JP2007220455A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007220455A
JP2007220455A JP2006039016A JP2006039016A JP2007220455A JP 2007220455 A JP2007220455 A JP 2007220455A JP 2006039016 A JP2006039016 A JP 2006039016A JP 2006039016 A JP2006039016 A JP 2006039016A JP 2007220455 A JP2007220455 A JP 2007220455A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
battery
lini
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039016A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuno
博 松野
Makoto Taguchi
真 田口
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006039016A priority Critical patent/JP2007220455A/en
Publication of JP2007220455A publication Critical patent/JP2007220455A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which cycle characteristics are not deteriorated and reliability in high temperature storage is high even when the capacity and energy density of the battery are increased. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with an electrode group comprising a positive plate, a negative plate, and a separator, and a nonaqueous electrolyte, and the volume of the nonaqueous electrolyte is made 1.3-1.8 μL per 1 mAh of discharge capacity. In the nonaqueous electrolyte secondary battery comprising the electrode group having the positive plate, the negative plate, and the separator, and the nonaqueous electrolyte, the volume of the electrolyte is made 1.3-1.8 μL per 1 mAh of the discharge capacity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非水電解液二次電池、特に非水電解液量に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte amount.

近年、電子機器のポータブル化、コードレス化が進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池の要望が強まっている。高電圧、高エネルギー密度を有する非水電解液二次電池の中でも、とりわけリチウム二次電池に対する期待が大きくなっている。また、最近の電子機器は更なる高機能化、高電力化が進んでいて、リチウム二次電池の更なる高エネルギー密度化が求められている。   In recent years, electronic devices have become more portable and cordless, and there is an increasing demand for secondary batteries that are small, lightweight, and have high energy density as power sources for driving these devices. Among non-aqueous electrolyte secondary batteries having high voltage and high energy density, expectations for lithium secondary batteries are particularly high. In addition, recent electronic devices are being further enhanced in functionality and power, and there is a demand for further increase in energy density of lithium secondary batteries.

ところが、このリチウム二次電池には、次に説明する2つの問題があった。1つ目の問題は、この電池は充放電サイクルの進行に伴い非水電解液の一部が分解し消費されることから、極板中の非水電解液量が確保できなくなった場合、液枯れによりサイクル特性が低下するという問題があった。   However, this lithium secondary battery has the following two problems. The first problem is that a part of the non-aqueous electrolyte is decomposed and consumed as the charge / discharge cycle proceeds, so that when the amount of non-aqueous electrolyte in the electrode plate cannot be secured, There was a problem that the cycle characteristics deteriorated due to withering.

2つ目の問題は、リチウム二次電池を高温雰囲気下に暴露した場合、非水電解液が電気化学的、熱的に分解されてガス化する。そのため電池の内圧が上昇して電池が膨れたり、防爆安全弁が誤作動し、電解液が漏れたりするといった問題があった。   The second problem is that when a lithium secondary battery is exposed to a high temperature atmosphere, the non-aqueous electrolyte is decomposed electrochemically and thermally to gasify. For this reason, there has been a problem that the internal pressure of the battery rises and the battery expands, the explosion-proof safety valve malfunctions, and the electrolyte leaks.

このような問題の対策として、要するに充放電サイクル劣化や高温雰囲気下での安全弁誤作動を防止する手段として、単位体積当りの容量110mAh/cc以上の非水電解液二次電池における非水電解液量が、電池の放電容量1mAh当たり1.8〜2.4μLとすることが提案されている(例えば、特許文献1を参照)。
特開2000−285959号公報
In order to prevent such problems, in short, as a means for preventing charge / discharge cycle deterioration and safety valve malfunction in a high temperature atmosphere, a non-aqueous electrolyte solution in a non-aqueous electrolyte secondary battery with a capacity of 110 mAh / cc or more per unit volume It has been proposed that the amount be 1.8 to 2.4 μL per 1 mAh of discharge capacity of the battery (see, for example, Patent Document 1).
JP 2000-285959 A

しかしながら、前述した従来の方法では、正負極板の高密度化により多孔度(極板中の隙間)が減少し、所定量の非水電解液が染み込み難かった。そのため、所定量の非水電解液を注入するのに膨大な時間を要し、生産性の向上に課題があった。また、単位体積当りの容量が120mAh/cc以上になった場合、電池内の一定体積中に正負極板が占有する体積が増え、所定量の非水電解液を染み込ませるだけの体積を確保できないという課題もあった。また、非水電解液が所定量より少ない場合や多い場合は以下のような不具合が発生する。非水電解液が所定量より少ない場合、充放電の繰り返しによる正負極板の膨張収縮に伴い、極板中の非水電解液量が不足し、サイクル特性が低下することとなる。非水電解液が所定量より多い場合、高温保存時において、電池内に余裕の体積がないため電池内圧の上昇を吸収することができず、安全弁が誤作動することとなる。   However, in the conventional method described above, the porosity (gap in the electrode plate) is reduced by increasing the density of the positive and negative electrode plates, and it is difficult for a predetermined amount of the non-aqueous electrolyte to penetrate. Therefore, enormous time is required to inject a predetermined amount of non-aqueous electrolyte, and there is a problem in improving productivity. In addition, when the capacity per unit volume becomes 120 mAh / cc or more, the volume occupied by the positive and negative electrode plates in a certain volume in the battery increases, and it is not possible to secure a volume sufficient to soak a predetermined amount of nonaqueous electrolyte. There was also a problem. In addition, when the non-aqueous electrolyte is less than or larger than the predetermined amount, the following problems occur. When the amount of the non-aqueous electrolyte is less than a predetermined amount, the amount of the non-aqueous electrolyte in the electrode plate becomes insufficient with the expansion and contraction of the positive and negative electrode plates due to repeated charge and discharge, and the cycle characteristics are deteriorated. When the amount of the non-aqueous electrolyte is larger than a predetermined amount, when the battery is stored at a high temperature, there is no room in the battery, so that the increase in the battery internal pressure cannot be absorbed and the safety valve malfunctions.

