JP2017021989A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017021989A
JP2017021989A JP2015138682A JP2015138682A JP2017021989A JP 2017021989 A JP2017021989 A JP 2017021989A JP 2015138682 A JP2015138682 A JP 2015138682A JP 2015138682 A JP2015138682 A JP 2015138682A JP 2017021989 A JP2017021989 A JP 2017021989A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
battery
positive electrode
nmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138682A
Other languages
Japanese (ja)
Inventor
陽 加藤
Yo Kato
陽 加藤
和久 松田
Kazuhisa Matsuda
和久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015138682A priority Critical patent/JP2017021989A/en
Publication of JP2017021989A publication Critical patent/JP2017021989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery that suppresses reduction in capacitance when repeating charging/discharging at a high temperature.SOLUTION: The nonaqueous electrolyte secondary battery includes: a battery case; an electrode body accommodated in the battery case; and a nonaqueous electrolyte accommodated in the battery case. The nonaqueous electrolyte contains N-methyl-2- pyrolidone greater than 18 μL and less than 1500 μL per battery capacitance of 1 Ah.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池)等の非水電解液二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used as a driving power source. Particularly, lithium ion secondary batteries that are lightweight and obtain high energy density are preferably used as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Yes.

非水電解液二次電池は、典型的には、電池ケースに、電極体および非水電解液が収容された構成を有している(例えば、特許文献1および2参照)。非水電解液は、電荷担体であるイオンの移動媒体としての役割を果たす。また、非水電解液は、還元分解されることにより負極表面上に保護被膜(Solid Electrolyte Interphase:SEI膜)を形成するという役割を果たす。   A nonaqueous electrolyte secondary battery typically has a configuration in which an electrode body and a nonaqueous electrolyte are accommodated in a battery case (see, for example, Patent Documents 1 and 2). The non-aqueous electrolyte serves as a transfer medium for ions that are charge carriers. Further, the non-aqueous electrolyte plays a role of forming a protective film (Solid Electrolyte Interface: SEI film) on the negative electrode surface by being reduced and decomposed.

非水電解液二次電池は、充放電を繰り返した際の容量の低下ができるだけ小さいことが望まれている。特に、例えば60℃程度の高温で充放電を繰り返した際の容量の低下ができるだけ小さいことが望まれている。   Non-aqueous electrolyte secondary batteries are desired to have as small a decrease in capacity as possible when charging and discharging are repeated. In particular, it is desired that the capacity decrease when charging / discharging is repeated at a high temperature of about 60 ° C. is as small as possible.

特開2002−252038号公報JP 2002-252038 A 特開2008−538448号公報JP 2008-538448 A

そこで本発明の目的は、高温で充放電を繰り返した際の容量の低下が抑制された非水電解液二次電池を提供することにある。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a decrease in capacity when charging / discharging is repeated at a high temperature is suppressed.

本発明者らが鋭意検討した結果、非水電解液二次電池を高温で繰り返して充放電した場合に電池容量が低下する原因の一つが、充電時に正極から放出されたリチウムイオンが負極表面上のSEI膜等に固定化され、固定化されたリチウムイオンが正極に戻らずに正極の電位が上昇することにあることを見出した。そして本発明者らがさらに鋭意検討した結果、N−メチル−2−ピロリドン(NMP)を適量非水電解液に添加すれば、NMPが正極の電位上昇を抑制するよう作用することを見出した。
すなわち、ここに開示される非水電解液二次電池は、電池ケースと、前記電池ケースに収容された電極体と、前記電池ケースに収容された非水電解液とを備える。前記非水電解液は、NMPを、電池容量1Ahあたり18μL超1500μL未満含む。
このような構成によれば、高温(例えば60℃程度)で充放電を繰り返した際の容量の低下が抑制された非水電解液二次電池を提供することができる。
As a result of intensive studies by the present inventors, one of the causes of the decrease in battery capacity when the nonaqueous electrolyte secondary battery is repeatedly charged and discharged at a high temperature is that lithium ions released from the positive electrode during charging are on the negative electrode surface. It was found that the potential of the positive electrode is increased without the lithium ions immobilized on the SEI film and the like being returned to the positive electrode. As a result of further intensive studies by the present inventors, it has been found that if an appropriate amount of N-methyl-2-pyrrolidone (NMP) is added to the non-aqueous electrolyte, NMP acts to suppress the potential increase of the positive electrode.
That is, the nonaqueous electrolyte secondary battery disclosed herein includes a battery case, an electrode body accommodated in the battery case, and a nonaqueous electrolyte solution accommodated in the battery case. The non-aqueous electrolyte contains NMP more than 18 μL and less than 1500 μL per 1Ah of battery capacity.
According to such a configuration, it is possible to provide a non-aqueous electrolyte secondary battery in which a decrease in capacity when charging / discharging is repeated at a high temperature (for example, about 60 ° C.) is suppressed.

