JP2009032410A - Lithium secondary cell - Google Patents

Lithium secondary cell Download PDF

Info

Publication number
JP2009032410A
JP2009032410A JP2007192125A JP2007192125A JP2009032410A JP 2009032410 A JP2009032410 A JP 2009032410A JP 2007192125 A JP2007192125 A JP 2007192125A JP 2007192125 A JP2007192125 A JP 2007192125A JP 2009032410 A JP2009032410 A JP 2009032410A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007192125A
Other languages
Japanese (ja)
Other versions
JP5043545B2 (en
Inventor
Masanori Yoshikawa
正則 吉川
Soubun Okumura
壮文 奥村
Yoshimi Yanai
吉美 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007192125A priority Critical patent/JP5043545B2/en
Publication of JP2009032410A publication Critical patent/JP2009032410A/en
Application granted granted Critical
Publication of JP5043545B2 publication Critical patent/JP5043545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary cell with high loading characteristics applicable to an auxiliary power source such as a hybrid car or a fuel cell vehicle, with a high output, high energy density and longevity. <P>SOLUTION: In the lithium secondary cell structured by: a cathode containing a cathode active material consisting of lithium transition metal composite oxide; an anode containing a material occluding/releasing lithium; and nonaqueous electrolyte containing lithium salt, a cathode active material volume M (g/cm<SP>2</SP>) per unit area of one side face of a collector foil with both faces coated with the cathode active material, is 0.014 g/cm<SP>2</SP>or less, and a ratio E/M of the cathode active material volume M (g/cm<SP>2</SP>) to a lithium ion volume E (mol/cm<SP>3</SP>) contained in the lithium salt per unit volume of the nonaqueous electrolyte, is 0.07 or more and 0.2 or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

燃料電池自動車、ハイブリッド自動車等への適用を目的としたリチウム二次電池あるいはキャパシタなどの電源装置の開発が盛んである。燃料電池自動車、ハイブリッド自動車のような車載用途には、高負荷特性、高出力特性、長寿命特性などの性能が要求される。近年では、二酸化炭素削減などの環境問題の観点から、燃料電池自動車、ハイブリッド自動車の補助電源等へのこれら電源装置の実用化の期待が、高まっている。このような自動車分野への実用化には、これら電源装置のより一層の高負荷特性の向上、高出力化、長寿命化が重要である。さらに、回生エネルギーの有効利用を図るには、優れた入力特性も要求される。   The development of power supply devices such as lithium secondary batteries or capacitors for the purpose of application to fuel cell vehicles, hybrid vehicles, and the like has been active. In-vehicle applications such as fuel cell vehicles and hybrid vehicles require performance such as high load characteristics, high output characteristics, and long life characteristics. In recent years, from the viewpoint of environmental problems such as carbon dioxide reduction, there is an increasing expectation for the practical application of these power supply devices for auxiliary power supplies of fuel cell vehicles and hybrid vehicles. For practical application to such an automobile field, it is important to further improve the high load characteristics, increase the output, and extend the life of these power supply devices. Furthermore, excellent input characteristics are also required for effective use of regenerative energy.

リチウム二次電池を燃料電池自動車の補助電源として適用するには、燃料電池が起動するまでの間、リチウム二次電池の電気だけで走行できることが望ましい。またハイブリッド自動車においては、都市部での電気走行が可能な、いわゆるデュアルモードの要望も近年出てきている。車の限られたスペースに搭載された電池で、このような多様な要求に対応し、実用化を図るには、さらなる負荷特性、出力特性などの電池性能の向上が望まれる。   In order to apply the lithium secondary battery as an auxiliary power source of the fuel cell vehicle, it is desirable that the lithium secondary battery can be driven only by the electricity of the lithium secondary battery until the fuel cell is started. In recent years, there has been a demand for a so-called dual mode capable of electric driving in urban areas. In order to meet such various demands and put into practical use with a battery mounted in a limited space of a vehicle, further improvement in battery performance such as load characteristics and output characteristics is desired.

このような背景のもと、正負極材料、電解液などの電池材料の改善による電池性能向上に関する様々な技術が開示されている。   Against this background, various techniques relating to battery performance improvement by improving battery materials such as positive and negative electrode materials and electrolytes have been disclosed.

例えば特許文献1では、入出力特性と高温サイクル特性のバランスのとれたリチウム二次電池を提供するため、非水電解液の適正化を図っている。このリチウム二次電池は、6フッ化リン酸リチウム(LiPF)が1.2M〜3Mの濃度で含まれる非水電解液を用いているが、正極の集電体箔の片面に塗布された正極活物質量は約0.0035g/cmであり、LiPFのリチウムイオン量と正極活物質量の比は、0.358〜0.458である。 For example, in Patent Document 1, in order to provide a lithium secondary battery in which input / output characteristics and high-temperature cycle characteristics are balanced, the non-aqueous electrolyte is optimized. This lithium secondary battery uses a non-aqueous electrolyte solution containing lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1.2 M to 3 M, but was applied to one surface of a positive electrode current collector foil. The amount of the positive electrode active material is about 0.0035 g / cm 2 , and the ratio of the lithium ion amount of LiPF 6 to the amount of the positive electrode active material is 0.358 to 0.458.