そこで、本発明は上記従来の問題点に鑑み、電池を高容量・高エネルギー密度化した場合においても、サイクル特性が劣化することなく、高温保存時の信頼性にも優れた非水電解液二次電池を提供することを目的としている。   Therefore, in view of the above-described conventional problems, the present invention provides a non-aqueous electrolyte solution that is excellent in reliability during high-temperature storage without deterioration of cycle characteristics even when the battery is increased in capacity and energy density. The purpose is to provide a secondary battery.

前記従来の課題を解決するために、本発明の非水電解液二次電池は、正極板、負極板およびセパレータを有する電極群と、非水電解液を備え、非水電解液量が放電容量1mAh当たり1.3〜1.8μLとするものである。   In order to solve the conventional problems, a non-aqueous electrolyte secondary battery of the present invention includes an electrode group having a positive electrode plate, a negative electrode plate, and a separator, and a non-aqueous electrolyte, and the amount of the non-aqueous electrolyte is a discharge capacity. The amount is 1.3 to 1.8 μL per mAh.

本発明によると、高容量・高エネルギー密度な非水電解液二次電池で、かつサイクル特性、高温保存時の信頼性に優れた非水電解液二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity and high energy density, and excellent in cycle characteristics and reliability during high-temperature storage.

本発明の非水電解液二次電池は、正極板、負極板およびセパレータを有する電極群と、非水電解液を備え、非水電解液量が放電容量1mAh当たり1.3〜1.8μLとすることを特徴としている。   The non-aqueous electrolyte secondary battery of the present invention includes an electrode group having a positive electrode plate, a negative electrode plate and a separator, and a non-aqueous electrolyte, and the amount of the non-aqueous electrolyte is 1.3 to 1.8 μL per 1 mAh discharge capacity. It is characterized by doing.

こうすることにより、高エネルギー密度で、サイクル特性、高温保存時の信頼性に優れた非水電解質二次電池を得ることができるようになる。非水電解液量を放電容量1mAh当たり1.3μL未満とした場合、充放電の繰り返しにより、正負極板中の非水電解液量が不足し、液枯れによるサイクル特性の低下が見られた。非水電解液量を放電容量1mAh当たり1.8μL以上とした場合、高温保存時に安全弁が誤作動を起こした。以上のことから、非水電解液は電池の放電容量1mAh当たり1.3〜1.8μLとなり、サイクル特性と高温保存時の信頼性の両立が可能となる。   By doing so, it becomes possible to obtain a non-aqueous electrolyte secondary battery having a high energy density, excellent cycle characteristics, and high reliability during high-temperature storage. When the amount of the non-aqueous electrolyte was less than 1.3 μL per 1 mAh discharge capacity, the amount of the non-aqueous electrolyte in the positive and negative electrode plates was insufficient due to repeated charge and discharge, and the cycle characteristics were deteriorated due to liquid drainage. When the amount of the non-aqueous electrolyte was 1.8 μL or more per 1 mAh discharge capacity, the safety valve malfunctioned during high temperature storage. From the above, the non-aqueous electrolyte is 1.3 to 1.8 μL per 1 mAh of battery discharge capacity, and both cycle characteristics and reliability during high temperature storage can be achieved.

本発明の好ましい実施の形態における非水電解液二次電池は、正極活物質を一般式LixNiy1-y2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlの少なくとも1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物が好ましい。 In the nonaqueous electrolyte secondary battery according to a preferred embodiment of the present invention, the positive electrode active material is represented by the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is Co, A lithium composite nickel oxide represented by at least one of Mn, Cr, Fe, Mg, Ti and Al, y: 0.3 ≦ y ≦ 0.95) is preferable.

こうすることにより、正極活物質にリチウム複合コバルト酸化物(以下、LiCoO2と略す)を用いた場合は単位体積当りの容量120mAh/cc程度であるが、正極活物質の一般式がLixNiy1-y2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlからなるいずれか1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物を用いることにより単位体積当りの容量130mAh/cc以上の高エネルギー密度の非水電解液二次電池を得ることができる。 Thus, when lithium composite cobalt oxide (hereinafter abbreviated as LiCoO 2 ) is used as the positive electrode active material, the capacity per unit volume is about 120 mAh / cc, but the general formula of the positive electrode active material is Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is one or more of Co, Mn, Cr, Fe, Mg, Ti and Al, y: 0.3 ≦ y By using the lithium composite nickel oxide represented by ≦ 0.95), a non-aqueous electrolyte secondary battery having a high energy density of 130 mAh / cc or more per unit volume can be obtained.

特に、正極活物質を一般式LixNiy1-y2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlの少なくとも1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物の代表として、LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、LiNi0.6Co0.3Ti0.12、およびLiNi0.5Co0.52が挙げられる。 In particular, the positive electrode active material is represented by the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is at least one of Co, Mn, Cr, Fe, Mg, Ti and Al). As above, as representatives of lithium composite nickel oxide represented by y: 0.3 ≦ y ≦ 0.95), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 LiNi 0.6 Co 0.3 Ti 0.1 O 2 , and LiNi 0.5 Co 0.5 O 2 .

本発明の好ましい実施の形態における非水電解液二次電池は、正極活物質としてリチウム複合ニッケル酸化物を用い、一次粒子が凝集した構造で、二次粒子が球状、もしくは楕円球状であることが好ましい。   The non-aqueous electrolyte secondary battery according to a preferred embodiment of the present invention uses a lithium composite nickel oxide as a positive electrode active material, has a structure in which primary particles are aggregated, and the secondary particles are spherical or elliptical spherical. preferable.

