JP2007335360A - Lithium secondary cell - Google Patents

Lithium secondary cell Download PDF

Info

Publication number
JP2007335360A
JP2007335360A JP2006168664A JP2006168664A JP2007335360A JP 2007335360 A JP2007335360 A JP 2007335360A JP 2006168664 A JP2006168664 A JP 2006168664A JP 2006168664 A JP2006168664 A JP 2006168664A JP 2007335360 A JP2007335360 A JP 2007335360A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
lithium secondary
density
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006168664A
Other languages
Japanese (ja)
Inventor
Masanori Yoshikawa
正則 吉川
Juichi Arai
寿一 新井
Takahiro Yamaki
孝博 山木
Yoshimi Yanai
吉美 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006168664A priority Critical patent/JP2007335360A/en
Publication of JP2007335360A publication Critical patent/JP2007335360A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lithium secondary cell having a small size, high output and high energy density. <P>SOLUTION: The lithium secondary cell with high output and high energy density is provided. In the lithium secondary cell, a negative electrode is a mixture of graphite and amorphous carbon material, where a proportion of the graphite in the mixture is 20 wt.% or more and 80 wt.% or less, the ratio of negative electrode mix density ρ<SB>G</SB>ρ<SB>A</SB>/[ρ<SB>G</SB>(1-X)+ρ<SB>A</SB>X] is 0.55 - 0.70 (where ρ<SB>G</SB>is carbon true density, ρ<SB>A</SB>is amorphous carbon material true density, and X is a proportion of graphite and satisfies 0.2≤X≤0.8), and a total thickness of both sides of a negative electrode mix layer is set to be 50 - 90 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池に関するものであり、出力密度、エネルギー密度を大幅に向上し、かつ長寿命なリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery that greatly improves output density and energy density and has a long life.

燃料電池自動車、ハイブリッド自動車等への適用のため、リチウム二次電池あるいはキャパシタなどの電源装置の開発が盛んである。燃料電池自動車、ハイブリッド自動車のような車載用途に適用するには、これら電源装置の高出力化、長寿命化、低コスト化が重要な課題である。近年では、二酸化炭素削減などの環境問題の観点から、燃料電池自動車、ハイブリッド自動車の補助電源等へのこれら電源装置の実用化への期待が、高まっている。このような自動車分野への適用にはこれら電源装置のより一層の高出力化、長寿命化が重要である。さらには、回生によるエネルギーの有効利用を図るには、優れた入力特性も要求される。燃料電池自動車の補助電源へ適用するには、燃料電池が起動するまでの間、電気だけで走行できることが望ましく、またハイブリッド自動車においても、電気だけでの都市部の走行が可能ないわゆるデュアルモードの要望も近年出てきている。   For application to fuel cell vehicles, hybrid vehicles, etc., power source devices such as lithium secondary batteries or capacitors have been actively developed. In order to be applied to in-vehicle applications such as fuel cell vehicles and hybrid vehicles, it is important to increase the output, extend the life, and reduce the cost of these power supply devices. In recent years, from the viewpoint of environmental problems such as carbon dioxide reduction, there is an increasing expectation for the practical use of these power supply devices for auxiliary power sources of fuel cell vehicles and hybrid vehicles. For such application to the automobile field, it is important to further increase the output and extend the life of these power supply devices. Furthermore, excellent input characteristics are also required to effectively use energy by regeneration. In order to apply to an auxiliary power source of a fuel cell vehicle, it is desirable that the fuel cell can be driven only by electricity until the fuel cell is started. Requests have also emerged in recent years.

このような要求に対応するには、入出力だけではなくエネルギー密度のさらなる向上、すなわち電池の高容量化が不可欠である。例えばリチウム二次電池の高容量化に関する技術が、特許文献1、2に開示されている。これらの開示された技術は、リチウム二次電池の高容量化の技術であり、高出力化を図るものではない。しかしながら、自動車分野へ適用するには、より大電流で良好な負荷特性、すなわち高い入出力が電池の特性として要求される。一般的にパソコン、携帯電話などの携帯用機器に使用される電池は高容量特性が要求されるが、高出力は要求されない。すなわち、負荷特性として要求されるのは高々1/3時間率(3C)程度である。一方、自動車の分野においては1/10〜1/20の時間率(10C〜20C)、すなわち、携帯用機器に適用される電池の3〜7倍の大電流が要求され、高いエネルギー密度ともに高出力化が要求される。   In order to meet such demands, it is indispensable not only to input and output but also to further improve the energy density, that is, increase the capacity of the battery. For example, Patent Documents 1 and 2 disclose techniques related to increasing the capacity of lithium secondary batteries. These disclosed technologies are technologies for increasing the capacity of lithium secondary batteries, and do not attempt to increase output. However, in order to apply to the automobile field, good load characteristics with a larger current, that is, high input / output is required as battery characteristics. In general, a battery used for a portable device such as a personal computer or a mobile phone is required to have a high capacity characteristic, but a high output is not required. That is, what is required as a load characteristic is at most about 1/3 time rate (3C). On the other hand, in the field of automobiles, a time rate of 1/10 to 1/20 (10C to 20C), that is, a large current 3 to 7 times that of a battery applied to a portable device, is required. Output is required.

