiClO 4 can be preferably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.

なお、上記非水電解液は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。 The non-aqueous electrolytic solution is, for example, a gas generator such as biphenyl (BP), cyclohexylbenzene (CHB); an oxalate complex compound containing a boron atom and / or a phosphorus atom, as long as the effect of the present invention is not significantly impaired. , A film-forming agent such as vinylene carbonate (VC); a dispersant; various additives such as a thickener.

以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。 The lithium ion secondary battery 100 configured as described above can be used for various purposes. Suitable applications include drive power supplies mounted on vehicles such as electric vehicles (EVs), hybrid vehicles (HVs), and plug-in hybrid vehicles (PHVs). The lithium ion secondary battery 100 can also be used in the form of an assembled battery, which is typically formed by connecting a plurality of lithium ion secondary batteries in series and / or in parallel.

なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、リチウムイオン二次電池は、積層型電極体を備えるリチウムイオン二次電池として構成することもできる。また、リチウムイオン二次電池は、円筒形リチウムイオン二次電池として構成することもできる。また、ここに開示される技術は、リチウムイオン二次電池以外の二次電池にも適用可能である。 As an example, a square lithium ion secondary battery 100 including a flat wound electrode body 20 has been described. However, the lithium ion secondary battery can also be configured as a lithium ion secondary battery including a laminated electrode body. The lithium ion secondary battery can also be configured as a cylindrical lithium ion secondary battery. Further, the technique disclosed herein can be applied to a secondary battery other than the lithium ion secondary battery.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in such examples.

<電極サンプルの作製>
〔正極サンプルa1、a2、b1およびb2の作製〕
正極活物質としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=90:8:2の質量比でN-メチルピロリドン(NMP)と混合し、正極合材層形成用ペーストを調製した。このペーストを、アルミニウム箔(集電箔)の両面に帯状に塗布し、乾燥後プレスして正極を作製した。正極合材層の目付け量は42mg/cm、密度は2.8g/cmであった。
このとき、集電箔には、両面に溝を有するものを用いた。溝の幅A(μm)、活物質の平均粒子径(D50)Bを表1に示すように変化させた。なお、電極ペーストの固形分濃度(NV)をCとし、活物質および導電材を用いて吸油量測定をした際にトルクが最大となるときの固形分濃度(NV)をDとした際のC-D(%)の値を表1に併せて示す。
〔負極サンプルa3、a4、b3およびb4の作製〕
また、負極活物質としての黒鉛(C)と、増粘剤としてのCMCと、バインダとしてのSBRとを、C:CMC:SBR=98:1:1の質量比でイオン交換水と混合して、負極合材層形成用ペーストを調製した。このペーストを、銅箔(集電箔)の両面に帯状に塗布し、乾燥後プレスして負極を作製した。負極合材層の目付け量は18.5mg/cm、密度は1.5g/cmであった。
このとき、集電箔には、両面に溝を有するものを用いた。溝の幅A(μm)、活物質の平均粒子径(D50)Bを表1に示すように変化させた。なお、電極ペーストの固形分濃度(NV)をCとし、活物質および溶媒を用いて吸油量測定をした際にトルクが最大となるときの固形分濃度(NV)をDとした際のC-D(%)の値を表1に併せて示す。
<Preparation of electrode sample>
[Preparation of positive electrode samples a1, a2, b1 and b2]
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material, AB as a conductive material, and PVDF as a binder are used in LNCM: AB: PVDF = 90: 8: 2. It was mixed with N-methylpyrrolidone (NMP) by mass ratio to prepare a paste for forming a positive electrode mixture layer. This paste was applied to both sides of an aluminum foil (current collector foil) in a band shape, dried, and pressed to prepare a positive electrode. The basis weight of the positive electrode mixture layer was 42 mg / cm 2 , and the density was 2.8 g / cm 3 .
At this time, a current collector foil having grooves on both sides was used. The groove width A (μm) and the average particle size (D50) B of the active material were changed as shown in Table 1. The solid content concentration (NV) of the electrode paste is C, and the solid content concentration (NV) when the torque is maximized when the oil absorption is measured using the active material and the conductive material is C. The values of −D (%) are also shown in Table 1.
[Preparation of negative electrode samples a3, a4, b3 and b4]
Further, graphite (C) as a negative electrode active material, CMC as a thickener, and SBR as a binder are mixed with ion-exchanged water at a mass ratio of C: CMC: SBR = 98: 1: 1. , A paste for forming a negative electrode mixture layer was prepared. This paste was applied to both sides of a copper foil (current collector foil) in a band shape, dried, and pressed to prepare a negative electrode. The basis weight of the negative electrode mixture layer was 18.5 mg / cm 2 , and the density was 1.5 g / cm 3 .
At this time, a current collector foil having grooves on both sides was used. The groove width A (μm) and the average particle size (D50) B of the active material were changed as shown in Table 1. The solid content concentration (NV) of the electrode paste is C, and the solid content concentration (NV) when the torque is maximized when the oil absorption is measured using the active material and the solvent is C-. The values of D (%) are also shown in Table 1.

<溝の形成評価>
作製した電極の断面を、電子顕微鏡を用いて観察して、溝が形成されているか(即ち、集電箔の溝が残存しているか)について評価した。具体的には。電極の断面の電子顕微鏡観察により得られる画像を分析し、(溝に入り込んだ電極ペーストの固形分の断面積/全溝の断面積)の値を求めた。(溝に入り込んだ電極ペーストの固形分の断面積/全溝の断面積)の値が0.6未満のものを「○」、当該値が0.6以上であるものを「×」とした。その結果を表1に示す。
<Evaluation of groove formation>
The cross section of the prepared electrode was observed using an electron microscope to evaluate whether or not a groove was formed (that is, whether or not a groove of the current collector foil remained). specifically. The image obtained by observing the cross section of the electrode with an electron microscope was analyzed, and the value of (cross section of the solid content of the electrode paste that entered the groove / cross section of the entire groove) was obtained. The value of (cross-section of solid content of electrode paste that has entered the groove / cross-section of all grooves) is less than 0.6 as "○", and the value of 0.6 or more is "x". .. The results are shown in Table 1.

Figure 0007054440000001
Figure 0007054440000001

<電池サンプルA1~A4およびC1の作製>
上記作製した電極に加えて、上記と同様の方法で、溝を有していない集電箔を用いて、正極および負極を作製した。
PP/PE/PPの三層構造の厚さ24μmの多孔性シートをセパレータとして用意した。
正極と負極とセパレータとを、セパレータが正負極間に介在するように積層して電極体を作製した。正極および負極の枚数は、各65枚とした。
このとき、表2に示す電極を用いた。溝を有する集電箔を用いた場合、電極体において、電極体の一方の端部から他方の端部まで溝が連通していた。
作製した電極体を電池ケースに収容した。続いて、電池ケースの開口部から非水電解液を注入し、当該開口部を気密に封止してリチウムイオン二次電池を作製した。なお、非水電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。
<Preparation of battery samples A1 to A4 and C1>
In addition to the above-mentioned prepared electrodes, a positive electrode and a negative electrode were made by the same method as above, using a current collector foil having no groove.
A porous sheet having a three-layer structure of PP / PE / PP and a thickness of 24 μm was prepared as a separator.
An electrode body was prepared by laminating a positive electrode, a negative electrode, and a separator so that the separator was interposed between the positive and negative electrodes. The number of positive electrodes and negative electrodes was 65 each.
At this time, the electrodes shown in Table 2 were used. When a current collector foil having a groove was used, the groove communicated from one end of the electrode body to the other end in the electrode body.
The prepared electrode body was housed in a battery case. Subsequently, a non-aqueous electrolytic solution was injected through the opening of the battery case, and the opening was hermetically sealed to prepare a lithium ion secondary battery. The non-aqueous electrolytic solution is supported by a mixed solvent containing ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of EC: EMC: DMC = 3: 3: 4. A solution of LiPF 6 as a salt at a concentration of 1.0 mol / L was used.

<電池サンプルの評価>
得られた各電池サンプルに対し、0℃の温度環境下で、レート:2C、電圧範囲:SOC(State of charge)15%~SOC90%の条件で定電流定電圧(CCCV)充放電を繰り返して、ハイレート充放電試験を行った。試験の前後で電池抵抗を常法に従い測定し、(試験後の抵抗/試験前の抵抗-1)×100より、抵抗上昇率(%)を求めた。その結果を表2に示す。
<Evaluation of battery sample>
For each of the obtained battery samples, constant current constant voltage (CCCV) charging / discharging was repeated under the conditions of rate: 2C, voltage range: SOC (State of charge) 15% to SOC 90%, under a temperature environment of 0 ° C. , High-rate charge / discharge test was performed. The battery resistance was measured before and after the test according to a conventional method, and the resistance increase rate (%) was obtained from (resistance after test / resistance before test-1) × 100. The results are shown in Table 2.

Figure 0007054440000002
Figure 0007054440000002

電池サンプルA1~A4が本実施形態に係る二次電池の範囲内の電池サンプルであり、電池サンプルC1が、本実施形態に係る二次電池の範囲外の電池サンプルである。表2の結果が示すように、電池サンプルA1~A4の抵抗上昇率が、電池サンプルC1に比べて顕著に低いことがわかる。これは、集電箔に所定の溝を設けることによって、ハイレート充放電を繰り返した際に電極体から押し出された電解液が、電極体に戻ることができ、これにより、電極体中の電解液量の減少による抵抗上昇を抑制できたためであると考えられる。
よって以上の結果より、本実施形態に係る二次電池によれば、ハイレートで充放電を繰り返した際の抵抗の上昇を抑制できることがわかる。
The battery samples A1 to A4 are battery samples within the range of the secondary battery according to the present embodiment, and the battery sample C1 is a battery sample outside the range of the secondary battery according to the present embodiment. As the results in Table 2 show, it can be seen that the resistance increase rate of the battery samples A1 to A4 is significantly lower than that of the battery sample C1. By providing a predetermined groove in the current collecting foil, the electrolytic solution extruded from the electrode body when high-rate charging / discharging is repeated can return to the electrode body, whereby the electrolytic solution in the electrode body can be returned. It is considered that this is because the increase in resistance due to the decrease in the amount could be suppressed.
Therefore, from the above results, it can be seen that the secondary battery according to the present embodiment can suppress an increase in resistance when charging and discharging are repeated at a high rate.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.

20 (捲回)電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極(シート)
52 正極集電箔
52a 正極合材層非形成部分
53 凹部
54 正極合材層
56 正極活物質
58 導電材
60 負極(シート)
62 負極集電箔
62a 負極合材層非形成部分
64 負極合材層
70 セパレータ(シート)
100 リチウムイオン二次電池
20 (Turning) Electrode body 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode (sheet)
52 Positive electrode current collector foil 52a Positive electrode mixture layer non-formed portion 53 Recess 54 Positive electrode mixture layer 56 Positive electrode active material 58 Conductive material 60 Negative electrode (sheet)
62 Negative electrode current collector foil 62a Negative electrode mixture layer non-formed portion 64 Negative electrode mixture layer 70 Separator (sheet)
100 lithium ion secondary battery

Claims (1)

正負の電極を有する電極体と、
非水電解液と、
前記電極体および前記非水電解液を収容する電池ケースと、
を備える二次電池であって、
前記負極は、負極集電箔と、前記負極集電箔上に形成された負極合材層とを有し、
前記負極集電箔は、前記負極合材層が形成される面に端部から連続する凹部を有し、
前記負極合材層は、負極活物質を含有し、
前記負極活物質の平均粒子径Bに対する前記凹部の幅Aの比(A/B)が、0.2<A/B<0.8を満たし、
前記凹部の断面積に対する、前記凹部に入り込んでいる前記負極合材層を構成する固形成分の断面積の比が、0.6以下である、
二次電池。
An electrode body with positive and negative electrodes and
With non-aqueous electrolyte
A battery case for accommodating the electrode body and the non-aqueous electrolytic solution,
It is a secondary battery equipped with
The negative electrode has a negative electrode current collector foil and a negative electrode mixture layer formed on the negative electrode current collector foil.
The negative electrode current collector foil has a recess continuous from the end on the surface on which the negative electrode mixture layer is formed.
The negative electrode mixture layer contains a negative electrode active material and has a negative electrode mixture layer.
The ratio (A / B) of the width A of the recess to the average particle diameter B of the negative electrode active material satisfies 0.2 <A / B <0.8.
The ratio of the cross-sectional area of the solid component constituting the negative electrode mixture layer that has entered the recess to the cross-sectional area of the recess is 0.6 or less.
Secondary battery.
JP2018027147A 2018-02-19 2018-02-19 Secondary battery Active JP7054440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027147A JP7054440B2 (en) 2018-02-19 2018-02-19 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027147A JP7054440B2 (en) 2018-02-19 2018-02-19 Secondary battery

Publications (2)

Publication Number Publication Date
JP2019145276A JP2019145276A (en) 2019-08-29
JP7054440B2 true JP7054440B2 (en) 2022-04-14

Family

ID=67772546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027147A Active JP7054440B2 (en) 2018-02-19 2018-02-19 Secondary battery

Country Status (1)

Country Link
JP (1) JP7054440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414758B2 (en) * 2021-03-12 2024-01-16 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery electrode and secondary battery equipped with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514031A (en) 1997-05-02 2000-10-24 ジエイ エム ヒユーバー コーポレイシヨン Improved silica products for use in elastomers
JP2005267955A (en) 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011258407A (en) 2010-06-09 2011-12-22 Furukawa Battery Co Ltd:The Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2015043304A (en) 2013-08-26 2015-03-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016126901A (en) 2014-12-26 2016-07-11 トヨタ自動車株式会社 Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514031A (en) 1997-05-02 2000-10-24 ジエイ エム ヒユーバー コーポレイシヨン Improved silica products for use in elastomers
JP2005267955A (en) 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011258407A (en) 2010-06-09 2011-12-22 Furukawa Battery Co Ltd:The Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2015043304A (en) 2013-08-26 2015-03-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016126901A (en) 2014-12-26 2016-07-11 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2019145276A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US9917296B2 (en) Nonaqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP2019050155A (en) Nonaqueous electrolyte secondary battery
JP7033257B2 (en) Secondary battery electrodes and secondary batteries
JP6902206B2 (en) Lithium ion secondary battery
KR101959127B1 (en) Lithium ion secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
JP6274532B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP7054440B2 (en) Secondary battery
JP2020202038A (en) Nonaqueous electrolyte secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
JP7177990B2 (en) lithium ion secondary battery
JP7096981B2 (en) Lithium ion secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP2018092874A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2017123236A (en) Nonaqueous electrolyte secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
CN111490290A (en) Nonaqueous electrolyte for lithium secondary battery
JP6994163B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP2020144978A (en) Negative electrode for nonaqueous lithium ion secondary battery and nonaqueous lithium ion secondary battery using the same
JP7343544B2 (en) Non-aqueous electrolyte and secondary battery using the non-aqueous electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R151 Written notification of patent or utility model registration

Ref document number: 7054440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151