こうすることにより、正極板で非水電解液の液保持性が向上し、少ない非水電解液量でも優れたサイクル特性を発揮できる非水電解液二次電池を得ることができるようになる。   By doing so, the liquid retainability of the non-aqueous electrolyte is improved by the positive electrode plate, and a non-aqueous electrolyte secondary battery that can exhibit excellent cycle characteristics even with a small amount of the non-aqueous electrolyte can be obtained.

電池放電容量において、LiCoO2は単位体積当りの容量120mAh/cc程度に対し、一般式LixNiy1-y2のリチウム複合ニッケル酸化物は単位体積当りの容量130mAh/cc以上であり、一般式LixNiy1-y2の方が高容量・高エネルギー密度の正極活物質である。一般式LixNiy1-y2を用いてLiCoO2と同じ密度の正極板を作製した場合、一般式LixNiy1-y2の代表例であるLiNi1/3Co1/3Mn1/32(図2の○印)とLiNi0.6Co0.3Al0.12(図2の△印)を用いた電池はLiCoO2(図2の□印)を用いた電池に比べ、非水電解液量が少なくても優れたサイクル特性を発揮することを見出した。 In terms of battery discharge capacity, LiCoO 2 has a capacity of about 120 mAh / cc per unit volume, whereas lithium composite nickel oxide of the general formula Li x Ni y M 1-y O 2 has a capacity of 130 mAh / cc or more per unit volume. The general formula Li x Ni y M 1-y O 2 is a positive electrode active material having a higher capacity and higher energy density. If to produce a positive electrode plate having the same density as LiCoO 2 using a general formula Li x Ni y M 1-y O 2, the general formula Li x Ni y M 1-y representative example of O 2 is LiNi 1/3 Co Batteries using 1/3 Mn 1/3 O 2 (circles in FIG. 2) and LiNi 0.6 Co 0.3 Al 0.1 O 2 (triangles in FIG. 2) are batteries using LiCoO 2 (squares in FIG. 2). It was found that excellent cycle characteristics were exhibited even when the amount of the non-aqueous electrolyte was small.

このような効果が得られる理由については、必ずしも発明者の理論に拘束されるのを好むものではないが、発明者は次のように推察している。電池放電容量に関与する正極活物質の反応活性点の視点から次のように説明できると考えている。すなわち、一般式LixNiy1-y2を用いてLiCoO2と同じ密度の正極板を作製し、同量の非水電解液を入れた場合、一般式LixNiy1-y2の方が電解液に接触できる正極活物質の反応活性点が多く、電池の充放電により正極板が膨張収縮しても電解液が保持されている状態を維持できるためと考えている。 The reason why such an effect is obtained is not necessarily limited by the inventor's theory, but the inventor presumes as follows. It is thought that the following explanation can be made from the viewpoint of the reaction active point of the positive electrode active material involved in the battery discharge capacity. That is, when a positive electrode plate having the same density as LiCoO 2 is produced using the general formula Li x Ni y M 1-y O 2 and the same amount of non-aqueous electrolyte is put, the general formula Li x Ni y M 1- It is considered that yO 2 has more reaction active points of the positive electrode active material that can come into contact with the electrolytic solution, and can maintain the state in which the electrolytic solution is retained even when the positive electrode plate expands and contracts due to charging and discharging of the battery. .

これを裏付けることとして以下のように考えている。LiCoO2を正極活物質に用いた場合、電池の充放電により正極板が膨張収縮することにより正極板中に保持されている非水電解液量が少なくなり、サイクル特性が劣化すると言われている。しかし、図3(a)に示した正極活物質LiCoO2の電子顕微鏡(以下、SEMと略す)観察写真から、LiCoO2は表面が平滑である。それに対し、一般式LixNiy1-y2の代表例であるLiNi1/3Co1/3Mn1/32とLiNi0.6Co0.3Al0.12は一次粒子が凝集した構造で、かつ二次粒子が球状もしくは楕円球状をしている(図3(b)および(c)に示したSEM観察写真を参照)ことから、電池の充放電により正極板が膨張収縮しても正極活物質自体が保液し易い形状のためにサイクル特性が劣化し難いと考えている。 In order to support this, the following is considered. When LiCoO 2 is used as the positive electrode active material, the positive electrode plate expands and contracts due to charging / discharging of the battery, so that the amount of non-aqueous electrolyte retained in the positive electrode plate is reduced and the cycle characteristics are deteriorated. . However, from the electron microscope (hereinafter abbreviated as SEM) observation photograph of the positive electrode active material LiCoO 2 shown in FIG. 3A, the surface of LiCoO 2 is smooth. On the other hand, LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiNi 0.6 Co 0.3 Al 0.1 O 2, which are representative examples of the general formula Li x Ni y M 1-y O 2 , have a structure in which primary particles are aggregated. In addition, since the secondary particles are spherical or elliptical (see the SEM observation photographs shown in FIGS. 3B and 3C), even if the positive electrode plate expands and contracts due to charge / discharge of the battery. The positive electrode active material itself is considered to be unlikely to deteriorate in cycle characteristics because of its shape that can easily hold liquid.

また、二次粒子が球状もしくは楕円球状の正極活物質を得るためには、出発原料に球状もしくは楕円球状の水酸化ニッケルを用いると良いことが知られている。   In order to obtain a positive electrode active material whose secondary particles are spherical or elliptical, it is known that spherical or elliptical nickel hydroxide is preferably used as a starting material.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の実施例である円筒形リチウム二次電池の縦断面概略図を示す。   In FIG. 1, the longitudinal cross-sectional schematic of the cylindrical lithium secondary battery which is an Example of this invention is shown.