また特許文献2および3は、高容量、高出力かつ安全性の高い円筒形リチウムイオン電池を提供するため、マンガン酸リチウム(LiMn)を含む正極活物質合剤が塗布された正極と、溶質としてLiPFを1.5モル/リットル以下または1.3モル/リットル以下の濃度で含む電解液を有するリチウム二次電池を開示するが、正極の集電体箔の片面に塗布された正極活物質量は0.0242g/cmであり、その塗布部(両面)厚さは210μmである。 Patent Documents 2 and 3 also provide a positive electrode coated with a positive electrode active material mixture containing lithium manganate (LiMn 2 O 4 ) in order to provide a cylindrical lithium ion battery with high capacity, high output, and high safety. A lithium secondary battery having an electrolyte containing LiPF 6 as a solute at a concentration of 1.5 mol / liter or less or 1.3 mol / liter or less is disclosed, but applied to one side of a positive electrode current collector foil The amount of the positive electrode active material is 0.0242 g / cm 2 , and the thickness of the application part (both sides) is 210 μm.

特許文献4では、高出力かつ長寿命の非水電解液二次電池を提供するため、非水電解液の適正化を図っている。正極活物質にマンガン酸リチウムを用いた正極と、負極活物質に炭素材を用いた負極とを有するリチウム二次電池において、非水電解液の有機溶媒に対するLiPFの濃度を1.2モル/リットル以上1.6モル/リットル以下にしている。 In Patent Document 4, in order to provide a high-power and long-life non-aqueous electrolyte secondary battery, optimization of the non-aqueous electrolyte is attempted. In a lithium secondary battery having a positive electrode using lithium manganate as the positive electrode active material and a negative electrode using a carbon material as the negative electrode active material, the concentration of LiPF 6 with respect to the organic solvent of the non-aqueous electrolyte is 1.2 mol / Liter to 1.6 mol / liter.

特開2002−25606号公報Japanese Patent Laid-Open No. 2002-25606 特開2000−311706号公報JP 2000-311706 A 特開2000−311707号公報JP 2000-311707 A 特開2003−243029号公報JP 2003-243029 A

本発明の目的は、ハイブリッド自動車、燃料電池自動車などの補助電源に適用可能な高負荷特性、高出力、高エネルギー密度、かつ長寿命なリチウム二次電池を提供することにある。   An object of the present invention is to provide a lithium secondary battery having high load characteristics, high output, high energy density, and long life that can be applied to an auxiliary power source such as a hybrid vehicle and a fuel cell vehicle.

本発明者らは、前記課題を解決するため鋭意研究を行った結果、正極活物質量と非水電解液中のリチウムイオン量の割合(比)を好適な範囲にすることにより、上記課題を解決できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be achieved by setting the ratio (ratio) of the amount of the positive electrode active material and the amount of lithium ions in the non-aqueous electrolyte to a suitable range. As a result, the present invention has been completed.

本発明の概要は以下の通りである。
(1)リチウム遷移金属複合酸化物からなる正極活物質を含む正極、リチウムを吸蔵・放出する物質を含む負極、およびリチウム塩を含有する非水電解液で構成されたリチウム二次電池において、前記正極活物質が両面に塗布された集電体箔の片面の単位面積あたりの正極活物質量M(g/cm)が0.014g/cm以下であり、かつ前記正極活物質量M(g/cm)と前記非水電解液の単位体積あたりの前記リチウム塩に含有されるリチウムイオン量E(mol/cm)との比E/Mが0.07以上0.2以下であることを特徴とする、前記リチウム二次電池。
(2)前記リチウム遷移金属複合酸化物が、化学式LiMO(Mは少なくとも1種の遷移金属)で表されるものである、(1)に記載のリチウム二次電池。
(3)前記リチウム遷移金属複合酸化物が、化学式LiNiMnCo(a+b+c=1)で表されるものである、(1)または(2)に記載のリチウム二次電池。
The outline of the present invention is as follows.
(1) In a lithium secondary battery composed of a positive electrode including a positive electrode active material composed of a lithium transition metal composite oxide, a negative electrode including a material that absorbs and releases lithium, and a non-aqueous electrolyte containing a lithium salt, The positive electrode active material amount M (g / cm 2 ) per unit area of one surface of the current collector foil coated with the positive electrode active material on both sides is 0.014 g / cm 2 or less, and the positive electrode active material amount M ( g / cm 2 ) and a ratio E / M of lithium ion amount E (mol / cm 3 ) contained in the lithium salt per unit volume of the non-aqueous electrolyte is 0.07 or more and 0.2 or less. The lithium secondary battery is characterized by the above.
(2) The lithium secondary battery according to (1), wherein the lithium transition metal composite oxide is represented by a chemical formula LiMO 2 (M is at least one transition metal).
(3) The lithium secondary battery according to (1) or (2), wherein the lithium transition metal composite oxide is represented by a chemical formula LiNi a Mn b Co c O 2 (a + b + c = 1).

本発明によれば、負荷特性が良好で、かつ高出力なリチウム二次電池が提供され、ハイブリッド自動車、燃料電池自動車、電気自動車などに好適なリチウム二次電池が提供できる。さらに、電動工具など高負荷特性、高出力が必要とされる分野等へ幅広く適用できるリチウム二次電池の提供も可能となる。   According to the present invention, a lithium secondary battery having good load characteristics and high output is provided, and a lithium secondary battery suitable for a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and the like can be provided. Furthermore, it is possible to provide a lithium secondary battery that can be widely applied to fields such as electric tools that require high load characteristics and high output.

本発明によるリチウム二次電池は、リチウム遷移金属複合酸化物からなる正極活物質を含む正極、リチウムを吸蔵・放出する物質を含む負極、およびリチウム塩を含有する非水電解液で構成されたリチウム二次電池において、前記正極活物質が両面に塗布された集電体箔の片面の単位面積あたりの正極活物質量M(g/cm)が0.014g/cm以下であり、かつ前記正極活物質量M(g/cm)と前記非水電解液の単位体積あたりの前記リチウム塩に含有されるリチウムイオン量E(mol/cm)との比E/Mが0.07以上0.2以下であることを特徴とする。 A lithium secondary battery according to the present invention includes a positive electrode including a positive electrode active material made of a lithium transition metal composite oxide, a negative electrode including a material that absorbs and releases lithium, and a lithium composed of a non-aqueous electrolyte containing a lithium salt. In the secondary battery, the positive electrode active material amount M (g / cm 2 ) per unit area of one surface of the current collector foil coated with the positive electrode active material on both surfaces is 0.014 g / cm 2 or less, and The ratio E / M of the positive electrode active material amount M (g / cm 2 ) to the lithium ion amount E (mol / cm 3 ) contained in the lithium salt per unit volume of the non-aqueous electrolyte is 0.07 or more. It is 0.2 or less.