上述のようなことから、高容量かつ高出力な電池技術はハイブリッド自動車、燃料電池自動車等の分野で電池の実用化を図る上で、極めて重要な課題となる。   As described above, high-capacity and high-power battery technology is an extremely important issue in the practical application of batteries in the fields of hybrid vehicles, fuel cell vehicles, and the like.

特開平10−255766号公報Japanese Patent Laid-Open No. 10-255766 特開2000−123835号公報JP 2000-123835 A

本発明は上述のような背景に鑑みてなされたものであり、ハイブリッド自動車、燃料電池自動車の補助電源に適用可能な高出力、高エネルギー密度、かつ長寿命なリチウム二次電池を提供することを目的としたものである。   The present invention has been made in view of the background as described above, and provides a high-output, high-energy density, and long-life lithium secondary battery applicable to an auxiliary power source of a hybrid vehicle and a fuel cell vehicle. It is intended.

本発明によるリチウム二次電池は、リチウム遷移金属複合酸化物を含む合剤を集電体箔の両面に形成した正極、Liを吸蔵・放出する負極活物質を含む負極合剤を集電体箔の両面に形成した負極、およびリチウム塩を含む非水電解液により構成されたリチウム二次電池において、前記負極合剤が黒鉛、非晶質炭素材及び有機結着剤との混合物であり、前記混合物における黒鉛と非晶質炭素材の合計量に対する黒鉛の割合が20〜80重量%であることを特徴とするものである。   The lithium secondary battery according to the present invention includes a positive electrode in which a mixture containing a lithium transition metal composite oxide is formed on both sides of a current collector foil, and a negative electrode mixture containing a negative electrode active material that absorbs and releases Li. In the lithium secondary battery composed of a negative electrode formed on both sides of the battery and a non-aqueous electrolyte containing a lithium salt, the negative electrode mixture is a mixture of graphite, an amorphous carbon material, and an organic binder, The ratio of graphite to the total amount of graphite and amorphous carbon material in the mixture is 20 to 80% by weight.

本発明により、エネルギー密度が高く、かつ高出力なリチウム二次電池が提供され、ハイブリッド自動車、燃料電池自動車、電気自動車などに好適な高出力かつ高容量なリチウム二次電池が提供できるとともに、さらには電動工具など高出力、高容量が必要とされる分野等へ幅広く適用できるリチウム二次電池の提供も可能となる。   The present invention provides a lithium secondary battery with high energy density and high output, and can provide a high output and high capacity lithium secondary battery suitable for hybrid vehicles, fuel cell vehicles, electric vehicles, etc. Can also provide lithium secondary batteries that can be widely applied to fields such as electric tools that require high output and high capacity.

電池の高容量化を図るには、高密度充填が可能な材料を電極に適用し、電極の高密度化を図ることが技術のポイントとなる。非晶質炭素材に比較して、黒鉛は高密度充填が可能な材料であり、黒鉛を適用することにより、電池の高容量化が可能となる。負極に黒鉛を用いた電池の電圧は、非晶質炭素材を用いた電池に比較して、電池電圧が高く、出力特性が向上する傾向にあるが、その反面、入力特性が低下する傾向がある。従って、自動車へ適用するには、出力と入力のバランスが取れた電池が要求される。   In order to increase the capacity of a battery, it is important to apply a material capable of high-density filling to the electrode and increase the density of the electrode. Compared to an amorphous carbon material, graphite is a material that can be filled with high density, and by applying graphite, the capacity of the battery can be increased. The voltage of the battery using graphite for the negative electrode is higher than that of the battery using an amorphous carbon material, and the output characteristics tend to be improved. On the other hand, the input characteristics tend to be lowered. is there. Therefore, a battery having a balance between output and input is required for application to automobiles.

本発明者は、黒鉛と非晶質炭素の割合を好適な範囲とすることにより、入出力のバランスを取ることが可能となる。負極に黒鉛と非晶質炭素材との混合物を用い、混合物における黒鉛の割合を20〜80重量%とすることにより、高容量かつ高出力のリチウム二次電池を提供することができることを見出した。   The present inventor can balance input and output by setting the ratio of graphite and amorphous carbon within a suitable range. It has been found that a high-capacity and high-power lithium secondary battery can be provided by using a mixture of graphite and amorphous carbon material for the negative electrode and setting the proportion of graphite in the mixture to 20 to 80% by weight. .

高密度電極の適用により、電池の高容量化を図ることは可能であるが、高密度になるに従って、電極が保持できる電解液量が少なくなり、電解液と負極活物質表面とで形成される電極反応界面で起きる電極反応の阻害が心配される。このような電極反応への悪影響が生じると、入出力が低下し、自動車分野で必要とされる入出力を確保できなくなる。高負荷に伴う電極反応を維持するには、この電極反応に対応できる電極反応界面を確保するのに十分な電解液量を、電極が保持できることが重要である。このような電解液量を保持できる電極構造の確保が技術のポイントとなる。電極密度を好適な範囲とすることにより、高容量かつ高出力なリチウム二次電池を提供することができる。すなわち、黒鉛、非晶質炭素材、および結着剤からなる負極合剤密度の比ρρ/〔ρ(1−X)+ρX〕(ここで、ρ=黒鉛真密度、ρ=非晶質炭素材真密度、X=黒鉛の割合である。)を0.55〜0.70とすることにより高容量かつ高出力のリチウム二次電池を提供することができる。 It is possible to increase the capacity of the battery by applying a high-density electrode, but as the density increases, the amount of electrolyte that can be held by the electrode decreases, and the surface is formed by the electrolyte and the negative electrode active material surface. There is concern about the inhibition of the electrode reaction occurring at the electrode reaction interface. When such an adverse effect on the electrode reaction occurs, the input / output is lowered, and the input / output required in the automobile field cannot be secured. In order to maintain an electrode reaction accompanying a high load, it is important that the electrode can hold an amount of electrolyte sufficient to secure an electrode reaction interface that can handle this electrode reaction. Ensuring an electrode structure capable of holding such an amount of electrolyte is a technical point. By setting the electrode density within a suitable range, a lithium secondary battery with high capacity and high output can be provided. That is, graphite, amorphous carbon material, and the ratio of the negative electrode mixture density consisting binder ρ G ρ A / [ρ G (1-X) + ρ A X ] (where, [rho G = graphite true density, ρ A = true density of amorphous carbon material, X = ratio of graphite.) By setting 0.55 to 0.70, a high capacity and high output lithium secondary battery can be provided.

これまで述べてきたように、電極を高密度化することにより、高容量化が図れるが、電極を厚くし、より多くの活物質を充填するにことより、高容量化を図ることも可能である。しかしながら、電極が厚くなるに従って電極抵抗が増大し、入出力が低下する懸念がある。電極抵抗を増大させずに、高出力を確保できる厚さの電極が、自動車分野への電池の適用を図る上で技術上重要である。集電体箔の両面に設けた負極合剤層の両面の厚さの総和を50〜90μmとすることにより、高容量化と高出力化の両立が可能となる。すなわち、負極合剤層の厚さを50〜90μmとすることにより、高容量かつ高出力なリチウム二次電池を提供できる。   As described above, it is possible to increase the capacity by increasing the density of the electrode, but it is also possible to increase the capacity by increasing the thickness of the electrode and filling more active material. is there. However, there is a concern that the electrode resistance increases and the input / output decreases as the electrode becomes thicker. An electrode having a thickness capable of ensuring a high output without increasing the electrode resistance is technically important in order to apply the battery to the automobile field. By making the total thickness of both surfaces of the negative electrode mixture layer provided on both surfaces of the current collector foil be 50 to 90 μm, it is possible to achieve both high capacity and high output. That is, by setting the thickness of the negative electrode mixture layer to 50 to 90 μm, a high-capacity and high-power lithium secondary battery can be provided.

本発明のリチウム二次電池の正極活物質にはリチウム遷移金属複合酸化物を用いることができる。ニッケル酸リチウム、コバルト酸リチウムなどの正極活物質のNi、Coなどの一部を1種あるいはそれ以上の遷移金属で置換して用いることができる。   A lithium transition metal composite oxide can be used for the positive electrode active material of the lithium secondary battery of the present invention. A part of a positive electrode active material such as lithium nickelate or lithium cobaltate, such as Ni or Co, can be substituted with one or more transition metals.

結着剤として、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)などがある。   Examples of the binder include polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR).

電解質としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、1,2−ジエトキシエタン等より少なくとも1種以上選ばれた非水溶媒に、例えば、LiClO、LiBF、LiPF等より少なくとも1種以上選ばれたリチウム・遷移金属塩を溶解させた電解液あるいはリチウムイオンの伝導性を有する固体電解質あるいはゲル状電解質あるいは溶融塩など一般に炭素系材料などを負極活物質として用いた電池で使用される既知の電解質を用いることができる。また、電池の構成上の必要性に応じて微孔性セパレータを用いても本発明の効果はなんら損なわれない。 As the electrolyte, for example, a non-aqueous solvent selected from at least one selected from propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-diethoxyethane, For example, carbon such as an electrolytic solution in which at least one lithium / transition metal salt selected from LiClO 4 , LiBF 4 , LiPF 6 or the like is dissolved, a solid electrolyte having lithium ion conductivity, a gel electrolyte, or a molten salt is generally used. A known electrolyte used in a battery using a system material or the like as a negative electrode active material can be used. Moreover, even if a microporous separator is used according to the structural requirements of the battery, the effect of the present invention is not impaired at all.

正極合剤、負極合剤はともにアルミニウムなどの集電体箔の両面に塗布、乾燥、圧延され、所定の厚さに整形される。負極合剤の好ましい厚さは、両面合計で、50〜90μmである。黒鉛の二次粒子の平均粒径は10〜20μmが好ましい。また、非晶質炭素粉末の平均粒径は、5から15μmが好ましい。負極合剤の密度は0.89〜1.42の範囲が好ましい。負極合剤のバインダー組成は、合剤重量の3〜15重量%が好ましい。   Both the positive electrode mixture and the negative electrode mixture are coated, dried and rolled on both sides of a current collector foil such as aluminum and shaped to a predetermined thickness. The preferable thickness of the negative electrode mixture is 50 to 90 μm in total on both sides. The average particle size of the secondary particles of graphite is preferably 10 to 20 μm. The average particle size of the amorphous carbon powder is preferably 5 to 15 μm. The density of the negative electrode mixture is preferably in the range of 0.89 to 1.42. The binder composition of the negative electrode mixture is preferably 3 to 15% by weight of the mixture weight.

本発明のリチウム二次電池の用途としては、ハイブリッド自動車、燃料電池自動車、電気自動車などへの適用、さらには高出力が必要とされる電動工具などの電源としても適用も可能である。   The lithium secondary battery of the present invention can be applied to a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and the like, and further to a power source such as an electric tool that requires a high output.

以下に実施例を挙げ、本発明を説明する。なお、本発明は以下に述べる実施例に限定されるものではない。以下の実施例で用いた黒鉛の平均粒径は15μmで、非晶質炭素の平均粒径は10μmであった。
(実施例1)
正極活物質にはLiNi0.8Co0.2を用い、正極活物質、導電剤の黒鉛、結着剤のポリフッ化ビニリデンを85:10:5の重量比で混練機を用い、30分間混練し、正極合剤を得た。正極合剤を厚さ20μmのアルミニウム箔に塗布した。一方、負極活物質には非晶質炭素材と天然黒鉛との混合物を用い、結着剤にはポリフッ化ビニリデンを用いて、負極活物質:結着剤=90:10の重量比で混練した。得られた負極合剤を厚さ10μmの銅箔に塗布した。作製した正負電極は、いずれもプレス機で圧延成型した後、150℃で5時間真空乾燥した。非晶質炭素材と黒鉛との混合負極の黒鉛量、両面の合剤層厚さ、負極合剤密度、および負極合剤密度の比ρρ/〔ρ(1−X)+ρX〕(ここで、ρ=黒鉛真密度である。)に対する比を表1に示す。
The following examples illustrate the invention. In addition, this invention is not limited to the Example described below. The average particle size of graphite used in the following examples was 15 μm, and the average particle size of amorphous carbon was 10 μm.
Example 1
LiNi 0.8 Co 0.2 O 2 was used as the positive electrode active material, and the positive electrode active material, the conductive agent graphite, and the binder polyvinylidene fluoride were mixed at a weight ratio of 85: 10: 5 using a kneader. The mixture was kneaded for a minute to obtain a positive electrode mixture. The positive electrode mixture was applied to an aluminum foil having a thickness of 20 μm. On the other hand, a mixture of an amorphous carbon material and natural graphite was used as the negative electrode active material, and polyvinylidene fluoride was used as the binder, and the mixture was kneaded at a weight ratio of negative electrode active material: binder = 90: 10. . The obtained negative electrode mixture was applied to a copper foil having a thickness of 10 μm. Each of the produced positive and negative electrodes was roll-formed with a press machine and then vacuum-dried at 150 ° C. for 5 hours. A ratio of the amount of graphite of the mixed negative electrode of amorphous carbon material and graphite, the thickness of the mixture layer on both sides, the density of the negative electrode mixture, and the density of the negative electrode mixture ρ G ρ A / [ρ G (1-X) + ρ A Table 1 shows the ratio to X] (where ρ G = graphite true density).

Figure 2007335360
Figure 2007335360

乾燥後、正極板と負極板とをセパレータ3を介して捲回し、電池缶4に挿入した。負極集電リード片6はニッケルの負極集電リード部8に集めて超音波溶接し、集電リード部を缶底溶接した。一方、正極集電リード片5はアルミニウムの集電リード部7に超音波溶接した後、アルミニウムのリード部を正極端子部11を挟んで蓋9に抵抗溶接した。電解液(1MLiPF/EC:DEC=1:1)を注入後、缶4のカシメにより蓋を封口し、電池を得た。なお、缶の上端と蓋の間にはガスケット12を挿入した。このようにして製造した電池の概略図を図1に示す。 After drying, the positive electrode plate and the negative electrode plate were wound through the separator 3 and inserted into the battery can 4. The negative electrode current collecting lead piece 6 was collected on the nickel negative electrode current collecting lead portion 8 and ultrasonically welded, and the current collecting lead portion was welded to the bottom of the can. On the other hand, the positive electrode current collecting lead piece 5 was ultrasonically welded to the aluminum current collecting lead portion 7 and then the aluminum lead portion was resistance welded to the lid 9 with the positive electrode terminal portion 11 interposed therebetween. After injecting an electrolytic solution (1M LiPF 6 / EC: DEC = 1: 1), the lid was sealed with caulking of the can 4 to obtain a battery. A gasket 12 was inserted between the upper end of the can and the lid. A schematic diagram of the battery thus manufactured is shown in FIG.

充電終止電圧4.2V、放電終止電圧2.7V、充放電レート1C(定格電気容量の1時間率)で充放電し、電池容量を求めた。SOC(state of charge)50%の状態で、1C、5C、10C、20Cの電流を10秒間印加し、それぞれの電流値における10秒目の電圧を測定し、入出力性能を調べた。電池の放電終止電圧(V)と電流電圧特性の直線を放電終止電圧まで外挿したときの電流値(I)を用いて、式P=I×Vより出力を求めた。一方、入力は電池の充電終止電圧(V)と電流電圧特性の直線を充電終止電圧まで外挿したときの電流値(I)を用いて、式P=I×Vより求めた。入出力測定結果を表2に示す。 The battery capacity was determined by charging and discharging at a charge end voltage of 4.2 V, a discharge end voltage of 2.7 V, and a charge / discharge rate of 1 C (1 hour rate of the rated electric capacity). In the state of SOC (state of charge) 50%, currents of 1C, 5C, 10C, and 20C were applied for 10 seconds, the voltage at the 10th second at each current value was measured, and the input / output performance was examined. Using battery discharge end voltage (V D) and the current value when the extrapolated straight line of the current-voltage characteristic to a final discharge voltage (I D), was determined output from the equation P O = I D × V D . On the other hand, the input is obtained from the formula P I = I C × V C using the current value (I C ) obtained by extrapolating the battery end-of-charge voltage (V C ) and the current-voltage characteristic line to the end-of-charge voltage. It was. Table 2 shows the input / output measurement results.

Figure 2007335360
Figure 2007335360

黒鉛量の増加とともにエネルギー密度、出力密度のいずれも高くなる傾向があり、黒鉛量が20%以上では、エネルギー密度は80Wh/kgを超える値となり、出力密度は3000W/kg以上となった。一方、入力密度は、黒鉛量が多くなるに従って、低下する傾向にあり、黒鉛量が90%では、2000W/kgにも満たない入力密度となった。
(実施例2)
正極活物質にはLiMn1/3Ni1/3Co1/3を用い、負極活物質として、非晶質炭素材と人造黒鉛との混合物を用いた。本実施例では、黒鉛量を50%とした。実施例1と同様に電池を作製した。負極合剤密度の比は0.92g/cm、1.02g/cm、1.10g/cm、1.17g/cm、1.24g/cm、および1.34g/cmであり、負極合剤密度の比ρρ/〔ρ(1−X)+ρX〕は0.51、0.56、0.61、0.65、0.69、および0.74であった。なお、負極合剤層の厚さは、86μm、78μm、72μm、69μm、64μm、および60μmであった。電池容量試験、入出力試験を実施例1と同様に行い電池性能を求めた。負極合剤密度の比ρρ/(ρ(1−X)+ρX)とともに試験結果を表3に示す。
As the amount of graphite increased, both energy density and power density tended to increase. When the amount of graphite was 20% or more, the energy density exceeded 80 Wh / kg, and the power density became 3000 W / kg or more. On the other hand, the input density tends to decrease as the amount of graphite increases. When the amount of graphite is 90%, the input density is less than 2000 W / kg.
(Example 2)
LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used as the positive electrode active material, and a mixture of an amorphous carbon material and artificial graphite was used as the negative electrode active material. In this example, the amount of graphite was 50%. A battery was produced in the same manner as in Example 1. Negative electrode mixture ratio of density 0.92g / cm 3, 1.02g / cm 3, 1.10g / cm 3, 1.17g / cm 3, 1.24g / cm 3, and at 1.34 g / cm 3 There, the ratio of the negative electrode mixture density ρ G ρ a / [ρ G (1-X) + ρ a X ] is 0.51,0.56,0.61,0.65,0.69, and 0.74 Met. In addition, the thickness of the negative mix layer was 86 micrometers, 78 micrometers, 72 micrometers, 69 micrometers, 64 micrometers, and 60 micrometers. A battery capacity test and an input / output test were conducted in the same manner as in Example 1 to obtain battery performance. Test results along with the negative electrode mixture density ratio ρ G ρ A / (ρ G (1-X) + ρ A X) shown in Table 3.

Figure 2007335360
Figure 2007335360

電極密度が高くなるに従って、エネルギー密度が向上する傾向が見られた。負極合剤密度比のρρ/〔ρ(1−X)+ρX〕が0.51の電池2−1では78Wh/kgと80Wh/kgに満たない値となった。出力密度は、比を上げる従って高くなる傾向が見られたが、最も密度が高く、比が0.74の電池2−6では少し低下する傾向があった。 There was a tendency for the energy density to improve as the electrode density increased. The negative electrode mixture of the density ratio ρ G ρ A / [ρ G (1-X) + ρ A X ] is a value less than the battery 2-1 in 78Wh / kg and 80 Wh / kg of 0.51. The power density tended to increase as the ratio was increased, but the battery 2-6 having the highest density and a ratio of 0.74 tended to decrease slightly.

次に、定電流パルスサイクル試験を実施した。入出力(充放電)の充放電電流値は10C(1/10時間率)、入出力時間は20秒とし、休止時間は30秒とした。SOC50%でパルスサイクル試験を10万回行い、試験前後での電池内部抵抗を出力試験の電流電圧特性の直線勾配から求めた。結果を表4に示す。   Next, a constant current pulse cycle test was performed. The charge / discharge current value of input / output (charge / discharge) was 10 C (1/10 hour rate), the input / output time was 20 seconds, and the rest time was 30 seconds. The pulse cycle test was conducted 100,000 times at 50% SOC, and the battery internal resistance before and after the test was determined from the linear slope of the current-voltage characteristics of the output test. The results are shown in Table 4.

Figure 2007335360
Figure 2007335360

負極合剤密度が低く、負極合剤密度の比ρρ/(ρ (1−X) +ρX)が0.51と小さい電池2−1と、負極合剤密度が高く、比が0.74と大きい電池2−6は抵抗上昇率が10%を超える大きな抵抗上昇であった。
(実施例3)
正極活物質にはLiMn0.5Ni0.5を用い、負極活物質には実施例2と同様の黒鉛と非晶質炭素材の混合物を用いた。実施例1と同様に電極を作製し、電池を作製した。負極合剤密度は、1.17g/cmであり、負極合剤密度のρρ/(ρ(1−X)+ρX)に対する比は0.65であった。負極合剤層の厚さは、41μm、53μm、65μm、78μm、87μm、および99μmであった。実施例1と同様に容量試験、入出力試験を行い、電池性能を求めた。結果を表5に示す。
Negative electrode mixture density is low, the small battery 2-1 ratio of the negative electrode mixture density ρ G ρ A / (ρ G (1-X) + ρ A X) is 0.51, the negative electrode mixture density is high, the ratio The battery 2-6 having a large resistance of 0.74 was a large resistance increase with a resistance increase rate exceeding 10%.
(Example 3)
LiMn 0.5 Ni 0.5 O 2 was used as the positive electrode active material, and the same mixture of graphite and amorphous carbon material as in Example 2 was used as the negative electrode active material. An electrode was produced in the same manner as in Example 1 to produce a battery. The negative electrode mixture density was 1.17 g / cm 3 , and the ratio of the negative electrode mixture density to ρ G ρ A / (ρ G (1−X) + ρ A X) was 0.65. The thickness of the negative electrode mixture layer was 41 μm, 53 μm, 65 μm, 78 μm, 87 μm, and 99 μm. A capacity test and an input / output test were conducted in the same manner as in Example 1 to obtain battery performance. The results are shown in Table 5.

Figure 2007335360
Figure 2007335360

負極合剤層を厚くするに従って、エネルギー密度が向上する結果となった。しかしながら、最も合剤層の薄い電池3−1はエネルギー密度が71Wh/kgと小さい値となった。次に、定電流パルスサイクル試験を実施した。入出力(充放電)の充放電電流値は10C(1/10時間率)、入出力時間は20秒とし、休止時間は30秒とした。SOC50%でパルスサイクル試験を10万回行い、試験前後での電池内部抵抗を出力試験の電流電圧特性の直線勾配から求めた。結果を表6に示す。   As the negative electrode mixture layer was thickened, the energy density was improved. However, the battery 3-1 having the thinnest mixture layer has a small energy density of 71 Wh / kg. Next, a constant current pulse cycle test was performed. The charge / discharge current value of input / output (charge / discharge) was 10 C (1/10 hour rate), the input / output time was 20 seconds, and the rest time was 30 seconds. The pulse cycle test was conducted 100,000 times at 50% SOC, and the battery internal resistance before and after the test was determined from the linear slope of the current-voltage characteristics of the output test. The results are shown in Table 6.

Figure 2007335360
Figure 2007335360

合剤層厚さが99μmと厚い電池3−6は抵抗上昇が10を超える大きな値となり、抵抗上昇が大きかった。   In the battery 3-6 having a mixture layer thickness of 99 μm, the resistance increase was a large value exceeding 10 and the resistance increase was large.

本発明によるリチウム二次電池を示す側面断面図。1 is a side sectional view showing a lithium secondary battery according to the present invention.

符号の説明Explanation of symbols

1…正極、2…負極、3…セパレータ、4…電池缶、5…正極集電リード片、6…負極集電リード片、7…正極集電リード部、8…負極集電リード部、9…電池蓋、10…破裂弁、11…正極端子部、12…ガスケット。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Battery can, 5 ... Positive electrode current collection lead piece, 6 ... Negative electrode current collection lead piece, 7 ... Positive electrode current collection lead part, 8 ... Negative electrode current collection lead part, 9 ... Battery cover, 10 ... Rupture valve, 11 ... Positive electrode terminal, 12 ... Gasket.

Claims (3)

リチウム遷移金属複合酸化物を含む合剤を集電体箔の両面に形成した正極、Liを吸蔵・放出する負極活物質を含む負極合剤を集電体箔の両面に形成した負極、およびリチウム塩を含む非水電解液により構成されたリチウム二次電池において、前記負極合剤が黒鉛、非晶質炭素材及び結着剤との混合物であり、前記混合物における黒鉛と非晶質炭素材の合計量に対する黒鉛の割合が20〜80重量%であることを特徴とするリチウム二次電池。   A positive electrode in which a mixture containing a lithium transition metal composite oxide is formed on both sides of the current collector foil, a negative electrode in which a negative electrode mixture containing a negative electrode active material that absorbs and releases Li is formed on both sides of the current collector foil, and lithium In a lithium secondary battery composed of a non-aqueous electrolyte containing salt, the negative electrode mixture is a mixture of graphite, an amorphous carbon material and a binder, and the graphite and the amorphous carbon material in the mixture A lithium secondary battery, wherein a ratio of graphite to a total amount is 20 to 80% by weight. 請求項1に記載のリチウム二次電池において、黒鉛、非晶質炭素材、および結着剤からなる負極合剤密度の比ρρ/〔ρ(1−X)+ρX〕(ここで、ρ=黒鉛真密度、ρ=非晶質炭素材真密度、X=黒鉛の割合、0.2≦X≦0.8である。)が0.55〜0.70であることを特徴とするリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein a ratio of negative electrode mixture density composed of graphite, an amorphous carbon material, and a binder ρ G ρ A / [ρ G (1−X) + ρ A X] ( Here, ρ G = graphite true density, ρ A = amorphous carbon material true density, X = ratio of graphite, 0.2 ≦ X ≦ 0.8) is 0.55 to 0.70. A lithium secondary battery characterized by that. 請求項1に記載のリチウム二次電池において、集電体箔の両面に設けられた負極合剤層の両面の合計厚さが50〜90μmであることを特徴とするリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the total thickness of both surfaces of the negative electrode mixture layer provided on both surfaces of the current collector foil is 50 to 90 μm.
JP2006168664A 2006-06-19 2006-06-19 Lithium secondary cell Pending JP2007335360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168664A JP2007335360A (en) 2006-06-19 2006-06-19 Lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168664A JP2007335360A (en) 2006-06-19 2006-06-19 Lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2007335360A true JP2007335360A (en) 2007-12-27

Family

ID=38934604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168664A Pending JP2007335360A (en) 2006-06-19 2006-06-19 Lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2007335360A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2011054371A (en) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
KR101336082B1 (en) * 2011-05-23 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Power Property with Improved High Power Density
KR101336083B1 (en) * 2011-05-23 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Power Property with Improved High Energy Density
EP2693537A2 (en) * 2011-05-23 2014-02-05 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
EP2696409A2 (en) * 2011-05-23 2014-02-12 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
EP3035420A1 (en) * 2014-12-18 2016-06-22 Automotive Energy Supply Corporation Negative electrode material for lithium ion battery
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228896A (en) * 1997-02-13 1998-08-25 Nec Corp Non-aqueous electrolyte secondary battery
JPH10255766A (en) * 1997-03-06 1998-09-25 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000040510A (en) * 1998-07-24 2000-02-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2001068110A (en) * 1999-08-27 2001-03-16 Hitachi Ltd Lithium secondary battery and electric device mounting it
WO2001022519A1 (en) * 1999-09-20 2001-03-29 Sony Corporation Secondary cell
JP2002280073A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
JP2003142075A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228896A (en) * 1997-02-13 1998-08-25 Nec Corp Non-aqueous electrolyte secondary battery
JPH10255766A (en) * 1997-03-06 1998-09-25 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000040510A (en) * 1998-07-24 2000-02-08 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2001068110A (en) * 1999-08-27 2001-03-16 Hitachi Ltd Lithium secondary battery and electric device mounting it
WO2001022519A1 (en) * 1999-09-20 2001-03-29 Sony Corporation Secondary cell
JP2002280073A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
JP2003142075A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2011054371A (en) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
EP2693537A4 (en) * 2011-05-23 2014-10-22 Lg Chemical Ltd High energy density lithium secondary battery having enhanced energy density characteristic
EP2696407A4 (en) * 2011-05-23 2015-03-04 Lg Chemical Ltd High output lithium secondary battery having enhanced output density characteristic
EP2693537A2 (en) * 2011-05-23 2014-02-05 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
CN103563140A (en) * 2011-05-23 2014-02-05 株式会社Lg化学 High output lithium secondary battery having enhanced output density characteristic
EP2696408A2 (en) * 2011-05-23 2014-02-12 LG Chem, Ltd. High output lithium secondary battery having enhanced output density characteristic
EP2696409A2 (en) * 2011-05-23 2014-02-12 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
EP2696409A4 (en) * 2011-05-23 2014-10-22 Lg Chemical Ltd High energy density lithium secondary battery having enhanced energy density characteristic
KR101336082B1 (en) * 2011-05-23 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Power Property with Improved High Power Density
EP2696408A4 (en) * 2011-05-23 2014-11-05 Lg Chemical Ltd High output lithium secondary battery having enhanced output density characteristic
KR101336083B1 (en) * 2011-05-23 2013-12-03 주식회사 엘지화학 Lithium Secondary Battery of High Power Property with Improved High Energy Density
US9184447B2 (en) 2011-05-23 2015-11-10 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
CN103563140B (en) * 2011-05-23 2015-11-25 株式会社Lg化学 The height with the power density properties of enhancing exports lithium secondary battery
US9203081B2 (en) 2011-05-23 2015-12-01 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9263737B2 (en) 2011-05-23 2016-02-16 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high power density
US9985278B2 (en) 2011-05-23 2018-05-29 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9601756B2 (en) 2011-05-23 2017-03-21 Lg Chem, Ltd. Lithium secondary battery of high energy density with improved energy property
US9385372B2 (en) 2011-05-23 2016-07-05 Lg Chem, Ltd. Lithium secondary battery of high power property with improved high energy density
US9525167B2 (en) 2011-07-13 2016-12-20 Lg Chem, Ltd. Lithium secondary battery of high energy with improved energy property
JP2016119153A (en) * 2014-12-18 2016-06-30 オートモーティブエナジーサプライ株式会社 Negative electrode material for lithium ion battery
EP3035420A1 (en) * 2014-12-18 2016-06-22 Automotive Energy Supply Corporation Negative electrode material for lithium ion battery

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2007335360A (en) Lithium secondary cell
JP5049820B2 (en) Lithium ion secondary battery
JP5057156B2 (en) Lithium ion secondary battery charging method and charging system
WO2016080128A1 (en) Lithium ion cell
JP2010129332A (en) Nonaqueous electrolyte secondary battery
US20180277831A1 (en) Nonaqueous electrolyte secondary battery and production method thereof
JP4714229B2 (en) Lithium secondary battery
JP2007317583A (en) Lithium secondary battery
JP5097415B2 (en) Lithium secondary battery
JP2009259607A (en) Battery pack
CN101110477B (en) Electro-chemistry energy storing and converting device
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2007165074A (en) Lithium secondary battery, electric vehicle using it, and power tool
JP2006216305A (en) Secondary battery
JP2012138319A (en) Lithium ion secondary battery
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP2019040722A (en) Lithium ion secondary battery
JP2005327489A (en) Positive electrode for power storage element
JP2003297433A (en) Electrochemical element
JP2007018834A (en) Electrochemical device
WO2015045400A1 (en) Flat non-aqueous electrolyte secondary cell and group of cells using same
JP2005228679A (en) Manufacturing method of cathode for nonaqueous electrolyte secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703