図1において、正極板5と、負極板6と、および両極の間にセパレータとしてポリプロピレン製セパレータ7を介在させ、それらを渦巻き状に捲回し、極板群4を構成している。極板群4は、直径13.8mm、高さ50mmのステンレス鋼板からなる電池ケース1に挿入する。正極板5からは正極リード5aが引き出され、封口板2に溶接により接続されている。負極板6からは負極リード6aが引き出され、電池ケース1の底部に溶接により接続されている。封口板2は、絶縁パッキング3を介して電池ケース1でかしめによる封口されている。また、絶縁リング8は、極板群4の上下にそれぞれ設けられている。   In FIG. 1, a separator 7 made of polypropylene is interposed as a separator between a positive electrode plate 5, a negative electrode plate 6, and both electrodes, and these are wound in a spiral shape to constitute an electrode plate group 4. The electrode plate group 4 is inserted into a battery case 1 made of a stainless steel plate having a diameter of 13.8 mm and a height of 50 mm. A positive electrode lead 5 a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2 by welding. A negative electrode lead 6 a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1 by welding. The sealing plate 2 is sealed by caulking with the battery case 1 through the insulating packing 3. The insulating rings 8 are provided above and below the electrode plate group 4, respectively.

以下、正極板5、負極板6、非水電解液について説明する。   Hereinafter, the positive electrode plate 5, the negative electrode plate 6, and the non-aqueous electrolyte will be described.

正極板5は、正極活物質であるコバルト酸リチウム(以下、LiCoO2と略す)の粉末100重量部と、導電材としてアセチレンブラックを5重量部、および結着剤としてポリフッ化ビニリデン(以下、PVDFと略す)を5重量部、および適量のN−メチルピロリドン(以下、NMPと略す)の有機溶剤に添加して、ペースト状の正極合剤を調整する。この正極合剤を厚さ0.010mmのアルミニウム(以下、Alと略す)箔表面に塗着し、乾燥した。乾燥後、ロールプレス機によって圧延し、幅35mm、長さ250mmの大きさに切り出し正極板5とする。 The positive electrode plate 5 includes 100 parts by weight of a powder of lithium cobalt oxide (hereinafter abbreviated as LiCoO 2 ) as a positive electrode active material, 5 parts by weight of acetylene black as a conductive material, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder. 5 parts by weight and an appropriate amount of an organic solvent of N-methylpyrrolidone (hereinafter abbreviated as NMP) to prepare a paste-like positive electrode mixture. This positive electrode mixture was applied to the surface of an aluminum foil (hereinafter abbreviated as Al) having a thickness of 0.010 mm and dried. After drying, the product is rolled by a roll press and cut into a size of 35 mm in width and 250 mm in length to obtain a positive electrode plate 5.

負極板6は、負極活物質であるコークスを加熱処理して得た炭素粉末100重量部に、結着剤としてスチレン系結着剤を10重量部混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状の負極合剤を調整する。この負極合剤を厚さ0.015mmの銅箔の表面に塗着し、乾燥した。乾燥後、ロールプレス機によって厚さ0.2mmに圧延し、幅37mm、長さ280mmの大きさに切り出し、負極板とする。   The negative electrode plate 6 is obtained by mixing 10 parts by weight of a styrene-based binder as a binder with 100 parts by weight of carbon powder obtained by heat-treating coke, which is a negative electrode active material, and suspending this in an aqueous solution of carboxymethyl cellulose. To prepare a paste-like negative electrode mixture. This negative electrode mixture was applied to the surface of a copper foil having a thickness of 0.015 mm and dried. After drying, it is rolled to a thickness of 0.2 mm by a roll press and cut into a size of 37 mm width and 280 mm length to obtain a negative electrode plate.

非水電解液は、炭酸エチレン(以下、ECと略す)と炭酸ジエチル(以下、DECと略す)の等容積混合溶媒に、電解質塩として六フッ化燐酸リチウム(以下、LiPF6と略す)1.0mol/Lで溶解する。所定量の非水電解液を極板群4に注入する。 The non-aqueous electrolyte was mixed in an equal volume mixed solvent of ethylene carbonate (hereinafter abbreviated as EC) and diethyl carbonate (hereinafter abbreviated as DEC), lithium hexafluorophosphate (hereinafter abbreviated as LiPF 6 ) as an electrolyte salt. Dissolve at 0 mol / L. A predetermined amount of non-aqueous electrolyte is injected into the electrode plate group 4.

非水電解液の注入後、封口板をケースにかしめて密閉する。このようにして、定格容量が850mAh、サイズが直径14mm、高さ50mm、いわゆる14500サイズの円筒形リチウム二次電池を作製する。   After injecting the non-aqueous electrolyte, the sealing plate is caulked to the case and sealed. In this manner, a cylindrical lithium secondary battery having a rated capacity of 850 mAh, a size of 14 mm in diameter, and a height of 50 mm, so-called 14500 size is manufactured.

以下に非水電解液量について詳細に述べる。   The amount of non-aqueous electrolyte will be described in detail below.

(実施例1)
非水電解液量を1mAh当たり1.3μL添加した。
Example 1
The amount of non-aqueous electrolyte was added at 1.3 μL per mAh.

(実施例2)
非水電解液量を1mAh当たり1.8μL添加したこと以外は、実施例1と同様に電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that 1.8 μL of nonaqueous electrolyte was added per mAh.

(比較例1)
非水電解液量を1mAh当たり1.2μL添加したこと以外は、実施例1と同様に電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that 1.2 μL of nonaqueous electrolyte was added per mAh.

(比較例2)
非水電解液量を1mAh当たり1.9μL添加したこと以外は、実施例1と同様に電池を作製した。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that 1.9 μL of nonaqueous electrolyte was added per mAh.

(実施例3)
正極活物質にLiNi1/3Co1/3Mn1/32を用いたこと以外は、実施例1と同様に電池を作成した。
(Example 3)
A battery was prepared in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.

(実施例4)
正極活物質にLiNi1/3Co1/3Mn1/32を用いたこと以外は、実施例2と同様に電池を作成した。
Example 4
A battery was prepared in the same manner as in Example 2 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.

(比較例3)
正極活物質にLiNi1/3Co1/3Mn1/32を用いたこと以外は、比較例1と同様に電池を作成した。
(Comparative Example 3)
A battery was prepared in the same manner as in Comparative Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.

(比較例4)
正極活物質にLiNi1/3Co1/3Mn1/32を用いたこと以外は、比較例2と同様に電池を作成した。
(Comparative Example 4)
A battery was prepared in the same manner as in Comparative Example 2 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.

(実施例5)
正極活物質にLiNi0.6Co0.3Al0.12を用いたこと以外は、実施例1と同様に電池を作成した。
(Example 5)
A battery was prepared in the same manner as in Example 1 except that LiNi 0.6 Co 0.3 Al 0.1 O 2 was used as the positive electrode active material.

(実施例6)
正極活物質にLiNi0.6Co0.3Al0.12を用いたこと以外は、実施例2と同様に電池を作成した。
(Example 6)
A battery was prepared in the same manner as in Example 2 except that LiNi 0.6 Co 0.3 Al 0.1 O 2 was used as the positive electrode active material.

(比較例5)
正極活物質にLiNi0.6Co0.3Al0.12を用いたこと以外は、比較例1と同様に電池を作成した。
(Comparative Example 5)
A battery was prepared in the same manner as in Comparative Example 1 except that LiNi 0.6 Co 0.3 Al 0.1 O 2 was used as the positive electrode active material.

(比較例6)
正極活物質にLiNi0.6Co0.3Al0.12を用いたこと以外は、比較例2と同様に電池を作成した。
(Comparative Example 6)
A battery was prepared in the same manner as in Comparative Example 2, except that LiNi 0.6 Co 0.3 Al 0.1 O 2 was used as the positive electrode active material.

(実施例7)
正極活物質にLiNi0.5Co0.52を用いたこと以外は、実施例1と同様に電池を作成した。
(Example 7)
A battery was prepared in the same manner as in Example 1 except that LiNi 0.5 Co 0.5 O 2 was used as the positive electrode active material.

(実施例8)
正極活物質にLiNi0.5Co0.52を用いたこと以外は、実施例2と同様に電池を作成した。
(Example 8)
A battery was prepared in the same manner as in Example 2 except that LiNi 0.5 Co 0.5 O 2 was used as the positive electrode active material.

(比較例7)
正極活物質にLiNi0.5Co0.52を用いたこと以外は、比較例1と同様に電池を作成した。
(Comparative Example 7)
A battery was prepared in the same manner as in Comparative Example 1 except that LiNi 0.5 Co 0.5 O 2 was used as the positive electrode active material.

(比較例8)
正極活物質にLiNi0.5Co0.52を用いたこと以外は、比較例2と同様に電池を作成した。
(Comparative Example 8)
A battery was prepared in the same manner as in Comparative Example 2, except that LiNi 0.5 Co 0.5 O 2 was used as the positive electrode active material.

また、実施例1〜8および比較例1〜8の円筒形リチウム二次電池について、充放電サイクル特性試験、高温保存時における安全弁誤遮断発生確率試験、非水電解液保持量試験、および正極活物質のSEM観察を行った。それら試験方法について以下に説明する。
<充放電サイクル特性試験>
環境温度20℃において、充放電サイクル特性の評価を以下の条件で行った。
In addition, for the cylindrical lithium secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 8, charge / discharge cycle characteristic test, safety valve false shut-off occurrence probability test at high temperature storage, non-aqueous electrolyte retention amount test, and positive electrode active SEM observation of the material was performed. These test methods are described below.
<Charge / discharge cycle characteristics test>
At an environmental temperature of 20 ° C., the charge / discharge cycle characteristics were evaluated under the following conditions.

充電条件は、定電流850mAで電池電圧4.2Vまで充電し、電池電圧が4.2Vに到達した後、充電時間の総計が2時間になるように定電圧4.2Vで充電した。   The charging conditions were a constant current of 850 mA and a battery voltage of 4.2 V. After the battery voltage reached 4.2 V, the battery was charged at a constant voltage of 4.2 V so that the total charging time was 2 hours.

放電条件は、定電流850mAで、電池の放電終始電圧が3.0Vになるまで放電した。   The discharge conditions were a constant current of 850 mA and the battery was discharged until the discharge start voltage of the battery reached 3.0V.

これら充電と放電を1サイクルとし、100サイクル繰り返した。1サイクル目の放電容量と、100サイクル目の放電容量から、次式により放電容量維持率を計算した。   These charge and discharge were made into 1 cycle, and 100 cycles were repeated. From the discharge capacity at the first cycle and the discharge capacity at the 100th cycle, the discharge capacity retention ratio was calculated by the following formula.

放電容量維持率(%)=100サイクル目の容量(mAh)/1サイクル目の容量(mAh)×100
<高温保存時における安全弁誤遮断発生確率試験>
それぞれの円筒形リチウム二次電池を環境温度20℃において、充電条件を定電流850mAで電圧4.20Vまで充電し、電圧4.20Vに到達した後、充電時間の総計が2時間になるように定電圧4.20Vで充電を行った。その後、環境温度100℃において5時間電池を放置し、電池安全弁の遮断率を測定した。試験は各ロットそれぞれ20個試験を実施した。
<非水電解液保持量試験>
それぞれの正極活物質を10g秤量し、環境温度20℃において、非水電解液中に1分間浸した。非水電解液を含浸した正極活物質を再び秤量し、活物質1gあたりの非水電解
液保持量を測定した。
Discharge capacity retention ratio (%) = capacity at the 100th cycle (mAh) / capacity at the first cycle (mAh) × 100
<Probability test for safety valve false shut-off during high temperature storage>
Each cylindrical lithium secondary battery is charged at an environmental temperature of 20 ° C. with a constant current of 850 mA and a voltage of 4.20 V. After reaching the voltage of 4.20 V, the total charging time is 2 hours. Charging was performed at a constant voltage of 4.20V. Thereafter, the battery was left for 5 hours at an environmental temperature of 100 ° C., and the shutoff rate of the battery safety valve was measured. The test was conducted for 20 lots.
<Non-aqueous electrolyte retention test>
10 g of each positive electrode active material was weighed and immersed in a non-aqueous electrolyte at an environmental temperature of 20 ° C. for 1 minute. The positive electrode active material impregnated with the nonaqueous electrolyte was weighed again, and the amount of nonaqueous electrolyte retained per gram of active material was measured.

充放電サイクル試験、高温保存時の安全弁誤遮断発生確率、および正極活物質1g当たりの非水電解液保持量の結果を表1に示す。
<正極活物質のSEM観察>
SEM観察には電子顕微鏡(日立製、型番:S−4500)を用いた。正極活物質の粉末を試料台に設置した後、試料表面をOsコーティングし、SEM観察用サンプルを作製した。SEM観察条件として、加速電圧5kV、観察倍率5000倍もしくは10000倍で観察した。
Table 1 shows the results of the charge / discharge cycle test, the probability of occurrence of erroneous safety valve shut-off during high-temperature storage, and the amount of nonaqueous electrolyte retained per gram of positive electrode active material.
<SEM observation of positive electrode active material>
An electron microscope (manufactured by Hitachi, model number: S-4500) was used for SEM observation. After the positive electrode active material powder was placed on the sample stage, the sample surface was Os coated to prepare a sample for SEM observation. As SEM observation conditions, observation was performed at an acceleration voltage of 5 kV and an observation magnification of 5000 or 10,000 times.

正極活物質LiCoO2のSEM観察を図3(a)に、LiNi1/3Co1/3Mn1/32,のSEM観察を図3(b)に、LiNi0.6Co0.3Al0.12のSEM観察を図3(c)に示す。 The SEM observation of the positive electrode active material LiCoO 2 is shown in FIG. 3A, the SEM observation of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is shown in FIG. 3B, and LiNi 0.6 Co 0.3 Al 0.1 O 2. The SEM observation of is shown in FIG.

表1の結果から、比較例1は、実施例1、2、および比較例2と比べ、充放電サイクル特性の維持率が低下していた。また、比較例3、5、および7のように、非水電解液量を電池放電容量1mAh当たり1.2μLした場合、充放電サイクル特性の低下が観察された。 From the results shown in Table 1, in Comparative Example 1, compared with Examples 1 and 2 and Comparative Example 2, the maintenance ratio of the charge / discharge cycle characteristics was lowered. Moreover, when the amount of non-aqueous electrolyte was 1.2 μL per 1 mAh of battery discharge capacity as in Comparative Examples 3, 5, and 7, a decrease in charge / discharge cycle characteristics was observed.

比較例2は高温での放置試験にて、安全弁の誤遮断が20%発生した。比較例4、6、および8のように、非水電解液量を電池放電容量1mAh当たり1.9μLとした場合、安全弁の誤遮断が確認された。よって、充放電サイクル特性の維持率と高温保存時の安全弁誤遮断発生確率の視点から、非水電解液量は電池放電容量1mAh当たり1.3〜1.8μLが良いと言える。   In Comparative Example 2, 20% of the safety valve was accidentally shut off in the high temperature standing test. As in Comparative Examples 4, 6, and 8, when the amount of non-aqueous electrolyte was 1.9 μL per 1 mAh of battery discharge capacity, the safety valve was erroneously blocked. Therefore, it can be said that the amount of the non-aqueous electrolyte is preferably 1.3 to 1.8 μL per 1 mAh of the battery discharge capacity from the viewpoint of the maintenance rate of the charge / discharge cycle characteristics and the probability of occurrence of the safety valve erroneous shut-off during high temperature storage.

正極活物質LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、およびLiNi0.5Co0.52は、単位体積当りの放電容量が大きいため、高容量、高密度エネルギー電池を実現するための正極活物質として望ましい。実施例では電池容量を850mAhになるようにするため、LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、ならびにLiNi0.5Co0.52、を用いた実施例3〜8は正極活物質の塗着重量(極板重量)を軽くした。そのため、正極活物質にLiNi1/3Co1/3Mn1/32とLiNi0.6Co0.3Al0.12を用いた実施例3〜8は、電池の中に残った空間(残空間)が大きくなった。ここで残空間とは電池内体積から電池構成材料の占める体積を差し引いた空間のことを言う。そのため非水電解液量を放電容量1mAh当たり1.9μLとした比較
例2、4、6および8を比べた場合、LiCoO2よりLiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、LiNi0.5Co0.52の方が安全弁誤遮断率が良くなっている。つまり、正極活物質にLiNi1/3Co1/3Mn1/32とLiNi0.6Co0.3Al0.12、LiNi0.5Co0.52を用いた場合、LiCoO2を用いた場合より高温保存時の信頼性を更に高めることができると言える。
Since the positive electrode active materials LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 , and LiNi 0.5 Co 0.5 O 2 have a large discharge capacity per unit volume, It is desirable as a positive electrode active material for realizing a density energy battery. In the examples, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 , and LiNi 0.5 Co 0.5 O 2 were used to achieve a battery capacity of 850 mAh. In Examples 3 to 8, the coating weight (electrode plate weight) of the positive electrode active material was reduced. Therefore, Examples 3 to 8 using LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiNi 0.6 Co 0.3 Al 0.1 O 2 as the positive electrode active material are the spaces remaining in the battery (remaining spaces). Became larger. Here, the remaining space means a space obtained by subtracting the volume occupied by the battery constituent material from the volume in the battery. Therefore, when Comparative Examples 2, 4, 6, and 8 in which the amount of the nonaqueous electrolyte is 1.9 μL per 1 mAh of discharge capacity are compared, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 than LiCoO 2 are compared. Co 0.3 Al 0.1 O 2 and LiNi 0.5 Co 0.5 O 2 have a better safety valve false shutoff rate. That is, when LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiNi 0.6 Co 0.3 Al 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 are used as the positive electrode active material, they are stored at a higher temperature than when LiCoO 2 is used. It can be said that the reliability of the time can be further increased.

正極活物質の非水電解液の保持量は、一次粒子が凝集した構造で二次粒子が球状をしている(図3のSEM観察写真を参照のこと)LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、LiNi0.5Co0.52が良好な結果となった。これは一次粒子の凝集体の方が非水電解液を保持できる細孔が多く存在しているためであると推測できる。 The amount of the non-aqueous electrolyte retained in the positive electrode active material is such that the primary particles are aggregated and the secondary particles are spherical (see the SEM observation photograph in FIG. 3). LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 and LiNi 0.5 Co 0.5 O 2 gave good results. It can be presumed that this is because the aggregate of primary particles has more pores that can hold the non-aqueous electrolyte.

LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、LiNi0.5Co0.52は、非水電解液の保持量が良好なため、非水電解液量を放電容量当たり1.2μLとした、比較例1、3、5、7、を比較した場合、LiCoO2と比べ充放電サイクル特性が良くなったと考えられる。また非水電解液量を放電容量1mAh当たり1.8μLとした、実施例2、4、6、8でも同様にLiCoO2と比べ充放電サイクル特性が良化した。以上のことから、充放電サイクル特性はリチウム複合ニッケル酸化物の一次粒子が凝集した構造で、二次粒子が球状、もしくは楕円球状であることが好ましい。 LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 have a good amount of non-aqueous electrolyte solution. When Comparative Examples 1, 3, 5, and 7 with 1.2 μL per discharge capacity were compared, it is considered that the charge / discharge cycle characteristics were improved compared to LiCoO 2 . Further, in Examples 2, 4, 6, and 8 in which the amount of the non-aqueous electrolyte was 1.8 μL per 1 mAh of discharge capacity, the charge / discharge cycle characteristics were also improved as compared with LiCoO 2 . From the above, the charge / discharge cycle characteristics are preferably a structure in which primary particles of lithium composite nickel oxide are aggregated, and the secondary particles are preferably spherical or elliptical.

なお、本実施例において、円筒形リチウム二次電池を用いて評価を行った結果について説明したが、角形、コイン形、ボタン形、およびラミネート形など電池形状が異なっても同様の効果が得られる。   In this example, the results of evaluation using a cylindrical lithium secondary battery were described. However, the same effect can be obtained even if the battery shape is different, such as a square shape, a coin shape, a button shape, and a laminate shape. .

本実施例において、円筒形リチウム二次電池の定格容量を850mAhのもので説明したが、850mAh以外の容量の電池を用いてもよい。   In this embodiment, the rated capacity of the cylindrical lithium secondary battery has been described as 850 mAh, but a battery with a capacity other than 850 mAh may be used.

本実施例において、正極活物質としてLiCoO2およびLiNi1/3Co1/3Mn1/32、LiNi0.6Co0.3Al0.12、LiNi0.5Co0.52について説明したが、この正極活物質に限定されるものではない。 In this example, LiCoO 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.3 Al 0.1 O 2 , and LiNi 0.5 Co 0.5 O 2 were described as the positive electrode active material. It is not limited to substances.

本実施例において、リチウムと可逆的に反応する負極材料として、コークスを用いたが、黒鉛系、非晶質系等の炭素材料あるいはその混合体、シリサイドなどの金属酸化物あるいはその混合体を用いてもよい。   In this example, coke was used as the negative electrode material that reversibly reacts with lithium. However, carbon materials such as graphite and amorphous materials or mixtures thereof, metal oxides such as silicide or mixtures thereof were used. May be.

また、本実施例において、隔離膜としてポリプロピレン製セパレータを用いて評価を行ったが、ポリエチレンなどの有機微多孔膜あるいは、無機微多孔膜を用いてもよい。例えば、無機微多孔膜は、アルミナやシリカなどの無機フィラーと、無機フィラーを結着させるための有機系バインダーを結着剤として混合した膜である。無機微多孔膜は正極と負極との間に介在していればよい。それら極板の間に介在させる方法として、正極の表面に無機微多孔膜を形成させたり、負極の表面に無機微多孔膜を形成させたりしてもよい。また、無機微多孔膜と有機微多孔膜との両方を用いてもよい。   In this example, evaluation was performed using a polypropylene separator as a separator, but an organic microporous film such as polyethylene or an inorganic microporous film may be used. For example, the inorganic microporous film is a film in which an inorganic filler such as alumina or silica and an organic binder for binding the inorganic filler are mixed as a binder. The inorganic microporous film may be interposed between the positive electrode and the negative electrode. As a method of interposing between these electrode plates, an inorganic microporous film may be formed on the surface of the positive electrode, or an inorganic microporous film may be formed on the surface of the negative electrode. Moreover, you may use both an inorganic microporous film and an organic microporous film.

さらに、本実施例においては電解質塩としてLiPF6を用いたが、他のリチウム塩として、例えば、過塩素酸リチウム(LiClO4)、四フッ化ホウ酸リチウム(LiBF4)等でもよい。また、電解質塩の濃度を1.0mol/Lとしたが、塩濃度を0.5〜2.0mol/Lのものを用いてもよい。また、非水電解液としてECとDECの1:1(容積比)混合溶媒を用いたが、他の非水溶媒として、例えば、プロピレンカーボネート(PC)などの環状エステル、テトラヒドロフラン(THF)などの環状エーテル、ジメトキシエタン(DME)などの鎖状エーテル、プロピオン酸メチル(MP)などの鎖状エステルなどの非水溶媒や、また、これら多元系混合溶媒を用いてもよい。 Furthermore, in this example, LiPF 6 was used as the electrolyte salt, but other lithium salts may be, for example, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), or the like. Moreover, although the density | concentration of electrolyte salt was 1.0 mol / L, you may use a salt density | concentration of 0.5-2.0 mol / L. In addition, a 1: 1 (volume ratio) mixed solvent of EC and DEC was used as the non-aqueous electrolyte, but as other non-aqueous solvents, for example, cyclic esters such as propylene carbonate (PC), tetrahydrofuran (THF) and the like Nonaqueous solvents such as cyclic ethers, chain ethers such as dimethoxyethane (DME), chain esters such as methyl propionate (MP), and these multicomponent mixed solvents may also be used.

また、非水電解液二次電池として、リチウム二次電池について説明したが、リチウム二次電池以外のマグネシウム二次電池などの非水電解液二次電池においても、同様の効果が得られるものである。   Moreover, although the lithium secondary battery has been described as the nonaqueous electrolyte secondary battery, the same effect can be obtained in a nonaqueous electrolyte secondary battery such as a magnesium secondary battery other than the lithium secondary battery. is there.

本発明による非水電解液二次電池は、高容量で高信頼性を求められるポータブル電気機器用電源等として有用であり、自動車用の駆動電源やエレベータ等の住宅設備などの駆動用電源としても有用である。   The non-aqueous electrolyte secondary battery according to the present invention is useful as a power source for portable electric equipment that requires high capacity and high reliability, and can also be used as a driving power source for automobiles and housing equipment such as elevators. Useful.

本発明の実施例における円筒形リチウム電池の断面概略図Schematic cross-sectional view of a cylindrical lithium battery in an embodiment of the present invention 実施例1、実施例3、および実施例5の充放電サイクル試験結果の図Diagram of charge / discharge cycle test results of Example 1, Example 3, and Example 5 (a)正極活物質LiCoO2のSEM観察写真、(b)正極活物質LiNi1/3Co1/3Mn1/32のSEM観察写真、(c)正極活物質LiNi0.6Co0.3Al0.12のSEM観察写真(A) SEM observation photograph of positive electrode active material LiCoO 2 , (b) SEM observation photograph of positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 , (c) Positive electrode active material LiNi 0.6 Co 0.3 Al 0.1 SEM observation photograph of O 2

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (3)

正極板、負極板およびセパレータを有する電極群と、非水電解液を備えた非水電解液二次電池において、前記非水電解液量が、放電容量1mAh当たり1.3〜1.8μLである非水電解液二次電池。   In a non-aqueous electrolyte secondary battery including a positive electrode plate, a negative electrode plate, and a separator, and a non-aqueous electrolyte solution, the amount of the non-aqueous electrolyte solution is 1.3 to 1.8 μL per 1 mAh discharge capacity. Non-aqueous electrolyte secondary battery. 前記正極板の正極活物質は、一般式LixNiy1-y2(x:0.95≦x≦1.10、MはCo、Mn、Cr、Fe、Mg、TiおよびAlの少なくとも1種類以上、y:0.3≦y≦0.95)で表されるリチウム複合ニッケル酸化物である請求項1記載の非水電解液二次電池。 The positive electrode active material of the positive electrode plate has the general formula Li x Ni y M 1-y O 2 (x: 0.95 ≦ x ≦ 1.10, M is Co, Mn, Cr, Fe, Mg, Ti and Al). The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium composite nickel oxide is represented by at least one or more of y: 0.3 ≦ y ≦ 0.95). 前記リチウム複合ニッケル酸化物は、一次粒子が凝集した構造で、二次粒子が球状、もしくは楕円球状である請求項1記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium composite nickel oxide has a structure in which primary particles are aggregated, and the secondary particles are spherical or elliptical.
JP2006039016A 2006-02-16 2006-02-16 Nonaqueous electrolyte secondary battery Pending JP2007220455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039016A JP2007220455A (en) 2006-02-16 2006-02-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039016A JP2007220455A (en) 2006-02-16 2006-02-16 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007220455A true JP2007220455A (en) 2007-08-30

Family

ID=38497504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039016A Pending JP2007220455A (en) 2006-02-16 2006-02-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007220455A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293396B2 (en) 2010-07-16 2012-10-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
JP2017117579A (en) * 2015-12-22 2017-06-29 トヨタ自動車株式会社 Lithium ion battery
JP2018170240A (en) * 2017-03-30 2018-11-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023163135A1 (en) 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Cylindrical lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293396B2 (en) 2010-07-16 2012-10-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
WO2014132660A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Lithium ion secondary battery
JPWO2014132660A1 (en) * 2013-03-01 2017-02-02 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
US9666903B2 (en) 2013-03-01 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Lithium ion secondary battery
JP2017117579A (en) * 2015-12-22 2017-06-29 トヨタ自動車株式会社 Lithium ion battery
JP2018170240A (en) * 2017-03-30 2018-11-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023163135A1 (en) 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Cylindrical lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US8597829B2 (en) Nonaqueous electrolyte secondary battery with rolled electrode assembly
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2008243810A (en) Nonaqueous electrolyte secondary battery
US10340525B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
JP2009129721A (en) Non-aqueous secondary battery
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5217281B2 (en) Nonaqueous electrolyte secondary battery
JP2008135245A (en) Non-aqueous electrolyte secondary battery
JP2013114847A (en) Lithium ion secondary batty and method for manufacturing the same
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP6158307B2 (en) Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
JP2014067587A (en) Nonaqueous electrolyte secondary battery
JP6042195B2 (en) Nonaqueous electrolyte secondary battery
JP2005302601A (en) Negative electrode active material for battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JPWO2014050025A1 (en) Nonaqueous electrolyte secondary battery
WO2017168330A1 (en) Lithium-ion cell