本発明の一実施形態に係るリチウムイオン二次電池10を模式的に示す断面図である。It is sectional drawing which shows typically the lithium ion secondary battery 10 which concerns on one Embodiment of this invention. リチウムイオン二次電池10に用いられる電極体40の構成を示す模式図である。2 is a schematic diagram showing a configuration of an electrode body 40 used in the lithium ion secondary battery 10. FIG. 例1および例2に係る非水電解液二次電池の初期容量の測定結果を示すグラフである。4 is a graph showing measurement results of initial capacity of non-aqueous electrolyte secondary batteries according to Example 1 and Example 2. 例1および例2に係る非水電解液二次電池の高温耐久試験における容量維持率の測定結果を示すグラフである。It is a graph which shows the measurement result of the capacity | capacitance maintenance factor in the high temperature endurance test of the nonaqueous electrolyte secondary battery which concerns on Example 1 and Example 2. FIG. 例1および例2に係る非水電解液二次電池の正極の残存容量の測定結果を示すグラフである。4 is a graph showing measurement results of a remaining capacity of a positive electrode of a nonaqueous electrolyte secondary battery according to Example 1 and Example 2.

以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解液二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Embodiments according to the present invention will be described below with reference to the drawings. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, a general configuration and manufacturing process of a non-aqueous electrolyte secondary battery that does not characterize the present invention) ) Can be understood as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected and demonstrated to the member and site | part which show | plays the same effect | action. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。以下、リチウムイオン二次電池を例にして本発明について詳細に説明する。なお、本発明をかかる実施形態に記載されたものに限定することを意図したものではなく、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の非水電解液二次電池(例えばナトリウムイオン二次電池)にも適用される。   In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. Hereinafter, the present invention will be described in detail by taking a lithium ion secondary battery as an example. It should be noted that the present invention is not intended to be limited to the one described in the embodiment, and the technical idea of the present invention is that other secondary nonaqueous electrolyte solutions having other charge carriers (for example, sodium ions) are used. The present invention is also applied to a battery (for example, a sodium ion secondary battery).

図1は、一実施形態に係るリチウムイオン二次電池10を模式的に示す断面図である。図2は、リチウムイオン二次電池10に用いられる電極体40の構成を示す模式図である。リチウムイオン二次電池10は、図1に示すように、電池ケース20と、電極体40(図1では、捲回電極体)とを備えている。   FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery 10 according to an embodiment. FIG. 2 is a schematic diagram showing the configuration of the electrode body 40 used in the lithium ion secondary battery 10. As shown in FIG. 1, the lithium ion secondary battery 10 includes a battery case 20 and an electrode body 40 (in FIG. 1, a wound electrode body).

電池ケース20は、ケース本体21と、封口板22とを備えている。ケース本体21は、一端に矩形の開口部を有する箱形を有している。ここで、ケース本体21は、リチウムイオン二次電池10の通常の使用状態における上面に相当する一面が開口した有底直方体形状を有している。封口板22は、ケース本体21の開口を塞ぐ部材である。封口板22は凡そ矩形のプレートで構成されている。かかる封口板22がケース本体21の開口周縁に溶接されることによって、略六面体形状の電池ケース20が構成されている。電池ケース20の材質は、例えば、軽量で熱伝導性の良い金属材料を主体に構成された電池ケース20が好ましく用いられる。このような金属製材料としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼等が挙げられる。なお、ここでは、矩形のケースが例示されているが、電池ケース20はかかる形状に限定されない。例えば、電池ケース20は、円筒形状のケースであってもよい。また、電池ケース20は、電極体を包む袋状の形態でもよく、いわゆるラミネートタイプの電池ケース20でもよい。   The battery case 20 includes a case body 21 and a sealing plate 22. The case main body 21 has a box shape having a rectangular opening at one end. Here, the case main body 21 has a bottomed rectangular parallelepiped shape in which one surface corresponding to the upper surface in the normal use state of the lithium ion secondary battery 10 is opened. The sealing plate 22 is a member that closes the opening of the case body 21. The sealing plate 22 is a rectangular plate. The sealing plate 22 is welded to the peripheral edge of the opening of the case body 21 to form a substantially hexahedral battery case 20. As the material of the battery case 20, for example, a battery case 20 mainly composed of a metal material that is lightweight and has good thermal conductivity is preferably used. Examples of such a metal material include aluminum, stainless steel, nickel-plated steel, and the like. Although a rectangular case is illustrated here, the battery case 20 is not limited to such a shape. For example, the battery case 20 may be a cylindrical case. Further, the battery case 20 may have a bag shape that wraps the electrode body, or may be a so-called laminate type battery case 20.

図1に示す例では、封口板22に外部接続用の正極端子23(外部端子)および負極端子24(外部端子)が取り付けられている。封口板22には、安全弁30と、注液口32が形成されている。安全弁30は、電池ケース20の内圧が所定レベル(例えば、設定開弁圧0.3MPa〜1.0MPa程度)以上に上昇した場合に該内圧を開放するように構成されている。また、図1では、非水電解液80が注入された後で、注液口32が封止材33によって封止された状態が図示されている。   In the example shown in FIG. 1, a positive electrode terminal 23 (external terminal) and a negative electrode terminal 24 (external terminal) for external connection are attached to the sealing plate 22. A safety valve 30 and a liquid injection port 32 are formed on the sealing plate 22. The safety valve 30 is configured to release the internal pressure when the internal pressure of the battery case 20 rises to a predetermined level (for example, a set valve opening pressure of about 0.3 MPa to 1.0 MPa) or more. Further, FIG. 1 shows a state in which the liquid injection port 32 is sealed with the sealing material 33 after the nonaqueous electrolytic solution 80 is injected.

電極体40は、図2に示すように、帯状の正極(正極シート50)と、帯状の負極(負極シート60)と、帯状のセパレータ(セパレータ72,74)とを備えている。   As shown in FIG. 2, the electrode body 40 includes a strip-shaped positive electrode (positive electrode sheet 50), a strip-shaped negative electrode (negative electrode sheet 60), and strip-shaped separators (separators 72 and 74).

正極シート50は、帯状の正極集電箔51と、正極活物質層53とを備えている。正極集電箔51には、例えば、アルミニウム箔等を用いることができる。正極集電箔51の幅方向片側には、縁部に沿って露出部52が設けられている。図示例では、正極活物質層53は、正極集電箔51に設けられた露出部52を除いて、正極集電箔51の両面に形成されている。しかしながら、正極活物質層53は、正極集電箔51の片面のみに形成されていてもよい。   The positive electrode sheet 50 includes a strip-shaped positive electrode current collector foil 51 and a positive electrode active material layer 53. For the positive electrode current collector foil 51, for example, an aluminum foil or the like can be used. On one side of the positive electrode current collector foil 51 in the width direction, an exposed portion 52 is provided along the edge. In the illustrated example, the positive electrode active material layer 53 is formed on both surfaces of the positive electrode current collector foil 51 except for the exposed portion 52 provided on the positive electrode current collector foil 51. However, the positive electrode active material layer 53 may be formed only on one side of the positive electrode current collector foil 51.

正極活物質層53は、典型的には正極活物質と導電材と結着剤(バインダ)等とを含む。正極活物質としては、例えば、層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5、LiFePO等)を採用し得る。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を採用し得る。結着剤としては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。 The positive electrode active material layer 53 typically includes a positive electrode active material, a conductive material, a binder (binder), and the like. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiFePO 4, etc.). As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be adopted. As the binder, various polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be employed.

負極シート60は、帯状の負極集電箔61と、負極活物質層63とを備えている。負極集電箔61には、例えば、銅箔等を用いることができる。負極集電箔61の幅方向片側には、縁部に沿って露出部62が設けられている。図示例では、負極活物質層63は、負極集電箔61に設けられた露出部62を除いて、負極集電箔61の両面に形成されている。しかしながら、負極活物質層63は、負極集電箔61の片面のみに形成されていてもよい。   The negative electrode sheet 60 includes a strip-shaped negative electrode current collector foil 61 and a negative electrode active material layer 63. For the negative electrode current collector foil 61, for example, a copper foil or the like can be used. On one side in the width direction of the negative electrode current collector foil 61, an exposed portion 62 is provided along the edge portion. In the illustrated example, the negative electrode active material layer 63 is formed on both surfaces of the negative electrode current collector foil 61 except for the exposed portion 62 provided on the negative electrode current collector foil 61. However, the negative electrode active material layer 63 may be formed only on one side of the negative electrode current collector foil 61.

負極活物質層63は、典型的には、負極活物質と結着剤と増粘剤等とを含む。負極活物質としては、例えば、黒鉛(天然黒鉛、人造黒鉛)、低結晶性カーボン(ハードカーボン、ソフトカーボン)等の炭素材料を用いることができ、なかでも黒鉛を好適に採用し得る。結着剤としては、スチレンブタジエンゴム(SBR)等の各種ポリマー材料を採用し得る。増粘剤としては、カルボキシメチルセルロース(CMC)等の各種のポリマー材料を採用し得る。   The negative electrode active material layer 63 typically includes a negative electrode active material, a binder, a thickener, and the like. As the negative electrode active material, for example, carbon materials such as graphite (natural graphite, artificial graphite) and low crystalline carbon (hard carbon, soft carbon) can be used, and among them, graphite can be preferably used. As the binder, various polymer materials such as styrene butadiene rubber (SBR) can be adopted. As the thickener, various polymer materials such as carboxymethyl cellulose (CMC) can be employed.

セパレータ72、74としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔性シート(フィルム)等を用いることができ、好ましくは、ポリオレフィン樹脂(例、PE、PP)からなる多孔性シートが用いられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。なお、セパレータ72、74には、耐熱層(HRL)が設けられていてもよい。   As the separators 72 and 74, for example, a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide can be used. Preferably, a polyolefin resin (eg, PE , PP) is used. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). The separators 72 and 74 may be provided with a heat resistant layer (HRL).

電極体40においては、図2に示すように、正極シート50と、負極シート60と、セパレータ72,74とが順に重ねて捲回されており、捲回された電極体(捲回電極体)40は、捲回軸WLを含む一平面に沿って扁平に押し曲げられた形状を有する。負極活物質層63の幅b1は、正極活物質層53の幅a1よりも少し広い。さらにセパレータ72、74の幅c1、c2は、負極活物質層63の幅b1よりも少し広い(c1、c2>b1>a1)。図2に示す例では、正極集電箔51の露出部52と負極集電箔61の露出部62とは、それぞれセパレータ72、74の両側において、らせん状に露出している。本実施形態では、図1に示すように、電極体40は、セパレータ72、74からはみ出た正負の露出部52、62の中間部分が寄せ集められ、電池ケース20の内部に配置された正負の内部端子23、24の先端部23a、24aに溶接されている。   In the electrode body 40, as shown in FIG. 2, the positive electrode sheet 50, the negative electrode sheet 60, and the separators 72 and 74 are wound in order, and the wound electrode body (wound electrode body). 40 has a shape that is flatly pushed and bent along one plane including the winding axis WL. The width b1 of the negative electrode active material layer 63 is slightly wider than the width a1 of the positive electrode active material layer 53. Furthermore, the widths c1 and c2 of the separators 72 and 74 are slightly wider than the width b1 of the negative electrode active material layer 63 (c1, c2> b1> a1). In the example shown in FIG. 2, the exposed portion 52 of the positive electrode current collector foil 51 and the exposed portion 62 of the negative electrode current collector foil 61 are spirally exposed on both sides of the separators 72 and 74, respectively. In the present embodiment, as shown in FIG. 1, the electrode body 40 is formed by gathering the intermediate portions of the positive and negative exposed portions 52 and 62 protruding from the separators 72 and 74, and arranging the positive and negative electrodes disposed inside the battery case 20. The inner terminals 23 and 24 are welded to the tip portions 23a and 24a.

図1に示す形態では、捲回軸WLを含む一平面に沿って扁平な捲回電極体40が電池ケース20に収容されている。電池ケース20には、さらに非水電解液80が収容されている。非水電解液80は、捲回軸WL(図2参照)の軸方向の両側から電極体40の内部に浸入する。なお、図1は、電池ケース20内に注入される非水電解液80の量を厳密に示すものではない。   In the form shown in FIG. 1, a flat wound electrode body 40 is accommodated in the battery case 20 along one plane including the winding axis WL. The battery case 20 further contains a nonaqueous electrolytic solution 80. The non-aqueous electrolyte 80 enters the electrode body 40 from both sides in the axial direction of the winding axis WL (see FIG. 2). Note that FIG. 1 does not strictly indicate the amount of the nonaqueous electrolyte solution 80 injected into the battery case 20.

非水電解液80は、NMPを、電池容量1Ahあたり18μL超1500μL未満含んでいる。本発明者らの検討により、非水電解液二次電池を高温で繰り返し充放電した場合に電池容量が低下する原因の一つが、充電時に正極から放出されたリチウムイオンが負極表面上のSEI膜等に固定化され、固定化されたリチウムイオンが正極に戻らずに正極の電位が上昇し、不可逆容量が発生することにあることが見出された。電池の高入出力化を図るために負極の表面積を増加させると、不可逆容量が大きくなるため、容量の低下はより顕著になる。これに対し本発明者らがさらに検討した結果、NMPを適量非水電解液に添加すれば、NMPが正極上で酸化反応を引き起こすことによって、正極の電位上昇を抑制できることを見出した。すなわち、NMPがいわば正極電位上昇抑制剤として機能し、非水電解液二次電池を高温で繰り返し充放電した場合の電池容量の低下を抑制できることを見出した。   The non-aqueous electrolyte 80 contains NMP more than 18 μL and less than 1500 μL per battery capacity 1 Ah. According to the study by the present inventors, when the non-aqueous electrolyte secondary battery is repeatedly charged and discharged at a high temperature, one of the causes that the battery capacity is reduced is that the lithium ions released from the positive electrode during charging are the SEI film on the negative electrode surface. It has been found that the potential of the positive electrode rises without the lithium ions fixed to the positive electrode returning to the positive electrode and irreversible capacity is generated. When the surface area of the negative electrode is increased in order to increase the input / output of the battery, the irreversible capacity increases, so that the decrease in capacity becomes more remarkable. On the other hand, as a result of further studies by the present inventors, it was found that if an appropriate amount of NMP is added to the nonaqueous electrolyte, NMP causes an oxidation reaction on the positive electrode, thereby suppressing an increase in potential of the positive electrode. That is, the present inventors have found that NMP functions as a positive electrode potential increase inhibitor, and can suppress a decrease in battery capacity when a nonaqueous electrolyte secondary battery is repeatedly charged and discharged at a high temperature.

特許文献1には、自己放電の少ない非水電解液二次電池を提供するために、電池中(正負極中)のNMPをできるだけ少量に制御することが記載されている。しかしながら、本実施形態においては、正極の電位上昇を抑制するために、NMPを積極的に添加する。NMPの正極電位上昇抑制剤としての役割を十分に発揮させるために、非水電解液が含むNMPの量は、電池容量1Ahあたり18μL超である。   Patent Document 1 describes that NMP in the battery (in the positive and negative electrodes) is controlled to be as small as possible in order to provide a non-aqueous electrolyte secondary battery with less self-discharge. However, in this embodiment, NMP is positively added in order to suppress the potential increase of the positive electrode. In order to fully exhibit the role of NMP as a positive electrode potential increase inhibitor, the amount of NMP contained in the non-aqueous electrolyte is more than 18 μL per 1 Ah of battery capacity.

特許文献2には非水電解液そのものとしてNMPを使用できることが記載されている。NMPを非水電解液そのものとして使用することは、非水電解液が高い割合でNMPを含むことを意味する。しかしながら、非水電解液中のNMPの割合が高すぎると、電池抵抗が高くなりすぎる。そこで、本実施形態では、非水電解液が含むNMPの量は、電池容量1Ahあたり1500μL未満である。   Patent Document 2 describes that NMP can be used as the non-aqueous electrolyte itself. The use of NMP as the non-aqueous electrolyte itself means that the non-aqueous electrolyte contains NMP at a high rate. However, if the proportion of NMP in the non-aqueous electrolyte is too high, the battery resistance becomes too high. Therefore, in the present embodiment, the amount of NMP contained in the nonaqueous electrolytic solution is less than 1500 μL per battery capacity 1 Ah.

非水電解液は、NMPを上記の量含むものである限り、その種類には特に制限はなく、従来のリチウムイオン二次電池と同様のものを使用することができる。典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の非水電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下(例えば1.0mol/L)が好ましい。 As long as the non-aqueous electrolyte contains NMP in the above amount, the type thereof is not particularly limited, and the same non-aqueous electrolyte as that of a conventional lithium ion secondary battery can be used. Typically, an organic solvent (non-aqueous solvent) containing a supporting salt can be used. Examples of the non-aqueous solvent include various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, and lactones that are used in non-aqueous electrolytes of general lithium ion secondary batteries. Can be used. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 (preferably LiPF 6 ) can be suitably used. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less (for example, 1.0 mol / L).

なお、上記非水電解液中には、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒、支持塩以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)、フルオロエチレンカーボナート(FEC)等の被膜形成剤;分散剤;増粘剤;等の各種添加剤を含み得る。   In the non-aqueous electrolyte, gas generation of components other than the above-mentioned non-aqueous solvent and supporting salt, for example, biphenyl (BP), cyclohexylbenzene (CHB), etc., is provided as long as the effects of the present invention are not significantly impaired. Agents; film forming agents such as oxalato complex compounds containing boron and / or phosphorus atoms, vinylene carbonate (VC), fluoroethylene carbonate (FEC); dispersants; thickeners; .

本実施形態に係るリチウムイオン二次電池10は、電極体40が電池ケース20に収容された電池セルを構築する工程、およびNMPを電池容量1Ahあたり18μL超1500μL未満含む非水電解液を、構築した電池セルに注入する工程を実施することにより、製造することができる。活性化工程(例えば、60℃で20時間以上行われる活性化工程)をさらに行ってもよい。
なお、活物質層を備える電極を作製する方法の一例として、活物質等と溶媒を含むペーストを集電箔上に塗布し、次いで乾燥する方法がある。この溶媒として、NMPが使用されることがある。このとき、活物質層にNMPが残存する場合がある。この場合には、残存するNMPの量を考慮した上で、非水電解液が含むNMPの量を適宜調整すればよい。(すなわち、非水電解液を構築した電池セルに注入する工程は、注入された非水電解液がNMPを電池容量1Ahあたり18μL超1500μL未満含むように行われる。)
なお、活物質層にNMPが多量に残存すると、活物質層の剥離強度の低下が起こりうる。したがって、活物質層に残存するNMPの量をできるだけ小さくし、NMPを非水電解液に添加するのがよい。
The lithium ion secondary battery 10 according to the present embodiment constructs a step of constructing a battery cell in which the electrode body 40 is accommodated in the battery case 20, and a nonaqueous electrolytic solution containing NMP of more than 18 μL and less than 1500 μL per 1Ah of battery capacity. It can manufacture by implementing the process inject | poured into the battery cell. An activation step (for example, an activation step performed at 60 ° C. for 20 hours or more) may be further performed.
Note that as an example of a method for manufacturing an electrode including an active material layer, there is a method in which a paste containing an active material and a solvent is applied onto a current collector foil and then dried. NMP may be used as this solvent. At this time, NMP may remain in the active material layer. In this case, the amount of NMP contained in the nonaqueous electrolytic solution may be appropriately adjusted in consideration of the amount of remaining NMP. (That is, the step of injecting the non-aqueous electrolyte into the constructed battery cell is performed so that the injected non-aqueous electrolyte contains more than 18 μL and less than 1500 μL of NMP per 1 Ah of battery capacity.)
Note that when a large amount of NMP remains in the active material layer, the peel strength of the active material layer may decrease. Therefore, it is preferable to reduce the amount of NMP remaining in the active material layer as much as possible and add NMP to the non-aqueous electrolyte.

また、容量が低下した電池に対し、NMPを電池容量1Ahあたり18μL超1500μL未満含む非水電解液を再注入して本実施形態に係るリチウムイオン二次電池10を構築することも可能である。この場合、電池容量を回復させることができる。   Moreover, it is also possible to construct the lithium ion secondary battery 10 according to the present embodiment by reinjecting a non-aqueous electrolyte solution containing NMP more than 18 μL and less than 1500 μL per 1 Ah of battery capacity into a battery whose capacity has decreased. In this case, the battery capacity can be recovered.

以上のようにして構成されるリチウムイオン二次電池10は、各種用途に利用可能であり、好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池10は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。   The lithium ion secondary battery 10 configured as described above can be used for various applications, and preferred applications include an electric vehicle (EV), a hybrid vehicle (HV), a plug-in hybrid vehicle (PHV), and the like. Driving power source mounted on the vehicle. The lithium ion secondary battery 10 can also be used in the form of a battery pack typically formed by connecting a plurality of lithium ion secondary batteries 10 in series and / or in parallel.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<例1>
正極活物質粉末としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=92:5:3の質量比でNMPと混合し、正極活物質層形成用スラリーを調製した。このスラリーを、長尺状のアルミニウム箔の両面に帯状に塗布して乾燥した後、プレスすることにより、正極を作製した。
また、負極活物質としての黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。このスラリーを、長尺状の銅箔の両面に帯状に塗布して乾燥した後、プレスすることにより、負極を作製した。
また、2枚のセパレータシート(多孔性ポリオレフィンシート)を用意した。
<Example 1>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (LNCM) as a positive electrode active material powder, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are LNCM: AB: PVdF = 92: 5: 3 was mixed with NMP to prepare a positive electrode active material layer forming slurry. The slurry was applied in a strip shape on both sides of a long aluminum foil, dried, and then pressed to prepare a positive electrode.
Further, graphite (C) as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener have a mass of C: SBR: CMC = 98: 1: 1. The slurry for negative electrode active material layer formation was prepared by mixing with ion exchange water in a ratio. The slurry was applied in a strip shape on both sides of a long copper foil, dried, and then pressed to prepare a negative electrode.
In addition, two separator sheets (porous polyolefin sheets) were prepared.

作製した正極と負極と用意した2枚のセパレータシートとを重ね合わせ、捲回して捲回電極体を作製した。このとき、正極と負極との間にセパレータが介在するようにした。
この作製した捲回電極体を、注液口を有する電池ケースに収容した。
The produced positive electrode and negative electrode and two prepared separator sheets were superposed and wound to produce a wound electrode body. At this time, a separator was interposed between the positive electrode and the negative electrode.
The produced wound electrode body was accommodated in a battery case having a liquid inlet.

続いて、電池ケースの注液口から非水電解液を注入し、当該注液口を気密に封止して例1に係る非水電解液二次電池を作製した。なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=1:1:1の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させ、さらにNMPを添加したものを用いた。非水電解液中の電池容量1AhあたりのNMPの量は、400μLとした。なお、電池容量には下記で求めた初期容量の値を用いた。 Subsequently, a non-aqueous electrolyte was injected from the injection port of the battery case, and the injection port was hermetically sealed to produce a non-aqueous electrolyte secondary battery according to Example 1. The non-aqueous electrolyte is supported by a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 1: 1: 1. LiPF 6 as a salt was dissolved at a concentration of 1.0 mol / L, and NMP was further added. The amount of NMP per battery capacity 1 Ah in the non-aqueous electrolyte was 400 μL. The initial capacity value obtained below was used as the battery capacity.

<例2>
NMPを含まない以外は例1と同様の組成の非水電解液を用いた以外は、例1と同様にして例2に係る非水電解液二次電池を作製した。
<Example 2>
A non-aqueous electrolyte secondary battery according to Example 2 was fabricated in the same manner as Example 1 except that a non-aqueous electrolyte solution having the same composition as Example 1 was used except that NMP was not included.

<活性化処理>
上記作製した例1および例2に係る非水電解液二次電池を初期充電した後、60℃の恒温槽にて24時間保存した。
<Activation processing>
The prepared non-aqueous electrolyte secondary batteries according to Example 1 and Example 2 were initially charged and then stored in a constant temperature bath at 60 ° C. for 24 hours.

<初期容量>
25℃の温度環境下において、3.0Vから4.1Vの電圧範囲で、以下の手順1〜手順4に従って上記活性化処理後の例1および例2に係る非水電解液二次電池の初期容量を測定した。
[手順1]1Cの定電流で4.1Vまで充電した後、5分間休止する。
[手順2]1Cの定電流で3.0Vまで放電した後、5分間休止する。
[手順3]1Cの定電流で4.1Vまで充電した後、電流値が0.1Cになるまで定電圧充電し、その後10秒間休止する。
[手順4]1Cの定電流で3.0Vまで放電した後、電流値が0.1Cになるまで定電圧放電し、その後10秒間休止する。
そして、手順4における放電容量(CCCV放電容量)を初期容量とした。例1および例2に係る非水電解液二次電池の初期容量の測定結果を図3に示す。なお、図3では、例1に係る非水電解液二次電池の初期容量は、例2に係る非水電解液二次電池の初期容量を100%とした場合の相対値として示してある。
<Initial capacity>
In the temperature environment of 25 ° C., in the voltage range of 3.0 V to 4.1 V, the initial stage of the non-aqueous electrolyte secondary battery according to Example 1 and Example 2 after the activation treatment according to the following procedure 1 to procedure 4 The capacity was measured.
[Procedure 1] After charging to 4.1 V with a constant current of 1 C, pause for 5 minutes.
[Procedure 2] After discharging to 3.0 V with a constant current of 1 C, pause for 5 minutes.
[Procedure 3] After charging to 4.1 V with a constant current of 1 C, charge at a constant voltage until the current value reaches 0.1 C, and then rest for 10 seconds.
[Procedure 4] After discharging to 3.0 V with a constant current of 1 C, constant voltage discharge until the current value reaches 0.1 C, and then rest for 10 seconds.
And the discharge capacity (CCCV discharge capacity) in the procedure 4 was made into the initial capacity. The measurement results of the initial capacity of the nonaqueous electrolyte secondary batteries according to Example 1 and Example 2 are shown in FIG. In FIG. 3, the initial capacity of the non-aqueous electrolyte secondary battery according to Example 1 is shown as a relative value when the initial capacity of the non-aqueous electrolyte secondary battery according to Example 2 is 100%.

<高温耐久試験>
次に、初期容量測定後の例1および例2に係る非水電解液二次電池を、温度60℃に設定された恒温槽内に2時間以上静置した後、以下の充放電操作(1)、(2)を200サイクル繰り返し、高温耐久性を評価した。
(1)2Cのレートで4.1VまでCC充電した後、10分休止する。
(2)2Cのレートで3.0VまでCC放電した後、10分休止する。
高温耐久試験終了後、1サイクル目のCC放電容量と200サイクル目のCC放電容量から、下式:
(200サイクル目のCC放電容量/1サイクル目のCC放電容量)×100
によって容量維持率(%)を算出した。例1および例2に係る非水電解液二次電池の容量維持率の測定結果を図4に示す。
<High temperature durability test>
Next, after the non-aqueous electrolyte secondary battery according to Example 1 and Example 2 after the initial capacity measurement was left in a thermostatic chamber set at a temperature of 60 ° C. for 2 hours or more, the following charge / discharge operation (1 ) And (2) were repeated 200 cycles to evaluate high temperature durability.
(1) After charging CC to 4.1 V at a rate of 2C, pause for 10 minutes.
(2) After discharging CC to 3.0 V at a rate of 2 C, pause for 10 minutes.
After the end of the high temperature durability test, from the CC discharge capacity of the first cycle and the CC discharge capacity of the 200th cycle, the following formula:
(CC discharge capacity at the 200th cycle / CC discharge capacity at the first cycle) × 100
The capacity retention rate (%) was calculated by FIG. 4 shows the measurement results of the capacity retention rates of the nonaqueous electrolyte secondary batteries according to Example 1 and Example 2.

図3より、非水電解液がNMPを含む例1に係る非水電解液二次電池は、非水電解液がNMPを含む例2に係る非水電解液二次電池に比べ、初期容量が高いことがわかる。さらに、図4に示されるように、非水電解液がNMPを含む例1に係る非水電解液二次電池は、非水電解液がNMPを含む例2に係る非水電解液二次電池に比べ、容量維持率が高かった。したがって、非水電解液がNMPを含む例1に係る非水電解液二次電池は、高温で充放電を繰り返した際の容量の低下が抑制されていることがわかる。   From FIG. 3, the non-aqueous electrolyte secondary battery according to Example 1 in which the non-aqueous electrolyte contains NMP has an initial capacity higher than that of the non-aqueous electrolyte secondary battery in accordance with Example 2 where the non-aqueous electrolyte contains NMP. I understand that it is expensive. Further, as shown in FIG. 4, the nonaqueous electrolyte secondary battery according to Example 1 in which the nonaqueous electrolyte contains NMP is the same as the nonaqueous electrolyte secondary battery according to Example 2 in which the nonaqueous electrolyte contains NMP. The capacity maintenance rate was high. Therefore, it can be seen that the non-aqueous electrolyte secondary battery according to Example 1 in which the non-aqueous electrolyte contains NMP suppresses a decrease in capacity when charging and discharging are repeated at a high temperature.

また、高温耐久試験を行った例1および例2に係る非水電解液二次電池について、正極の単位活物質重量あたりの残存容量(mAh/g)を求めた。結果を図5に示す。図5より、非水電解液がNMPを含む例1に係る非水電解液二次電池では、正極の残存容量が低くなっているがわかる。この結果は、正極の電位上昇が抑制されていることを意味する。よって、非水電解液がNMPを含む例1に係る非水電解液二次電池では、NMPがいわば正極電位上昇抑制剤として機能することによって、高温で充放電を繰り返した際の容量の低下が抑制されたといえる。   Further, the remaining capacity per unit active material weight of the positive electrode (mAh / g) was determined for the non-aqueous electrolyte secondary batteries according to Example 1 and Example 2 subjected to the high temperature durability test. The results are shown in FIG. FIG. 5 shows that the remaining capacity of the positive electrode is low in the nonaqueous electrolyte secondary battery according to Example 1 in which the nonaqueous electrolyte contains NMP. This result means that the potential increase of the positive electrode is suppressed. Therefore, in the non-aqueous electrolyte secondary battery according to Example 1 in which the non-aqueous electrolyte contains NMP, NMP functions as a positive electrode potential increase inhibitor, so that the capacity decreases when charging and discharging are repeated at a high temperature. It can be said that it was suppressed.

さらに、非水電解液中のNMPの量を変えた以外は例1と同様にして非水電解液二次電池をいくつか作製し、上記の高温耐久試験を行い、非水電解液中のNMPの量についての検討を行った。その結果、非水電解液中の電池容量1AhあたりのNMPの含有量α(μL/Ah)が、18<α<1500の範囲において、良好な結果が得られた。   Further, some non-aqueous electrolyte secondary batteries were produced in the same manner as in Example 1 except that the amount of NMP in the non-aqueous electrolyte was changed, and the above high-temperature durability test was conducted. The amount was examined. As a result, good results were obtained when the content α (μL / Ah) of NMP per 1 Ah of battery capacity in the non-aqueous electrolyte was in the range of 18 <α <1500.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

10 リチウムイオン二次電池
20 電池ケース
21 ケース本体
22 封口板
23 正極端子
24 負極端子
30 安全弁
32 注液口
33 封止材
40 捲回電極体
50 正極シート
51 正極集電箔
52 露出部
53 正極活物質層
60 負極シート
61 負極集電箔
62 露出部
63 負極活物質層
72,74 セパレータ
80 非水電解液
WL 捲回軸
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Battery case 21 Case main body 22 Sealing plate 23 Positive electrode terminal 24 Negative electrode terminal 30 Safety valve 32 Injection port 33 Sealing material 40 Winding electrode body 50 Positive electrode sheet 51 Positive electrode current collecting foil 52 Exposed part 53 Positive electrode activity Material layer 60 Negative electrode sheet 61 Negative electrode current collector foil 62 Exposed portion 63 Negative electrode active material layers 72 and 74 Separator 80 Nonaqueous electrolyte WL Winding shaft

Claims (1)

電池ケースと、
前記電池ケースに収容された電極体と、
前記電池ケースに収容された非水電解液と
を備える非水電解液二次電池であって、
前記非水電解液が、N−メチル−2−ピロリドンを、電池容量1Ahあたり18μL超1500μL未満含む、非水電解液二次電池。
A battery case,
An electrode body housed in the battery case;
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte housed in the battery case,
The non-aqueous electrolyte secondary battery in which the non-aqueous electrolyte contains N-methyl-2-pyrrolidone more than 18 μL and less than 1500 μL per battery capacity 1 Ah.
JP2015138682A 2015-07-10 2015-07-10 Nonaqueous electrolyte secondary battery Pending JP2017021989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138682A JP2017021989A (en) 2015-07-10 2015-07-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138682A JP2017021989A (en) 2015-07-10 2015-07-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2017021989A true JP2017021989A (en) 2017-01-26

Family

ID=57889894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138682A Pending JP2017021989A (en) 2015-07-10 2015-07-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2017021989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090680A1 (en) * 2019-11-07 2021-05-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090680A1 (en) * 2019-11-07 2021-05-14
WO2021090680A1 (en) * 2019-11-07 2021-05-14 株式会社村田製作所 Positive electrode for secondary battery and secondary battery
JP7392733B2 (en) 2019-11-07 2023-12-06 株式会社村田製作所 Positive electrode for secondary batteries and secondary batteries

Similar Documents

Publication Publication Date Title
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
US10541418B2 (en) Nonaqueous electrolyte secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP6894201B2 (en) Non-aqueous electrolyte secondary battery
KR20180000686A (en) Lithium ion secondary battery
JP2017103163A (en) Nonaqueous electrolyte secondary battery
JP2020009626A (en) Nonaqueous electrolyte lithium ion secondary battery
CN110931860B (en) Nonaqueous electrolyte for lithium ion secondary battery
JP7125655B2 (en) negative electrode
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP6569907B2 (en) Non-aqueous electrolyte secondary battery
JP2017021989A (en) Nonaqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP7249988B2 (en) lithium ion secondary battery
JP7307888B2 (en) negative electrode
JP2019145276A (en) Secondary cell
JP7377827B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP6731155B2 (en) Non-aqueous electrolyte secondary battery
JP7079417B2 (en) How to recover the resistance characteristics of non-aqueous electrolyte secondary batteries
JP6635320B2 (en) Non-aqueous electrolyte secondary battery
JP6663570B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery