JP2003068282A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003068282A
JP2003068282A JP2001372478A JP2001372478A JP2003068282A JP 2003068282 A JP2003068282 A JP 2003068282A JP 2001372478 A JP2001372478 A JP 2001372478A JP 2001372478 A JP2001372478 A JP 2001372478A JP 2003068282 A JP2003068282 A JP 2003068282A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
negative electrode
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001372478A
Other languages
Japanese (ja)
Other versions
JP3591506B2 (en
Inventor
Kenji Nakai
賢治 中井
Yoshimasa Koishikawa
佳正 小石川
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001372478A priority Critical patent/JP3591506B2/en
Publication of JP2003068282A publication Critical patent/JP2003068282A/en
Application granted granted Critical
Publication of JP3591506B2 publication Critical patent/JP3591506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery of high safety with high capacity and high output. SOLUTION: A positive electrode active material mixture is made by mixing lithium manganate powder of spinel crystal structure, which has Li/Mn ratio of 0.52 and a mean particle diameter of about 20 μm, flake graphite of a mean particle diameter of 18 μm, and PVDF or thermosetting plasticized polyvinyl alcohol in the mixing ratio of 85:10:5 to 85:12:3. NMP as dispersing solvent is added to the positive electrode active material mixture to be kneaded, the resultant slurry is coated on the both surfaces of an aluminum foil of 20 μm in thickness to obtain spread of lithium manganate of 80-160 g/m<2> . The heating value, followed on the chemical reaction between the nonaqueous electrolyte and the positive electrode active material mixture, is reduced, and sharp and large volume of gas generation is controlled in a cylindrical lithium ion battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に、スピネル型結晶構造を有するリチウムマ
ンガン複酸化物と導電材とバインダとを含む正極活物質
合剤が帯状集電体の両面にほぼ均等量塗着された正極
と、充放電によりリチウムイオンを吸蔵・放出可能な炭
素質物とバインダと選択的に導電材とからなる負極合剤
が帯状集電体の両面にほぼ均等量塗着された負極と、を
セパレータを介して捲回した電極捲回群を、所定圧で内
圧を開放する内圧開放機構を有する電池容器内に収容し
た非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a strip-shaped current collector containing a positive electrode active material mixture containing a lithium manganese oxide having a spinel type crystal structure, a conductive material and a binder. A positive electrode coated on both sides of the body in a substantially equal amount, and a negative electrode mixture consisting of a carbonaceous material capable of absorbing and releasing lithium ions by charging and discharging, a binder, and a conductive material are formed on both sides of the strip-shaped current collector. The present invention relates to a non-aqueous electrolyte secondary battery in which a negative electrode coated with an equal amount of the negative electrode and an electrode winding group wound through a separator are housed in a battery container having an internal pressure releasing mechanism that releases the internal pressure at a predetermined pressure.

【0002】[0002]

【従来の技術】非水電解液二次電池を代表するリチウム
イオン二次電池は、高エネルギー密度であるメリットを
活かして、主にVTRカメラやノートパソコン、携帯電
話等のポータブル機器の電源に使用されている。この電
池の内部構造は、通常以下に示されるような捲回式とさ
れている。電極は正極、負極共に活物質が金属箔に塗着
された帯状であり、セパレータを挟んで正極、負極が直
接接触しないように断面が渦巻状に捲回され、捲回群を
形成している。この捲回群が電池容器となる円筒状の電
池缶に収納され、電解液注液後、封口されている。
2. Description of the Related Art Lithium ion secondary batteries, which are representative of non-aqueous electrolyte secondary batteries, are mainly used for powering portable devices such as VTR cameras, laptop computers, and mobile phones by taking advantage of their high energy density. Has been done. The internal structure of this battery is usually of the wound type as shown below. Both the positive electrode and the negative electrode have a strip shape in which the active material is applied to the metal foil, and the cross section is spirally wound to form a winding group so that the positive electrode and the negative electrode do not come into direct contact with each other with the separator interposed therebetween. . This winding group is housed in a cylindrical battery can that serves as a battery container, and after the electrolytic solution is injected, it is sealed.

【0003】一般的な円筒形リチウムイオン二次電池の
寸法は、18650型と呼ばれる、直径が18mm、高
さが65mmであり、小形民生用リチウムイオン電池と
して広く普及している。18650型リチウムイオン二
次電池の正極活物質には、高容量、長寿命を特徴とする
コバルト酸リチウムが主として用いられており、電池容
量は、おおむね1.3Ah〜1.8Ah、出力はおよそ
10W程度である。
The size of a general cylindrical lithium ion secondary battery is called 18650 type and has a diameter of 18 mm and a height of 65 mm, and is widely used as a small consumer lithium ion battery. Lithium cobalt oxide, which is characterized by high capacity and long life, is mainly used for the positive electrode active material of 18650 type lithium ion secondary battery, the battery capacity is about 1.3 Ah to 1.8 Ah, and the output is about 10 W. It is a degree.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
にした電気自動車と、内燃機関エンジンと電池との両方
を動力源とするハイブリッド(電気)自動車の開発が加
速され、一部実用化の段階にきている。
On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle without exhaust gas, which uses only a battery as a power source, and a hybrid which uses both an internal combustion engine and a battery as power sources ( The development of electric vehicles has accelerated, and some of them are in the stage of practical application.

【0005】電気自動車の電源となる電池には当然高出
力、高エネルギーが得られる特性が要求され、この要求
にマッチした電池としてリチウムイオン電池が注目され
ている。電気自動車の普及のためには電池の低価格化が
必須であり、そのためには、低コスト電池材料が求めら
れ、例えば、正極活物質であれば、資源的に豊富なマン
ガンの酸化物が特に注目され、電池の高性能化を狙った
改善がなされてきた。また、電気自動車用の電池として
は、高容量だけではなく、加速性能などを左右する高出
力化、つまり電池の内部抵抗の低減が求められる。更
に、電気自動車の長期の使用期間に対応すべく電池の長
寿命化も求められる。ここでいう長寿命化とは、電池容
量のみならず、出力の低下を抑制し、電気自動車を走行
させるに必要な電気エネルギー供給能力を長期に亘って
満足することである。
Naturally, a battery serving as a power source of an electric vehicle is required to have a characteristic that a high output and a high energy can be obtained, and a lithium ion battery attracts attention as a battery which meets the requirement. In order to popularize electric vehicles, it is essential to reduce the price of batteries. For that reason, low-cost battery materials are required. For example, in the case of positive electrode active materials, manganese oxide, which is rich in resources, is particularly desirable. Attention has been paid to improvements aimed at improving the performance of batteries. In addition, as a battery for an electric vehicle, not only high capacity but also high output that affects acceleration performance and the like, that is, reduction of internal resistance of the battery is required. Further, it is required to extend the life of the battery in order to cope with a long use period of the electric vehicle. The term “longer life” means that not only the battery capacity but also a decrease in output is suppressed and the electric energy supply capacity necessary for running the electric vehicle is satisfied for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン電池の場合、高容量、高出力になればなるほど
安全性が低下する傾向にあり、特に出力が大きい電池の
場合には、電池が異常状態に陥ったときの現象がやや激
しくなる傾向が見られる。電気自動車用電源に用いられ
るような高容量、高出力の電池ともなると、大電流充
電、大電流放電がなされるために、18650型リチウ
ムイオン電池に一般に採用されているような、異常時の
電池内圧上昇に応じて作動する電流遮断機構(一種の切
断スイッチ)を電池構造内に設けることは実質的に不可
能である。
However, in the case of a lithium ion battery, the higher the capacity and the higher the output, the lower the safety tends to be. Especially, in the case of the battery with a large output, the battery is in an abnormal state. There is a tendency that the phenomenon when it falls is a little more intense. A battery with a high capacity and a high output, such as that used in a power supply for an electric vehicle, is charged with a large amount of current and discharged with a large amount of current. It is virtually impossible to provide a current interruption mechanism (a kind of disconnection switch) in the battery structure that operates in response to an increase in internal pressure.

【0007】人を乗せて走る電気自動車の場合、充電制
御システムが故障してしまった場合の過充電時、不慮の
衝突事故の場合に遭遇する可能性のある電池のクラッシ
ュ時あるいは、異物突き刺し時、外部短絡時等の電池自
体の安全性を確保することは、最低限必要な、非常に重
要な電池特性である。なお、電池の安全性とは、電池が
異常な状態にさらされた場合の電池の挙動が、人に身体
的損害を与えないことは当然のことながら、車両への損
傷を最小限に抑えることを意味する。
In the case of an electric vehicle that carries passengers, during overcharging when the charging control system fails, when a battery crashes that may occur during an accidental collision, or when a foreign object is stabbed. Securing the safety of the battery itself at the time of an external short circuit is a minimum and very important battery characteristic. Battery safety means that the behavior of a battery when it is exposed to abnormal conditions does not cause any physical damage to humans, but it also minimizes damage to the vehicle. Means

【0008】本発明は上記事案に鑑み、高容量、高出力
でありながらも、極めて安全性の高い非水電解液二次電
池を提供することを課題とする。
In view of the above problems, it is an object of the present invention to provide a non-aqueous electrolyte secondary battery which has a high capacity and a high output but is extremely safe.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、スピネル型結晶構造を有するリチウムマ
ンガン複酸化物と導電材とバインダとを含む正極活物質
合剤が帯状集電体の両面にほぼ均等量塗着された正極
と、充放電によりリチウムイオンを吸蔵・放出可能な炭
素質物とバインダと選択的に導電材とからなる負極合剤
が帯状集電体の両面にほぼ均等量塗着された負極と、を
セパレータを介して捲回した電極捲回群を、所定圧で内
圧を開放する内圧開放機構を有する電池容器内に収容し
た非水電解液二次電池において、前記リチウムマンガン
複酸化物の前記集電体片面あたりの塗着量が80g/m
乃至160g/mであり、かつ、前記導電材の質量
が正極活物質合剤の10質量%乃至12質量%であり、
かつ、前記バインダの質量が正極活物質合剤の3質量%
乃至5質量%であることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a strip-shaped current collector containing a positive electrode active material mixture containing a lithium manganese oxide having a spinel type crystal structure, a conductive material and a binder. On both sides of the strip-shaped current collector, there is a positive electrode coated on both sides in a substantially equal amount, and a negative electrode mixture consisting of a carbonaceous material capable of absorbing and releasing lithium ions by charging and discharging, a binder and a conductive material. A negative electrode coated in an amount, and an electrode winding group wound via a separator, a non-aqueous electrolyte secondary battery housed in a battery container having an internal pressure release mechanism for releasing the internal pressure at a predetermined pressure, The amount of lithium manganese oxide coated on one side of the current collector is 80 g / m.
2 to 160 g / m 2 , and the mass of the conductive material is 10 mass% to 12 mass% of the positive electrode active material mixture,
Moreover, the mass of the binder is 3 mass% of the positive electrode active material mixture.
To 5% by mass.

【0010】本発明では、高容量、高出力の非水電解液
二次電池を確保するために、スピネル型結晶構造を有す
るリチウムマンガン複酸化物と導電材とバインダとを含
む正極活物質合剤が帯状集電体の両面にほぼ均等量塗着
された正極と、充放電によりリチウムイオンを吸蔵・放
出可能な負極と、が用いられている。高容量、高出力の
非水電解液二次電池では、異常状態に陥ったときに、大
電流充電又は大電流放電状態が維持され、非水電解液と
活物質合剤との化学反応に伴う発熱により、電池容器内
で急激かつ大量のガスが発生し、電池容器の内圧を上昇
させる。一般に、非水電解液二次電池は、電池容器内の
内圧上昇を防止するために、電池容器に所定圧で内圧を
開放する内圧開放機構を有しているが、リチウムマンガ
ン複酸化物の集電体片面あたりの塗着量を80g/m
乃至160g/mとし、かつ、導電材の質量を正極活
物質合剤の10質量%乃至12質量%とすることによ
り、発熱量を低減させることができるので、内圧開放機
構からのガス放出が極めて穏やかに行われる。更に、バ
インダの質量を正極活物質合剤の3質量%乃至5質量%
とすることにより、正極活物質合剤の剥離、脱落を防止
することができるので、初期の容量や出力の低下を抑制
することができる。従って、本発明によれば、高容量、
高出力でありながらも、極めて安全性の高い非水電解液
二次電池を実現することができる。
In the present invention, in order to secure a high capacity, high output non-aqueous electrolyte secondary battery, a positive electrode active material mixture containing a lithium manganese composite oxide having a spinel type crystal structure, a conductive material and a binder. There is used a positive electrode in which approximately equal amounts are coated on both surfaces of a strip-shaped current collector, and a negative electrode capable of absorbing and releasing lithium ions by charging and discharging. A high-capacity, high-output non-aqueous electrolyte secondary battery maintains a high-current charge or high-current discharge state when an abnormal state occurs, and is accompanied by a chemical reaction between the non-aqueous electrolyte and the active material mixture. Due to the heat generation, a large amount of gas is rapidly generated in the battery container, increasing the internal pressure of the battery container. Generally, a non-aqueous electrolyte secondary battery has an internal pressure release mechanism for releasing the internal pressure at a predetermined pressure in the battery container in order to prevent an increase in the internal pressure in the battery container. 80 g / m 2 of coating amount per side of electric body
To 160 g / m 2 and the mass of the conductive material is 10% by mass to 12% by mass of the positive electrode active material mixture, the calorific value can be reduced, so that gas release from the internal pressure release mechanism can be achieved. It is extremely gentle. Further, the mass of the binder is 3% by mass to 5% by mass of the positive electrode active material mixture.
By this, peeling and dropping of the positive electrode active material mixture can be prevented, so that reduction in initial capacity and output can be suppressed. Therefore, according to the present invention, a high capacity,
It is possible to realize a highly safe non-aqueous electrolyte secondary battery while having high output.

【0011】この場合において、導電材に黒鉛と無定型
炭素との混合物を用いれば、より高出力の非水電解液二
次電池とすることができ、このときの黒鉛と無定形炭素
との質量比を80:20〜90:10とすれば、更に高
出力とすることができる。また、黒鉛の平均粒径をスピ
ネル型結晶構造を有するリチウムマンガン複酸化物の平
均粒径の0.2倍乃至0.8倍とすれば、より高出力の
非水電解液二次電池とすることができ、無定型炭素をア
セチレンブラックとすれば、更に高出力の非水電解液二
次電池を得ることができる。更に、リチウムマンガン複
酸化物のLi/Mn比を0.55乃至0.60とすれ
ば、容量の低下を伴うことなく出力維持率を向上させる
ことができる。また、リチウムマンガン複酸化物を、L
1+xMn2−x−y(xは0<x≦0.
1、yは0<y≦0.3、MはA1、Cr、Ni、C
o、Mgからなる群から選択される少なくとも1種の元
素)で表されるものとすれば、容量の低下を伴うことな
く出力維持率を向上させることができる。更に、負極の
活物質に非晶質炭素を用いれば、高出力、高容量であ
り、かつ、安全性に一層優れた非水電解液二次電池とす
ることができる。
In this case, if a mixture of graphite and amorphous carbon is used as the conductive material, a higher output non-aqueous electrolyte secondary battery can be obtained. At this time, the mass of graphite and amorphous carbon is increased. If the ratio is 80:20 to 90:10, the output can be further increased. Further, when the average particle size of graphite is 0.2 to 0.8 times the average particle size of lithium manganese composite oxide having a spinel type crystal structure, a non-aqueous electrolyte secondary battery with higher output is obtained. When acetylene black is used as the amorphous carbon, a non-aqueous electrolyte secondary battery with higher output can be obtained. Furthermore, if the Li / Mn ratio of the lithium manganese oxide is set to 0.55 to 0.60, the output retention rate can be improved without a decrease in capacity. In addition, lithium manganese mixed oxide
i 1 + x Mn 2−x− y My O 4 (x is 0 <x ≦ 0.
1, y is 0 <y ≦ 0.3, M is A1, Cr, Ni, C
If it is represented by at least one element selected from the group consisting of o and Mg), the output retention rate can be improved without lowering the capacity. Furthermore, when amorphous carbon is used as the active material of the negative electrode, a non-aqueous electrolyte secondary battery having high output and high capacity and further excellent safety can be obtained.

【0012】更に、正極及び/又は負極のバインダにポ
リビニルアルコールを主体とし変性された熱硬化性可塑
化ポリビニルアルコール樹脂を用いれば、更に容量の低
下を伴うことなく出力維持率を向上させることができ
る。
Further, if a thermosetting plasticized polyvinyl alcohol resin mainly composed of polyvinyl alcohol is used for the binder of the positive electrode and / or the negative electrode, the output retention rate can be improved without further lowering the capacity. .

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明に係
る非水電解液二次電池をハイブリッド電気自動車用の円
筒形リチウムイオン電池に適用した実施の形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments in which the non-aqueous electrolyte secondary battery according to the present invention is applied to a cylindrical lithium ion battery for a hybrid electric vehicle will be described below with reference to the drawings.

【0014】(熱硬化性可塑化ポリビニルアルコール樹
脂バインダ組成物の作製)熱硬化性可塑化ポリビニルア
ルコール樹脂は、熱硬化性ポリビニルアルコール系樹脂
からなる第一の樹脂成分と、アクリル樹脂系可塑剤から
なる第二の樹脂成分とが、適当な溶媒中(本実施例で
は、N−メチル−2−ピロリドン、以下NMPとい
う。)に混合溶解されているものを用いた。第一の樹脂
成分である熱硬化性ポリビニルアルコール系樹脂は、平
均重合度約2000程度のポリビニルアルコール系樹脂
に、例えばコハク酸無水物等の環状酸無水物を、NMP
等の有機溶剤中、トリエチルアミン等の触媒存在下で実
質的に無水の状態で反応させて得られる。ポリビニルア
ルコール系樹脂と環状酸無水物の反応割合は、ポリビニ
ルアルコール系樹脂のアルコール性ヒドロキシル基1当
量に対し、環状酸無水物の無水物基が、約0.1当量と
するのがよい。
(Preparation of Thermosetting Plasticized Polyvinyl Alcohol Resin Binder Composition) The thermosetting plasticized polyvinyl alcohol resin comprises a first resin component composed of a thermosetting polyvinyl alcohol resin and an acrylic resin plasticizer. The second resin component was mixed and dissolved in an appropriate solvent (in this example, N-methyl-2-pyrrolidone, hereinafter referred to as NMP). The thermosetting polyvinyl alcohol-based resin, which is the first resin component, is a polyvinyl alcohol-based resin having an average degree of polymerization of about 2000 and a cyclic acid anhydride such as succinic anhydride, NMP.
It can be obtained by reacting in a substantially anhydrous state in the presence of a catalyst such as triethylamine in an organic solvent such as. The reaction ratio between the polyvinyl alcohol-based resin and the cyclic acid anhydride is preferably about 0.1 equivalent of the anhydride group of the cyclic acid anhydride to 1 equivalent of the alcoholic hydroxyl group of the polyvinyl alcohol-based resin.

【0015】第二の樹脂成分であるアクリル樹脂系可塑
剤は、ラウリルアクリレート/アクリル酸共重合物と二
官能型エポキシ樹脂との反応物が相応しい。
As the acrylic resin type plasticizer which is the second resin component, a reaction product of a lauryl acrylate / acrylic acid copolymer and a bifunctional epoxy resin is suitable.

【0016】以下、本実施形態で用いた熱硬化性可塑化
ポリビニルアルコール樹脂組成物は、次のように合成し
たものである。
The thermosetting plasticized polyvinyl alcohol resin composition used in this embodiment was synthesized as follows.

【0017】第一の樹脂成分は、次のように合成した。
攪拌機、温度計、冷却管、留出留、窒素ガス導入管を装
備したセパラブルフラスコに、けん化度約98%のポリ
ビニルアルコール51gとNMP650g、及びトルエ
ン10gを投入し、窒素バブリングと撹拌をしながら約
30分かけて195゜Cに昇温した。同温度で2時間保
温し、トルエンを還流させることによって水分を共沸さ
せ、フラスコ内の水分を留去させた。次いでトルエンを
留去して120゜Cまで冷却し、同温度で保温しなが
ら、コハク酸無水物7.7gを添加、1時間反応させた
(ポリビニルアルコールのアルコール性ヒドロキシル基
1当量に対し、酸無水物基が、約0.07当量)。室温
まで冷却し、第一の樹脂成分が約8質量%のNMP溶液
を得た。
The first resin component was synthesized as follows.
To a separable flask equipped with a stirrer, a thermometer, a cooling pipe, a distilling distillate, and a nitrogen gas introduction pipe, 51 g of polyvinyl alcohol having a saponification degree of about 98%, 650 g of NMP, and 10 g of toluene were charged, and nitrogen bubbling and stirring were performed. The temperature was raised to 195 ° C over about 30 minutes. The temperature was kept at the same temperature for 2 hours, and toluene was refluxed to azeotropically distill the water, and the water in the flask was distilled off. Then, toluene was distilled off, the mixture was cooled to 120 ° C, and while maintaining the temperature at the same temperature, 7.7 g of succinic anhydride was added and reacted for 1 hour (for 1 equivalent of alcoholic hydroxyl group of polyvinyl alcohol, acid Anhydrous groups are about 0.07 eq.). It cooled to room temperature and obtained the NMP solution whose 1st resin component is about 8 mass%.

【0018】第二の樹脂成分は、次のように合成した。
攪拌機、温度計、冷却管、留出留、窒素ガス導入管を装
備したセパラブルフラスコに、重量平均分子量約310
0の無溶剤型ラウリルアクリレート/アクリル酸共重合
体を110gと、ビスフェノールA型エポキシ樹脂71
g(無溶剤型ラウリルアクリレート/アクリル酸共重合
体のカルボキシル基1当量に対し、エポキシ基として約
2当量)を投入し、窒素バブリングと撹拌をしながら約
15分間かけて150゜Cに昇温した。同温度で2時間
保温して反応を進めた後、ここにNMP78gを添加、
室温まで冷却させて、第二の樹脂成分約70重量%のN
MP溶液を得た。
The second resin component was synthesized as follows.
In a separable flask equipped with a stirrer, a thermometer, a cooling pipe, a distilling distillate, and a nitrogen gas introducing pipe, a weight average molecular weight of about 310
0, 110 g of solventless lauryl acrylate / acrylic acid copolymer, and bisphenol A type epoxy resin 71
g (about 2 equivalents as an epoxy group to 1 equivalent of a carboxyl group of a solvent-free lauryl acrylate / acrylic acid copolymer) was added, and the temperature was raised to 150 ° C over about 15 minutes while nitrogen bubbling and stirring were performed. did. After incubating for 2 hours at the same temperature to proceed the reaction, add 78 g of NMP here,
When cooled to room temperature, the second resin component contains about 70% by weight of N 2.
An MP solution was obtained.

【0019】第一の樹脂成分8質量%のNMP溶液と第
二の樹脂成分約70重量%のNMP溶液とを、それぞれ
の樹脂成分の質量換算で100:10の割合で混合し、
熱硬化性可塑化ポリビニルアルコール樹脂組成物のNM
P溶液を得た。
An NMP solution containing 8% by weight of the first resin component and an NMP solution containing about 70% by weight of the second resin component were mixed at a ratio of 100: 10 in terms of the weight of each resin component,
NM of thermosetting plasticized polyvinyl alcohol resin composition
A P solution was obtained.

【0020】(正極板の作製)スピネル型結晶構造を有
するリチウムマンガン複酸化物としてのマンガン酸リチ
ウム粉末と、導電材としての後述する所定の炭素材と、
バインダ(結着剤)としてのポリフッ化ビニリデン(P
VDF)又は熱硬化性可塑化ポリビニルアルコール樹脂
(以下、熱硬化性可塑化PVAという。)組成物のNM
P溶液と、を所定の混合比で混合した正極活物質合剤
に、必要に応じて分散溶媒のN−メチル−2−ピロリド
ン(NMP)を添加、混練したスラリを得た。このと
き、炭素材の量を正極活物質合剤の10〜12質量%と
し、かつ、バインダの量を正極活物質合剤の3〜5質量
%とした。作製したスラリを、厚さ20μmのアルミニ
ウム箔(正極集電体)の両面に、正極集電体片面あたり
のマンガン酸リチウムの塗着量が80〜160g/m
で塗布した。このとき、正極板長寸方向の一方の側縁に
幅30mmの未塗布部を残した。その後乾燥、プレス、
裁断して、幅82mm、所定長さ、正極活物質合剤塗布
部所定厚さの正極板を得た。正極活物質合剤層のかさ密
度は2.65g/cmとした。上記未塗布部に切り欠
きを入れ、切り欠き残部を正極リード片とした。隣り合
う正極リード片を50mm間隔とし、正極リード片の幅
を5mmとした。
(Preparation of Positive Electrode Plate) Lithium manganate powder as a lithium manganese oxide having a spinel type crystal structure, and a predetermined carbon material described below as a conductive material,
Polyvinylidene fluoride (P) as a binder
NM of VDF) or thermosetting plasticized polyvinyl alcohol resin (hereinafter referred to as thermosetting plasticized PVA) composition
If necessary, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the positive electrode active material mixture prepared by mixing the P solution and the mixture at a predetermined mixing ratio to obtain a kneaded slurry. At this time, the amount of the carbon material was 10 to 12% by mass of the positive electrode active material mixture, and the amount of the binder was 3 to 5% by mass of the positive electrode active material mixture. The produced slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm, and the coating amount of lithium manganate per one surface of the positive electrode current collector was 80 to 160 g / m 2.
Was applied. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the lengthwise direction of the positive electrode plate. Then dry, press,
By cutting, a positive electrode plate having a width of 82 mm, a predetermined length, and a predetermined thickness of the positive electrode active material mixture application portion was obtained. The bulk density of the positive electrode active material mixture layer was 2.65 g / cm 3 . A notch was made in the uncoated portion, and the remaining notch was used as a positive electrode lead piece. Adjacent positive electrode lead pieces were spaced 50 mm apart, and the width of the positive electrode lead pieces was 5 mm.

【0021】(負極板の作製)負極活物質としてメソフ
ェーズ系球状黒鉛である大阪ガスケミカル株式会社製黒
鉛粉末(以下、MCMBという。)又は非晶質炭素であ
る呉羽化学工業株式会社製非晶質炭素粉末(商品名カー
ボトロンP)(以下、PICという。)の92質量部
に、8質量部のPVDF、又は、熱硬化性可塑化PVA
のNMP溶液を樹脂分として8質量部となるように添加
した負極活物質合剤に、必要に応じて分散溶媒のNMP
を添加、混練したスラリを厚さ10μmの圧延銅箔(負
極集電体)の両面に塗布した。このとき、負極板長寸方
向の一方の側縁に幅30mmの未塗布部を残した。その
後乾燥、プレス、裁断して、幅86mm、所定長さ、負
極活物質合剤塗布部所定厚さの負極板を得た。負極活物
質合剤層の空隙率が約35%となるように負極板を圧縮
した。バインダに熱硬化性可塑化PVAを用いた負極
は、この後、熱硬化させるために150゜Cで16時間
の真空乾燥・熱処理を施した。上記未塗布部に正極と同
様に切り欠きを入れ、切り欠き残部を負極リード片とし
た。隣り合う負極リード片を50mm間隔とし、負極リ
ード片の幅を5mmとした。
(Preparation of Negative Electrode Plate) Graphite powder (hereinafter referred to as MCMB) manufactured by Osaka Gas Chemical Co., Ltd., which is mesophase type spherical graphite, or amorphous carbon manufactured by Kureha Chemical Industry Co., Ltd., which is a negative electrode active material. 92 parts by mass of carbon powder (trade name: Carbotron P) (hereinafter referred to as PIC), 8 parts by mass of PVDF, or thermosetting plasticized PVA
NMP solution as a resin component was added so as to be 8 parts by mass, and if necessary, NMP as a dispersion solvent was added.
Was added and kneaded to apply the slurry to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated portion having a width of 30 mm was left on one side edge in the lengthwise direction of the negative electrode plate. Then, it was dried, pressed, and cut to obtain a negative electrode plate having a width of 86 mm, a predetermined length, and a predetermined thickness of the negative electrode active material mixture application portion. The negative electrode plate was compressed so that the porosity of the negative electrode active material mixture layer was about 35%. The negative electrode using the thermosetting plasticized PVA as a binder was then subjected to vacuum drying / heat treatment at 150 ° C. for 16 hours for thermosetting. A notch was made in the uncoated portion similarly to the positive electrode, and the remaining notch was used as a negative electrode lead piece. Adjacent negative electrode lead pieces were spaced at 50 mm, and the width of the negative electrode lead pieces was 5 mm.

【0022】また、作製した電極板は、後述するように
捲回したときに、捲回最内周では捲回方向に正極板が負
極板からはみ出すことがなく、また最外周でも捲回方向
に正極板が負極板からはみ出すことがないように、負極
板の長さは正極板の長さよりも12cm長くした。ま
た、捲回方向と垂直方向においても正極活物質合剤塗布
部が負極活物質合剤塗布部からはみ出すことがないよう
に、負極活物質合剤塗布部の幅は、正極活物質合剤塗布
部の幅よりも4mm長くした。
Further, in the produced electrode plate, when wound as described later, the positive electrode plate does not protrude from the negative electrode plate in the winding direction at the innermost winding periphery, and also in the winding direction at the outermost periphery. The length of the negative electrode plate was 12 cm longer than the length of the positive electrode plate so that the positive electrode plate did not protrude from the negative electrode plate. Further, the width of the negative electrode active material mixture coating portion is set so that the positive electrode active material mixture coating portion does not protrude from the negative electrode active material mixture coating portion even in the direction perpendicular to the winding direction. It was 4 mm longer than the width of the part.

【0023】(電池の作製)図1に示すように、上記作
製した正極板と負極板とを、これら両極板が直接接触し
ないように幅90mm、厚さ40μmのポリエチレン製
セパレータW5と共に捲回した。捲回の中心には、ポリ
プロピレン製の中空円筒状の軸芯1を用いた。このと
き、正極リード片と負極リード片とが、それぞれ捲回群
(電極捲回群)6の互いに反対側の両端面に位置するよ
うにした。また、正極板、負極板、セパレータの長さを
調整し、捲回群6の直径を38±0.1mmとした。
(Preparation of Battery) As shown in FIG. 1, the above-prepared positive electrode plate and negative electrode plate were wound together with a polyethylene separator W5 having a width of 90 mm and a thickness of 40 μm so as not to directly contact the both electrode plates. . A hollow cylindrical shaft core 1 made of polypropylene was used as the center of winding. At this time, the positive electrode lead piece and the negative electrode lead piece were respectively positioned on opposite end surfaces of the winding group (electrode winding group) 6 on opposite sides. The lengths of the positive electrode plate, the negative electrode plate, and the separator were adjusted so that the winding group 6 had a diameter of 38 ± 0.1 mm.

【0024】正極リード片を変形させ、その全てを、捲
回群6の軸芯1のほぼ延長線上にある正極集電リングの
周囲から一体に張り出している鍔部周面付近に集合、接
触させた後、正極リード片と鍔部周面とを超音波溶接し
て正極リード片を鍔部周面に接続した。一方、負極集電
リングと負極リード片との接続操作も、正極集電リング
と正極リード片との接続操作と同様に実施した。
The positive electrode lead pieces are deformed, and all of them are gathered and contacted in the vicinity of the peripheral surface of the flange portion which is integrally projected from the periphery of the positive electrode current collecting ring which is almost on the extension line of the axis 1 of the winding group 6. Then, the positive electrode lead piece and the peripheral surface of the flange portion were ultrasonically welded to connect the positive electrode lead piece to the peripheral surface of the flange portion. On the other hand, the operation of connecting the negative electrode current collecting ring and the negative electrode lead piece was performed in the same manner as the operation of connecting the positive electrode current collecting ring and the positive electrode lead piece.

【0025】その後、正極集電リングの鍔部周面全周に
絶縁被覆を施した。この絶縁被覆には、基材がポリイミ
ドで、その片面にヘキサメタアクリレートからなる粘着
剤を塗布した粘着テープを用いた。この粘着テープを鍔
部周面から捲回群6外周面に亘って一重以上巻いて絶縁
被覆とし、捲回群6をニッケルメッキが施されたスチー
ル製の電池容器7内に挿入した。電池容器7の外径は4
0mm、内径は39mmである。
After that, an insulating coating was applied to the entire circumference of the flange portion of the positive electrode current collecting ring. For this insulating coating, an adhesive tape was used in which the base material was polyimide, and one surface of which was coated with an adhesive consisting of hexamethacrylate. The adhesive tape was wound over the outer peripheral surface of the winding group 6 from the flange peripheral surface to form an insulating coating, and the winding group 6 was inserted into a nickel-plated steel battery container 7. The outer diameter of the battery container 7 is 4
The inner diameter is 0 mm and the inner diameter is 39 mm.

【0026】負極集電リングには予め電気的導通のため
の負極リード板が溶接されており、電池容器7内に捲回
群6を挿入後、電池容器7の底部と負極リード板とを溶
接した。
A negative electrode lead plate for electrical conduction is previously welded to the negative electrode current collecting ring. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate are welded. did.

【0027】一方、正極集電リングには、予め複数枚の
アルミニウム製のリボンを重ね合わせて構成した正極リ
ードを溶接しておき、正極リードの他端を、電池容器7
を封口するための電池蓋の下面に溶接した。電池蓋に
は、円筒形リチウムイオン電池20の内圧上昇に応じて
開裂する内圧開放機構としての開裂弁11が設けられて
いる。開裂弁11の開裂圧は、約9×10Paに設定
した。電池蓋は、蓋ケースと、気密を保つ弁押さえと、
開裂弁(内部ガス排出弁)11とで構成されており、こ
れらが積層されて蓋ケースの周縁をカシメることによっ
て組立てられている。
On the other hand, the positive electrode current collector ring is previously welded with a positive electrode lead formed by stacking a plurality of aluminum ribbons, and the other end of the positive electrode lead is attached to the battery container 7
Was welded to the lower surface of the battery lid for sealing. The battery lid is provided with a cleaving valve 11 as an internal pressure releasing mechanism that cleaves in accordance with an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa. The battery lid has a lid case, a valve retainer that keeps airtightness,
It is composed of a cleaving valve (internal gas discharge valve) 11, and these are laminated and assembled by caulking the peripheral edge of the lid case.

【0028】非水電解液を所定量電池容器7内に注入
し、その後、正極リードを折りたたむようにして電池蓋
で電池容器7に蓋をし、EPDM樹脂製ガスケットを介
してカシメて密封することにより円筒形リチウムイオン
電池20を完成させた。
A predetermined amount of non-aqueous electrolyte is injected into the battery container 7, and then the battery container 7 is covered with a battery cover so that the positive electrode lead is folded, and the battery container 7 is caulked and sealed with an EPDM resin gasket. Thus, the cylindrical lithium ion battery 20 was completed.

【0029】非水電解液には、エチレンカーボネートと
ジメチルカーボネートとジエチルカーボネートの体積比
1:1:1の混合溶液中へ6フッ化リン酸リチウム(L
iPF)を1モル/リットル溶解したものを用いた。
なお、円筒形リチウムイオン電池20には、電池温度の
上昇に応じて電気的に作動する、例えば、PTC(Posi
tive Temperature Coefficient)素子や、電池内圧の上
昇に応じて正極あるいは負極の電気的リードが切断され
る電流遮断機構は設けられていない。
As the non-aqueous electrolyte, lithium hexafluorophosphate (L) is added to a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1.
iPF 6 ) was used at a concentration of 1 mol / liter.
It should be noted that the cylindrical lithium-ion battery 20 is electrically operated in accordance with an increase in battery temperature, for example, a PTC (Posi
Neither a tive temperature coefficient (COT) element nor a current interruption mechanism for cutting the electric lead of the positive electrode or the negative electrode according to the increase of the internal pressure of the battery is provided.

【0030】本実施形態によれば、スピネル型結晶構造
を有するマンガン酸リチウムと炭素材及びPVDFや熱
硬化性可塑化PVAを含む正極活物質合剤を塗着した正
極と、充放電によりリチウムイオンを吸蔵・放出可能な
黒鉛粉末又は非晶質炭素粉末を負極活物質とした負極
と、を用いることにより、高容量、高出力のリチウムイ
オン電池を確保することができる。マンガン酸リチウム
の塗着量を正極集電体片面あたりに80〜160g/m
とし、かつ、炭素材量を正極活物質合剤の10〜12
質量%とすることにより、非水電解液と正極活物質合剤
との化学反応に伴う発熱量を低減させ、円筒形リチウム
イオン電池20内での急激かつ大量のガス発生を抑制す
ることができるので、電池の内圧上昇を防止するために
設けた開裂弁11からのガス放出が極めて穏やかに行わ
れる。更に、PVDF量を正極活物質合剤の3〜5質量
%とすることにより、正極活物質合剤の剥離・脱落を防
ぐことができるので、初期の容量や出力の低下を抑制す
ることができる。従って、作製した円筒形リチウムイオ
ン電池20は、高容量、高出力でありながらも、極めて
安全性の高い電池である。
According to this embodiment, a positive electrode coated with lithium manganate having a spinel type crystal structure, a carbon material and a positive electrode active material mixture containing PVDF or thermosetting plasticized PVA, and lithium ions by charging and discharging. By using a negative electrode that uses graphite powder or amorphous carbon powder capable of occluding and releasing as a negative electrode active material, it is possible to secure a lithium ion battery with high capacity and high output. The amount of lithium manganate applied is 80 to 160 g / m per one side of the positive electrode current collector.
2 and the amount of carbon material is 10 to 12 of the positive electrode active material mixture.
By setting the content to be% by mass, the amount of heat generated by the chemical reaction between the non-aqueous electrolyte and the positive electrode active material mixture can be reduced, and rapid and large amount of gas generation in the cylindrical lithium ion battery 20 can be suppressed. Therefore, the gas is released very gently from the cleaving valve 11 provided to prevent the internal pressure of the battery from rising. Furthermore, by setting the amount of PVDF to 3 to 5% by mass of the positive electrode active material mixture, peeling and dropping of the positive electrode active material mixture can be prevented, so that reduction in initial capacity and output can be suppressed. . Therefore, the manufactured cylindrical lithium-ion battery 20 is a battery having high capacity and high output, but extremely high safety.

【0031】[0031]

【実施例】次に、本実施形態に従って作製した円筒形リ
チウムイオン電池20の実施例について説明する。な
お、比較のために作製した比較例の電池についても併記
する。
EXAMPLES Next, examples of the cylindrical lithium-ion battery 20 manufactured according to this embodiment will be described. The battery of the comparative example prepared for comparison is also shown.

【0032】(実施例1)下表1に示すように、実施例
1では、LiとMnの原子比(Li/Mn比)0.5
2、平均粒径約20μmのマンガン酸リチウム(Li
1+xMn2−x)粉末、平均粒径18μmの鱗片
状黒鉛及びPVDFの配合比を質量%で85:11:4
とし、アルミニウム箔片面あたりのマンガン酸リチウム
の塗着量を80g/m、正極活物質合剤塗布部の厚さ
(アルミニウム箔の厚さは含まない。)(以下、正極塗
布部厚さという。)を71μm、正極板の長さを438
cmとした。鱗片状黒鉛の平均粒径はマンガン酸リチウ
ムの平均粒径に対して0.9倍である。負極活物質に
は、メソフェーズ系球状黒鉛であるMCMBを、負極バ
インダにPVDFを用い、負極活物質合剤塗布部の厚さ
(銅箔の厚さは含まない。)(以下、負極塗布部厚さと
いう。)を53μm、負極板の長さを450cmとし
た。なお、鱗片状黒鉛の平均粒径は、篩分け、分級によ
って調整することができる(以下、特に記載の無い限
り、実施例及び比較例においても同じ。)。
Example 1 As shown in Table 1 below, in Example 1, the atomic ratio of Li and Mn (Li / Mn ratio) was 0.5.
2. Lithium manganate (Li having an average particle size of about 20 μm)
85 1 + x Mn 2-x O 4) powder, a mixing ratio of average particle size 18μm of flake graphite and PVDF in a mass%: 11: 4
Then, the coating amount of lithium manganate per one side of the aluminum foil is 80 g / m 2 , and the thickness of the positive electrode active material mixture application portion (excluding the thickness of the aluminum foil) (hereinafter referred to as the positive electrode application portion thickness). .) And the length of the positive electrode plate is 438.
cm. The average particle size of the flake graphite is 0.9 times the average particle size of lithium manganate. MCMB, which is mesophase spheroidal graphite, was used as the negative electrode active material, and PVDF was used as the negative electrode binder, and the thickness of the negative electrode active material mixture coating portion (excluding the thickness of the copper foil) (hereinafter, the negative electrode coating portion thickness) was used. The length of the negative electrode plate was 450 cm. The average particle size of the flake graphite can be adjusted by sieving and classification (hereinafter, the same applies to Examples and Comparative Examples unless otherwise specified).

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2)表1に示すように、実施例2
では、マンガン酸リチウムの塗着量を120g/m
し、正極塗布部厚さを107μm、正極板の長さを34
5cm、負極塗布部厚さを79μm、負極板の長さを3
57cmとした以外は実施例1と同様にした。
Example 2 As shown in Table 1, Example 2
Then, the coating amount of lithium manganate is 120 g / m 2 , the thickness of the positive electrode coating portion is 107 μm, and the length of the positive electrode plate is 34 μm.
5 cm, the thickness of the negative electrode coating part is 79 μm, and the length of the negative electrode plate is 3
The same procedure was performed as in Example 1 except that the length was 57 cm.

【0035】(実施例2−イ)表1に示すように、実施
例2−イでは、正極バインダに熱硬化性可塑化PVAを
用いた以外は実施例2と同様に電池を作製した。
(Example 2-a) As shown in Table 1, in Example 2-a, a battery was produced in the same manner as in Example 2 except that thermosetting plasticized PVA was used as the positive electrode binder.

【0036】(実施例2−ロ)表1に示すように、実施
例2−ロでは、負極バインダに熱硬化性可塑化PVAを
用いた以外は実施例2と同様に電池を作製した。
(Example 2-B) As shown in Table 1, in Example 2-B, a battery was prepared in the same manner as in Example 2 except that the thermosetting plasticized PVA was used as the negative electrode binder.

【0037】(実施例2−ハ)表1に示すように、実施
例2−ハでは、正極及び負極バインダに熱硬化性可塑化
PVAを用いた以外は実施例2と同様に電池を作製し
た。
(Example 2-C) As shown in Table 1, in Example 2-C, a battery was prepared in the same manner as in Example 2 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0038】(実施例2−a)表1に示すように、実施
例2−aでは、マンガン酸リチウム粉末、鱗片状黒鉛及
びPVDFの配合比を86:11:3とし、正極塗布部
厚さを106μm、負極塗布部厚さを80μmとした以
外は実施例2と同様にした。
(Example 2-a) As shown in Table 1, in Example 2-a, the compounding ratio of lithium manganate powder, flake graphite and PVDF was 86: 11: 3, and the thickness of the positive electrode coating portion was Was 106 μm, and the thickness of the negative electrode coating portion was 80 μm.

【0039】(実施例2−b)表1に示すように、実施
例2−bでは、マンガン酸リチウム粉末、鱗片状黒鉛及
びPVDFの配合比を84:11:5とし、正極塗布部
厚さを108μm、正極板の長さを343cm、負極塗
布部厚さを80μm、負極板の長さを355cmとした
以外は実施例2と同様にした。
(Example 2-b) As shown in Table 1, in Example 2-b, the compounding ratio of lithium manganate powder, scaly graphite and PVDF was 84: 11: 5, and the thickness of the positive electrode coating portion was Was 108 μm, the length of the positive electrode plate was 343 cm, the thickness of the negative electrode coating portion was 80 μm, and the length of the negative electrode plate was 355 cm.

【0040】(実施例2−2〜2−5)表1に示すよう
に、実施例2−2〜実施例2−5では、マンガン酸リチ
ウムのLi/Mn比を、実施例2−2では0.55と
し、実施例2−3では0.58とし、実施例2−4では
0.60とし、実施例2−5では0.61とした以外は
実施例2と同様にした。
(Examples 2-2 to 2-5) As shown in Table 1, in Examples 2-2 to 2-5, the Li / Mn ratio of lithium manganate was changed from that in Example 2-2. Example 2 was the same as Example 2 except that the value was 0.55, the value was 0.58 in Example 2-3, the value was 0.60 in Example 2-4, and the value was 0.61 in Example 2-5.

【0041】(実施例3)表1に示すように、実施例3
では、マンガン酸リチウムの塗着量を160g/m
し、正極塗布部厚さを142μm、正極板の長さを28
4cm、負極塗布部厚さを106μm、負極板の長さを
296cmとした以外は実施例1と同様にした。
Example 3 As shown in Table 1, Example 3
Then, the coating amount of lithium manganate is 160 g / m 2 , the thickness of the positive electrode coating portion is 142 μm, and the length of the positive electrode plate is 28 μm.
4 cm, the thickness of the negative electrode coating portion was 106 μm, and the length of the negative electrode plate was 296 cm, and the same procedure as in Example 1 was performed.

【0042】(実施例4)表1に示すように、実施例4
では、マンガン酸リチウム粉末、鱗片状黒鉛及びPVD
Fの配合比を87:8:5とし、マンガン酸リチウムの
塗着量を120g/m、正極塗布部厚さを105μ
m、正極板の長さを347cmとし、負極塗布部厚さを
79μm、負極板の長さを359cmとした以外は実施
例1と同様にした。
Example 4 As shown in Table 1, Example 4
Then, lithium manganate powder, flake graphite and PVD
The compounding ratio of F is 87: 8: 5, the coating amount of lithium manganate is 120 g / m 2 , and the thickness of the positive electrode coating portion is 105 μ.
m, the length of the positive electrode plate was 347 cm, the thickness of the negative electrode coating portion was 79 μm, and the length of the negative electrode plate was 359 cm.

【0043】(実施例5)表1に示すように、実施例5
では、マンガン酸リチウム粉末、鱗片状黒鉛及びPVD
Fの配合比を84:12:4とし、マンガン酸リチウム
の塗着量を120g/m、正極塗布部厚さを108μ
m、正極板の長さを343cmとし、負極塗布部厚さを
80μm、負極板の長さを355cmとした以外は実施
例1と同様にした。
(Example 5) As shown in Table 1, Example 5
Then, lithium manganate powder, flake graphite and PVD
The compounding ratio of F is 84: 12: 4, the coating amount of lithium manganate is 120 g / m 2 , and the thickness of the positive electrode coating portion is 108 μ.
m, the length of the positive electrode plate was 343 cm, the thickness of the negative electrode coating portion was 80 μm, and the length of the negative electrode plate was 355 cm.

【0044】(実施例6)表1に示すように、実施例6
では、炭素材として鱗片状黒鉛と無定形炭素のケッチェ
ンブラック(以下、KBという。)との混合物を用い、
マンガン酸リチウム粉末、鱗片状黒鉛、KB及びPVD
Fの配合比を85:8.25:2.75:4とし、マン
ガン酸リチウムの塗着量を120g/m、正極塗布部
厚さを107μm、正極板の長さを345cmとし、負
極塗布部厚さを79μm、負極板の長さを357cmと
した以外は実施例1と同様にした。黒鉛とKBの合計配
合量は11質量%であり、黒鉛とKBの質量比は75:
25である。
Example 6 As shown in Table 1, Example 6 was used.
Then, a mixture of flake graphite and amorphous carbon Ketjen Black (hereinafter referred to as KB) is used as the carbon material,
Lithium manganate powder, flake graphite, KB and PVD
The compounding ratio of F was 85: 8.25: 2.75: 4, the amount of lithium manganate applied was 120 g / m 2 , the thickness of the positive electrode coating part was 107 μm, the length of the positive electrode plate was 345 cm, and the negative electrode was applied. Same as Example 1 except that the thickness of the portion was 79 μm and the length of the negative electrode plate was 357 cm. The total blending amount of graphite and KB was 11% by mass, and the mass ratio of graphite and KB was 75:
25.

【0045】(実施例6−イ)表1に示すように、実施
例6−イでは、正極バインダに熱硬化性可塑化PVAを
用いた以外は実施例6と同様に電池を作製した。
(Example 6-a) As shown in Table 1, in Example 6-a, a battery was prepared in the same manner as in Example 6 except that thermosetting plasticized PVA was used as the positive electrode binder.

【0046】(実施例6−ロ)表1に示すように、実施
例6−ロでは、負極バインダに熱硬化性可塑化PVAを
用いた以外は実施例6と同様に電池を作製した。
(Example 6-b) As shown in Table 1, in Example 6-b, a battery was produced in the same manner as in Example 6 except that the thermosetting plasticized PVA was used as the negative electrode binder.

【0047】(実施例6−ハ)表1に示すように、実施
例6−ハでは、正極及び負極バインダに熱硬化性可塑化
PVAを用いた以外は実施例6と同様に電池を作製し
た。
(Example 6-C) As shown in Table 1, in Example 6-C, a battery was prepared in the same manner as in Example 6 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0048】(実施例6−1〜実施例6−4)下表2に
示すように、実施例6−1〜実施例6−4では、マンガ
ン酸リチウム粉末、鱗片状黒鉛、KB及びPVDFの配
合比を変えた以外は、実施例6と同様にした。配合比
は、実施例6−1では、85:8.8:2.2:4(黒
鉛とKBの質量比は80:20)とし、実施例6−2で
は、85:9.35:1.65:4(黒鉛とKBの質量
比は85:15)とし、実施例6−3では、85:9.
9:1.1:4(黒鉛とKBの質量比は90:10)と
し、実施例6−4では、85:10.45:0.55:
4(黒鉛とKBの質量比は95:5)とした。
(Examples 6-1 to 6-4) As shown in Table 2 below, in Examples 6-1 to 6-4, lithium manganate powder, scaly graphite, KB and PVDF were used. Same as Example 6 except that the compounding ratio was changed. The compounding ratio was 85: 8.8: 2.2: 4 in Example 6-1 (the mass ratio of graphite and KB was 80:20), and in Example 6-2, 85: 9.35: 1. 65: 4 (mass ratio of graphite and KB is 85:15), and in Example 6-3, 85: 9.
9: 1.1: 4 (the mass ratio of graphite and KB is 90:10), and in Example 6-4, 85: 10.45: 0.55:
4 (the mass ratio of graphite and KB is 95: 5).

【0049】[0049]

【表2】 [Table 2]

【0050】(実施例6−2−イ)表2に示すように、
実施例6−2−イでは、正極バインダに熱硬化性可塑化
PVAを用いた以外は実施例6−2と同様に電池を作製
した。
(Example 6-2-a) As shown in Table 2,
In Example 6-2-a, a battery was produced in the same manner as in Example 6-2 except that thermosetting plasticized PVA was used as the positive electrode binder.

【0051】(実施例6−2−ロ)表2に示すように、
実施例6−2−ロでは、負極バインダに熱硬化性可塑化
PVAを用いた以外は実施例6−2と同様に電池を作製
した。
(Example 6-2-b) As shown in Table 2,
In Example 6-2-B, a battery was produced in the same manner as in Example 6-2 except that the thermosetting plasticized PVA was used as the negative electrode binder.

【0052】(実施例6−2−ハ)表2に示すように、
実施例6−2−ハでは、正極及び負極バインダに熱硬化
性可塑化PVAを用いた以外は実施例6−2と同様に電
池を作製した。
(Example 6-2-C) As shown in Table 2,
In Example 6-2-C, a battery was produced in the same manner as in Example 6-2 except that thermosetting plasticized PVA was used for the positive electrode and the negative electrode binder.

【0053】(実施例7)表2に示すように、実施例7
では、平均粒子径2μmの鱗片状黒鉛を用い、マンガン
酸リチウム粉末、鱗片状黒鉛、KB及びPVDFの配合
比を85:9.35:1.65:4(黒鉛とKBの質量
比は85:15)とした以外は実施例6と同様にした。
鱗片状黒鉛の平均粒径はマンガン酸リチウムの平均粒径
に対して0.1倍である。
Example 7 As shown in Table 2, Example 7
Then, using flake graphite having an average particle diameter of 2 μm, the compounding ratio of lithium manganate powder, flake graphite, KB and PVDF is 85: 9.35: 1.65: 4 (the mass ratio of graphite and KB is 85: Same as Example 6 except that it was set as 15).
The average particle size of the flake graphite is 0.1 times the average particle size of lithium manganate.

【0054】(実施例8〜実施例10)表2に示すよう
に、実施例8〜実施例10では、平均粒径の異なる鱗片
状黒鉛を用いた以外は実施例7と同様にした。実施例8
では、平均粒径4μmの鱗片状黒鉛(マンガン酸リチウ
ムの平均粒径に対して0.2倍)を用い、実施例9で
は、平均粒径10μmの鱗片状黒鉛(マンガン酸リチウ
ムの平均粒径に対して0.5倍)を用い、実施例10で
は、平均粒径16μmの鱗片状黒鉛(マンガン酸リチウ
ムの平均粒径に対して0.8倍)を用いた。
(Examples 8 to 10) As shown in Table 2, Examples 8 to 10 were the same as Example 7 except that flake graphite having different average particle diameters was used. Example 8
In Example 9, scaly graphite having an average particle size of 4 μm (0.2 times the average particle size of lithium manganate) was used, and in Example 9, scaly graphite having an average particle size of 10 μm (average particle size of lithium manganate). In Example 10, scaly graphite having an average particle size of 16 μm (0.8 times the average particle size of lithium manganate) was used.

【0055】(実施例9−イ)表2に示すように、実施
例9−イでは、正極バインダに熱硬化性可塑化PVAを
用いた以外は実施例9と同様に電池を作製した。
Example 9-a As shown in Table 2, in Example 9-a, a battery was produced in the same manner as in Example 9 except that thermosetting plasticized PVA was used as the positive electrode binder.

【0056】(実施例9−ロ)表2に示すように、実施
例9−ロでは、負極バインダに熱硬化性可塑化PVAを
用いた以外は実施例9と同様に電池を作製した。
(Example 9-b) As shown in Table 2, in Example 9-b, a battery was produced in the same manner as in Example 9 except that thermosetting plasticized PVA was used as the negative electrode binder.

【0057】(実施例9−ハ)表2に示すように、実施
例9−ハでは、正極及び負極バインダに熱硬化性可塑化
PVAを用いた以外は実施例9と同様に電池を作製し
た。
(Example 9-C) As shown in Table 2, in Example 9-C, a battery was prepared in the same manner as in Example 9 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0058】(実施例11)下表2に示すように、実施
例11では、炭素材として鱗片状黒鉛と無定形炭素のア
セチレンブラック(以下、ABという。)との混合物を
用い、マンガン酸リチウム粉末、平均粒径10μmの鱗
片状黒鉛(マンガン酸リチウムの平均粒径に対して0.
5倍)、AB及びPVDFの配合比を85:9.35:
1.65:4(黒鉛とABの質量比は85:15)と
し、マンガン酸リチウムの塗着量を120g/m、正
極塗布部厚さを107μm、長さを345cmとし、負
極塗布部厚さを79μm、長さを357cmとした以外
は実施例1と同様にした。
Example 11 As shown in Table 2 below, in Example 11, a mixture of flake graphite and acetylene black of amorphous carbon (hereinafter referred to as AB) was used as the carbon material, and lithium manganate was used. Powder, flaky graphite having an average particle size of 10 μm (0.
5 times), and the mixing ratio of AB and PVDF is 85: 9.35:
1.65: 4 (the mass ratio of graphite and AB is 85:15), the coating amount of lithium manganate is 120 g / m 2 , the thickness of the positive electrode coating portion is 107 μm, the length is 345 cm, and the negative electrode coating portion thickness is The same as Example 1 except that the length was 79 μm and the length was 357 cm.

【0059】(実施例11−イ)表2に示すように、実
施例11−イでは、正極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例11と同様に電池を作製した。
(Example 11-a) As shown in Table 2, in Example 11-a, thermosetting plasticized PV was used as the positive electrode binder.
A battery was produced in the same manner as in Example 11 except that A was used.

【0060】(実施例11−ロ)表2に示すように、実
施例11−ロでは、負極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例11と同様に電池を作製した。
(Example 11-b) As shown in Table 2, in Example 11-b, a thermosetting plasticized PV was used as the negative electrode binder.
A battery was produced in the same manner as in Example 11 except that A was used.

【0061】(実施例11−ハ)表2に示すように、実
施例11−ハでは、正極及び負極バインダに熱硬化性可
塑化PVAを用いた以外は実施例11と同様に電池を作
製した。
(Example 11-C) As shown in Table 2, in Example 11-C, a battery was prepared in the same manner as in Example 11 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0062】(実施例12〜実施例15)下表3に示す
ように、実施例12〜実施例15では、マンガン酸リチ
ウムのLi/Mn比を、実施例12では0.55とし、
実施例13では0.58とし、実施例14では0.60
とし、実施例15では0.61とした以外は実施例11
と同様にした。
(Examples 12 to 15) As shown in Table 3 below, in Examples 12 to 15, the Li / Mn ratio of lithium manganate was set to 0.55 in Example 12,
In Example 13, 0.58, and in Example 14, 0.60
Example 11 except that in Example 15 0.61
Same as.

【0063】[0063]

【表3】 [Table 3]

【0064】(実施例13−イ)表3に示すように、実
施例13−イでは、正極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例13と同様に電池を作製した。
(Example 13-a) As shown in Table 3, in Example 13-a, a thermosetting plasticized PV was used as the positive electrode binder.
A battery was produced in the same manner as in Example 13 except that A was used.

【0065】(実施例13−ロ)表3に示すように、実
施例13−ロでは、負極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例13と同様に電池を作製した。
(Example 13-b) As shown in Table 3, in Example 13-b, thermosetting plasticized PV was used as the negative electrode binder.
A battery was produced in the same manner as in Example 13 except that A was used.

【0066】(実施例13−ハ)表3に示すように、実
施例13−ハでは、正極及び負極バインダに熱硬化性可
塑化PVAを用いた以外は実施例13と同様に電池を作
製した。
(Example 13-C) As shown in Table 3, in Example 13-C, a battery was prepared in the same manner as in Example 13 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0067】(実施例15−A〜実施例15−N)表3
及び下表4に示すように、実施例15−A〜実施例15
−Nでは、マンガン原子の一部を他の金属元素Mで置換
した平均粒径約20μmのマンガン酸リチウム(Li
1+xMn2−x−y)粉末を用いた以外は実
施例11と同様にした。実施例15−AではLi
1.01Mn1.79Cr0.2を用い、実施例1
5−BではLi1.04Mn1.76Cr0.2
用い、実施例15−CではLi1.1Mn1.7Cr
0.2を用い、実施例15−DではLi1.11
1.69Cr0.2を用い、実施例15−Eでは
Li1. 04Mn1.95Cr0.01を用い、実
施例15−FではLi1.04Mn1.66Cr0.3
を用い、実施例15−GではLi1.04Mn
1.6 Cr0.33を用い、実施例15−Hでは
Li1.04Mn1.76Al 0.2を用い、実施
例15−IではLi1.04Mn1.76Ni0.2
を用い、実施例15一JではLi1.04Mn
1.76Co0.2を用い、実施例15−KではL
1.04Mn1.76Mg0.2を用い、実施例
15−LではLi1.04Mn1.76(AlCr)
0.2を用い、実施例15−MではLi1.04
1.76(CrMg)0.2を用い、実施例15
−NではLi1.04Mn1.76(CoMg)0.2
を用いた。なお、元素置換型のマンガン酸リチウム
は、二酸化マンガンと、置換する金属元素Mの炭酸塩、
硝酸塩、水酸化物等とを所望の元素比率となるように混
合し、空気中にて800°C〜900°C程度で焼成す
ることにより調製することができ、得られた元素置換型
マンガン酸リチウム中の元素比率は、塩酸等に溶解した
後、滴定法及び原子吸光やICP等の機器分析による定
量分析で求めることができる。
(Examples 15-A to 15-N) Table 3
And as shown in Table 4 below, Example 15-A to Example 15
In -N, a part of manganese atom is replaced with another metal element M.
Lithium manganate having an average particle size of about 20 μm (Li
1 + xMn2-xyMyOFour) Except for using powder
Same as Example 11. In Example 15-A, Li
1.01Mn1.79Cr0.2OFourExample 1
Li in 5-B1.04Mn1.76Cr0.2OFourTo
Used in Example 15-C.1.1Mn1.7Cr
0.2OFourIs used in Example 15-D.1.11.M
n1.69Cr0.2OFourIs used in Example 15-E
Li1. 04Mn1.95Cr0.01OFourUsing
In Example 15-F, Li1.04Mn1.66Cr0.3
OFourIs used in Example 15-G.1.04Mn
1.6 ThreeCr0.33OFourIs used in Example 15-H
Li1.04Mn1.76Al 0.2OFourUsing
In Example 15-I, Li1.04Mn1.76Ni0.2O
FourIs used in Example 15-J.1.04Mn
1.76Co0.2OFourIs used in Example 15-K.
i1.04Mn1.76Mg0.2OFourExample
Li in 15-L1.04Mn1.76(AlCr)
0.2OFourIs used in Example 15-M.1.04M
n1.76(CrMg)0.2OFourExample 15
-N is Li1.04Mn1.76(CoMg)0.2
OFourWas used. In addition, element substitution type lithium manganate
Is manganese dioxide and a carbonate of the substituting metal element M,
Mix with nitrates, hydroxides, etc. to obtain the desired element ratio.
And bake in air at 800 ° C to 900 ° C.
Can be prepared by
The element ratio in lithium manganate was dissolved in hydrochloric acid, etc.
After that, titration method and atomic absorption and ICP analysis
It can be determined by quantitative analysis.

【0068】[0068]

【表4】 [Table 4]

【0069】(実施例15−J−イ)表4に示すよう
に、実施例15−J−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例15−Jと同様に電
池を作製した。
(Example 15-J-A) As shown in Table 4, Example 15-J-A was the same as Example 15-J except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0070】(実施例15−J−ロ)表4に示すよう
に、実施例15−J−ロでは、負極バインダに熱硬化性
可塑化PVAを用いた以外は実施例15−Jと同様に電
池を作製した。
Example 15-J-B As shown in Table 4, Example 15-J-B was the same as Example 15-J except that thermosetting plasticized PVA was used as the negative electrode binder. A battery was made.

【0071】(実施例15−J−ハ)表4に示すよう
に、実施例15−J−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例15−Jと
同様に電池を作製した。
(Example 15-J-C) As shown in Table 4, in Example 15-J-C, as Example 15-J, except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0072】(実施例15−N−イ)表4に示すよう
に、実施例15−N−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例15−Nと同様に電
池を作製した。
(Example 15-N-a) As shown in Table 4, Example 15-N-A was the same as Example 15-N except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0073】(実施例15−N−ロ)表4に示すよう
に、実施例15−N−ロでは、負極バインダに熱硬化性
可塑化PVAを用いた以外は実施例15−Nと同様に電
池を作製した。
(Example 15-N-B) As shown in Table 4, Example 15-N-B was the same as Example 15-N except that thermosetting plasticized PVA was used as the negative electrode binder. A battery was made.

【0074】(実施例15−N−ハ)表4に示すよう
に、実施例15−N−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例15−Nと
同様に電池を作製した。
(Example 15-N-C) As shown in Table 4, Example 15-N-C was the same as Example 15-N except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0075】(実施例16)表4に示すように、実施例
16では、負極活物質として非晶質炭素であるPICを
用いた以外は実施例11と同様にした。
Example 16 As shown in Table 4, Example 16 was the same as Example 11 except that PIC which was amorphous carbon was used as the negative electrode active material.

【0076】(実施例16−イ)表4に示すように、実
施例16−イでは、正極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例16と同様に電池を作製した。
(Example 16-a) As shown in Table 4, in Example 16-a, thermosetting plasticized PV was used as the positive electrode binder.
A battery was produced in the same manner as in Example 16 except that A was used.

【0077】(実施例16−ロ)表4に示すように、実
施例16−ロでは、負極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例16と同様に電池を作製した。
(Example 16-b) As shown in Table 4, in Example 16-b, the thermosetting plasticized PV was used as the negative electrode binder.
A battery was produced in the same manner as in Example 16 except that A was used.

【0078】(実施例16−ハ)表4に示すように、実
施例16−ハでは、正極及び負極バインダに熱硬化性可
塑化PVAを用いた以外は実施例16と同様に電池を作
製した。
(Example 16-C) As shown in Table 4, in Example 16-C, a battery was prepared in the same manner as in Example 16 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0079】(実施例16−2〜16−5)表4に示す
ように、実施例16−2〜実施例16−5では、マンガ
ン酸リチウムのLi/Mn比を、実施例16−2では
0.55とし、実施例16−3では0.58とし、実施
例16−4では0.60とし、実施例16−5では0.
61とした以外は実施例16と同様にした。
(Examples 16-2 to 16-5) As shown in Table 4, in Examples 16-2 to 16-5, the Li / Mn ratio of lithium manganate was changed from that in Example 16-2. 0.55, 0.58 in Example 16-3, 0.60 in Example 16-4, and 0.
Same as Example 16 except 61 was used.

【0080】(実施例16−3−イ)表4に示すよう
に、実施例16−3−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例16−3と同様に電
池を作製した。
(Example 16-3-A) As shown in Table 4, in Example 16-3-A, the same as Example 16-3 except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0081】(実施例16−3−ロ)表4に示すよう
に、実施例16−3−ロでは、負極バインダに熱硬化性
可塑化PVAを用いた以外は実施例16−3と同様に電
池を作製した。
(Example 16-3-b) As shown in Table 4, in Example 16-3-b, the same as Example 16-3 except that thermosetting plasticized PVA was used as the negative electrode binder. A battery was made.

【0082】(実施例16−3−ハ)表4に示すよう
に、実施例16−3−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例16−3と
同様に電池を作製した。
(Example 16-3-C) As shown in Table 4, Example 16-3-C was the same as Example 16-3 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0083】(実施例16−A〜実施例16−N)下表
5に示すように、実施例16−A〜実施例16−Nで
は、マンガン原子の一部を他の金属元素Mで置換した平
均粒径約20μmのマンガン酸リチウム(Li1+xM
n2−x−yMyO4)粉末を用いた以外は実施例16
と同様にした。実施例16−AではLi1.01Mn
1.79Cr0.2を用い、実施例16−BではL
1.04Mn1.76Cr0.2を用い、実施例
16−CではLi1.1Mn1.7Cr0.2を用
い、実施例16−DではLi1. 11Mn1.69Cr
0.2を用い、実施例16−EではLi1.04
1.95Cr0.01を用い、実施例16−Fで
はLi1.04Mn1.6 Cr0.3を用い、実
施例16−GではLi1.04Mn1.63Cr
.33を用い、実施例16−HではLi1.04
1.76Al0.2 を用い、実施例16−Iでは
Li1.04Mn1.76Ni0.2を用い、実施
例16一JではLi1.04Mn1.76Co0.2
を用い、実施例16−KではLi1.04Mn
1.76Mg0.2を用い、実施例16−LではL
1.04Mn1.76(AlCr)0.2を用
い、実施例16−MではLi1.04Mn1.76(C
rMg)0.2を用い、実施例16−NではLi
1.04Mn1.76(CoMg)0.2を用い
た。
(Examples 16-A to 16-N) Tables below
As shown in Example 5, in Examples 16-A to 16-N,
Is a flat manganese atom in which some of the manganese atoms are replaced by another metal element M.
Lithium manganate with a uniform particle size of about 20 μm (Li1 + xM
n2-x-yMyO4) Example 16 except that the powder was used.
Same as. In Example 16-A, Li1.01Mn
1.79Cr0.2OFourIs used in Example 16-B.
i1.04Mn1.76Cr0.2OFourExample
Li in 16-C1.1Mn1.7Cr0.2OFourFor
In Example 16-D, Li1. 11Mn1.69Cr
0.2OFourIs used in Example 16-E.1.04M
n 1.95Cr0.01OFourIn Example 16-F
Is Li1.04Mn1.6 6Cr0.3OFourUsing
In Example 16-G, Li1.04Mn1.63Cr0
. 33OFourIn Example 16-H, Li was used.1.04M
n1.76Al0.2O FourIs used in Example 16-I
Li1.04Mn1.76Ni0.2OFourUsing
Example 16 In 1J, Li1.04Mn1.76Co0.2O
FourIs used in Example 16-K.1.04Mn
1.76Mg0.2OFourIs used in Example 16-L.
i1.04Mn1.76(AlCr)0.2OFourFor
In Example 16-M, Li1.04Mn1.76(C
rMg)0.2OFourIs used in Example 16-N.
1.04Mn1.76(CoMg)0.2OFourUsing
It was

【0084】[0084]

【表5】 [Table 5]

【0085】(実施例16−J−イ)表5に示すよう
に、実施例16−J−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例16−Jと同様に電
池を作製した。
(Example 16-J-a) As shown in Table 5, Example 16-J-a was the same as Example 16-J except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0086】(実施例16−J−ロ)表5に示すよう
に、実施例16−J−ロでは、負極バインダに熱硬化性
可塑化PVAを用いた以外は実施例16−Jと同様に電
池を作製した。
Example 16-J-B As shown in Table 5, Example 16-J-B was the same as Example 16-J except that thermosetting plasticized PVA was used as the negative electrode binder. A battery was made.

【0087】(実施例16−J−ハ)表5に示すよう
に、実施例16−J−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例16−Jと
同様に電池を作製した。
(Example 16-J-C) As shown in Table 5, in Example 16-J-C, Examples 16-J and C-JC were prepared, except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0088】(実施例16−N−イ)表5に示すよう
に、実施例16−N−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例16−Nと同様に電
池を作製した。
(Example 16-N-a) As shown in Table 5, Example 16-N-A was the same as Example 16-N except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0089】(実施例16−N−ロ)実表5に示すよう
に、施例16−N−ロでは、負極バインダに熱硬化性可
塑化PVAを用いた以外は実施例16−Nと同様に電池
を作製した。
Example 16-N-B As shown in Table 5, Example 16-N-B is the same as Example 16-N except that thermosetting plasticized PVA is used as the negative electrode binder. A battery was manufactured.

【0090】(実施例16−N−ハ)表5に示すよう
に、実施例16−N−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例16−Nと
同様に電池を作製した。
(Example 16-N-C) As shown in Table 5, Example 16-N-C and Example 16-N-C, except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0091】(実施例17)下表6に示すように、実施
例17では、炭素材に平均粒径10μmの鱗片状黒鉛
(マンガン酸リチウムの平均粒径に対して0.5倍)を
用い、マンガン酸リチウムの塗着量を120g/m
正極塗布部厚さを107μm、正極板の長さを345c
mとし、負極活物質にはPICを用い、負極塗布部厚さ
を79μm、負極板の長さを357cmとした以外は実
施例1と同様にした。
Example 17 As shown in Table 6 below, in Example 17, flake graphite having an average particle size of 10 μm (0.5 times the average particle size of lithium manganate) was used as the carbon material. , The coating amount of lithium manganate is 120 g / m 2 ,
Positive electrode coating thickness is 107 μm, positive electrode plate length is 345c
m, the negative electrode active material was PIC, the thickness of the negative electrode coating portion was 79 μm, and the length of the negative electrode plate was 357 cm.

【0092】[0092]

【表6】 [Table 6]

【0093】(実施例17−イ)表6に示すように、実
施例17−イでは、正極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例17と同様に電池を作製した。
(Example 17-a) As shown in Table 6, in Example 17-a, thermosetting plasticized PV was used as the positive electrode binder.
A battery was produced in the same manner as in Example 17 except that A was used.

【0094】(実施例17−ロ)表6に示すように、実
施例17−ロでは、負極バインダに熱硬化性可塑化PV
Aを用いた以外は実施例17と同様に電池を作製した。
(Example 17-b) As shown in Table 6, in Example 17-b, thermosetting plasticized PV was used as the negative electrode binder.
A battery was produced in the same manner as in Example 17 except that A was used.

【0095】(実施例17−ハ)表6に示すように、実
施例17−ハでは、正極及び負極バインダに熱硬化性可
塑化PVAを用いた以外は実施例17と同様に電池を作
製した。
(Example 17-C) As shown in Table 6, in Example 17-C, a battery was produced in the same manner as in Example 17 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. .

【0096】(実施例17−2〜17−5)表6に示す
ように、実施例17−2〜実施例17−5では、マンガ
ン酸リチウムのLi/Mn比を、実施例17−2では
0.55とし、実施例17−3では0.58とし、実施
例17−4では0.60とし、実施例17−5では0.
61とした以外は実施例17と同様にした。
(Examples 17-2 to 17-5) As shown in Table 6, in Examples 17-2 to 17-5, the Li / Mn ratio of lithium manganate was changed, and in Example 17-2. 0.55, 0.58 in Example 17-3, 0.60 in Example 17-4, and 0.
The same procedure as in Example 17 was performed except that the value was set to 61.

【0097】(実施例17−3−イ)表6に示すよう
に、実施例17−3−イでは、正極バインダに熱硬化性
可塑化PVAを用いた以外は実施例17−3と同様に電
池を作製した。
(Example 17-3-A) As shown in Table 6, in Example 17-3-A, the same as Example 17-3 except that thermosetting plasticized PVA was used as the positive electrode binder. A battery was made.

【0098】(実施例17−3−ロ)表6に示すよう
に、実施例17−3−ロでは、負極バインダに熱硬化性
可塑化PVAを用いた以外は実施例17−3と同様に電
池を作製した。
(Example 17-3-b) As shown in Table 6, in Example 17-3-b, the same as Example 17-3 except that thermosetting plasticized PVA was used as the negative electrode binder. A battery was made.

【0099】(実施例17−3−ハ)表6に示すよう
に、実施例17−3−ハでは、正極及び負極バインダに
熱硬化性可塑化PVAを用いた以外は実施例17−3と
同様に電池を作製した。
Example 17-3-C As shown in Table 6, Example 17-3-C was the same as Example 17-3 except that thermosetting plasticized PVA was used for the positive electrode and negative electrode binders. A battery was similarly prepared.

【0100】(比較例1)表6に示すように、比較例1
では、マンガン酸リチウムの塗着量を75g/m
し、正極塗布部厚さを67μm、正極板の長さを453
cmとし、負極塗布部厚さを50μm、負極板の長さを
465cmとした以外は実施例1と同様にした。
Comparative Example 1 As shown in Table 6, Comparative Example 1
Then, the coating amount of lithium manganate is 75 g / m TwoWhen
Then, the thickness of the positive electrode coating portion is 67 μm, and the length of the positive electrode plate is 453.
cm, the thickness of the negative electrode coating portion is 50 μm, and the length of the negative electrode plate is
The same procedure was performed as in Example 1 except that the length was 465 cm.

【0101】(比較例2)表6に示すように、比較例2
では、マンガン酸リチウムの塗着量を165g/m
し、正極塗布部厚さを146μm、正極板の長さを27
8cmとし、負極塗布部厚さを109μm、負極板の長
さを290cmとした以外は実施例1と同様にした。
Comparative Example 2 As shown in Table 6, Comparative Example 2
Then, the coating amount of lithium manganate was 165 g / m 2 , the thickness of the positive electrode coating portion was 146 μm, and the length of the positive electrode plate was 27.
The same procedure as in Example 1 was performed except that the thickness was 8 cm, the thickness of the negative electrode coating portion was 109 μm, and the length of the negative electrode plate was 290 cm.

【0102】(比較例2−a)表6に示すように、比較
例2−aでは、マンガン酸リチウム粉末、鱗片状黒鉛及
びPVDFの配合比を86.5:11:2.5とし、マ
ンガン酸リチウムの塗着量を120g/m、正極塗布
部厚さを105μm、正極板の長さを347cmとし、
負極塗布部厚さを79μm、負極板の長さを359cm
とした以外は実施例1と同様にした。
(Comparative Example 2-a) As shown in Table 6, in Comparative Example 2-a, the compounding ratio of lithium manganate powder, flake graphite and PVDF was set to 86.5: 11: 2.5, and manganese was determined. The amount of lithium oxide applied was 120 g / m 2 , the thickness of the positive electrode application portion was 105 μm, and the length of the positive electrode plate was 347 cm.
The thickness of the negative electrode coating part is 79 μm, and the length of the negative electrode plate is 359 cm.
Same as Example 1 except that

【0103】(比較例2−b)表6に示すように、比較
例2−bでは、マンガン酸リチウム粉末、鱗片状黒鉛及
びPVDFの配合比を83:11:6とし、マンガン酸
リチウムの塗着量を120g/m、正極塗布部厚さを
109μm、正極板の長さを342cmとし、負極塗布
部厚さを79μm、負極板の長さを354cmとした以
外は実施例1と同様にした。
(Comparative Example 2-b) As shown in Table 6, in Comparative Example 2-b, the compounding ratio of lithium manganate powder, flake graphite and PVDF was set to 83: 11: 6, and lithium manganate was applied. The coating amount was 120 g / m 2 , the thickness of the positive electrode coating portion was 109 μm, the length of the positive electrode plate was 342 cm, the thickness of the negative electrode coating portion was 79 μm, and the length of the negative electrode plate was 354 cm. did.

【0104】(比較例3)表6に示すように、比較例3
では、マンガン酸リチウム粉末、鱗片状黒鉛及びPVD
Fの配合比を87:9:4とし、マンガン酸リチウムの
塗着量を120g/m、正極塗布部厚さを104μ
m、正極板の長さを348cmとし、負極塗布部厚さを
79μm、負極板の長さを360cmとした以外は実施
例1と同様にした。
Comparative Example 3 As shown in Table 6, Comparative Example 3
Then, lithium manganate powder, flake graphite and PVD
The compounding ratio of F is 87: 9: 4, the coating amount of lithium manganate is 120 g / m 2 , and the thickness of the positive electrode coating portion is 104 μ.
m, the length of the positive electrode plate was 348 cm, the thickness of the negative electrode coating portion was 79 μm, and the length of the negative electrode plate was 360 cm.

【0105】(比較例4)表6に示すように、比較例4
では、マンガン酸リチウム粉末、鱗片状黒鉛及びPVD
Fの配合比を83:13:4とし、マンガン酸リチウム
の塗着量を120g/m、正極塗布部厚さを109μ
m、正極板の長さを342cmとし、負極塗布部厚さを
79μm、負極板の長さを354cmとした以外は実施
例1と同様にした。
(Comparative Example 4) As shown in Table 6, Comparative Example 4
Then, lithium manganate powder, flake graphite and PVD
The compounding ratio of F was 83: 13: 4, the coating amount of lithium manganate was 120 g / m 2 , and the thickness of the positive electrode coating portion was 109 μ.
m, the length of the positive electrode plate was 342 cm, the thickness of the negative electrode coating portion was 79 μm, and the length of the negative electrode plate was 354 cm.

【0106】<試験・評価>次に、以上のようにして作
製した実施例及び比較例の各電池について、以下の一連
の試験を行った。
<Test / Evaluation> Next, the following series of tests were performed on each of the batteries of Examples and Comparative Examples produced as described above.

【0107】実施例及び比較例の各電池を、充電した後
放電し、放電容量を測定した。充電条件は、4.2V定
電圧、制限電流5A、3.5時間とした。放電条件は、
5A定電流、終止電圧2.7Vとした。
The batteries of Examples and Comparative Examples were charged and then discharged to measure the discharge capacity. The charging conditions were a constant voltage of 4.2 V, a limiting current of 5 A and 3.5 hours. The discharge conditions are
The constant current was 5 A and the final voltage was 2.7 V.

【0108】また、上記条件で充電状態の電池の放電出
力を測定した。測定条件は、1A、3A、6A、各放電
電流で5秒目の電圧を読み取り、横軸電流値に対して縦
軸にプロットし、3点を結ぶ近似直線が、2.7Vと交
差するところの電流値と、2.7Vとの積を出力とし
た。
Also, the discharge output of the battery in the charged state was measured under the above conditions. The measurement conditions are 1A, 3A, 6A, reading the voltage at the 5th second at each discharge current, plotting the current value on the horizontal axis on the vertical axis, and the approximate straight line connecting the three points intersects 2.7V. The product of the current value of V and 2.7 V was used as the output.

【0109】更に、実施例、比較例の各電池を、上記条
件で充放電を100回繰り返した後、出力を測定し、初
期の出力に対する維持率を百分率で示した。当然のこと
ながら、この維持率が高いほうが寿命特性がよいことに
なる。
Further, each of the batteries of Examples and Comparative Examples was repeatedly charged and discharged 100 times under the above-mentioned conditions, and then the output was measured, and the maintenance ratio with respect to the initial output was shown as a percentage. As a matter of course, the higher the maintenance rate, the better the life characteristics.

【0110】更に、引き続き実施例の電池について、電
池の周囲環境温度を60゜Cとした以外は同条件で充放
電を100回繰り返した後、電池が十分室温(25±1
゜C)に戻ってから出力を測定し、初期の出力に対する
維持率を百分率で示した。
Further, with respect to the batteries of the examples, subsequently, after repeatedly charging and discharging 100 times under the same conditions except that the ambient temperature of the batteries was set to 60 ° C., the batteries were sufficiently cooled to room temperature (25 ± 1).
The output was measured after returning to ° C), and the maintenance ratio to the initial output was shown as a percentage.

【0111】これら充電、放電、出力の測定は、特記が
無い限りいずれも環境温度25±1゜Cの雰囲気で行っ
た。
Unless otherwise specified, the charging, discharging, and output measurements were carried out in an atmosphere having an ambient temperature of 25 ± 1 ° C.

【0112】その後、作製した電池を、常温で、20A
定電流で連続充電し、電池挙動を観察した。連続充電に
より電池は異常状態となり、発熱して電池表面温度が上
昇する。これに伴い、電池内圧が上昇し、開裂弁11が
開裂して電池内部のガスを外部に放出する。このガス放
出の程度を比較するために、開裂弁開裂直後の電池表面
温度を測定した。また、ガス放出後、電池容器の変形の
有無を確認した。試験結果を下表7、表8及び表9に示
す。なお、表7、表8及び表9において、「○」は電池
容器の変形が全く認められなかったもの、「△」は電池
容器の若干の変形が認められたもの、「×」は電池容器
が大きく変形したものを示している。
After that, the battery thus prepared was subjected to 20 A at room temperature.
It was continuously charged at a constant current and the battery behavior was observed. The battery becomes abnormal due to continuous charging, heat is generated, and the battery surface temperature rises. Along with this, the internal pressure of the battery rises, the cleavage valve 11 is opened, and the gas inside the battery is released to the outside. In order to compare the degree of this gas release, the cell surface temperature immediately after the opening of the cleaving valve was measured. After the gas was released, it was confirmed whether the battery container was deformed. The test results are shown in Tables 7, 8 and 9 below. In Tables 7, 8, and 9, "○" indicates that the battery container was not deformed at all, "△" indicates that the battery container was slightly deformed, and "X" indicates the battery container. Shows a large deformation.

【0113】[0113]

【表7】 [Table 7]

【0114】[0114]

【表8】 [Table 8]

【0115】[0115]

【表9】 [Table 9]

【0116】表7、表8及び表9に示すように、実施例
1〜実施例5の電池は、高容量、高出力であり、かつ、
連続充電時の電池挙動も穏やかなものであった。このと
きの電池の表面温度は、最高で150°C〜220°C
であった。これに対して、マンガン酸リチウムの塗着量
が80g/mを下回る比較例1の電池では、高出力で
出力維持率の高い電池が得られるものの、連続充電時の
電池挙動は、電池の変形を伴った激しいものとなり、電
池表面温度は、300°Cを超える結果であった。ま
た、逆に、マンガン酸リチウムの塗着量が160g/m
を超える比較例2の電池では、連続充電時の電池挙動
は穏やかであったが、出力の低下を伴い、電気自動車用
の電池としてはふさわしくない結果であった。同様に、
比較例3の電池は、正極導電材の黒鉛の量が10質量%
を下回っており、出力の低下を招く結果であった。一
方、正極導電材の黒鉛の量が12質量%を超える比較例
4の電池では、高容量、高出力な電池が得られるもの
の、連続充電時の電池挙動は、電池の変形を伴った激し
いものであり、電池表面温度は、310°Cであった。
As shown in Table 7, Table 8 and Table 9, the batteries of Examples 1 to 5 have high capacity and high output, and
The battery behavior during continuous charging was also mild. The surface temperature of the battery at this time is 150 ° C to 220 ° C at maximum.
Met. On the other hand, in the battery of Comparative Example 1 in which the amount of lithium manganate applied was less than 80 g / m 2 , a battery with high output and high output retention rate was obtained, but the battery behavior during continuous charging was It became severe with deformation and the battery surface temperature exceeded 300 ° C. On the contrary, the coating amount of lithium manganate is 160 g / m.
With the batteries of Comparative Example 2 exceeding 2 , the battery behavior during continuous charging was mild, but the output was lowered, and the results were not suitable as batteries for electric vehicles. Similarly,
The battery of Comparative Example 3 contained 10% by mass of graphite as the positive electrode conductive material.
The result was a decrease in output. On the other hand, in the battery of Comparative Example 4 in which the amount of graphite of the positive electrode conductive material exceeds 12% by mass, a battery with high capacity and high output can be obtained, but the battery behavior during continuous charging is severe with deformation of the battery. The battery surface temperature was 310 ° C.

【0117】正極導電材に黒鉛と無定型炭素を混合して
用いた実施例6〜実施例16−Nの電池では、高い出力
を得ることができた。無定型炭素にKBを用いた実施例
6〜実施例10の電池の中では、黒鉛の平均粒径をマン
ガン酸リチウムの平均粒径に対して0.2〜0.8倍と
した実施例8〜実施例10の電池が、より高出力の電池
であった。これに対して、黒鉛の平均粒径がマンガン酸
リチウムの平均粒径に対して0.2倍を下回る実施例7
の電池では、連続充電時の電池表面温度が210°Cで
あり、実施例8〜10の電池と比べて若干高い結果であ
った。
In the batteries of Examples 6 to 16-N in which graphite and amorphous carbon were mixed as the positive electrode conductive material, high output could be obtained. In the batteries of Examples 6 to 10 in which KB was used as amorphous carbon, the average particle size of graphite was 0.2 to 0.8 times the average particle size of lithium manganate. -The battery of Example 10 was a higher output battery. On the other hand, Example 7 in which the average particle size of graphite is less than 0.2 times the average particle size of lithium manganate.
The battery surface temperature at the time of continuous charging was 210 ° C., which was slightly higher than those of the batteries of Examples 8 to 10.

【0118】無定型炭素にABを用いた実施例11〜実
施例16−Nの電池では、より高出力が得られており、
かつ、100回充放電後における出力維持率の高い電池
であった。
In the batteries of Examples 11 to 16-N using AB as the amorphous carbon, higher output was obtained,
Moreover, the battery had a high output retention rate after 100 times of charge and discharge.

【0119】マンガン酸リチウムのLi/Mn比が、
0.55以上である実施例2−2〜実施例2−5、実施
例12〜実施例15、実施例16−2〜実施例16一
5、実施例17−2〜実施例17−5の電池は、出力維
持率が極めて高い結果であった。ところが、マンガン酸
リチウムのLi/Mn比が0.60を超える実施例2−
5、実施例15、実施例16−5、実施例17−5の電
池は、容量が低下する結果であった。従って、Li/M
n比は0.55〜0.60の範囲とすることが好ましい
ことがわかる。
The Li / Mn ratio of lithium manganate is
Of Example 2-2 to Example 2-5, Example 12 to Example 15, Example 16-2 to Example 16-15, and Example 17-2 to Example 17-5, which are 0.55 or more. The battery resulted in a very high output retention rate. However, Example 2 in which the Li / Mn ratio of lithium manganate exceeds 0.60
In the batteries of Example 5, Example 15, Example 16-5, and Example 17-5, the results were that the capacity decreased. Therefore, Li / M
It can be seen that the n ratio is preferably in the range of 0.55 to 0.60.

【0120】マンガン酸リチウムのマンガン原子の一部
を他の金属元素Mで置換した元素置換型マンガン酸リチ
ウム(Li1+xMn2−x−y)を用いた実
施例15−A〜実施例15−N、実施例16−A〜実施
例16−Nの電池では、出力及び出力維持率共に高く、
連続充電時の電池表面温度も低い結果であった。中で
も、負極の活物質にPICを用いた実施例16−A〜実
施例16−Nの電池は、出力がより高く、連続充電時の
電池の変形がなく、電池表面温度も更に低い結果であっ
た。ところが、xが0.1を超える実施例15−D、実
施例16−D及びyが0.3を超える実施例15−G、
実施例16−Gの電池は、容量が若干低い結果であっ
た。従って、xは、0<x≦0.1の範囲とすることが
好ましく、yは、0<y≦0.3の範囲とすることが好
ましいことがわかる。
Example 15-A using element-substituted lithium manganate (Li 1 + x Mn 2−x− y My O 4 ) in which part of manganese atoms of lithium manganate was replaced with another metal element M. In the batteries of Example 15-N and Example 16-A to Example 16-N, both the output and the output retention rate are high,
The battery surface temperature during continuous charging was also low. Among them, the batteries of Examples 16-A to 16-N using PIC as the negative electrode active material have higher output, no deformation of the battery during continuous charging, and lower battery surface temperature. It was However, Example 15-D in which x exceeds 0.1, Example 16-D, and Example 15-G in which y exceeds 0.3,
The batteries of Example 16-G resulted in a slightly lower capacity. Therefore, it is understood that x is preferably in the range of 0 <x ≦ 0.1 and y is preferably in the range of 0 <y ≦ 0.3.

【0121】負極活物質に非晶質炭素を用いた実施例1
6、実施例16−2〜実施例16−5、実施例17、実
施例17−2〜実施例17−5の電池は、出力、容量及
び出力維持率が極めて高く、かつ、連続充電時の電池の
変形がなく、電池表面温度も最も低い結果であった。従
って、これらの電池は、高容量、高出力で、かつ、安全
性にも優れ、全体バランスのとれた電池である。
Example 1 using amorphous carbon as the negative electrode active material
The batteries of Example 6, Example 16-2 to Example 16-5, Example 17, and Example 17-2 to Example 17-5 have extremely high output, capacity, and output retention rate, and are also used during continuous charging. There was no deformation of the battery, and the surface temperature of the battery was the lowest. Therefore, these batteries have high capacity, high output, excellent safety, and are well balanced.

【0122】正極又は負極のバインダに熱硬化性可塑化
PVAを用いた実施例の番号末尾に「イ」、「ロ」、を
付した電池では、PVDFを用いた電池に比べて、特に
高温で長時間充放電サイクルを繰り返した後の出力維持
率が高い。
In the batteries using thermosetting plasticized PVA as the binder of the positive electrode or the negative electrode, the cells with "a" and "b" added to the end of the numbers have a particularly high temperature as compared with the batteries using PVDF. High output retention rate after repeated charge / discharge cycles.

【0123】正極及び負極のバインダに熱硬化性可塑化
PVAを用いた実施例の番号末尾に「ハ」、を付した電
池では、PVDFを用いた電池に比べて、特に高温で長
時間充放電サイクルを繰り返した後の出力維持率が更に
高い。
In the batteries using thermosetting plasticized PVA as the binder of the positive electrode and the negative electrode, "C" is added to the end of the numbers of the examples. The output retention rate after repeating the cycle is even higher.

【0124】以上述べたように、本実施形態の円筒形リ
チウムイオン電池20は、マンガン酸リチウムの塗着量
を正極集電体片面あたりに80〜160g/mとし、
正極活物質合剤に含有される炭素材の量を10〜12質
量%とし、かつ、正極活物質合剤に含有されるPVDF
の量を3〜5質量%とすることにより、高容量、高出力
であると共に電池が異常な状態にさらされた場合の挙動
が極めて穏やかで、安全性に優れた電池である。この場
合に、炭素材に黒鉛とAB又はKBとの混合物を用いる
ようにすれば、より高出力の電池とすることができ、ま
た、黒鉛とAB又はKBとの質量比を80:20〜9
0:10とすれば、更に高出力の電池とすることができ
る。また、黒鉛の平均粒径をマンガン酸リチウムの平均
粒径の0.2〜0.8倍とすれば、より高出力の電池と
することができ、炭素材を黒鉛とABとの混合物とすれ
ば、更に高出力で、出力維持率の高い電池とすることが
できる。更に、マンガン酸リチウムのLi/Mn比を
0.55〜0.60とすれば、容量の低下を伴うことな
く出力維持率を向上させることができる。また、マンガ
ン酸リチウムを、Li1+xMn2−x−y
表され、xが、0<x≦0.1であり、yが、0<y≦
0.3であり、Mが、Al、Cr、Ni、Co、Mg、
の群より選ばれる少なくとも1種の元素である金属置換
型のマンガン酸リチウムとすれば、容量の低下を伴うこ
となく出力維持率を向上させることができる。更に、負
極の活物質に非晶質炭素を用いれば、高出力、高容量で
あると共に、安全性に一層優れた電池とすることができ
る。このように、高容量、高出力で、極めて安全性の高
い電池は、特に電気自動車用の電源に適している。
As described above, in the cylindrical lithium ion battery 20 of this embodiment, the coating amount of lithium manganate is 80 to 160 g / m 2 per side of the positive electrode current collector,
PVDF contained in the positive electrode active material mixture in which the amount of the carbon material contained in the positive electrode active material mixture is 10 to 12% by mass
By setting the amount of 3 to 5% by mass, the battery has high capacity and high output, and the behavior is extremely gentle when the battery is exposed to an abnormal state, and the battery is excellent in safety. In this case, if a mixture of graphite and AB or KB is used as the carbon material, a higher output battery can be obtained, and the mass ratio of graphite to AB or KB is 80: 20-9.
If it is set to 0:10, the battery can have a higher output. If the average particle size of graphite is 0.2 to 0.8 times the average particle size of lithium manganate, a battery with higher output can be obtained, and the carbon material can be a mixture of graphite and AB. Thus, a battery having a higher output and a higher output maintenance rate can be obtained. Furthermore, if the Li / Mn ratio of lithium manganate is set to 0.55 to 0.60, the output retention rate can be improved without a decrease in capacity. Further, lithium manganate is represented by Li 1 + x Mn 2−x− y My O 4 , where x is 0 <x ≦ 0.1 and y is 0 <y ≦.
0.3, M is Al, Cr, Ni, Co, Mg,
When the metal-substituted lithium manganate, which is at least one element selected from the group, is used, the output retention rate can be improved without lowering the capacity. Furthermore, by using amorphous carbon as the active material of the negative electrode, a battery having high output and high capacity and further excellent safety can be obtained. As described above, the battery having high capacity, high output, and extremely high safety is particularly suitable as a power source for electric vehicles.

【0125】なお、本実施形態では、ハイブリッド電気
自動車用の電源に用いられるリチウムイオン電池につい
て例示したが、電池の大きさ、電池容量には限定され
ず、電池容量としておおむね3〜10Ah程度の電池に
対して本発明は効果を著しく発揮することが確認されて
いる。また、本実施形態では円筒形電池について例示し
たが、本発明は電池の形状についても限定されず、角
形、その他の多角形の電池にも適用可能である。更に、
本発明の適用可能な形状としては、上述した有底筒状容
器(缶)に電池上蓋がカシメによって封口されている構
造の電池以外であっても構わない。このような構造の一
例として正負外部端子が電池蓋を貫通し電池容器内で軸
芯を介して正負外部端子が押し合っている状態の電池を
挙げることができる。
In the present embodiment, the lithium ion battery used as the power source for the hybrid electric vehicle is exemplified, but the size and the battery capacity of the battery are not limited, and the battery capacity is about 3 to 10 Ah. On the other hand, it has been confirmed that the present invention exerts a remarkable effect. Further, although a cylindrical battery is exemplified in the present embodiment, the present invention is not limited to the shape of the battery, and can be applied to a prismatic battery and other polygonal batteries. Furthermore,
The shape to which the present invention is applicable may be other than the above-mentioned battery having a structure in which the battery upper lid is closed by caulking in the bottomed cylindrical container (can). An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed against each other via the shaft core in the battery container.

【0126】また、本実施形態では、絶縁被覆に、基材
がポリイミドで、その片面にヘキサメタアクリレートか
らなる粘着剤を塗布した粘着テープを用いた例を示した
が、例えば、基材がポリプロピレンやポリエチレン等の
ポリオレフィンで、その片面又は両面にヘキサメタアク
リレートやブチルアクリレート等のアクリル系粘着剤を
塗布した粘着テープや、粘着剤を塗布しないポリオレフ
ィンやポリイミドからなるテープ等も好適に使用するこ
とができる。
Further, in the present embodiment, an example is shown in which the base material is polyimide and the adhesive tape having a hexamethacrylate adhesive applied to one surface thereof is used as the insulating coating. However, for example, the base material is polypropylene. Adhesive tapes made of polyolefins such as polyethylene and polyethylene with acrylic adhesives such as hexamethacrylate and butyl acrylate coated on one or both sides, and tapes made of polyolefins or polyimides without adhesives, etc. can also be preferably used. it can.

【0127】更に、本実施形態では、リチウムイオン電
池用の正極にマンガン酸リチウム、負極に黒鉛又は非晶
質炭素、電解液にエチレンカーボネートとジメチルカー
ボネートとジエチルカーボネートの体積比1:1:1の
混合溶液中へ6フッ化リン酸リチウムを1モル/リット
ル溶解したものを用いたが、本発明の電池には特に制限
はなく、また、導電材、バインダ(結着剤)も通常用い
られているいずれのものも使用可能である。なお、一般
に、マンガン酸リチウムは、適当なリチウム塩と酸化マ
ンガンとを混合、焼成して合成することができるが、リ
チウム塩と酸化マンガンの仕込み比を制御することによ
って所望のLi/Mn比とすることができる。
Further, in the present embodiment, lithium manganate is used as the positive electrode for the lithium ion battery, graphite or amorphous carbon is used as the negative electrode, and the electrolytic solution has a volume ratio of ethylene carbonate, dimethyl carbonate and diethyl carbonate of 1: 1: 1. A solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate in a mixed solution was used, but the battery of the present invention is not particularly limited, and a conductive material and a binder (binder) are usually used. Any of the above can be used. In general, lithium manganate can be synthesized by mixing an appropriate lithium salt and manganese oxide and firing the mixture, but by controlling the charging ratio of the lithium salt and manganese oxide, a desired Li / Mn ratio can be obtained. can do.

【0128】また、本実施形態以外で用いることのでき
るリチウムイオン電池用極板活物質結着剤としては、テ
フロン(登録商標)、ポリエチレン、ポリスチレン、ポ
リブタジエン、ブチルゴム、ニトリルゴム、スチレン/
ブタジエンゴム、多硫化ゴム、ニトロセルロース、シア
ノエチルセルロース、各種ラテックス、アクリロニトリ
ル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレ
ン、フッ化クロロプレン等の重合体及びこれらの混合体
などがあるが、本実施例で示したとおり、熱硬化性可塑
化ポリビニルアルコール樹脂を用いると、高温充放電サ
イクルを繰り返した後でも、極めて出力維持率の高い電
池を得ることができる。
Further, as the electrode plate active material binder for lithium ion batteries which can be used in other than this embodiment, Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene /
Polymers such as butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and the like, and mixtures thereof are available. As described above, when the thermosetting plasticized polyvinyl alcohol resin is used, a battery having an extremely high output retention rate can be obtained even after repeating the high temperature charge / discharge cycle.

【0129】また更に、本実施形態以外で用いることの
できるリチウムイオン電池用正極活物質としては、リチ
ウムイオンを挿入・脱離可能な材料であり、予め十分な
量のリチウムイオンを挿入したリチウムマンガン複酸化
物が好ましく、結晶中にマンガンやリチウム以外の元素
をドープした材料を使用するようにしてもよい。
Furthermore, as the positive electrode active material for a lithium ion battery which can be used in the embodiment other than this embodiment, a lithium manganese ion insertion / desorption material, lithium manganese having a sufficient amount of lithium ions inserted in advance is used. A double oxide is preferable, and a material obtained by doping an element other than manganese or lithium in the crystal may be used.

【0130】更にまた、本実施形態以外で用いることの
できるリチウムイオン電池用負極活物質も上記特許請求
範囲に記載した事項以外に特に制限はない。例えば、天
然黒鉛や、人造の各種黒鉛材、コークス、非晶質炭素な
どの炭素質材料等でよく、その粒子形状においても、鱗
片状、球状、繊維状、塊状等、特に制限されるものでは
ない。
Further, the negative electrode active material for a lithium ion battery which can be used in the embodiment other than this embodiment is not particularly limited except for the matters described in the above claims. For example, natural graphite, various artificial graphite materials, coke, and carbonaceous materials such as amorphous carbon may be used, and the particle shape thereof is not particularly limited, such as scaly, spherical, fibrous, and lumpy. Absent.

【0131】また、非水電解液としては、一般的なリチ
ウム塩を電解質とし、これを有機溶媒に溶解した電解液
が用いられる。しかし、用いられるリチウム塩や有機溶
媒は特に制限されない。例えば、電解質としては、Li
C1O、LiAsF、LiPF、LiBF、L
iB(C、CHSOLi、CFSO
Li等やこれらの混合物を用いることができる。非水電
解液有機溶媒としては、プロピレンカーボネート、エチ
レンカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、γ−ブチロラクトン、テトラヒド
ロフラン、1,3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル等ま
たはこれら2種類以上の混合溶媒を用いるようにしても
よく、混合配合比についても限定されるものではない。
As the non-aqueous electrolytic solution, a common lithium
Electrolyte solution using um salt as electrolyte and dissolving it in organic solvent
Is used. However, the lithium salt or organic solvent used
The medium is not particularly limited. For example, as the electrolyte, Li
C1OFour, LiAsF6, LiPF6, LiBFFour, L
iB (C6H5)Four, CHThreeSOThreeLi, CFThreeSO Three
Li or the like or a mixture thereof can be used. Non-hydroelectric
Solvent-dissolving organic solvents include propylene carbonate and ethyl ether.
Ren carbonate, 1,2-dimethoxyethane, 1,2
-Diethoxyethane, γ-butyrolactone, tetrahydr
Rofuran, 1,3-dioxolane, 4-methyl-1,3
-Dioxolane, diethyl ether, sulfolane, methyl
Lesulfolane, acetonitrile, propionitrile, etc.
Or even if you use a mixed solvent of two or more of these
Of course, the mixing ratio is not limited.

【0132】[0132]

【発明の効果】以上説明したように、本発明によれば、
スピネル型結晶構造を有するリチウムマンガン複酸化物
と導電材とバインダとを含む正極と、充放電によりリチ
ウムイオンを吸蔵・放出可能な負極と、を用いたので、
高容量、高出力とすることができると共に、リチウムマ
ンガン複酸化物の塗着量を80g/m乃至160g/
とし、かつ、導電材の質量を10質量%乃至12質
量%とし、かつ、バインダの質量を3質量%乃至5質量
%としたので、内圧開放機構からのガス放出が極めて穏
やかに行われるため、高容量、高出力でありながらも、
極めて安全性の高い非水電解液二次電池を実現すること
ができる、という効果を得ることができる。
As described above, according to the present invention,
Since a positive electrode containing a lithium manganese composite oxide having a spinel type crystal structure, a conductive material and a binder, and a negative electrode capable of inserting and extracting lithium ions by charging and discharging are used,
High capacity and high output can be achieved, and the coating amount of lithium manganese composite oxide is 80 g / m 2 to 160 g /
Since m 2 is used, the mass of the conductive material is set to 10% by mass to 12% by mass, and the mass of the binder is set to 3% by mass to 5% by mass, gas release from the internal pressure release mechanism is performed extremely gently. Therefore, while having high capacity and high output,
It is possible to obtain the effect that it is possible to realize an extremely safe non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用可能な実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical lithium-ion battery of an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

1 軸芯 6 捲回群(電極捲回群) 7 電池容器 11 開裂弁(内圧開放機構) 20 円筒形リチウムイオン電池(非水電解液二次電
池) W1 正極集電体 W2 正極活物質合剤層 W3 負極集電体 W4 負極活物質合剤層 W5 セパレータ
1 Shaft Core 6 Winding Group (Electrode Winding Group) 7 Battery Container 11 Cleavage Valve (Internal Pressure Release Mechanism) 20 Cylindrical Lithium Ion Battery (Non-Aqueous Electrolyte Secondary Battery) W1 Positive Electrode Current Collector W2 Positive Electrode Active Material Mixture Layer W3 Negative electrode current collector W4 Negative electrode active material mixture layer W5 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ12 AK03 AL07 AL08 AM03 AM05 AM07 BJ02 CJ22 DJ07 DJ08 DJ17 EJ04 EJ12 HJ00 HJ01 HJ02 HJ05 5H050 AA02 AA08 AA15 BA17 CA09 CB08 CB09 DA04 DA10 DA11 EA09 EA10 EA23 FA19 GA22 HA00 HA01 HA02 HA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kensuke Hironaka             2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo             Inside Shin-Kobe Electric Machinery Co., Ltd. F term (reference) 5H029 AJ02 AJ03 AJ12 AK03 AL07                       AL08 AM03 AM05 AM07 BJ02                       CJ22 DJ07 DJ08 DJ17 EJ04                       EJ12 HJ00 HJ01 HJ02 HJ05                 5H050 AA02 AA08 AA15 BA17 CA09                       CB08 CB09 DA04 DA10 DA11                       EA09 EA10 EA23 FA19 GA22                       HA00 HA01 HA02 HA05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 スピネル型結晶構造を有するリチウムマ
ンガン複酸化物と導電材とバインダとを含む正極活物質
合剤が帯状集電体の両面にほぼ均等量塗着された正極
と、充放電によりリチウムイオンを吸蔵・放出可能な炭
素質物とバインダと選択的に導電材とからなる負極合剤
が帯状集電体の両面にほぼ均等量塗着された負極と、を
セパレータを介して捲回した電極捲回群を、所定圧で内
圧を開放する内圧開放機構を有する電池容器内に収容し
た非水電解液二次電池において、前記リチウムマンガン
複酸化物の前記集電体片面あたりの塗着量が80g/m
乃至160g/mであり、かつ、前記導電材の質量
が正極活物質合剤の10質量%乃至12質量%であり、
かつ、前記バインダの質量が正極活物質合剤の3質量%
乃至5質量%であることを特徴とする非水電解液二次電
池。
1. A positive electrode in which a positive electrode active material mixture containing a lithium manganese oxide having a spinel type crystal structure, a conductive material, and a binder is applied on both sides of a strip-shaped current collector in an approximately equal amount, and by charging and discharging. A negative electrode mixture consisting of a carbonaceous material capable of absorbing and desorbing lithium ions, a binder, and a conductive material selectively applied on both sides of a strip-shaped current collector in an approximately equal amount was wound with a separator. In a non-aqueous electrolyte secondary battery in which an electrode winding group is housed in a battery container having an internal pressure release mechanism that releases internal pressure at a predetermined pressure, the amount of the lithium manganese oxide coated on one side of the current collector is applied. Is 80 g / m
2 to 160 g / m 2 , and the mass of the conductive material is 10 mass% to 12 mass% of the positive electrode active material mixture,
Moreover, the mass of the binder is 3 mass% of the positive electrode active material mixture.
To 5 mass% of the non-aqueous electrolyte secondary battery.
【請求項2】 前記導電材が、黒鉛と無定型炭素との混
合物であることを特徴とする請求項1に記載の非水電解
液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive material is a mixture of graphite and amorphous carbon.
【請求項3】 前記混合物中の黒鉛と無定形炭素との質
量比が、80:20〜90:10であることを特徴とす
る請求項2に記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the mass ratio of graphite and amorphous carbon in the mixture is 80:20 to 90:10.
【請求項4】 前記黒鉛の平均粒径が、前記リチウムマ
ンガン複酸化物の平均粒径の0.2倍乃至0.8倍であ
ることを特徴とする請求項2又は請求項3に記載の非水
電解液二次電池。
4. The average particle diameter of the graphite is 0.2 to 0.8 times the average particle diameter of the lithium manganese oxide. Non-aqueous electrolyte secondary battery.
【請求項5】 前記無定型炭素はアセチレンブラックで
あることを特徴とする請求項2乃至請求項4のいずれか
1項に記載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 2, wherein the amorphous carbon is acetylene black.
【請求項6】 前記リチウムマンガン複酸化物のLi/
Mn比が、0.55乃至0.60であることを特徴とす
る請求項1乃至請求項5のいずれか1項に記載の非水電
解液二次電池。
6. Li / manganese compound oxide Li /
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the Mn ratio is 0.55 to 0.60.
【請求項7】 前記リチウムマンガン複酸化物は、Li
1+xMn2−x− (xは0<x≦0.1、
yは0<y≦0.3、MはA1、Cr、Ni、Co、M
gからなる群から選択される少なくとも1種の元素)で
表されることを特徴とする請求項1乃至請求項5のいず
れか1項に記載の非水電解液二次電池。
7. The lithium manganese composite oxide is Li
1 + x Mn 2-x- y M y O 4 (x is 0 <x ≦ 0.1,
y is 0 <y ≦ 0.3, M is A1, Cr, Ni, Co, M
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the non-aqueous electrolyte secondary battery is represented by at least one element selected from the group consisting of g).
【請求項8】 前記負極の活物質が非晶質炭素であるこ
とを特徴とする請求項1乃至請求項7のいずれか1項に
記載の非水電解液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material of the negative electrode is amorphous carbon.
【請求項9】 前記正極のバインダが、ポリビニルアル
コールを主体とし変性された熱硬化性可塑化ポリビニル
アルコール樹脂であることを特徴とする請求項1乃至請
求項8のいずれか1項に記載の非水電解液二次電池。
9. The non-woven fabric according to claim 1, wherein the binder of the positive electrode is a thermosetting plasticized polyvinyl alcohol resin modified mainly with polyvinyl alcohol. Water electrolyte secondary battery.
【請求項10】 前記負極のバインダが、ポリビニルア
ルコールを主体とし変性された熱硬化性可塑化ポリビニ
ルアルコール樹脂であることを特徴とする請求項1乃至
請求項8のいずれか1項に記載の非水電解液二次電池。
10. The binder according to claim 1, wherein the binder of the negative electrode is a thermosetting plasticized polyvinyl alcohol resin mainly composed of polyvinyl alcohol and modified. Water electrolyte secondary battery.
【請求項11】 前記正極及び負極のバインダが、ポリ
ビニルアルコールを主体とし変性された熱硬化性可塑化
ポリビニルアルコール樹脂であることを特徴とする請求
項1乃至請求項8のいずれか1項に記載の非水電解液二
次電池。
11. The binder according to claim 1, wherein the binder of the positive electrode and the negative electrode is a thermosetting plasticized polyvinyl alcohol resin modified mainly with polyvinyl alcohol. Non-aqueous electrolyte secondary battery.
JP2001372478A 2001-06-14 2001-12-06 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3591506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372478A JP3591506B2 (en) 2001-06-14 2001-12-06 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-180065 2001-06-14
JP2001180065 2001-06-14
JP2001372478A JP3591506B2 (en) 2001-06-14 2001-12-06 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003068282A true JP2003068282A (en) 2003-03-07
JP3591506B2 JP3591506B2 (en) 2004-11-24

Family

ID=26616892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372478A Expired - Fee Related JP3591506B2 (en) 2001-06-14 2001-12-06 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3591506B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022672A1 (en) * 2005-08-23 2007-03-01 Byd Company Limited A cathode, a lithium ion battery comprising such a cathode and processes for preparation thereof
JP2009032410A (en) * 2007-07-24 2009-02-12 Hitachi Vehicle Energy Ltd Lithium secondary cell
US7638240B2 (en) * 2003-04-03 2009-12-29 Sony Corporation Cathode material, method of manufacturing the same, and battery using the same
WO2012077472A1 (en) * 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
WO2014003034A1 (en) 2012-06-27 2014-01-03 東洋アルミニウム株式会社 Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
JP6994155B2 (en) 2018-01-10 2022-01-14 トヨタ自動車株式会社 Non-aqueous electrolyte lithium secondary battery
RU213335U1 (en) * 2021-06-16 2022-09-06 Акционерное общество "Энергия" (АО "Энергия") CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON OXIDE OF LITHIUM-NICKEL-MANGANESE-COBALT (LiNiMnCoO2) (NMC)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638240B2 (en) * 2003-04-03 2009-12-29 Sony Corporation Cathode material, method of manufacturing the same, and battery using the same
WO2007022672A1 (en) * 2005-08-23 2007-03-01 Byd Company Limited A cathode, a lithium ion battery comprising such a cathode and processes for preparation thereof
JP2009032410A (en) * 2007-07-24 2009-02-12 Hitachi Vehicle Energy Ltd Lithium secondary cell
WO2012077472A1 (en) * 2010-12-09 2012-06-14 日本電気株式会社 Positive electrode active material for secondary battery and secondary battery using same
CN103210532A (en) * 2010-12-09 2013-07-17 日本电气株式会社 Positive electrode active material for secondary battery and secondary battery using same
US8877090B2 (en) 2010-12-09 2014-11-04 Nec Corporation Positive electrode active material for secondary battery, and secondary battery using the same
WO2014003034A1 (en) 2012-06-27 2014-01-03 東洋アルミニウム株式会社 Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
US9899681B2 (en) 2012-06-27 2018-02-20 Toyo Aluminium Kabushiki Kaisha Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
JP6994155B2 (en) 2018-01-10 2022-01-14 トヨタ自動車株式会社 Non-aqueous electrolyte lithium secondary battery
RU213335U1 (en) * 2021-06-16 2022-09-06 Акционерное общество "Энергия" (АО "Энергия") CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON OXIDE OF LITHIUM-NICKEL-MANGANESE-COBALT (LiNiMnCoO2) (NMC)

Also Published As

Publication number Publication date
JP3591506B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
US8257847B2 (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP2004006264A (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2004134369A (en) Lithium secondary battery and electric automobile
JP3591506B2 (en) Non-aqueous electrolyte secondary battery
JP4904639B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2004134208A (en) Lithium secondary battery and electric vehicle
JP2001229970A (en) Cylindrical lithium battery
JP2001185220A (en) Cylindrical lithium ion battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3624793B2 (en) Lithium ion battery
JP2004164988A (en) Manufacturing method of lithium containing metal oxide and lithium secondary battery using same
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3783503B2 (en) Lithium secondary battery
JP3518484B2 (en) Lithium ion battery
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP2004152718A (en) Lithium-ion secondary battery
JP2003036890A (en) Nonaqueous electrolytic solution secondary battery and electric vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees