JP2017103163A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017103163A
JP2017103163A JP2015236880A JP2015236880A JP2017103163A JP 2017103163 A JP2017103163 A JP 2017103163A JP 2015236880 A JP2015236880 A JP 2015236880A JP 2015236880 A JP2015236880 A JP 2015236880A JP 2017103163 A JP2017103163 A JP 2017103163A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015236880A
Other languages
Japanese (ja)
Inventor
基史 磯野
Motofumi Isono
基史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015236880A priority Critical patent/JP2017103163A/en
Publication of JP2017103163A publication Critical patent/JP2017103163A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery arranged by use of a negative electrode active material high in potential and low in electric conductivity, which has a high capacity per unit weight of a negative electrode active material layer (specific capacity of a negative electrode).SOLUTION: A nonaqueous electrolyte secondary battery herein disclosed comprises: an electrode body including a positive electrode and a negative electrode having a negative electrode active material layer; and a nonaqueous electrolyte solution. The negative electrode active material layer includes: a negative electrode active material which enables the charge and discharge with a potential of 0.5 V or higher and has an electric conductivity of 10S/cm or less; and a conductive material essentially consisting of LiTiO. The conductive material is included by 1-40 wt% to a total weight of the negative electrode active material layer.SELECTED DRAWING: Figure 3

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池)等の非水電解液二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます普及していくことが期待されている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used as a driving power source. In particular, lithium-ion secondary batteries that are lightweight and provide high energy density will become increasingly popular as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). It is expected to do.

リチウムイオン二次電池の負極活物質には、黒鉛が広く用いられている。しかしながら黒鉛は、リチウムを吸蔵・脱離する電位が約0.1Vと金属リチウムの電位に近い。そのため、負極活物質に黒鉛を用いた場合には、特に低温において負極活物質上での金属リチウムの析出に注意が必要となる。   Graphite is widely used as a negative electrode active material for lithium ion secondary batteries. However, graphite has a potential for inserting and extracting lithium of about 0.1 V, which is close to that of metallic lithium. Therefore, when graphite is used as the negative electrode active material, attention must be paid to the deposition of metallic lithium on the negative electrode active material, particularly at a low temperature.

これに対して、金属リチウムの析出を抑制するには、より高電位の負極活物質を用いることが有効である。しかしながら、高電位の負極活物質の中でも、TiOやLiVOなどの負極活物質は電気伝導率が低い。そのため、これらの負極活物質は、一般的にはアセチレンブラック、ケッチェンブラック等のカーボンブラック系導電材と併用される(例えば、特許文献1参照)。 On the other hand, it is effective to use a negative electrode active material having a higher potential in order to suppress the deposition of metallic lithium. However, among high potential negative electrode active materials, negative electrode active materials such as TiO 2 and Li 3 VO 4 have low electrical conductivity. Therefore, these negative electrode active materials are generally used in combination with carbon black-based conductive materials such as acetylene black and ketjen black (see, for example, Patent Document 1).

特開2014−063644号公報JP 2014-063644 A

しかしながら本発明者が鋭意検討した結果、上記のような高電位ながら電気伝導率の低い負極活物質をアセチレンブラック等のカーボンブラック系導電材と併用した場合には、負極活物質層の単位重量あたりの容量(負極の比容量)が低いという問題があることがわかった。   However, as a result of intensive studies by the present inventors, when a negative electrode active material having a low electric conductivity as described above is used in combination with a carbon black-based conductive material such as acetylene black, the unit weight of the negative electrode active material layer It has been found that there is a problem that the capacity (specific capacity of the negative electrode) is low.

そこで本発明の目的は、高電位ながら電気伝導率の低い負極活物質を用いた非水電解液二次電池であって、負極活物質層の単位重量あたりの容量(負極の比容量)が高い非水電解液二次電池を提供することを目的とする。   Accordingly, an object of the present invention is a non-aqueous electrolyte secondary battery using a negative electrode active material having a low electric conductivity while having a high potential, and has a high capacity per unit weight (negative electrode specific capacity) of the negative electrode active material layer. An object is to provide a non-aqueous electrolyte secondary battery.

本発明者は鋭意検討した結果、高電位ながら電気伝導率の低い負極活物質をアセチレンブラック等のカーボンブラック系導電材と併用した場合に負極の比容量が低くなる理由は、カーボンブラック系導電材の容量が小さいことにあることを見出した。そしてさらに検討を進めた結果、高電位ながら電気伝導率の低い負極活物質にLiTi12を添加した場合、非水電解液二次電池使用時にLiTi12にLiが挿入されると高い電気伝導性を示し、これによりLiTi12が導電材として機能することを見出した。またLiTi12はアセチレンブラック等のカーボンブラック系導電材よりも高容量である。よって、本発明者は、高電位ながら電気伝導率の低い負極活物質に導電材としてLiTi12を所定量添加することにより、負極の比容量が高い非水電解液二次電池が得られることを見出した。 As a result of intensive studies, the present inventors have found that the reason why the specific capacity of the negative electrode is reduced when a negative electrode active material having a high electric potential but low electrical conductivity is used in combination with a carbon black conductive material such as acetylene black is I found out that the capacity is small. As a result of further investigation, when Li 4 Ti 5 O 12 is added to a negative electrode active material having a high potential but low electrical conductivity, Li is inserted into Li 4 Ti 5 O 12 when using a non-aqueous electrolyte secondary battery. It showed high electrical conductivity, and it was found that Li 4 Ti 5 O 12 functions as a conductive material. Li 4 Ti 5 O 12 has a higher capacity than a carbon black conductive material such as acetylene black. Accordingly, the present inventor has added a predetermined amount of Li 4 Ti 5 O 12 as a conductive material to a negative electrode active material having a low electric conductivity while having a high potential, whereby a non-aqueous electrolyte secondary battery having a high negative electrode specific capacity is obtained. It was found that it can be obtained.

すなわち、ここに開示される非水電解液二次電池は、正極、および負極活物質層を有する負極を含む電極体と、非水電解液とを備える。前記負極活物質層は、0.5V以上の電位で充放電が可能であって、10−1S/cm以下の電気伝導率を有する負極活物質、およびLiTi12から本質的になる導電材を含む。前記導電材は、前記負極活物質層の全重量に対し1〜40重量%含まれる。
このような構成によれば、高電位ながら電気伝導率の低い負極活物質を用いた非水電解液二次電池であって、負極の比容量が高い非水電解液二次電池を提供することができる。
That is, the non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode and an electrode body including a negative electrode having a negative electrode active material layer, and a non-aqueous electrolyte. The negative electrode active material layer can be charged / discharged at a potential of 0.5 V or more, and is essentially composed of a negative electrode active material having an electric conductivity of 10 −1 S / cm or less and Li 4 Ti 5 O 12. A conductive material. The conductive material is included in an amount of 1 to 40% by weight with respect to the total weight of the negative electrode active material layer.
According to such a configuration, a non-aqueous electrolyte secondary battery using a negative electrode active material having a low electric conductivity while having a high potential is provided. The non-aqueous electrolyte secondary battery has a high negative electrode specific capacity. Can do.

本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the winding electrode body of the lithium ion secondary battery which concerns on one Embodiment of this invention. 試験例として作製した各リチウムイオンイオン二次電池の負極の比容量の評価結果を示すグラフである。It is a graph which shows the evaluation result of the specific capacity of the negative electrode of each lithium ion ion secondary battery produced as a test example.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解液二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, a general configuration and manufacturing process of a non-aqueous electrolyte secondary battery that does not characterize the present invention) ) Can be understood as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor.
Hereinafter, the present invention will be described in detail by taking a flat rectangular lithium ion secondary battery as an example, but the present invention is not intended to be limited to those described in the embodiment.

図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解液(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型のリチウムイオン二次電池100である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36が設けられている。また、電池ケース30には、非水電解液を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。   The lithium ion secondary battery 100 shown in FIG. 1 has a flat wound electrode body 20 and a non-aqueous electrolyte (not shown) accommodated in a flat rectangular battery case (that is, an exterior container) 30. This is a sealed lithium ion secondary battery 100 to be constructed. The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection, and a thin safety valve 36 set so as to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Yes. In addition, the battery case 30 is provided with an inlet (not shown) for injecting a non-aqueous electrolyte. The positive terminal 42 is electrically connected to the positive current collector 42a. The negative electrode terminal 44 is electrically connected to the negative electrode current collector plate 44a. As the material of the battery case 30, for example, a light metal material having good thermal conductivity such as aluminum is used.

捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(上記長手方向に直交するシート幅方向をいう。)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。   As shown in FIGS. 1 and 2, the wound electrode body 20 has a positive electrode active material layer 54 formed along the longitudinal direction on one side or both sides (here, both sides) of an elongated positive electrode current collector 52. The positive electrode sheet 50 and the negative electrode sheet 60 in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62 are two long shapes. The separator sheet 70 is overlapped and wound in the longitudinal direction. The positive electrode active material layer non-forming portion 52a (that is, the positive electrode) formed so as to protrude outward from both ends in the winding axis direction of the wound electrode body 20 (referred to as the sheet width direction orthogonal to the longitudinal direction). The portion where the active material layer 54 is not formed and the positive electrode current collector 52 is exposed) and the negative electrode active material layer non-formed portion 62a (that is, the portion where the negative electrode active material layer 64 is not formed and the negative electrode current collector 62 is exposed). ) Are joined with a positive current collector 42a and a negative current collector 44a, respectively.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode sheet 50 include aluminum foil. Examples of the positive electrode active material included in the positive electrode active material layer 54 include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O). 4 , LiNi 0.5 Mn 1.5 O 4 etc.), lithium transition metal phosphate compounds (eg, LiFePO 4 etc.) and the like. The positive electrode active material layer 54 can include components other than the active material, such as a conductive material and a binder. As the conductive material, for example, carbon black such as acetylene black (AB) and other (eg, graphite) carbon materials can be suitably used. As the binder, for example, polyvinylidene fluoride (PVDF) can be used.

負極シート60を構成する負極集電体62としては、例えば、アルミニウム箔、銅箔等が挙げられる。
負極活物質層64は、負極活物質および導電材を含む。ここで用いられる負極活物質は、高電位ながら電気伝導率の低い負極活物質である。すなわち、0.5V以上の電位で充放電が可能であって、10−1S/cm以下の電気伝導率を有する負極活物質である。本実施形態では、非水電解液二次電池はリチウムイオン二次電池100であるため、負極活物質は、Li/Liに対して0.5V以上の電位を有する。このような高い電位を有する負極活物質をリチウムイオン二次電池100に用いることにより、特に低温における負極活物質上での金属リチウムの析出が抑制される。0.5V以上の電位で充放電が可能であって、10−1S/cm以下の電気伝導率を有する負極活物質の例としては、TiO、LiVOなどが挙げられる。
ここで用いられる導電材は、LiTi12から本質的になる導電材である。ここで、「導電材がLiTi12から本質的になる」とは、LiTi12の一部がLiTi12の形態をとっていてもよいが、導電材がLiTi12以外の他の導電材成分を含んでいないことをいう。
Examples of the negative electrode current collector 62 constituting the negative electrode sheet 60 include aluminum foil and copper foil.
The negative electrode active material layer 64 includes a negative electrode active material and a conductive material. The negative electrode active material used here is a negative electrode active material having a high potential but low electrical conductivity. That is, it is a negative electrode active material that can be charged and discharged at a potential of 0.5 V or more and has an electric conductivity of 10 −1 S / cm or less. In this embodiment, since the non-aqueous electrolyte secondary battery is the lithium ion secondary battery 100, the negative electrode active material has a potential of 0.5 V or more with respect to Li / Li + . By using the negative electrode active material having such a high potential for the lithium ion secondary battery 100, the deposition of metallic lithium on the negative electrode active material, particularly at a low temperature, is suppressed. Examples of the negative electrode active material that can be charged and discharged at a potential of 0.5 V or more and have an electric conductivity of 10 −1 S / cm or less include TiO 2 and Li 3 VO 4 .
The conductive material used here is a conductive material consisting essentially of Li 4 Ti 5 O 12 . Here, “the conductive material consists essentially of Li 4 Ti 5 O 12 ” means that a part of Li 4 Ti 5 O 12 may take the form of Li 7 Ti 5 O 12. Does not contain other conductive material components other than Li 4 Ti 5 O 12 .

従来のように、高電位ながら電気伝導率の低い負極活物質をアセチレンブラック等のカーボンブラック系導電材と併用した場合には、カーボンブラック系導電材の容量が小さいがために、負極の比容量が低くなる。これに対し、本発明者の検討によれば、高電位ながら電気伝導率の低い負極活物質にLiTi12を添加した場合には、非水電解液二次電池使用時にLiTi12にLiが挿入されるとLiTi12となり、このLiTi12が高い電気伝導性を示し、これによりLiTi12が非水電解液二次電池の負極用導電材として機能することを見出した。またLiTi12はアセチレンブラック等のカーボンブラック系導電材よりも高容量(約170mAh/g)である。したがって、高電位ながら電気伝導率の低い負極活物質に導電材としてLiTi12を添加することにより、負極の比容量が高い非水電解液二次電池を得ることができる。 When a negative electrode active material having a low electric conductivity with high potential is used in combination with a carbon black conductive material such as acetylene black as in the past, the specific capacity of the negative electrode is low because the capacity of the carbon black conductive material is small. Becomes lower. In contrast, according to the study of the present inventors, the addition of Li 4 Ti 5 O 12 is the negative electrode active material having low electrical conductivity while high potential, Li 4 Ti during a non-aqueous electrolyte secondary battery using 5 If O 12 to Li is inserted Li 7 Ti 5 O 12, and this Li 7 Ti 5 O 12 indicates high electrical conductivity, thereby Li 4 Ti 5 O 12 is a non-aqueous electrolyte secondary battery It has been found that it functions as a negative electrode conductive material. Li 4 Ti 5 O 12 has a higher capacity (about 170 mAh / g) than a carbon black conductive material such as acetylene black. Therefore, by adding Li 4 Ti 5 O 12 as a conductive material to a negative electrode active material having a low electric conductivity while having a high potential, a nonaqueous electrolyte secondary battery having a high negative electrode specific capacity can be obtained.

ここで、LiTi12から本質的になる導電材の負極活物質層64の全重量に対する含有率は、1〜40重量%である。含有率が1重量%よりも小さいと、LiTi12による導電性向上効果が不十分となって負極活物質層の抵抗が大きくなり、その結果、負極の比容量が小さくなる。一方、含有率が40重量%よりも大きいと、負極活物質の含有割合が小さくなりすぎて、負極の比容量が小さくなる。負極の比容量が特に高いことから、LiTi12から本質的になる導電材の負極活物質層64の全重量に対する含有率は、1〜10重量%が好ましく、1〜5重量%がより好ましい。 Here, content relative to the total weight of the negative electrode active material layer 64 of conductive material consists essentially of Li 4 Ti 5 O 12 is 1 to 40 wt%. When the content is less than 1% by weight, the effect of improving the conductivity by Li 4 Ti 5 O 12 is insufficient, the resistance of the negative electrode active material layer is increased, and as a result, the specific capacity of the negative electrode is decreased. On the other hand, when the content is larger than 40% by weight, the content ratio of the negative electrode active material becomes too small, and the specific capacity of the negative electrode becomes small. Since the specific capacity of the negative electrode is particularly high, the content of the conductive material consisting essentially of Li 4 Ti 5 O 12 with respect to the total weight of the negative electrode active material layer 64 is preferably 1 to 10% by weight, and preferably 1 to 5% by weight. Is more preferable.

負極活物質層64は、負極活物質および導電材以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。   The negative electrode active material layer 64 can include components other than the negative electrode active material and the conductive material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) can be used.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解液は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 The non-aqueous electrolyte can be the same as that of a conventional lithium ion secondary battery. Typically, a non-aqueous electrolyte containing a supporting salt in an organic solvent (non-aqueous solvent) can be used. As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), Examples thereof include monofluoromethyl difluoromethyl carbonate (F-DMC) and trifluorodimethyl carbonate (TFDMC). Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 (preferably LiPF 6 ) can be suitably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less.

なお、上記非水電解液は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。   In addition, the non-aqueous electrolyte is a gas generating agent such as biphenyl (BP) or cyclohexylbenzene (CHB); an oxalato complex compound containing a boron atom and / or a phosphorus atom, as long as the effects of the present invention are not significantly impaired. And film forming agents such as vinylene carbonate (VC); dispersants; various additives such as thickeners.

以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium ion secondary battery 100 configured as described above can be used for various applications. Suitable applications include driving power sources mounted on vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). The lithium ion secondary battery 100 can also be used in the form of a battery pack typically formed by connecting a plurality of lithium ion secondary batteries 100 in series and / or in parallel.

なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、リチウムイオン二次電池は、積層型電極体を備えるリチウムイオン二次電池として構成することもできる。また、リチウムイオン二次電池は、円筒形リチウムイオン二次電池として構成することもできる。また、ここに開示される技術は、リチウムイオン二次電池以外の非水電解液二次電池にも適用可能である。   As an example, the rectangular lithium ion secondary battery 100 including the flat wound electrode body 20 has been described. However, the lithium ion secondary battery can also be configured as a lithium ion secondary battery including a stacked electrode body. The lithium ion secondary battery can also be configured as a cylindrical lithium ion secondary battery. Moreover, the technique disclosed here is applicable also to nonaqueous electrolyte secondary batteries other than a lithium ion secondary battery.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<リチウムイオン二次電池の作製>
[試験例1]
負極活物質としてのTiO、導電材としてのアセチレンブラック(AB)、およびバインダとしてのポリフッ化ビニリデン(PVDF)を、表1に示す配合割合(重量%)でN−メチルピロリドン(NMP)と混合し、負極スラリーを調製した。この負極スラリーを、長尺状のアルミニウム箔(負極集電体)の両面に帯状に塗布し、乾燥後プレスすることにより負極を得た。プレス条件は、負極活物質層の密度が2g/cmとなるようにした。
一方で、金属リチウムを用いた正極を用意した。
また、セパレータとして、PP/PE/PPの三層構造の多孔質シートを用意した。
上記負極と正極とをセパレータを介して積層して、電極体を作製した。次に、電極体に正極端子および負極端子を接続し、非水電解液とともにラミネートケースに収容して、試験例1のラミネート型リチウムイオンイオン二次電池を得た。なお、非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=3:7の体積比で含む混合溶媒に、支持塩としてのLiPFを1mol/Lの濃度で溶解させたものを用いた。
<Production of lithium ion secondary battery>
[Test Example 1]
TiO 2 as a negative electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed with N-methylpyrrolidone (NMP) in the blending ratio (% by weight) shown in Table 1. A negative electrode slurry was prepared. This negative electrode slurry was applied to both sides of a long aluminum foil (negative electrode current collector) in a band shape, dried and pressed to obtain a negative electrode. The pressing conditions were such that the density of the negative electrode active material layer was 2 g / cm 3 .
Meanwhile, a positive electrode using metallic lithium was prepared.
In addition, a porous sheet having a three-layer structure of PP / PE / PP was prepared as a separator.
The negative electrode and the positive electrode were laminated via a separator to produce an electrode body. Next, a positive electrode terminal and a negative electrode terminal were connected to the electrode body and accommodated in a laminate case together with a non-aqueous electrolyte solution to obtain a laminate type lithium ion ion secondary battery of Test Example 1. In addition, the non-aqueous electrolyte includes a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of EC: DEC = 3: 7, and LiPF 6 as a supporting salt at a concentration of 1 mol / L. What was dissolved in was used.

[試験例2]
負極を作製する際に、負極活物質としてのTiO、およびバインダとしてのポリフッ化ビニリデン(PVDF)を、表1に示す配合割合(重量%)で用いた以外は試験例1と同様にして、試験例2のリチウムイオンイオン二次電池を作製した。
[Test Example 2]
When producing the negative electrode, TiO 2 as the negative electrode active material and polyvinylidene fluoride (PVDF) as the binder were used in the same manner as in Test Example 1, except that the blending ratio (% by weight) shown in Table 1 was used. A lithium ion ion secondary battery of Test Example 2 was produced.

[試験例3〜11]
負極を作製する際に、負極活物質としてのTiO、導電材としてのLiTi12、およびバインダとしてのポリフッ化ビニリデン(PVDF)を、表1に示す配合割合(重量%)で用いた以外は試験例1と同様にして、試験例3〜11のリチウムイオンイオン二次電池を作製した。
[Test Examples 3 to 11]
When producing a negative electrode, TiO 2 as a negative electrode active material, Li 4 Ti 5 O 12 as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are used in a blending ratio (% by weight) shown in Table 1. The lithium ion secondary batteries of Test Examples 3 to 11 were produced in the same manner as in Test Example 1 except for the above.

Figure 2017103163
Figure 2017103163

<リチウムイオン二次電池の評価>
各試験例のリチウムイオン二次電池を25℃の温度環境下に置いた。1/10Cのレートで1.0Vまで定電流(CC)放電した後に10分間休止し、1/10Cのレートで3.0Vまで定電流(CC)充電した後に10分間休止した。このときの充電容量を求め、この充電容量を負極活物質層の重量で割った値を負極の比容量とした。評価結果を図3に示す。
<Evaluation of lithium ion secondary battery>
The lithium ion secondary battery of each test example was placed in a temperature environment of 25 ° C. After a constant current (CC) discharge to 1.0 V at a rate of 1/10 C, it was paused for 10 minutes, and after a constant current (CC) charge to 3.0 V at a rate of 1/10 C, it was paused for 10 minutes. The charge capacity at this time was determined, and the value obtained by dividing the charge capacity by the weight of the negative electrode active material layer was defined as the specific capacity of the negative electrode. The evaluation results are shown in FIG.

図3において、従来技術にあたる試験例1の評価結果(比容量:175mAh/g)を基準線として点線で示し、試験例2〜11の評価結果(比容量の値)を菱形の印で示した。図3よりLiTi12の配合割合が1〜40wt%の範囲にある試験例4〜10の比容量は、試験例1の比容量よりも高くなっていることがわかる。これは、LiTi12が大きな容量を有する導電材として機能したためと言える。また、比容量は、LiTi12の配合割合が1〜10wt%、さらには1〜5wt%のときに、特に高くなっていることがわかる。一方、LiTi12の配合割合がそれぞれ0wt%および0.5wt%である試験例2、3では、試験例1の比容量を下回った。これは、負極活物質層の抵抗が高かった(導電性が低かった)ためであると考えられる。また、LiTi12の配合割合が60wt%である試験例11でも、試験例1の比容量を下回った。これは、負極活物質層中の負極活物質の含有割合が小さかったためであると考えられる。 In FIG. 3, the evaluation result (specific capacity: 175 mAh / g) of Test Example 1 corresponding to the prior art is indicated by a dotted line as a reference line, and the evaluation results (specific capacity values) of Test Examples 2 to 11 are indicated by rhombus marks. . 3 that the specific capacity of Test Examples 4 to 10 in which the blending ratio of Li 4 Ti 5 O 12 is in the range of 1 to 40 wt% is higher than the specific capacity of Test Example 1. This can be said that Li 4 Ti 5 O 12 functions as a conductive material having a large capacity. Also, specific capacity, Li 4 Ti 5 O 12 proportion is 110 wt.% Of, more at 1-5 wt%, it can be seen that has particularly high. On the other hand, in Test Examples 2 and 3 in which the blending ratio of Li 4 Ti 5 O 12 was 0 wt% and 0.5 wt%, respectively, the specific capacity of Test Example 1 was lower. This is probably because the resistance of the negative electrode active material layer was high (conductivity was low). Also in Test Example 11 in which the blending ratio of Li 4 Ti 5 O 12 was 60 wt%, the specific capacity of Test Example 1 was lower. This is considered to be because the content ratio of the negative electrode active material in the negative electrode active material layer was small.

以上に示した試験例において、負極の特性を評価するために、正極に金属リチウムを用いたが、正極として、集電体上に、リチウム遷移金属酸化物、リチウム遷移金属リン酸化合物等の正極活物質を含む正極活物質を備える正極シートを用いても同様の効果が得られることが理解される。   In the test examples shown above, metallic lithium was used for the positive electrode in order to evaluate the characteristics of the negative electrode, but the positive electrode such as a lithium transition metal oxide or lithium transition metal phosphate compound was used as the positive electrode on the current collector. It is understood that the same effect can be obtained even when a positive electrode sheet including a positive electrode active material containing an active material is used.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
100 リチウムイオン二次電池
20 wound electrode body 30 battery case 36 safety valve 42 positive electrode terminal 42a positive electrode current collector plate 44 negative electrode terminal 44a negative electrode current collector plate 50 positive electrode sheet (positive electrode)
52 Positive Electrode Current Collector 52a Positive Electrode Active Material Layer Non-Forming Portion 54 Positive Electrode Active Material Layer 60 Negative Electrode Sheet (Negative Electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator sheet (separator)
100 Lithium ion secondary battery

Claims (1)

正極、および負極活物質層を有する負極を含む電極体と、
非水電解液と
を備える非水電解液二次電池であって、
前記負極活物質層は、0.5V以上の電位で充放電が可能であって、10−1S/cm以下の電気伝導率を有する負極活物質、およびLiTi12から本質的になる導電材を含み、前記導電材は、前記負極活物質層の全重量に対し1〜40重量%含まれる、
非水電解液二次電池。
An electrode body including a positive electrode and a negative electrode having a negative electrode active material layer;
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte,
The negative electrode active material layer can be charged / discharged at a potential of 0.5 V or more, and is essentially composed of a negative electrode active material having an electric conductivity of 10 −1 S / cm or less and Li 4 Ti 5 O 12. The conductive material is contained in an amount of 1 to 40% by weight with respect to the total weight of the negative electrode active material layer.
Non-aqueous electrolyte secondary battery.
JP2015236880A 2015-12-03 2015-12-03 Nonaqueous electrolyte secondary battery Pending JP2017103163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236880A JP2017103163A (en) 2015-12-03 2015-12-03 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236880A JP2017103163A (en) 2015-12-03 2015-12-03 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017103163A true JP2017103163A (en) 2017-06-08

Family

ID=59018147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236880A Pending JP2017103163A (en) 2015-12-03 2015-12-03 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017103163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
WO2023087209A1 (en) * 2021-11-18 2023-05-25 宁德新能源科技有限公司 Electrochemical device and electronic device
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
JPWO2019044902A1 (en) * 2017-08-30 2020-01-23 株式会社村田製作所 Co-fired all-solid-state battery
US11322776B2 (en) 2017-08-30 2022-05-03 Murata Manufacturing Co., Ltd. Co-fired all-solid-state battery
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery
WO2023087209A1 (en) * 2021-11-18 2023-05-25 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
KR20190029455A (en) Nonaqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2018018785A (en) Nonaqueous electrolyte secondary battery
JP2019008923A (en) Nonaqueous electrolyte secondary battery
CN110931860B (en) Nonaqueous electrolyte for lithium ion secondary battery
JP7148872B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JP7125655B2 (en) negative electrode
JP2018073765A (en) Lithium ion secondary battery
JP2017130317A (en) Nonaqueous electrolyte secondary battery having wound electrode body
JP2017123236A (en) Nonaqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP2021044137A (en) Nonaqueous electrolyte secondary battery
JP2019145276A (en) Secondary cell
JP7249988B2 (en) lithium ion secondary battery
JP7307888B2 (en) negative electrode
JP7290087B2 (en) Non-aqueous electrolyte secondary battery
JP7290089B2 (en) Non-aqueous electrolyte secondary battery
JP7165305B2 (en) Non-aqueous electrolyte secondary battery
JP6994163B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP2017021989A (en) Nonaqueous electrolyte secondary battery