JP2003036890A - Nonaqueous electrolytic solution secondary battery and electric vehicle - Google Patents

Nonaqueous electrolytic solution secondary battery and electric vehicle

Info

Publication number
JP2003036890A
JP2003036890A JP2001222543A JP2001222543A JP2003036890A JP 2003036890 A JP2003036890 A JP 2003036890A JP 2001222543 A JP2001222543 A JP 2001222543A JP 2001222543 A JP2001222543 A JP 2001222543A JP 2003036890 A JP2003036890 A JP 2003036890A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001222543A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001222543A priority Critical patent/JP2003036890A/en
Publication of JP2003036890A publication Critical patent/JP2003036890A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution secondary battery, of which the decrease of capacity and output resulting from charge/discharge cycles can be suppressed to make the life of the battery long. SOLUTION: A cylindrical lithium ion battery is manufactured, using manganese acid lithium or cobalt acid lithium for a positive electrode and amorphous carbon powder or graphite powder for a negative electrode. In the manufactured battery, the ratio of an internal resistance for 85% of DOD(depth of discharge) is made lower than 150% to that for 0% of DOC. In this manner, the differences between respective internal resistances can be made small in the whole range of charge and discharge for practical applications, so that the discharge efficiency of the battery can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に、正極活物質にリチウム遷移金属複酸化物
を用いた正極と負極活物質に炭素材を用いた負極とを有
する電極群を、非水電解液に浸潤させて電池容器内に収
容した非水電解液二次電池及び電気自動車に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a positive electrode using a lithium transition metal complex oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material. The present invention relates to a non-aqueous electrolyte secondary battery in which a group of electrodes is infiltrated with a non-aqueous electrolyte and accommodated in a battery container, and an electric vehicle.

【0002】[0002]

【従来の技術】非水電解液二次電池を代表するリチウム
イオン二次電池は、高エネルギー密度であるメリットを
活かして、主にVTRカメラやノートパソコン、携帯電
話等のポータブル機器の電源に使用されている。この電
池の内部構造は、通常以下に示されるような捲回式とさ
れている。電極は正極、負極共に活物質が金属箔に塗着
された帯状であり、セパレータを挟んで正極、負極が直
接接触しないように断面が渦巻状に捲回され、捲回群を
形成している。この捲回群が電池容器となる円筒状の電
池缶に収納され、電解液注液後、封口されている。
2. Description of the Related Art Lithium ion secondary batteries, which are representative of non-aqueous electrolyte secondary batteries, are mainly used for powering portable devices such as VTR cameras, laptop computers, and mobile phones by taking advantage of their high energy density. Has been done. The internal structure of this battery is usually of the wound type as shown below. Both the positive electrode and the negative electrode have a strip shape in which the active material is applied to the metal foil, and the cross section is spirally wound to form a winding group so that the positive electrode and the negative electrode do not come into direct contact with each other with the separator interposed therebetween. . This winding group is housed in a cylindrical battery can that serves as a battery container, and after the electrolytic solution is injected, it is sealed.

【0003】一般的な円筒形リチウムイオン二次電池
は、寸法が直径18mm、高さ65mmの18650型
と呼ばれ、小形民生用リチウムイオン電池として広く普
及している。18650型リチウムイオン二次電池の正
極活物質には、高容量、長寿命を特徴とするコバルト酸
リチウムが主として用いられており、電池容量は、おお
むね1.3Ah〜1.8Ah、出力はおよそ10W程度
である。
A general cylindrical lithium ion secondary battery is called 18650 type having a diameter of 18 mm and a height of 65 mm, and is widely used as a small-sized consumer lithium ion battery. Lithium cobalt oxide, which is characterized by high capacity and long life, is mainly used for the positive electrode active material of 18650 type lithium ion secondary battery, the battery capacity is about 1.3 Ah to 1.8 Ah, and the output is about 10 W. It is a degree.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
にした電気自動車と、内燃機関エンジンと電池との両方
を動力源とするハイブリッド(電気)自動車の開発が加
速され、一部実用化の段階にきている。
On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle without exhaust gas, which uses only a battery as a power source, and a hybrid which uses both an internal combustion engine and a battery as power sources ( The development of electric vehicles has accelerated, and some of them are in the stage of practical application.

【0005】電気自動車の電源となる電池には当然高出
力、高エネルギーが得られる特性が要求され、この要求
にマッチした電池としてリチウムイオン電池が注目され
ている。電気自動車の普及のためには、電池の低価格化
が必須であり、そのためには、低コストの電池材料が求
められ、例えば、正極活物質であれば、資源的に豊富な
マンガンの酸化物が特に注目され、電池の高性能化を狙
った改善がなされてきた。また、電気自動車用電池に
は、高容量だけではなく、加速性能などを左右する高出
力化、つまり電池の内部抵抗の低減が求められる。更に
は、電気自動車の長期の使用期間に対応すべく電池の長
寿命化も求められる。ここでいう長寿命化は、電池容量
のみならず、出力の低下を抑制し、電気自動車を走行さ
せるに必要な電気エネルギーの供給能力を長期間に亘り
満足することを意味する。
Naturally, a battery serving as a power source of an electric vehicle is required to have a characteristic that a high output and a high energy can be obtained, and a lithium ion battery attracts attention as a battery which meets the requirement. In order to popularize electric vehicles, it is essential to reduce the cost of batteries, and low-cost battery materials are required for that purpose. Has received particular attention, and improvements aimed at improving the performance of batteries have been made. In addition, not only high capacity but also high output that influences acceleration performance, that is, reduction of internal resistance of the battery is required for the battery for electric vehicles. Further, it is required to extend the life of the battery in order to cope with the long use period of the electric vehicle. The extension of the life as used herein means that not only the battery capacity but also the output decrease is suppressed and the electric energy supply capacity necessary for running the electric vehicle is satisfied for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン電池の場合、繰り返し充電することにより析出
したリチウムがその都度非水電解液と反応し、電極表面
に不可逆的に皮膜を形成するため、電池の内部抵抗が高
くなり放電効率が低下し、出力及び容量が低下する。ま
た、充放電を繰り返すことで出力、容量が低下するの
で、寿命が短くなり、このような電池を電気自動車用の
動力源に用いることは難しかった。
However, in the case of a lithium-ion battery, the lithium deposited by repeated charging reacts with the non-aqueous electrolyte solution each time and forms an irreversible film on the surface of the electrode. The internal resistance increases, the discharge efficiency decreases, and the output and capacity decrease. Moreover, since the output and the capacity are reduced by repeating charging and discharging, the life is shortened, and it is difficult to use such a battery as a power source for an electric vehicle.

【0007】本発明は、上記事案に鑑み、充放電サイク
ルに伴う容量、出力の低下を抑制することができ、長寿
命の非水電解液二次電池及び該非水電解液二次電池を動
力源に用いた電気自動車を提供することを課題とする。
In view of the above problems, the present invention can suppress a decrease in capacity and output due to charge / discharge cycles and has a long life, and a non-aqueous electrolyte secondary battery as a power source. It is an object to provide an electric vehicle used in the above.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の態様は、正極活物質にリチウム遷移
金属複酸化物を用いた正極と負極活物質に炭素材を用い
た負極とを有する電極群を、非水電解液に浸潤させて電
池容器内に収容した非水電解液二次電池において、放電
深度0%時の内部抵抗に対する放電深度85%時の内部
抵抗の割合を150%以下としたものである。
In order to solve the above problems, the first aspect of the present invention uses a carbon material as a positive electrode and a negative electrode active material in which a lithium transition metal composite oxide is used as the positive electrode active material. In a non-aqueous electrolyte secondary battery in which an electrode group having a negative electrode is soaked in a non-aqueous electrolyte and housed in a battery container, the ratio of the internal resistance at a discharge depth of 85% to the internal resistance at a discharge depth of 0%. Is 150% or less.

【0009】本態様では、リチウム遷移金属複酸化物を
正極活物質に用い、炭素材を負極活物質に用いて、高容
量、高出力の非水電解液二次電池を確保する。電池の放
電状態を表す放電深度(Depth Of Discharge、以下、D
ODと略す。)0%時(満充電時)の内部抵抗に対する
DOD85%時の内部抵抗の割合を150%以下とする
ことで、充放電の実用上の全範囲で内部抵抗の差を小さ
くすることができるので、放電効率を向上させることが
できる。従って、出力及び容量の低下を抑制することが
でき、長寿命の電池とすることができる。
In this embodiment, the lithium-transition metal composite oxide is used as the positive electrode active material and the carbon material is used as the negative electrode active material to secure a high capacity, high output non-aqueous electrolyte secondary battery. Depth Of Discharge (hereinafter D)
Abbreviated as OD. ) By setting the ratio of the internal resistance at the time of DOD 85% to the internal resistance at the time of 0% (at the time of full charge) to 150% or less, the difference in the internal resistance can be reduced in the entire practical range of charging / discharging. The discharge efficiency can be improved. Therefore, a decrease in output and capacity can be suppressed, and a long-life battery can be obtained.

【0010】この場合において、リチウム遷移金属複酸
化物をリチウムマンガン複酸化物とすることが好まし
く、炭素材を黒鉛質炭素とすることが更に好ましい。こ
のとき、DOD0%時の内部抵抗に対するDOD85%
時の内部抵抗の割合を128%以上とすることが好まし
い。
In this case, the lithium transition metal composite oxide is preferably lithium manganese composite oxide, and the carbon material is more preferably graphitic carbon. At this time, DOD 85% relative to the internal resistance when DOD 0%
The ratio of the internal resistance at that time is preferably 128% or more.

【0011】本発明の第2の態様は、上記した第1の態
様の非水電解液二次電池を動力源に用いた電気自動車で
ある。本態様によれば、出力及び容量の低下が抑制され
た非水電解液二次電池を動力源に用いるので、充電、走
行(放電)を繰り返しても、加速性能、連続走行距離の
低下が少ない電気自動車を実現することができる。
A second aspect of the present invention is an electric vehicle using the non-aqueous electrolyte secondary battery of the first aspect described above as a power source. According to this aspect, since the non-aqueous electrolyte secondary battery in which the decrease in the output and the capacity are suppressed is used as the power source, the acceleration performance and the continuous travel distance are less likely to decrease even if charging and running (discharging) are repeated. Electric vehicles can be realized.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、本発明を
ゴルフカート(電気自動車)に適用した実施の形態につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments in which the present invention is applied to a golf cart (electric vehicle) will be described below with reference to the drawings.

【0013】図1に示すように、本実施形態のゴルフカ
ート30は、基体となるシャーシ31を備えている。シ
ャーシ31の略中央部には、後述する円筒形リチウムイ
オン二次電池20を複数個直列に接続して収容した電池
箱36がシャーシ31に固定されている。電池箱36の
上にはクッション35が配置されており、電池箱36と
クッション35とで前部座席が構成されている。
As shown in FIG. 1, the golf cart 30 of the present embodiment has a chassis 31 as a base. A battery box 36 accommodating a plurality of cylindrical lithium ion secondary batteries 20 to be described later connected in series is fixed to the chassis 31 at a substantially central portion of the chassis 31. A cushion 35 is arranged on the battery box 36, and the battery box 36 and the cushion 35 form a front seat.

【0014】シャーシ31の前方には、円筒形リチウム
イオン二次電池20を動力源とするモータやモータ軸の
回転駆動力を車輪へ伝達する動力伝達機構がシャーシ3
1に固定されており、動力伝達機構がタイヤを回転させ
る構造とされている。前部座席に着席したドライバの足
元の位置にはゴルフカート30の前進速度を調節する加
速用ペダル37が配置されている。加速用ペダル37に
は踏み込み量に連動する可変抵抗器が接続されており、
ゴルフカート30はドライバが加速用ペダル37を踏み
込むことにより踏み込み量に応じて前進する構造とされ
ている。
In front of the chassis 31, there is a power transmission mechanism for transmitting the rotational driving force of a motor or a motor shaft using the cylindrical lithium ion secondary battery 20 as a power source to the wheels of the chassis 3.
It is fixed to No. 1 and the power transmission mechanism is structured to rotate the tire. An accelerator pedal 37 for adjusting the forward speed of the golf cart 30 is arranged at the position of the foot of the driver seated in the front seat. The acceleration pedal 37 is connected to a variable resistor that is linked to the amount of depression,
The golf cart 30 has a structure in which the driver depresses the acceleration pedal 37 to move forward according to the amount of depression.

【0015】電池箱36に収容された円筒形リチウムイ
オン電池20は以下のように作製したものである。
The cylindrical lithium ion battery 20 housed in the battery box 36 is manufactured as follows.

【0016】(正極板の作製)正極活物質としてのマン
ガン酸リチウム(LiMn)粉末又は比表面積
0.55m/gのコバルト酸リチウム(LiCo
)(日本化学工業(株)製、商品名セルシード)
と、導電材として黒鉛粉末(日本黒鉛工業(株)製、商
品名J−SP)及びアセチレンブラック(電気化学工業
(株)製、商品名デンカブラック)(以下、ABと略称
する。)と、バインダ(結着剤)としてポリフッ化ビニ
リデン(PVDF)と、を所定混合比で混合し、これに
分散溶媒のN−メチル−2−ピロリドン(NMP)を添
加、混練したスラリを、厚さ20μmのアルミニウム箔
(正極集電体)の両面に塗布量280g/mで塗布し
た。このとき、正極板長寸方向の一方の側縁に幅50m
mの未塗布部を残した。その後乾燥、プレス、裁断し
て、幅139mm、所定長さ、活物質合剤塗布部所定厚
さの正極板を得た。正極活物質合剤層のかさ密度は2.
65g/cmとした。上記未塗布部に切り欠きを入
れ、切り欠き残部を正極リード片とした。隣り合う正極
リード片を50mm間隔とし、正極リード片の幅を8m
mとした。
(Production of Positive Electrode Plate) Lithium manganate (LiMn 2 O 4 ) powder as a positive electrode active material or lithium cobalt oxide (LiCo) having a specific surface area of 0.55 m 2 / g.
O 2 ) (Nippon Chemical Industry Co., Ltd., trade name Cell Seed)
And graphite powder (produced by Nippon Graphite Industry Co., Ltd., trade name J-SP) and acetylene black (produced by Denki Kagaku Kogyo Co., Ltd., trade name Denka Black) as conductive materials (hereinafter abbreviated as AB). Polyvinylidene fluoride (PVDF) as a binder (binder) is mixed at a predetermined mixing ratio, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent is added thereto, and the kneaded slurry is mixed with a slurry having a thickness of 20 μm. A coating amount of 280 g / m 2 was applied to both surfaces of the aluminum foil (positive electrode current collector). At this time, the width of the positive electrode plate is 50 m at one side edge in the longitudinal direction.
The uncoated part of m was left. Then, it was dried, pressed and cut to obtain a positive electrode plate having a width of 139 mm, a predetermined length and a predetermined thickness of the active material mixture application portion. The bulk density of the positive electrode active material mixture layer is 2.
It was set to 65 g / cm 3 . A notch was made in the uncoated portion, and the remaining notch was used as a positive electrode lead piece. Adjacent positive electrode lead pieces are 50 mm apart, and the width of the positive electrode lead pieces is 8 m.
m.

【0017】(負極板の作製)負極活物質としての非晶
質炭素粉末(呉羽化学工業(株)製、商品名カーボトロ
ン)又はメソフェーズ系球状黒鉛粉末(川崎製鉄(株)
製、商品名KMFC)と、導電材として気相成長炭素繊
維(昭和電工(株)製、商品名VGCF)(以下、CF
と略称する。)又はABに、結着剤としてPVDFを種
々組合わせて所定配合比で混合し、これに分散溶媒のN
MPを添加・混練したスラリを厚さ10μmの圧延銅箔
(負極集電体)の両面に所定の塗布量で塗布した。この
とき、負極板長寸方向の一方の側縁に幅50mmの未塗
布部を残した。その後乾燥、プレス、裁断して、幅14
5mm、所定長さ、活物質塗布部所定厚さの負極板を得
た。負極活物質合剤層の空隙率が約35%となるように
負極板を圧縮した。上記未塗布部に正極板と同様に切り
欠きを入れ、切り欠き残部を負極リード片とした。隣り
合う負極リード片を50mm間隔とし、負極リード片の
幅を8mmとした。
(Production of Negative Electrode Plate) Amorphous carbon powder (produced by Kureha Chemical Industry Co., Ltd., Carbotron) or mesophase spheroidal graphite powder (produced by Kawasaki Steel Co., Ltd.) as an anode active material.
Manufactured by trade name KMFC) and vapor-grown carbon fiber as a conductive material (Showa Denko KK, trade name VGCF) (hereinafter CF
Is abbreviated. ) Or AB, various combinations of PVDF as a binder are mixed at a predetermined mixing ratio, and N of the dispersion solvent is added to the mixture.
The slurry in which MP was added and kneaded was applied to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm in a predetermined application amount. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the lengthwise direction of the negative electrode plate. Then dry, press and cut to a width of 14
A negative electrode plate having a thickness of 5 mm and a predetermined length and a predetermined thickness of the active material coating portion was obtained. The negative electrode plate was compressed so that the porosity of the negative electrode active material mixture layer was about 35%. A notch was made in the uncoated portion similarly to the positive electrode plate, and the remaining notch was used as a negative electrode lead piece. Adjacent negative electrode lead pieces were spaced 50 mm apart, and the width of the negative electrode lead pieces was 8 mm.

【0018】(電池の作製)図2に示すように、上記作
製した正極板と負極板とを、これら両極板が直接接触し
ないように幅151mm、厚さ40μmのポリエチレン
製セパレータと共に捲回して捲回群(電極群)6を得
た。捲回の中心には、ポリプロピレン製の中空円筒状の
軸芯1を用いた。このとき、正極リード片2と負極リー
ド片3とが、それぞれ捲回群6の互いに反対側の両端面
に位置するようにした。また、正極板、負極板、セパレ
ータの長さを調整し、捲回群6の直径を64±0.3m
mとした。
(Production of Battery) As shown in FIG. 2, the positive electrode plate and the negative electrode plate produced as described above are wound together with a polyethylene separator having a width of 151 mm and a thickness of 40 μm so as not to come into direct contact with each other. A rolling group (electrode group) 6 was obtained. A hollow cylindrical shaft core 1 made of polypropylene was used as the center of winding. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were positioned on opposite end surfaces of the winding group 6, respectively. In addition, the lengths of the positive electrode plate, the negative electrode plate, and the separator are adjusted so that the diameter of the winding group 6 is 64 ± 0.3 m.
m.

【0019】正極リード片2を変形させ、その全てを、
捲回群6の軸芯1のほぼ延長線上にある正極集電リング
4の周囲から一体に張り出している鍔部周面付近に集
合、接触させた後、正極リード片2と鍔部周面とを超音
波溶接して正極リード片2を鍔部周面に接続した。一
方、負極集電リング5と負極リード片3との接続操作
も、正極集電リング4と正極リード片2との接続操作と
同様に実施した。
The positive electrode lead piece 2 is deformed, and all of them are
After gathering and contacting with the periphery of the flange portion that integrally projects from the periphery of the positive electrode current collecting ring 4 that is substantially on the extension of the axis 1 of the winding group 6, the positive electrode lead piece 2 and the peripheral surface of the collar portion are contacted. Was ultrasonically welded to connect the positive electrode lead piece 2 to the peripheral surface of the collar portion. On the other hand, the operation of connecting the negative electrode current collecting ring 5 and the negative electrode lead piece 3 was performed in the same manner as the operation of connecting the positive electrode current collecting ring 4 and the positive electrode lead piece 2.

【0020】その後、正極集電リング4の鍔部周面全周
に絶縁被覆を施した。この絶縁被覆には、基材がポリイ
ミドで、その片面にヘキサメタアクリレートからなる粘
着剤を塗布した粘着テープを用いた。この粘着テープを
鍔部周面から捲回群6外周面に亘って一重以上巻いて絶
縁被覆とし、捲回群6をニッケルメッキが施されたスチ
ール製の電池容器7内に挿入した。電池容器7の外径は
67mm、内径は66mmである。
After that, an insulating coating was applied to the entire circumference of the flange portion of the positive electrode current collecting ring 4. For this insulating coating, an adhesive tape was used in which the base material was polyimide, and one surface of which was coated with an adhesive consisting of hexamethacrylate. The adhesive tape was wound over the outer peripheral surface of the winding group 6 from the flange peripheral surface to form an insulating coating, and the winding group 6 was inserted into a nickel-plated steel battery container 7. The outer diameter of the battery container 7 is 67 mm and the inner diameter is 66 mm.

【0021】負極集電リング5には予め電気的導通のた
めの負極リード板8が溶接されており、電池容器7に捲
回群6を挿入後、電池容器7の底部と負極リード板8と
を溶接した。
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 are joined together. Welded.

【0022】一方、正極集電リング4には、予め複数枚
のアルミニウム製のリボンを重ね合わせて構成した正極
リード9を溶接しておき、正極リード9の他端を、電池
容器7を封口するための電池蓋の下面に溶接した。電池
蓋には、円筒形リチウムイオン電池20の内圧上昇に応
じて開裂する内圧開放機構として開裂弁11が設けられ
ている。開裂弁11の開裂圧は、約9×10Paに設
定した。電池蓋は、蓋ケース12と、蓋キャップ13
と、気密を保つ弁押え14と、開裂弁11とで構成され
ており、これらが積層されて蓋ケース12の周縁をかし
めることによって組立てられている。
On the other hand, the positive electrode current collector ring 4 is welded with a positive electrode lead 9 which is constructed by stacking a plurality of aluminum ribbons in advance, and the other end of the positive electrode lead 9 is sealed in the battery container 7. Welded to the underside of the battery lid for. The battery lid is provided with a cleaving valve 11 as an internal pressure releasing mechanism that cleaves in response to an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa. The battery lid includes a lid case 12 and a lid cap 13.
It is composed of a valve retainer 14 for keeping airtightness, and a cleaving valve 11, which are stacked and assembled by caulking the periphery of the lid case 12.

【0023】非水電解液を所定量電池容器7内に注入
し、その後、正極リード9を折りたたむようにして電池
蓋で電池容器7に蓋をし、PFA樹脂製ガスケット10
を介してかしめて密封することにより円筒形リチウムイ
オン電池20を完成させた。
A predetermined amount of non-aqueous electrolytic solution is injected into the battery container 7, and then the battery container 7 is covered with the battery cover so that the positive electrode lead 9 is folded, and the PFA resin gasket 10 is inserted.
The cylindrical lithium ion battery 20 was completed by caulking and sealing via.

【0024】なお、非水電解液には、エチレンカーボネ
ートとジメチルカーボネートとジエチルカーボネートの
体積比1:1:1の混合溶液中へ6フッ化リン酸リチウ
ム(LiPF)を1モル/リットル溶解したものを用
いた。また、円筒形リチウムイオン電池20には、電池
温度の上昇に応じて電気的に作動する、例えば、PTC
(Positive Temperature Coefficient)素子や、電池内
圧の上昇に応じて正極あるいは負極の電気的リードが切
断される電流遮断機構は設けられていない。
In the non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1. I used one. In addition, the cylindrical lithium-ion battery 20 is electrically operated in accordance with an increase in battery temperature, such as a PTC.
There is no (Positive Temperature Coefficient) element or a current interrupting mechanism that disconnects the electrical lead of the positive electrode or the negative electrode in response to an increase in the internal pressure of the battery.

【0025】円筒形リチウムイオン電池20は、DOD
0%時の内部抵抗に対するDOD85%時の内部抵抗の
割合を150%以下とした。内部抵抗の割合は次のよう
にして求め、割合が150%以下であることを確認し
た。電池を4.2V定電圧、制限電流30Aの条件で
4.5時間充電した後、5A、15A、30A、各放電
電流で放電したときの10秒目の電圧を読み取り、横軸
電流値に対して縦軸にプロットした。3点を結ぶ近似直
線の傾きからDOD0%時の内部抵抗を求め、また、D
OD85%に調整したときの内部抵抗を同様にして求め
て、DOD0%時の内部抵抗に対するDOD85%時の
内部抵抗の割合を百分率で算出した。なお、測定は環境
温度25±1°Cの雰囲気で行った。
The cylindrical lithium ion battery 20 is a DOD.
The ratio of the internal resistance at DOD 85% to the internal resistance at 0% was set to 150% or less. The ratio of internal resistance was determined as follows, and it was confirmed that the ratio was 150% or less. After the battery was charged for 4.5 hours under the conditions of constant voltage of 4.2V and limiting current of 30A, the voltage at 10 seconds after discharging at 5A, 15A, 30A and each discharge current was read, and the horizontal axis current value was compared. Is plotted on the vertical axis. The internal resistance when DOD is 0% is calculated from the slope of the approximate straight line connecting the three points.
The internal resistance when adjusted to OD 85% was similarly obtained, and the ratio of the internal resistance at DOD 85% to the internal resistance at DOD 0% was calculated as a percentage. The measurement was performed in an atmosphere with an ambient temperature of 25 ± 1 ° C.

【0026】[0026]

【実施例】次に、本実施形態に従って作製した円筒形リ
チウムイオン電池20及びゴルフカート30について説
明する。以下、円筒形リチウムイオン電池20について
は実施例1〜実施例4に、ゴルフカート30については
実施例5〜実施例8に詳述する。なお、比較のために作
製した比較例の電池及びゴルフカートについても併記す
る。
EXAMPLES Next, the cylindrical lithium-ion battery 20 and the golf cart 30 manufactured according to this embodiment will be described. Hereinafter, the cylindrical lithium-ion battery 20 will be described in detail in Examples 1 to 4, and the golf cart 30 will be described in detail in Examples 5 to 8. The battery and golf cart of the comparative example prepared for comparison are also shown.

【0027】(実施例1及び実施例2)下表1に示すよ
うに、実施例1及び実施例2では、正極板に、コバルト
酸リチウムと、黒鉛及びABと、PVDFとを質量比で
85:8:2:5となるように混合して用いた。負極板
は、実施例1では、非晶質炭素粉末と、CFと、PVD
Fとを質量比で88:4:8となるように混合して用
い、負極活物質塗布量を102g/m、負極合剤層の
かさ密度を0.98g/cmとし、実施例2では、負
極活物質にメソフェーズ系球状黒鉛粉末を用い、負極活
物質塗布量を146g/m、負極合剤層のかさ密度を
1.40g/cmとする以外は実施例1と同様にし
た。DOD0%時の内部抵抗に対するDOD85%時の
内部抵抗の割合(以下、内部抵抗比という。表1におい
ても同じ。)は、実施例1では150%、実施例2では
133%であった。なお、表1において、Coはコバル
ト酸リチウムを、Mnはマンガン酸リチウムを、NiC
oは結晶中のニッケルの一部をコバルトで置換したニッ
ケル酸リチウムを、非晶質は非晶質炭素を、黒鉛はメソ
フェーズ系球状黒鉛を、それぞれ示す。
(Example 1 and Example 2) As shown in Table 1 below, in Example 1 and Example 2, lithium cobalt oxide, graphite and AB, and PVDF were mixed in a mass ratio of 85 in the positive electrode plate. : 8: 2: 5 were mixed and used. In Example 1, the negative electrode plate was composed of amorphous carbon powder, CF, and PVD.
F and F were mixed so that the mass ratio was 88: 4: 8, the negative electrode active material coating amount was 102 g / m 2 , and the negative electrode material mixture layer bulk density was 0.98 g / cm 3. Then, the same procedure was performed as in Example 1 except that mesophase spheroidal graphite powder was used as the negative electrode active material, the negative electrode active material coating amount was 146 g / m 2 , and the bulk density of the negative electrode mixture layer was 1.40 g / cm 3 . . The ratio of the internal resistance when the DOD was 85% to the internal resistance when the DOD was 0% (hereinafter referred to as the internal resistance ratio; the same in Table 1) was 150% in Example 1 and 133% in Example 2. In Table 1, Co is lithium cobalt oxide, Mn is lithium manganate, and NiC.
o indicates lithium nickel oxide in which a part of nickel in the crystal is replaced with cobalt, amorphous indicates amorphous carbon, and graphite indicates mesophase spheroidal graphite.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例3)表1に示すように、実施例3
では、正極活物質にマンガン酸リチウムを用い、負極活
物質塗布量を69g/mとした以外は実施例1と同様
にした。内部抵抗比は144%であった。
Example 3 As shown in Table 1, Example 3
Then, the same procedure was performed as in Example 1 except that lithium manganate was used as the positive electrode active material and the amount of the negative electrode active material applied was 69 g / m 2 . The internal resistance ratio was 144%.

【0030】(実施例4)表1に示すように、実施例4
では、正極活物質にマンガン酸リチウムを用い、負極活
物質塗布量を108g/mとした以外は実施例2と同
様にした。内部抵抗比は128%であった。
Example 4 As shown in Table 1, Example 4
Then, the same procedure was performed as in Example 2 except that lithium manganate was used as the positive electrode active material and the amount of the negative electrode active material applied was 108 g / m 2 . The internal resistance ratio was 128%.

【0031】(実施例5〜実施例8)実施例5〜実施例
8では、実施例1〜実施例4で作製した円筒型リチウム
イオン電池20をそれぞれ72本直列に接続してゴルフ
カート30に搭載した。
(Embodiment 5 to Embodiment 8) In Embodiment 5 to Embodiment 8, 72 cylindrical lithium ion batteries 20 produced in Embodiment 1 to Embodiment 4 are connected in series to the golf cart 30. equipped.

【0032】(比較例1)表1に示すように、比較例1
では、正極活物質に結晶中ニッケルのうち20%がコバ
ルトと置換されたニッケル酸リチウム(LiNiCoO
)を用い、負極活物質塗布量を154g/mとした
以外は実施例1と同様にした。内部抵抗比は175%で
あった。
Comparative Example 1 As shown in Table 1, Comparative Example 1
Then, in the positive electrode active material, lithium nickel oxide (LiNiCoO) in which 20% of nickel in the crystal was replaced with cobalt was used.
2 ) was used and the coating amount of the negative electrode active material was set to 154 g / m 2 and the same as in Example 1. The internal resistance ratio was 175%.

【0033】(比較例2)表1に示すように、比較例2
では、正極活物質に比較例1と同じニッケル酸リチウム
を用い、負極活物質塗布量を225g/mとした以外
は実施例2と同様にした。内部抵抗比は168%であっ
た。
Comparative Example 2 As shown in Table 1, Comparative Example 2
Then, the same procedure was performed as in Example 2 except that the same lithium nickel oxide as in Comparative Example 1 was used as the positive electrode active material and the amount of the negative electrode active material applied was 225 g / m 2 . The internal resistance ratio was 168%.

【0034】(比較例3)比較例3では、比較例1で作
製した円筒型リチウムイオン電池20を72本直列に接
続してゴルフカート30に搭載した。
Comparative Example 3 In Comparative Example 3, 72 cylindrical lithium ion batteries 20 produced in Comparative Example 1 were connected in series and mounted on a golf cart 30.

【0035】<試験・評価>次に、以上のようにして作
製した実施例及び比較例の各電池及びゴルフカートにつ
いて、以下の一連の試験を行った。
<Test / Evaluation> Next, the following series of tests were performed on the batteries and golf carts of the examples and comparative examples produced as described above.

【0036】実施例及び比較例の各電池を、充電した後
放電し、放電容量を測定した。充電条件は、4.2V定
電圧、制限電流30A、4.5時間とした。放電条件
は、10A定電流、終止電圧2.7Vとした。
The batteries of Examples and Comparative Examples were charged and then discharged, and the discharge capacity was measured. The charging conditions were a constant voltage of 4.2 V, a limiting current of 30 A, and 4.5 hours. The discharge conditions were a constant current of 10 A and a final voltage of 2.7 V.

【0037】また、上記条件で充電した後、出力を測定
した。測定条件は、5A、15A、30A、各放電電流
で10秒目の電圧を読み取り、横軸電流値に対して縦軸
にプロットし、3点を結ぶ近似直線が、2.7Vと交差
するところの電流値と、2.7Vとの積を出力とした。
After charging under the above conditions, the output was measured. The measurement condition is 5A, 15A, 30A, the voltage at the 10th second at each discharge current is read, plotted on the vertical axis against the horizontal axis current value, and the approximate straight line connecting the three points intersects 2.7V. The product of the current value of V and 2.7 V was used as the output.

【0038】次に、各電池を、環境温度60°Cの雰囲
気にて上記条件で充放電を100回繰り返すサイクル試
験を行った後、出力及び放電容量を測定し、初期の出力
及び放電容量に対する割合を百分率で求め、出力維持率
及び放電容量維持率とした。当然のことながら、これら
の維持率が高いほうが、寿命特性がよいことになる。
Next, each battery was subjected to a cycle test in which the charging / discharging was repeated 100 times under the above-mentioned conditions in an atmosphere of an ambient temperature of 60 ° C., and then the output and the discharge capacity were measured and the initial output and the discharge capacity were compared. The ratio was calculated as a percentage and used as the output retention rate and the discharge capacity retention rate. As a matter of course, the higher the maintenance rate of these, the better the life characteristics.

【0039】上述した放電容量及び出力の測定は、いず
れも環境温度25±1°Cの雰囲気で行った。
The above-mentioned discharge capacity and output measurements were carried out in an atmosphere having an ambient temperature of 25 ± 1 ° C.

【0040】ゴルフカートについては、搭載した電池が
DOD0%の状態で定速走行を開始し、ゴルフカートが
定速を維持することができなくなるまでの連続走行距離
を測定した。また、搭載した電池がDOD0%の状態で
発進し、ゴルフカートが所定速度に達するまでの所要時
間を測定し、加速時間とした。電池をゴルフカートから
はずし、上述したサイクル試験を行った後、再びゴルフ
カートに搭載して連続走行距離及び加速時間を同様に測
定した。初期の連続走行距離及び加速時間に対する割合
を百分率で求め、連続走行距離維持率及び加速時間変化
率とした。
For the golf cart, constant-speed running was started with the mounted battery at DOD 0%, and the continuous running distance until the golf cart could not maintain the constant speed was measured. Further, the time required for the loaded battery to start with the DOD of 0% and the golf cart reaching a predetermined speed was measured and used as the acceleration time. After removing the battery from the golf cart and performing the above-described cycle test, the battery was mounted on the golf cart again and the continuous running distance and the acceleration time were measured in the same manner. The ratio to the initial continuous running distance and the acceleration time was obtained as a percentage, and the results were used as the continuous running distance maintenance rate and the acceleration time change rate.

【0041】放電容量維持率及び出力維持率の結果を下
表2に、連続走行距離維持率及び加速時間変化率の結果
を下表3にそれぞれ示す。
The results of the discharge capacity maintenance rate and the output maintenance rate are shown in Table 2 below, and the results of the continuous running distance maintenance rate and the acceleration time change rate are shown in Table 3 below.

【0042】[0042]

【表2】 [Table 2]

【0043】表2に示すように、実施例1〜実施例4の
電池では、放電容量維持率、出力維持率共に高い電池が
得られた。これに対して、比較例1及び比較例2の電池
では、内部抵抗比が150%を超えていたため、放電容
量維持率、出力維持率共に著しく低い電池となった。
As shown in Table 2, in the batteries of Examples 1 to 4, batteries having a high discharge capacity retention rate and a high output retention rate were obtained. On the other hand, in the batteries of Comparative Example 1 and Comparative Example 2, the internal resistance ratio exceeded 150%, and therefore the discharge capacity maintenance ratio and the output maintenance ratio were remarkably low.

【0044】正極活物質にマンガン酸リチウムを用いた
実施例3及び実施例4の電池では、負極がそれぞれ同じ
で正極活物質にコバルト酸リチウムを用いた実施例1及
び実施例2の電池に対して、出力維持率が高い値を示し
た。また、負極活物質に球状黒鉛を用いた実施例2及び
実施例4の電池では、非晶質炭素を用いた実施例1及び
実施例3の電池に対して、放電容量維持率、出力維持率
共に高い値を示した。中でも、正極活物質にマンガン酸
リチウムを、負極活物質に球状黒鉛をそれぞれ用い、内
部抵抗比が128%の実施例4の電池では、放電容量維
持率、出力維持率共に最も高い値を示した。
In the batteries of Examples 3 and 4 in which lithium manganate was used as the positive electrode active material, in contrast to the batteries of Examples 1 and 2 in which the negative electrodes were the same and lithium cobalt oxide was used as the positive electrode active material. The output retention rate was high. Further, in the batteries of Examples 2 and 4 in which spherical graphite was used as the negative electrode active material, the discharge capacity retention ratio and the output retention ratio were compared with the batteries of Examples 1 and 3 in which amorphous carbon was used. Both showed high values. Among them, in the battery of Example 4 in which lithium manganate was used as the positive electrode active material and spherical graphite was used as the negative electrode active material, and the internal resistance ratio was 128%, both the discharge capacity maintenance ratio and the output maintenance ratio showed the highest values. .

【0045】[0045]

【表3】 [Table 3]

【0046】表3に示すように、実施例1〜実施例4の
電池を搭載した実施例5〜実施例8のゴルフカートは、
比較例1の電池を搭載した比較例3のゴルフカートに比
べて、連続走行距離維持率及び加速時間変化率共に高い
値を示した。仮想的な充電、走行の繰り返しに相当する
サイクル試験後においても連続走行距離及び加速時間の
低下が極めて低く抑えられ、高性能なゴルフカートとな
った。
As shown in Table 3, the golf carts of Examples 5 to 8 equipped with the batteries of Examples 1 to 4 were:
Compared to the golf cart of Comparative Example 3 equipped with the battery of Comparative Example 1, both the continuous running distance maintenance rate and the acceleration time change rate were higher. Even after a cycle test equivalent to virtual charging and repeated running, reduction in continuous running distance and acceleration time was suppressed to an extremely low level, resulting in a high-performance golf cart.

【0047】また、表2及び表3から、電池の放電容量
維持率とゴルフカートの連続走行距離維持率、電池の出
力維持率と電気自動車の加速時間変化率は、それぞれ相
関があることが判明した。
Further, from Tables 2 and 3, it was found that the discharge capacity maintenance rate of the battery and the continuous running distance maintenance rate of the golf cart, the output maintenance rate of the battery and the acceleration time change rate of the electric vehicle have a correlation with each other. did.

【0048】以上の実施例、比較例から明らかなよう
に、本実施形態の円筒形リチウムイオン電池20は、D
OD0%時の内部抵抗に対するDOD85%時の内部抵
抗の割合を150%以下としたので、充放電の実用上の
全範囲で内部抵抗の差を小さくすることができたので、
放電効率が向上して、出力及び放電容量の低下を抑制す
ることができ、長寿命の電池とすることができた。中で
も、正極活物質にマンガン酸リチウムを用いた場合又は
負極活物質に球状黒鉛を用いた場合には、より長寿命の
電池を得ることができた。とりわけ、マンガン酸リチウ
ムを正極活物質とし、球状黒鉛を負極活物質として、D
OD0%時の内部抵抗に対するDOD85%時の内部抵
抗の割合を128%以上とした場合には、更に長寿命の
電池を得ることができた。これらの電池を搭載したゴル
フカートは、充電、走行を繰り返しても連続走行距離、
加速時間の低下が少ない、高性能なゴルフカートとする
ことができた。
As is clear from the above examples and comparative examples, the cylindrical lithium ion battery 20 of this embodiment is
Since the ratio of the internal resistance when the DOD is 85% to the internal resistance when the OD is 0% is 150% or less, the difference in the internal resistance can be reduced in the entire practical range of charging and discharging.
The discharge efficiency was improved, the decrease in output and discharge capacity could be suppressed, and a long-life battery could be obtained. In particular, when lithium manganate was used as the positive electrode active material or spherical graphite was used as the negative electrode active material, a battery with a longer life could be obtained. In particular, lithium manganate is used as a positive electrode active material, spherical graphite is used as a negative electrode active material, and D
When the ratio of the internal resistance when the DOD was 85% to the internal resistance when the OD was 0% was 128% or more, a battery having a longer life could be obtained. Golf carts equipped with these batteries have a continuous mileage even after repeated charging and running.
It was possible to make a high-performance golf cart with little reduction in acceleration time.

【0049】なお、本実施形態では、電気自動車用電源
に用いられる二次電池について例示したが、電池の大き
さ、電池容量には限定されず、電池容量として概ね3〜
30Ah乃至は100Ah程度の電池に対して本発明は
効果を著しく発揮することが確認されている。また、本
実施形態では円筒形電池について例示したが、本発明は
電池の形状についても限定されず、角形、その他の多角
形の電池にも適用可能である。更に、本発明の適用可能
な形状としては、上述した有底筒状容器(缶)に電池上
蓋がカシメによって封口されている構造の電池以外であ
っても構わない。このような構造の一例として正負外部
端子が電池蓋を貫通し電池容器内で軸芯を介して正負外
部端子が押し合っている状態の電池を挙げることができ
る。更にまた、本発明は、正極及び負極を捲回式の構造
とせず、積層式の構造とした非水電解液二次電池にも適
用可能である。
In this embodiment, the secondary battery used as the power source for the electric vehicle is exemplified, but the size and the battery capacity of the battery are not limited, and the battery capacity is generally 3 to.
It has been confirmed that the present invention remarkably exerts its effect on a battery of about 30 Ah to about 100 Ah. Further, although a cylindrical battery is exemplified in the present embodiment, the present invention is not limited to the shape of the battery, and can be applied to a prismatic battery and other polygonal batteries. Furthermore, the applicable shape of the present invention may be other than the above-mentioned battery having a structure in which the battery upper lid is closed by caulking in the bottomed cylindrical container (can). An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed against each other via the shaft core in the battery container. Furthermore, the present invention is also applicable to a non-aqueous electrolyte secondary battery in which the positive electrode and the negative electrode do not have a winding type structure but have a laminated type structure.

【0050】また、本実施形態では、正極活物質にマン
ガン酸リチウムやコバルト酸リチウムを用いたが、本発
明の非水電解液二次電池用正極活物質としては、リチウ
ムを挿入・脱離可能な材料であり、予め十分な量のリチ
ウムを挿入したリチウム遷移金属複酸化物であればよ
く、スピネル構造を有したマンガン酸リチウム、結晶中
のマンガンやリチウムの一部をそれら以外の例えば、F
e、Co、Ni、Cr、A1、Mg、等の元素で置換あ
るいはドープした材料や結晶中の酸素の一部をS、P等
の元素で置換あるいはドープした材料を使用するように
してもよい。更には、電池電圧として5V級が可能なリ
チウムマンガン複酸化物を用いても、本発明の効果には
変わりない。なお、一般に、マンガン酸リチウムは、炭
酸リチウム等適当なリチウム塩と二酸化マンガン等、酸
化マンガンとを混合、焼成して合成することができる
が、リチウム塩と酸化マンガンの仕込み比を制御するこ
とによって所望のLi/Mn比とすることができる。
Further, in this embodiment, lithium manganate or lithium cobalt oxide was used as the positive electrode active material, but lithium can be inserted / removed as the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention. And a lithium transition metal complex oxide in which a sufficient amount of lithium is inserted in advance, lithium manganate having a spinel structure, manganese or a part of lithium in the crystal other than them, for example, F
A material substituted or doped with an element such as e, Co, Ni, Cr, A1, Mg or a material in which a part of oxygen in the crystal is substituted or doped with an element such as S or P may be used. . Furthermore, even if a lithium manganese composite oxide capable of a battery voltage of 5 V is used, the effect of the present invention is not changed. In general, lithium manganate can be synthesized by mixing a suitable lithium salt such as lithium carbonate with manganese dioxide such as manganese dioxide and firing the mixture, but by controlling the charging ratio of the lithium salt and manganese oxide. A desired Li / Mn ratio can be obtained.

【0051】更に、本実施形態では負極活物質に非晶質
炭素や黒鉛を用いたが、本発明の非水電解液二次電池用
負極活物質としては上記特許請求の範囲に記載した事項
以外に特に制限はない。例えば、天然黒鉛や、人造の各
種黒鉛材、コークスなどの炭素材等でよく、その粒子形
状においても、鱗片状、球状、繊維状、塊状等、特に制
限されるものではない。
Further, although amorphous carbon or graphite is used as the negative electrode active material in the present embodiment, the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention is other than the matters described in the above claims. There is no particular limitation. For example, natural graphite, various artificial graphite materials, carbon materials such as coke, etc. may be used, and the particle shape thereof is not particularly limited, and may be scale-like, spherical, fibrous, lump-like or the like.

【0052】また、導電材、結着剤についても、本発明
の電池には特に制限はなく、通常用いられているいずれ
のものも使用可能である。上記実施形態以外で用いるこ
とのできる結着剤(バインダ)としては、例えば、テフ
ロン(登録商標)、ポリエチレン、ポリスチレン、ポリ
ブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブ
タジエンゴム、多硫化ゴム、ニトロセルロース、シアノ
エチルセルロース、各種ラテックス、アクリロニトリ
ル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレ
ン、フッ化クロロプレン等の重合体及びこれらの混合体
などがある。
The conductive material and the binder are not particularly limited in the battery of the present invention, and any of the commonly used materials can be used. Examples of binders (binders) that can be used in other embodiments include Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, and cyano. There are polymers such as ethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride and chloroprene fluoride, and mixtures thereof.

【0053】更にまた、本実施形態では、絶縁被覆に、
基材がポリイミドで、その片面にヘキサメタアクリレー
トからなる粘着剤を塗布した粘着テープを用いた例を示
したが、例えば、基材がポリプロピレンやポリエチレン
等のポリオレフィンで、その片面又は両面にヘキサメタ
アクリレートやブチルアクリレート等のアクリル系粘着
剤を塗布した粘着テープや、粘着剤を塗布しないポリオ
レフィンやポリイミドからなるテープ等も好適に使用す
ることができる。
Furthermore, in this embodiment, the insulating coating is
An example using a pressure-sensitive adhesive tape in which a base material is polyimide and an adhesive composed of hexamethacrylate is applied to one surface thereof, for example, the base material is a polyolefin such as polypropylene or polyethylene, and hexameta A pressure-sensitive adhesive tape coated with an acrylic pressure-sensitive adhesive such as acrylate or butyl acrylate, or a tape made of polyolefin or polyimide not coated with a pressure-sensitive adhesive can also be preferably used.

【0054】また、本実施形態では、非水電解液にエチ
レンカーボネートとジメチルカーボネートとジエチルカ
ーボネートの体積比1:1:1の混合溶液中へ6フッ化
リン酸リチウムを1モル/リットル溶解したものを用い
たが、本発明の電池には特に制限はなく、一般的なリチ
ウム塩を電解質とし、これを有機溶媒に溶解した非水電
解液を用いればよい。例えば、電解質としては、LiC
lO、LiAsF、LiPF、LiBF、Li
B(C、CHSOLi、CFSO
i等やこれらの混合物を用いることができる。非水電解
液有機溶媒としては、プロピレンカーボネート、エチレ
ンカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、γ−ブチロラクトン、テトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、ジエチルエーテル、スルホラン、メチル
スルホラン、アセトニトリル、プロピオニトニル、エチ
ルメチルカーボネート等またはこれら2種類以上の混合
溶媒を用いるようにしてもよく、混合配合比についても
限定されるものではない。
In this embodiment, 1 mol / liter of lithium hexafluorophosphate is dissolved in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1 in the non-aqueous electrolyte. However, the battery of the present invention is not particularly limited, and a general lithium salt is used as an electrolyte, and a nonaqueous electrolytic solution obtained by dissolving this in an organic solvent may be used. For example, as the electrolyte, LiC
lO 4, LiAsF 6, LiPF 6 , LiBF 4, Li
B (C 6 H 5) 4 , CH 3 SO 3 Li, CF 3 SO 3 L
i or the like or a mixture thereof can be used. As the non-aqueous electrolyte organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-
Diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-
Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitonyl, ethyl methyl carbonate, or the like, or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.

【0055】また更に、上記実施形態では、円筒形リチ
ウムイオン電池のみを動力源としたゴルフカートを例示
したが、本発明はこれに限定されることはなく、内燃機
関エンジンと併用するようにしてもよい。また、電気自
動車に搭載する電池の本数は、所望の出力、容量により
適宜組み合わせればよく、電池の設置場所についても特
に制限されない。
Furthermore, in the above embodiment, a golf cart using only a cylindrical lithium ion battery as a power source was illustrated, but the present invention is not limited to this, and may be used in combination with an internal combustion engine. Good. Further, the number of batteries to be mounted on the electric vehicle may be appropriately combined depending on the desired output and capacity, and the installation location of the batteries is not particularly limited.

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
リチウム遷移金属複酸化物を正極活物質に用い、炭素材
を負極活物質に用いることで、高容量、高出力の非水電
解液二次電池を確保し、DOD0%時の内部抵抗に対す
るDOD85%時の内部抵抗の割合を150%以下とす
ることで、充放電の実用上の全範囲で内部抵抗の差を小
さくすることができるので、放電効率を向上させて、出
力及び容量の低下を抑制することができ、長寿命の電池
とすることができる、という効果を得ることができる。
As described above, according to the present invention,
By using a lithium transition metal complex oxide as a positive electrode active material and a carbon material as a negative electrode active material, a high capacity, high output non-aqueous electrolyte secondary battery is secured, and DOD 85% relative to the internal resistance at DOD 0%. By setting the ratio of the internal resistance to 150% or less, it is possible to reduce the difference in the internal resistance in the entire range of charging / discharging practically. Therefore, the discharge efficiency is improved and the reduction of the output and the capacity is suppressed. Therefore, it is possible to obtain an effect that a battery having a long life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用可能な実施形態のゴルフカートを
模式的に示す側面図である。
FIG. 1 is a side view schematically showing a golf cart of an embodiment to which the present invention is applicable.

【図2】本発明が適用可能な実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 2 is a cross-sectional view of a cylindrical lithium ion battery of an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

6 捲回群(電極群) 7 電池容器 20 円筒形リチウムイオン電池(非水電解液二次電
池) 30 ゴルフカート(電気自動車) 35 前部座席 36 電池箱 37 加速用ペダル
6 winding group (electrode group) 7 battery container 20 cylindrical lithium ion battery (non-aqueous electrolyte secondary battery) 30 golf cart (electric vehicle) 35 front seat 36 battery box 37 accelerator pedal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3D035 AA06 BA01 5H029 AJ05 AK03 AL07 AM02 HJ16 5H050 AA07 BA17 CA09 CB08 HA16 5H115 PA15 PC06 PG07 PI16 PI29 UI35 UI40    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3D035 AA06 BA01                 5H029 AJ05 AK03 AL07 AM02 HJ16                 5H050 AA07 BA17 CA09 CB08 HA16                 5H115 PA15 PC06 PG07 PI16 PI29                       UI35 UI40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質にリチウム遷移金属複酸化物
を用いた正極と負極活物質に炭素材を用いた負極とを有
する電極群を、非水電解液に浸潤させて電池容器内に収
容した非水電解液二次電池において、放電深度0%時の
内部抵抗に対する放電深度85%時の内部抵抗の割合が
150%以下であることを特徴とする非水電解液二次電
池。
1. An electrode group having a positive electrode using a lithium transition metal composite oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material is soaked in a non-aqueous electrolyte and housed in a battery container. In the non-aqueous electrolyte secondary battery described above, the ratio of the internal resistance at a discharge depth of 85% to the internal resistance at a discharge depth of 0% is 150% or less.
【請求項2】 前記リチウム遷移金属複酸化物は、リチ
ウムマンガン複酸化物であることを特徴とする請求項1
に記載の非水電解液二次電池。
2. The lithium transition metal complex oxide is a lithium manganese complex oxide.
The non-aqueous electrolyte secondary battery according to.
【請求項3】 前記炭素材は、黒鉛質炭素であることを
特徴とする請求項1又は請求項2に記載の非水電解液二
次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material is graphitic carbon.
【請求項4】 前記割合は、128%以上であることを
特徴とする請求項3に記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the ratio is 128% or more.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載の非水電解液二次電池を動力源に用いた電気自動
車。
5. An electric vehicle using the non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 as a power source.
JP2001222543A 2001-07-24 2001-07-24 Nonaqueous electrolytic solution secondary battery and electric vehicle Abandoned JP2003036890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222543A JP2003036890A (en) 2001-07-24 2001-07-24 Nonaqueous electrolytic solution secondary battery and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222543A JP2003036890A (en) 2001-07-24 2001-07-24 Nonaqueous electrolytic solution secondary battery and electric vehicle

Publications (1)

Publication Number Publication Date
JP2003036890A true JP2003036890A (en) 2003-02-07

Family

ID=19056008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222543A Abandoned JP2003036890A (en) 2001-07-24 2001-07-24 Nonaqueous electrolytic solution secondary battery and electric vehicle

Country Status (1)

Country Link
JP (1) JP2003036890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2013233077A (en) * 2007-11-07 2013-11-14 Sk Innovation Co Ltd Safety apparatus and protection method of secondary battery for electric vehicle using switch
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
JP2020117148A (en) * 2019-01-25 2020-08-06 ヤマハ発動機株式会社 Open cabin electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2013233077A (en) * 2007-11-07 2013-11-14 Sk Innovation Co Ltd Safety apparatus and protection method of secondary battery for electric vehicle using switch
US20200224328A1 (en) * 2019-01-10 2020-07-16 Showa Denko K.K. SiC SINGLE CRYSTAL GROWTH CRUCIBLE, SiC SINGLE CRYSTAL MANUFACTURING METHOD, AND SiC SINGLE CRYSTAL MANUFACTURING APPARATUS
US11946156B2 (en) * 2019-01-10 2024-04-02 Resonac Corporation SiC single crystal growth crucible, SiC single crystal manufacturing method, and SiC single crystal manufacturing apparatus
JP2020117148A (en) * 2019-01-25 2020-08-06 ヤマハ発動機株式会社 Open cabin electric vehicle

Similar Documents

Publication Publication Date Title
JP4305111B2 (en) Battery pack and electric vehicle
JP2001143762A (en) Cylindrical lithium ion battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP2004006264A (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP4631234B2 (en) Cylindrical lithium-ion battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2004134369A (en) Lithium secondary battery and electric automobile
JP2004134208A (en) Lithium secondary battery and electric vehicle
JP2001229970A (en) Cylindrical lithium battery
EP1381098B1 (en) Non-aqueous electrolytic solution secondary battery
JP2003036890A (en) Nonaqueous electrolytic solution secondary battery and electric vehicle
JP3511966B2 (en) Cylindrical lithium-ion battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP4238657B2 (en) Lithium secondary battery and electric vehicle
JP2001185220A (en) Cylindrical lithium ion battery
JP3783503B2 (en) Lithium secondary battery
JP2006338977A (en) Lithium secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP3518484B2 (en) Lithium ion battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP2001357888A (en) Cylindrical lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090304