一般的に、リチウム二次電池の電池容量は、電池容器内に存在する正極活物質中に含まれるリチウムイオン量に基づいているため、電池から取り出すことができる電流も正極活物質中のリチウム量に依存するものとなる。従って、時間率で表した電流値は、電池反応として移動可能な正極活物質中のリチウム量をどれくらいの時間で電極間を移動させるかを示す尺度と考えることができる。自動車の分野においては1/10〜1/20の時間率(10C〜20C)が要求されるが、これは正極中のリチウムイオンを3〜6分で移動させることが可能な大電流に相当する。このような高負荷下での電池特性の向上を図るには、大電流下で電池反応に使われるリチウムイオン量を考慮した改善が重要である。すなわち、反応界面で電池反応に使われるリチウムイオン量よりも、電解液中の反応界面近傍に存在するリチウムイオン量が十分に多く存在すると高負荷時の大電流においても電池反応がスムーズに進行し、特に高負荷下での電池特性が確保できるものと考えられる。すなわち、電解液中のリチウムイオン量(mol/cm)を正極活物質量(g/cm)に対して好適な範囲にし、反応界面近傍に十分な量のリチウムイオンを存在させることにより、電池反応のスムーズな進行が可能となり、負荷特性の改善を図ることができる。 Generally, since the battery capacity of a lithium secondary battery is based on the amount of lithium ions contained in the positive electrode active material present in the battery container, the current that can be taken out from the battery is also the amount of lithium in the positive electrode active material. It depends on. Therefore, the current value represented by the time rate can be considered as a scale indicating how long the amount of lithium in the positive electrode active material that can move as a battery reaction is moved between the electrodes. In the field of automobiles, a time rate of 1/10 to 1/20 (10C to 20C) is required, which corresponds to a large current capable of moving lithium ions in the positive electrode in 3 to 6 minutes. . In order to improve the battery characteristics under such a high load, it is important to consider the amount of lithium ions used for the battery reaction under a large current. In other words, if the amount of lithium ions present in the vicinity of the reaction interface in the electrolyte is sufficiently larger than the amount of lithium ions used in the battery reaction at the reaction interface, the battery reaction proceeds smoothly even at a large current at high load. In particular, it is considered that the battery characteristics under a high load can be secured. That is, by making the amount of lithium ions (mol / cm 3 ) in the electrolyte solution suitable for the amount of positive electrode active material (g / cm 2 ), and by allowing a sufficient amount of lithium ions to exist in the vicinity of the reaction interface, The battery reaction can proceed smoothly, and the load characteristics can be improved.

上述のような観点から、正極集電体箔の片面の単位面積あたりの正極活物質量M(g/cm)、単位体積あたりの電解液中のリチウムイオン量E(mol/cm)、および電池特性との関係を種々検討した結果、E/Mが0.07以上0.2以下、より好ましくは0.10以上0.15以下の範囲に入るようにすることにより、良好な負荷特性のリチウム二次電池を提供できることが明らかになった。E/Mが0.2を超えると、反応界面近傍に電池反応に必要なリチウムイオン量以上にイオンが存在し、リチウムイオン量が多く存在するという点では申し分はないが、電解質の溶解量が多くなるため、電解液の粘性が高くなりイオン伝導度が低下し、良好な電池特性を得ることが困難になる。一方、E/Mが0.07より小さいと、反応に必要なリチウムイオン量に対して反応界面近傍のリチウムイオン量の絶対量が不足するため、スムーズな電池反応が進行しなくなり、良好な電池性能が得られない。 From the above viewpoint, the positive electrode active material amount M (g / cm 2 ) per unit area of one surface of the positive electrode current collector foil, the lithium ion amount E (mol / cm 3 ) in the electrolytic solution per unit volume, As a result of various investigations on the relationship with the battery characteristics, it is possible to obtain good load characteristics by making E / M fall within the range of 0.07 to 0.2, more preferably 0.10 to 0.15. It became clear that lithium secondary batteries can be provided. If E / M exceeds 0.2, there are more ions in the vicinity of the reaction interface than the amount of lithium ions required for the battery reaction, and there is a large amount of lithium ions. Therefore, the viscosity of the electrolytic solution is increased, the ionic conductivity is lowered, and it is difficult to obtain good battery characteristics. On the other hand, if the E / M is less than 0.07, the absolute amount of lithium ions in the vicinity of the reaction interface is insufficient with respect to the amount of lithium ions required for the reaction, so that a smooth battery reaction does not proceed and a good battery is obtained. Performance cannot be obtained.

本発明は、上述のように、正極活物質量に対して電解液中のリチウムイオン量を好適な範囲にすることにより、負荷特性の向上を図るものであるが、リチウムイオン量は正極活物質量に従って増減する。正極活物質量が多くなると、それに伴って電解液中のリチウムイオン量がより多く必要となり、そのためには、より多くのリチウム塩を溶解する必要がある。しかしながら、正極活物質が両面に塗布された集電体箔の片面の単位面積あたりの正極活物質量が0.014g/cmを超えると、リチウム塩の溶解量が極めて多くなり、このため電解液の粘性が高くなり、良好な電池特性の確保が困難となる。したがって、正極活物質量を0.014g/cm以下とすることにより、高性能なリチウム二次電池を提供できる。正極活物質量を少なくすれば良好な特性が確保できるので、正極活物質量の下限は特に限定されない。但し、正極活物質量を少なくしていくと、それに伴って正極活物質の塗布膜の厚さが薄くなっていき、均一な膜を得ることが生産技術上難しくなる場合がある。このような生産技術面も考慮すると、正極活物質量は、好ましくは0.007g/cm以上0.014g/cm以下、より好ましくは0.007g/cm以上0.013g/cm以下、更に好ましくは0.007g/cm以上0.012g/cm以下である。 In the present invention, as described above, the load characteristics are improved by setting the amount of lithium ions in the electrolytic solution within a preferable range with respect to the amount of the positive electrode active material. Increase or decrease according to the amount. As the amount of the positive electrode active material increases, the amount of lithium ions in the electrolytic solution is required accordingly, and for that purpose, it is necessary to dissolve more lithium salt. However, when the amount of the positive electrode active material per unit area of one surface of the current collector foil coated with the positive electrode active material exceeds 0.014 g / cm 2 , the amount of lithium salt dissolved becomes extremely large, and thus the electrolysis As the viscosity of the liquid increases, it becomes difficult to ensure good battery characteristics. Therefore, a high-performance lithium secondary battery can be provided by setting the positive electrode active material amount to 0.014 g / cm 2 or less. If the amount of the positive electrode active material is reduced, good characteristics can be secured, and therefore the lower limit of the amount of the positive electrode active material is not particularly limited. However, as the amount of the positive electrode active material is decreased, the thickness of the coating film of the positive electrode active material is reduced accordingly, and it may be difficult in production technology to obtain a uniform film. When such production technical also considered, the positive electrode active material weight is preferably 0.007 g / cm 2 or more 0.014 g / cm 2 or less, more preferably 0.007 g / cm 2 or more 0.013 g / cm 2 or less , further preferably 0.007 g / cm 2 or more 0.012 g / cm 2 or less.

本発明のリチウム二次電池に用いる正極は、公知の構成を採ればよく、例えば、正極活物質、導電剤及び結着剤が混合された正極合剤が、金属箔の両面に塗布され、乾燥・加圧等されて形成される。   The positive electrode used in the lithium secondary battery of the present invention may have a known configuration. For example, a positive electrode mixture in which a positive electrode active material, a conductive agent, and a binder are mixed is applied to both surfaces of a metal foil and dried.・ It is formed by pressurization.

正極活物質には、公知のリチウム遷移金属複合酸化物を適用すればよく、LiCoO、LiNiO、LiNi1−xCo、LiMn、LiNi0.5Mn0.5、LiFePO、LiMO(Mは少なくとも1種の遷移金属)などがあり、特に限定されない。遷移金属は、例えばNi、Co、Mnなどである。本発明では、好ましくは化学式LiMO(Mは少なくとも1種の遷移金属、より好ましくはNi、Co)で表されるものを用いることができる。また、LiNiO、LiCoOなどのNi、Coなどの一部を1種あるいはそれ以上の遷移金属で置換して用いることができ、例えばLiNi0.5Mn0.3Co0.2、LiNi0.5Mn0.5、LiNi0.7Co0.3、LiNi1/3Mn1/3Co1/3などが挙げられる。本発明では、例えばLiNi0.5Mn0.3Co0.2、LiNi0.7Co0.3が好ましく用いられる。 A known lithium transition metal composite oxide may be applied to the positive electrode active material, and LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiMn 2 O 4 , LiNi 0.5 Mn 0.5 O 2. , LiFePO 4 , Li 2 MO 3 (M is at least one transition metal) and the like are not particularly limited. Examples of the transition metal include Ni, Co, and Mn. In the present invention, a material represented by the chemical formula LiMO 2 (M is at least one transition metal, more preferably Ni, Co) can be used. Further, a part of Ni, Co, etc. such as LiNiO 2 and LiCoO 2 can be substituted with one or more transition metals, for example, LiNi 0.5 Mn 0.3 Co 0.2 O 2 , Examples include LiNi 0.5 Mn 0.5 O 2 , LiNi 0.7 Co 0.3 O 2 , and LiNi 1/3 Mn 1/3 Co 1/3 O 2 . In the present invention, for example, LiNi 0.5 Mn 0.3 Co 0.2 O 2 and LiNi 0.7 Co 0.3 O 2 are preferably used.

導電剤には、公知の導電剤、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いればよく、特に限定されない。本発明では、例えば黒鉛が好ましく用いられる。   The conductive agent may be a known conductive agent, for example, a carbon-based conductive agent such as graphite, acetylene black, carbon black, carbon fiber, and is not particularly limited. In the present invention, for example, graphite is preferably used.

結着剤には、公知の結着剤、例えばポリフッ化ビニリデン、ポリテトラフロオロエチレン、フッ素ゴム、ポリプロピレン、ポリエチレンなどを用いればよく、特に限定されない。本発明では、例えばポリフッ化ビニリデンが好ましく用いられる。   The binder may be a known binder such as polyvinylidene fluoride, polytetrafluoroethylene, fluororubber, polypropylene, polyethylene, and the like, and is not particularly limited. In the present invention, for example, polyvinylidene fluoride is preferably used.

また溶剤は、適宜使用し、例えばN−メチル−2−ピロリドン等の有機溶剤が好ましく用いられる。   The solvent is appropriately used, and an organic solvent such as N-methyl-2-pyrrolidone is preferably used.

正極合剤における正極活物質、導電剤及び結着剤の混合比は、特に限定されないが、例えば重量比で正極活物質を1とした場合、1:0.05〜0.20:0.02〜0.10である。   The mixing ratio of the positive electrode active material, the conductive agent, and the binder in the positive electrode mixture is not particularly limited. For example, when the positive electrode active material is 1 by weight, the ratio is 1: 0.05 to 0.20: 0.02. ~ 0.10.

正極の集電体箔には、アルミニウム金属箔が用いられ、厚さは、例えば約10μmから約30μmが好ましい。   An aluminum metal foil is used for the current collector foil of the positive electrode, and the thickness is preferably about 10 μm to about 30 μm, for example.

本発明のリチウム二次電池に用いる負極は、公知の構成を採ればよく、例えば、リチウムを吸蔵・放出する物質及び結着剤が混合された負極合剤が、金属箔の両面に塗布され、乾燥・加圧等されて形成される。   The negative electrode used in the lithium secondary battery of the present invention may have a known configuration, for example, a negative electrode mixture in which a material that absorbs and releases lithium and a binder are mixed are applied to both surfaces of a metal foil, It is formed by drying and pressing.

リチウムを吸蔵・放出する物質、すなわち負極活物質には、公知のものを用いればよく、非晶質炭素材、コークス、黒鉛などの炭素材料が挙げられ、特に限定されない。本発明では、例えば非晶質炭素材が好ましく用いられる。   A known material may be used as a material that absorbs and releases lithium, that is, a negative electrode active material, and examples thereof include amorphous carbon materials, carbon materials such as coke, and graphite, and are not particularly limited. In the present invention, for example, an amorphous carbon material is preferably used.

結着剤には、例えば上記正極と同様のものが用いられ、特に限定されない。本発明では、例えばポリフッ化ビニリデンが好ましく用いられる。   As the binder, for example, the same one as the positive electrode is used, and is not particularly limited. In the present invention, for example, polyvinylidene fluoride is preferably used.

溶剤は、適宜使用し、例えばN−メチル−2−ピロリドン等の有機溶剤が好ましく用いられる。   The solvent is appropriately used. For example, an organic solvent such as N-methyl-2-pyrrolidone is preferably used.

負極合剤におけるリチウムを吸蔵・放出する物質及び結着剤の混合比は、特に限定されないが、例えば重量比で95〜85:5〜15である。   The mixing ratio of the material that occludes / releases lithium in the negative electrode mixture and the binder is not particularly limited, and is, for example, 95 to 85: 5 to 15 by weight.

負極の集電体箔には、銅箔が好ましく用いられる。金属箔の厚さは、例えば約5μmから約20μmが好ましい。   A copper foil is preferably used for the current collector foil of the negative electrode. The thickness of the metal foil is preferably about 5 μm to about 20 μm, for example.

本発明のリチウム二次電池に用いられる非水電解液は、公知の構成を採ればよく、特に限定されない。例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、1,2−ジエトキシエタン等から少なくとも1種以上選ばれた非水溶媒に、例えばLiPF、LiBF、LiClO等から少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液を用いることができる。本発明では、例えばエチレンカーボネートまたはメチルエチルカーボネートにLiPFが好ましく用いられる。 The non-aqueous electrolyte used for the lithium secondary battery of the present invention is not particularly limited as long as it has a known configuration. For example, a non-aqueous solvent selected from at least one selected from propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-diethoxyethane, and the like, for example, LiPF 6 , An organic electrolytic solution in which at least one lithium salt selected from LiBF 4 , LiClO 4 and the like is dissolved can be used. In the present invention, for example, LiPF 6 is preferably used for ethylene carbonate or methyl ethyl carbonate.

非水電解液中のリチウムイオンの濃度は、上述のように、集電体箔の片面の正極活物質M(g/cm)に対するリチウムイオン量E(mol/cm)の比E/Mが0.07以上かつ0.2以下の範囲になる濃度にする。従って、例えば正極活物質量Mが、好ましくは0.007g/cm以上0.014g/cm以下のとき、リチウムイオン量Eは、好ましくは0.00049mol/cm以上0.0028mol/cmである。 As described above, the concentration of lithium ions in the non-aqueous electrolyte is the ratio E / M of the lithium ion amount E (mol / cm 3 ) to the positive electrode active material M (g / cm 2 ) on one side of the current collector foil. Is in a range of 0.07 or more and 0.2 or less. Therefore, for example, when the positive electrode active material amount M is preferably 0.007 g / cm 2 or more and 0.014 g / cm 2 or less, the lithium ion amount E is preferably 0.00049 mol / cm 3 or more and 0.0028 mol / cm 3. It is.

また、電池の構成上の必要性に応じて微孔性セパレータ、例えばポリオレフィン系の微多孔質高分子膜を用いてもよく、本発明の効果はなんら損なわれない。   Further, a microporous separator, for example, a polyolefin-based microporous polymer film, may be used according to the structural requirements of the battery, and the effects of the present invention are not impaired at all.

リチウム二次電池の形状は、円筒型、積層型、コイン型、カード型等が挙げられ、特に限定されない。   Examples of the shape of the lithium secondary battery include a cylindrical shape, a stacked shape, a coin shape, and a card shape, and are not particularly limited.

本発明のリチウム二次電池は、円筒型であれば例えば以下のように製造できる。   If the lithium secondary battery of this invention is a cylindrical type, it can be manufactured as follows, for example.

正極活物質に、黒鉛等の導電剤、N−メチル−2−ピロリドン等の溶剤に溶解させたポリフッ化ビニリデン等の結着剤を上記重量比で加えて混練し、正極スラリーを得る。次に、このスラリーをアルミニウム金属箔の両面に塗布する。このとき、片面の単位面積当たりの正極活物質量が0.014g/cm以下になるように塗布する。その後、プレス、乾燥して正極電極を作製する。 A positive electrode active material is added with a conductive agent such as graphite and a binder such as polyvinylidene fluoride dissolved in a solvent such as N-methyl-2-pyrrolidone in the above weight ratio and kneaded to obtain a positive electrode slurry. Next, this slurry is apply | coated to both surfaces of aluminum metal foil. At this time, the positive electrode active material per unit area of one surface is coated to be less than 0.014 g / cm 2. Then, it presses and dries and produces a positive electrode.

負極活物質である非晶質炭素材等に、N−メチル−2−ピロリドン等に溶解したポリフッ化ビニリデン等を結着剤として上記重量比で加えて混練し、負極スラリーを得る。次に、このスラリーを銅箔の両面に塗布した後、プレス、乾燥して負極電極を作製する。   Polyvinylidene fluoride or the like dissolved in N-methyl-2-pyrrolidone or the like is added as a binder in the above weight ratio to an amorphous carbon material that is a negative electrode active material, and kneaded to obtain a negative electrode slurry. Next, after apply | coating this slurry to both surfaces of copper foil, it presses and dries and produces a negative electrode.

LiPF等を、上記リチウムイオン量になるように、エチレンカーボネート等の非水溶媒に溶解し、非水系電解液を作製する。 LiPF 6 or the like is dissolved in a non-aqueous solvent such as ethylene carbonate so as to have the above-mentioned lithium ion amount to prepare a non-aqueous electrolyte solution.

次に、正極と負極電極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。電極のリード片と電池缶を接続した後、非水系電解液を注入し、電池缶を封缶してリチウムイオン二次電池を得る。   Next, a porous insulating material separator is sandwiched between the positive electrode and the negative electrode, wound, and then inserted into a battery can molded of stainless steel or aluminum. After connecting the electrode lead piece and the battery can, a non-aqueous electrolyte solution is injected, and the battery can is sealed to obtain a lithium ion secondary battery.

本発明の円筒型のリチウム二次電池の例を図1に示す。   An example of a cylindrical lithium secondary battery of the present invention is shown in FIG.

上記正極合剤をアルミニウム箔の両面に塗布してなる正極1と、上記負極合剤を銅箔の両面に塗布してなる負極2と、正極1と負極2の間に配されたセパレータ3と、正極1と正極集電リード部7とを接続する正極集電リード片5と、負極2と負極集電リード部8とを接続する負極集電リード片6と、負極集電リード部8が底面に接続された電池缶4と、電池缶4の開口端部にガスケット12でかしめられた電池蓋9と、電池蓋9の裏面に接触する正極端子部11と、正極端子部11間に挟み込まれた破裂弁10とから構成されている。正極1、及び負極2はセパレータ3を介して捲回され、電極群として電池缶4内部に配置されている。電池缶4及び電池蓋9により構成される空間には電解液(図示せず)が充填されている。   A positive electrode 1 formed by applying the positive electrode mixture on both sides of an aluminum foil; a negative electrode 2 formed by applying the negative electrode mixture on both sides of a copper foil; and a separator 3 disposed between the positive electrode 1 and the negative electrode 2; The positive electrode current collecting lead piece 5 connecting the positive electrode 1 and the positive electrode current collecting lead portion 7, the negative electrode current collecting lead piece 6 connecting the negative electrode 2 and the negative electrode current collecting lead portion 8, and the negative electrode current collecting lead portion 8 The battery can 4 connected to the bottom surface, the battery lid 9 caulked to the opening end of the battery can 4 with the gasket 12, the positive electrode terminal portion 11 in contact with the back surface of the battery lid 9, and the positive electrode terminal portion 11 The rupture valve 10 is formed. The positive electrode 1 and the negative electrode 2 are wound through a separator 3 and disposed inside the battery can 4 as an electrode group. A space formed by the battery can 4 and the battery lid 9 is filled with an electrolytic solution (not shown).

本発明のリチウム二次電池の用途としては、例えばハイブリッド自動車、燃料電池自動車、電気自動車などへの適用、さらには高負荷特性、高出力が必要とされる電動工具などの電源としても適用も可能である。   The lithium secondary battery according to the present invention can be applied to, for example, a hybrid vehicle, a fuel cell vehicle, an electric vehicle, etc., and can also be applied as a power source for electric tools that require high load characteristics and high output. It is.

以下、本発明を実施例により具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but these examples do not limit the scope of the present invention.

(実施例1)
正極活物質にはLiNi0.5Mn0.3Co0.2を用い、正極活物質、導電剤の黒鉛、結着剤のポリフッ化ビニリデンを85:10:5の重量比で混練機を用いて30分間混練し、正極合剤を得た。正極合剤を集電体である厚さ20μmのアルミニウム箔の両面に塗布した。集電体片面の単位面積あたりの正極合剤量、正極活物質量は、それぞれ0.0092g/cm、0.0078g/cmであった。一方、負極活物質には非晶質炭素材を用い、結着剤にはポリフッ化ビニリデンを用いて、負極活物質:結着剤=90:10の重量比で混練した。得られた負極合剤を厚さ10μmの銅箔の両面に塗布した。作製した正負電極は、いずれもプレス機で圧延成型した後、150℃で5時間真空乾燥した。
Example 1
LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode active material, and the positive electrode active material, the conductive agent graphite, and the binder polyvinylidene fluoride were mixed at a weight ratio of 85: 10: 5. Was mixed for 30 minutes to obtain a positive electrode mixture. The positive electrode mixture was applied to both surfaces of a 20 μm thick aluminum foil as a current collector. Positive electrode mixture per unit area of one side of the collector, the positive electrode active material weight, respectively 0.0092g / cm 2, was 0.0078g / cm 2. On the other hand, an amorphous carbon material was used as the negative electrode active material and polyvinylidene fluoride was used as the binder, and the mixture was kneaded at a weight ratio of negative electrode active material: binder = 90: 10. The obtained negative electrode mixture was applied to both surfaces of a copper foil having a thickness of 10 μm. Each of the produced positive and negative electrodes was roll-formed with a press machine and then vacuum-dried at 150 ° C. for 5 hours.

乾燥後、正極1と負極2とをセパレータ3を介して捲回し、電池缶4に挿入した。負極集電リード片6はニッケルの負極集電リード部8に集めて超音波溶接し、集電リード部を缶底溶接した(図1)。一方、正極集電リード片5はアルミニウムの正極集電リード部7に超音波溶接した後、アルミニウムの正極集電リード部7を電池蓋9に抵抗溶接した。電解液(LiPF/EC(エチレンカーボネート):MEC(メチルエチルカーボネート)=1:2)を注入後、電池缶4のカシメにより電池蓋9を封口し、電池を得た。なお、電池缶4の上端と蓋の間にはガスケット12を挿入した。 After drying, the positive electrode 1 and the negative electrode 2 were wound through the separator 3 and inserted into the battery can 4. The negative electrode current collecting lead piece 6 was collected on the nickel negative electrode current collecting lead portion 8 and ultrasonically welded, and the current collecting lead portion was welded to the bottom of the can (FIG. 1). On the other hand, the positive electrode current collecting lead piece 5 was ultrasonically welded to the aluminum positive electrode current collecting lead portion 7 and then the aluminum positive electrode current collecting lead portion 7 was resistance welded to the battery lid 9. After injecting the electrolytic solution (LiPF 6 / EC (ethylene carbonate): MEC (methyl ethyl carbonate) = 1: 2), the battery lid 9 was sealed with the caulking of the battery can 4 to obtain a battery. A gasket 12 was inserted between the upper end of the battery can 4 and the lid.

試作した電池(電池番号1−1〜1−6)の電解液中のリチウムイオン量E(mol/cm)、およびE/M比を表1にまとめて示す。 Table 1 summarizes the amount of lithium ions E (mol / cm 3 ) and the E / M ratio in the electrolyte of the prototype batteries (battery numbers 1-1 to 1-6).

Figure 2009032410
Figure 2009032410

充電終止電圧4.2V、放電終止電圧2.7V、充放電レート1C(1時間率)で充放電し、電池容量を求めた。次に充電条件を充電終止電圧4.2V、充電電流を1Cとして高負荷特性を調べた。負荷特性測定時の放電レートは20C(3分率)とした。図2にE/M比と負荷特性との関係を示す。なお、負荷特性を表す指標として、1Cの放電容量に対する20Cの放電容量の維持率(%)用いた。電池1−1〜1−6ではいずれの電池も放電容量維持率は80%前後であったが、電池1−6では維持率は60%程度と低い値となった。   The battery capacity was determined by charging / discharging at a charge end voltage of 4.2 V, a discharge end voltage of 2.7 V, and a charge / discharge rate of 1 C (1 hour rate). Next, the high load characteristics were examined by setting the charging conditions to a charge end voltage of 4.2 V and a charging current of 1 C. The discharge rate at the time of measuring the load characteristics was set to 20 C (three fractions). FIG. 2 shows the relationship between the E / M ratio and the load characteristics. In addition, the maintenance factor (%) of the discharge capacity of 20 C with respect to the discharge capacity of 1 C was used as an index representing the load characteristics. In all of the batteries 1-1 to 1-6, the discharge capacity maintenance rate was about 80%, but in the battery 1-6, the maintenance rate was as low as about 60%.

(実施例2)
正極活物質にはLiNi0.7Co0.3を用い、負極活物質には非晶質炭素を用い、実施例1と同様に電池を作製した。試作した電池の正極活物質量M(g/cm)、電解液中のリチウムイオン量E(mol/cm)、およびE/M比を表2にまとめて示す。
(Example 2)
A battery was fabricated in the same manner as in Example 1 using LiNi 0.7 Co 0.3 O 2 as the positive electrode active material and amorphous carbon as the negative electrode active material. Table 2 summarizes the positive electrode active material amount M (g / cm 2 ), the lithium ion amount E (mol / cm 3 ), and the E / M ratio of the prototype battery.

Figure 2009032410
Figure 2009032410

実施例1と同様に放電レート20Cで負荷特性を評価した。結果を図3に示す。正極活物質量が0.0073g/cm〜0.0126g/cmの電池2−1〜2−4は容量維持率が70〜80%の値であり良好な特性を示したが、電池2−5は容量維持率が30%程度であった。 The load characteristics were evaluated at a discharge rate of 20 C in the same manner as in Example 1. The results are shown in FIG. Batteries 2-1 to 2-4 having a positive electrode active material amount of 0.0073 g / cm 2 to 0.0126 g / cm 2 had a capacity retention ratio of 70 to 80% and showed good characteristics. -5 had a capacity retention rate of about 30%.

次に、SOC(state of charge)50%の状態で、1C、5C、10C、20Cの電流を10秒間印加し、それぞれの電流値における10秒目の電圧を測定し、出力性能を調べた。電池の放電終止電圧(V)と電流電圧特性の直線を放電終止電圧まで外挿したときの電流値(I)を用いて、式P=I×Vより出力を求めた。重量出力密度は、電池2−1が3260W/kg、電池2−2が3040W/kg、電池2−3が2830W/kg、電池2−4が2510W/kg、電池2−5が2040W/kgであり、正極活物質量が多い電池2−5は、他の電池よりも出力密度が低い結果となった。 Next, in the state of SOC (state of charge) 50%, currents of 1C, 5C, 10C, and 20C were applied for 10 seconds, and the voltage at the 10th second at each current value was measured to examine the output performance. Using battery discharge end voltage (V D) and the current value when the extrapolated straight line of the current-voltage characteristic to a final discharge voltage (I D), was determined output from the equation P O = I D × V D . The weight output density is 3260 W / kg for battery 2-1, 3040 W / kg for battery 2-2, 2830 W / kg for battery 2-3, 2510 W / kg for battery 2-4, and 2040 W / kg for battery 2-5. The battery 2-5 with a large amount of the positive electrode active material had a lower output density than the other batteries.

本発明による円筒型のリチウム二次電池を示す側面断面図である。1 is a side sectional view showing a cylindrical lithium secondary battery according to the present invention. リチウム二次電池のE/M比と容量維持率の関係を示す図である。It is a figure which shows the relationship between E / M ratio of a lithium secondary battery, and a capacity | capacitance maintenance factor. リチウム二次電池の正極活物質量と容量維持率の関係を示す図である。It is a figure which shows the relationship between the amount of positive electrode active materials of a lithium secondary battery, and a capacity | capacitance maintenance factor.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極集電リード片
6 負極集電リード片
7 正極集電リード部
8 負極集電リード部
9 電池蓋
10 破裂弁
11 正極端子部
12 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode current collection lead piece 6 Negative electrode current collection lead piece 7 Positive electrode current collection lead part 8 Negative electrode current collection lead part 9 Battery cover 10 Rupture valve 11 Positive electrode terminal part 12 Gasket

Claims (3)

リチウム遷移金属複合酸化物からなる正極活物質を含む正極、リチウムを吸蔵・放出する物質を含む負極、およびリチウム塩を含有する非水電解液で構成されたリチウム二次電池において、前記正極活物質が両面に塗布された集電体箔の片面の単位面積あたりの正極活物質量M(g/cm)が0.014g/cm以下であり、かつ前記正極活物質量M(g/cm)と前記非水電解液の単位体積あたりの前記リチウム塩に含有されるリチウムイオン量E(mol/cm)との比E/Mが0.07以上0.2以下であることを特徴とする、前記リチウム二次電池。 A positive electrode including a positive electrode active material made of a lithium transition metal composite oxide, a negative electrode including a material that absorbs and releases lithium, and a lithium secondary battery including a non-aqueous electrolyte containing a lithium salt, the positive electrode active material Is the positive electrode active material amount M (g / cm 2 ) per unit area of one surface of the current collector foil coated on both sides is 0.014 g / cm 2 or less, and the positive electrode active material amount M (g / cm 2 ) 2 ) and the ratio E / M of the lithium ion content E (mol / cm 3 ) contained in the lithium salt per unit volume of the non-aqueous electrolyte is 0.07 or more and 0.2 or less. The lithium secondary battery. 前記リチウム遷移金属複合酸化物が、化学式LiMO(Mは少なくとも1種の遷移金属)で表されるものである、請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the lithium transition metal composite oxide is represented by a chemical formula LiMO 2 (M is at least one transition metal). 前記リチウム遷移金属複合酸化物が、化学式LiNiMnCo(a+b+c=1)で表されるものである、請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the lithium transition metal composite oxide is represented by a chemical formula LiNi a Mn b Co c O 2 (a + b + c = 1).
JP2007192125A 2007-07-24 2007-07-24 Lithium secondary battery Expired - Fee Related JP5043545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192125A JP5043545B2 (en) 2007-07-24 2007-07-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192125A JP5043545B2 (en) 2007-07-24 2007-07-24 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009032410A true JP2009032410A (en) 2009-02-12
JP5043545B2 JP5043545B2 (en) 2012-10-10

Family

ID=40402752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192125A Expired - Fee Related JP5043545B2 (en) 2007-07-24 2007-07-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5043545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198101A (en) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2003068282A (en) * 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003068365A (en) * 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd Secondary battery of nonaqueous electrolytic solution
JP2005032712A (en) * 2003-06-16 2005-02-03 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
JP2009021134A (en) * 2007-07-12 2009-01-29 Toshiba Corp Nonaqueous electrolyte battery and battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198101A (en) * 2000-12-26 2002-07-12 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2003068282A (en) * 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003068365A (en) * 2001-06-14 2003-03-07 Shin Kobe Electric Mach Co Ltd Secondary battery of nonaqueous electrolytic solution
JP2005032712A (en) * 2003-06-16 2005-02-03 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
JP2009021134A (en) * 2007-07-12 2009-01-29 Toshiba Corp Nonaqueous electrolyte battery and battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell

Also Published As

Publication number Publication date
JP5043545B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
JP4453049B2 (en) Manufacturing method of secondary battery
WO2010073332A1 (en) Lithium air battery
JP5049820B2 (en) Lithium ion secondary battery
CN101621138A (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4714229B2 (en) Lithium secondary battery
US20080020286A1 (en) Lithium secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP2007335360A (en) Lithium secondary cell
KR101444510B1 (en) positive-electrode active material with high POWER at the low SOC and Lithium secondary battery including them
CN103594735B (en) A kind of preparation method of lithium titanate lithium ion battery
JP2010108732A (en) Lithium secondary battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
JP2012064537A (en) Lithium ion secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP2007165074A (en) Lithium secondary battery, electric vehicle using it, and power tool
JP2012138319A (en) Lithium ion secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
KR20170112345A (en) Method for preparing electrode for lithium secondary battery
CN109545567B (en) All-solid-state battery type capacitor
JP2014056728A (en) Nonaqueous electrolyte secondary battery
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2003168427A (en) Nonaqueous electrolyte battery
US8372541B2 (en) Non-aqueous electrolyte secondary battery
JP5043545B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees