WO2015119305A1 - Electrode for lithium secondary battery and lithium secondary battery comprising same - Google Patents

Electrode for lithium secondary battery and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2015119305A1
WO2015119305A1 PCT/KR2014/000953 KR2014000953W WO2015119305A1 WO 2015119305 A1 WO2015119305 A1 WO 2015119305A1 KR 2014000953 W KR2014000953 W KR 2014000953W WO 2015119305 A1 WO2015119305 A1 WO 2015119305A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
electrode
active material
electrode active
Prior art date
Application number
PCT/KR2014/000953
Other languages
French (fr)
Korean (ko)
Inventor
홍지준
고성태
허윤정
Original Assignee
주식회사 코캄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코캄 filed Critical 주식회사 코캄
Publication of WO2015119305A1 publication Critical patent/WO2015119305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery electrode and a lithium secondary battery comprising the same, and more particularly, to a lithium secondary battery electrode comprising a gas adsorbent absorbing gas generated in the lithium secondary battery, and a lithium secondary battery comprising the same. .
  • the lithium secondary battery may include an organic electrolyte solution including lithium salt in an assembly including a positive electrode and a negative electrode having an active material capable of inserting and removing lithium ions on each current collector, and a porous separator that electrically insulates them between the positive and negative electrodes. It consists of a structure filled with a polymer electrolyte solution.
  • the lithium secondary battery may contain several ppm of water during its material or manufacturing process, which is charged and discharged as the lithium secondary battery is used, and reacts with the negative electrode and the electrolyte, and with the positive electrode and the electrolyte.
  • gas is formed inside the battery by reaction between the separator and the electrolyte solution. This not only causes a deterioration of battery life but also affects battery safety.
  • the technical problem to be solved by the present invention is to solve the conventional problems as described above, by controlling the gas generated in the lithium secondary battery, a lithium secondary battery electrode and a lithium secondary battery including a long life cycle and improved safety It is to provide a battery.
  • the electrode current collector ; And an electrode active material layer formed on at least one surface of the electrode current collector, the electrode active material layer including an electrode active material, a conductive material, a binder, and a gas adsorption material.
  • the gas adsorbent may be silica gel, bentonite or a mixture thereof.
  • the content of the gas adsorbent may be 0.05 to 1.5 parts by weight based on 100 parts by weight of the electrode active material.
  • the average particle diameter of the gas adsorbent may be 0.8 to 20 ⁇ m.
  • the specific surface area by the BET measuring method of the gas adsorbent may be 1 to 50 m 2 / g.
  • the electrode active material may be a lithium-containing transition metal oxide.
  • the electrode active material may be any one selected from the group consisting of lithium metal, a carbon material, and a metal compound, or a mixture of two or more thereof.
  • the carbon material is selected from the group consisting of soft carbon, hardened carbon, natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber, mesoface graphite powder, carbon microspheres, liquid crystal pitch, petroleum coke and coal-based coke It may be any one or a mixture of two or more thereof.
  • the metal compound is formed of Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, and Ba. It may be any one selected from the group or a compound containing two or more metal elements thereof or a mixture thereof.
  • the gas adsorbent is included in the electrode active material layer to selectively absorb the moisture remaining in the material constituting the lithium secondary battery, and the gas which may occur electrochemically or physically, thereby increasing the lithium secondary battery of a long life cycle.
  • a battery can be provided.
  • the gas adsorbent is included to control heat generated by internal abnormalities, and by absorbing the gas generated inside the battery, it is possible to fundamentally block ignition factors that may occur inside the battery, thereby ensuring safety of the lithium secondary battery. Can improve.
  • FIG. 1 is a diagram schematically showing a cross section of an electrode for a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a graph showing cycle characteristics at room temperature and 60 ° C. of a rechargeable lithium battery according to one embodiment and a comparative example of the present invention.
  • FIG. 3 is a graph showing the self-discharge rate during high temperature storage of the lithium secondary battery according to the Examples and Comparative Examples of the present invention.
  • Figure 4 is a graph showing the nail penetration test results of the lithium secondary battery according to an embodiment and one comparative example of the present invention.
  • FIG. 1 is a diagram schematically showing a cross section of an electrode for a lithium secondary battery according to an embodiment of the present invention.
  • the lithium secondary battery electrode 100 according to an aspect of the present invention, the electrode current collector 10;
  • the gas adsorbent 24 is not limited in any way of physical adsorption or chemical adsorption, and may be used without limitation as long as it has gas absorption capability.
  • the gas adsorbent 24 may be mainly silica gel, bentonite or a mixture thereof.
  • the mixture it is classified into a gas adsorbent having a physical adsorption method and a chemical adsorption method according to the mixing ratio of silica gel and bentonite.
  • the silica gel is an adsorbent prepared by solidifying a colloidal solution of silicic acid, and is well known as a desiccant or absorbent. It is composed of SiO 2 , has a very large porosity, and has a very uniform distribution or size of pores. Silica gel is a granular amorphous particle with fine pores connected to each other and connected by a massive net, and is characterized by its excellent adsorption capacity according to the vast surface area.
  • the bentonite is clay made of montmorillonite-based expandable three-layer plate (Si-Al-Si), and is composed of Al 2 Si 4 (OH), which is a feldspar chemical formula.
  • Bentonite is bipolar due to the unbalance of charge generated in the Gibbsite layer, which is an intermediate layer.Bentonite has a positive polarity at each corner of the bentonite layer and a negative surface at the surface thereof. It has the adsorption performance. And, due to this bipolarity attracts more gas and moisture is to be adsorbed into the interlayer space.
  • the Gibbsite layer which is an intermediate layer of aluminum oxide
  • aluminum (Al) having 3+ valence is replaced with magnesium (Mg) having 2+ valence, and a form in which 1+ is insufficiently satisfied with Na is satisfied.
  • Sodium bentonite which is very good at absorbing gas and water, has the ability to absorb up to five times its weight.
  • even at a high temperature such properties do not change, and even if the temperature of the battery is increased due to internal or external factors, the gas absorption ability is exhibited without changing the characteristics, and thus the chain reaction of secondary ignition is suppressed.
  • the gas adsorbent used in the present invention may adsorb 733 ml / min of gas on the basis of an average particle diameter of 10 ⁇ m, and may be recycled since the gas adsorbed therein may be removed at a predetermined temperature or more.
  • the lithium secondary battery electrode and the lithium secondary battery including the gas adsorbent according to an embodiment of the present invention even if left for a long time at high temperature gas generation rate is low, it is possible to significantly improve the self-discharge rate. Furthermore, by absorbing the gas generated in the battery, the gas adsorbent may fundamentally block ignition factors that may occur in the battery, thereby improving safety of the lithium secondary battery.
  • the gas adsorbent 24 may be, for example, 0.05 to 1.5 parts by weight, or 0.1 to 0.8 parts by weight based on 100 parts by weight of the electrode active material.
  • the content of the gas adsorbent 24 exceeds the numerical range, the initial efficiency and specific capacity of the battery may be reduced, and the output characteristic may be reduced due to the resistance. And, if the content of the gas adsorbent 24 is less than the above numerical range, the gas absorption capacity is small, the effect of the addition is not seen.
  • the average particle diameter of the gas adsorbent 24 may be 0.8 to 20 ⁇ m, or 1 to 10 ⁇ m
  • the specific surface area by the BET measurement method is 1 to 50 m 2 / g, or 5 to 20 m 2 / g It may be, but the size of the pores and the shape of the pores is not limited.
  • dispersibility may not be secured during the preparation of the electrode active material slurry, and the coating property of the electrode active material slurry may be deteriorated, thereby sufficiently exhibiting the gas adsorption capacity. Or electrochemical properties may be degraded.
  • the electrode active material 21 may be a positive electrode active material or a negative electrode active material.
  • the electrode active material 21 is a positive electrode active material
  • a conventional positive electrode active material such as a lithium-containing transition metal oxide may be used.
  • the average particle diameter of the lithium-containing transition metal oxide is 6 to 16 ⁇ m, and the specific surface area by the BET measurement method may be 0.1 to 1 m 2 / g, but is not limited thereto.
  • the electrode active material 21 is a negative electrode active material
  • a conventional negative electrode active material such as lithium metal, carbon material and metal compounds or mixtures thereof in which lithium ions can be occluded and released can be used.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • mesophase pitch based carbon fiber mesophase graphite powder (MGP), meso-carbon microbeads, mesophase pitches, petroleum derived cokes, and coal based coke
  • High-temperature calcined carbon such as (coal tar derived cokes) is typical.
  • the metal compound may be Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, or the like.
  • the compound containing 1 or more types of metal elements, and mixtures thereof are mentioned. These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the average particle diameter of the lithium metal, the carbon material, and the metal compound is 5 to 30 ⁇ m, and the specific surface area by the BET measurement method may be 0.5 to 50 m 2 / g, but is not limited thereto.
  • the electrode current collector 10 is a metal with high conductivity, any metal that can easily adhere the slurry of the electrode active material, and may be used as long as it is not reactive in the voltage range of the battery.
  • the positive electrode current collector is a foil prepared by aluminum, nickel or a combination thereof
  • non-limiting examples of the negative electrode current collector are copper, gold, nickel or a copper alloy or these Foil produced by the combination of the above.
  • the electrode current collector may be used by stacking substrates made of the materials.
  • Lithium secondary battery electrode 100 may be prepared as a positive electrode or a negative electrode according to a manufacturing method commonly used in the art, for example, the electrode is an electrode active material, a conductive material, a binder, After kneading using a gas adsorbent and a high boiling point solvent to prepare an electrode active material slurry, the electrode active material slurry is directly coated on an electrode current collector, or the electrode active material slurry is coated on a separate support and dried, and then There exists a method of laminating the film obtained by peeling from a support body on an electrode collector.
  • the electrode thus prepared may be manufactured by drying under pressure and then heat treatment under vacuum at a temperature of about 80 ° C. to 130 ° C. for at least 2 hours.
  • a lithium secondary battery according to another aspect of the present invention, a positive electrode; cathode; A separator interposed between the positive electrode and the negative electrode; And an electrolyte solution, wherein at least one of the positive electrode and the negative electrode is a lithium secondary battery, wherein the lithium secondary battery electrode according to the present invention is provided.
  • the electrolyte contained in the electrolyte is a lithium salt
  • those conventionally used in the lithium secondary battery electrolyte may be used without limitation.
  • organic solvent included in the electrolyte those conventionally used in the electrolyte for lithium secondary batteries may be used without limitation.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in electrolytes well.
  • Dimethyl carbonate and diethyl When a low viscosity, low dielectric constant linear carbonate, such as carbonate, is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolyte may optionally further include an additive such as an overcharge inhibitor included in a conventional electrolyte.
  • separator used in the present invention conventional porous polymer films conventionally used as separators, for example, ethylene homopolymer, propylene homopolymer, ethylene / propylene copolymer, ethylene / butene copolymer, ethylene / hexene air
  • Porous polymer films made of polyolefin-based polymers, such as copolymers and ethylene / methacrylate copolymers may be used alone or in a stack thereof, or conventional porous nonwoven fabrics such as high melting point glass fibers and polyethylene terephthalate fibers It is possible to use a nonwoven fabric such as, but is not limited thereto.
  • the battery case used in the lithium secondary battery according to an aspect of the present invention can be used that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, a cylindrical using a can, Square, pouch or coin type may be used.
  • the negative electrode active material capable of absorbing and desorbing lithium ions carbon microspheres (China Steel Chemical Corporation), conductive carbon as a conductive material for imparting conductivity, and Epsiguard TM (Kurita Water Ind. Ltd. ) And a mixture of PVdF (polyvinylidenfluoride) as a binder in a ratio of 85: 7.5: 0.5: 7 are mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less. Then, it was coated on a copper sheet, dried, and then rolled to prepare a negative electrode.
  • NMP N-methyl pyrrolidone
  • Examples of the positive electrode active material made of a lithium-containing transition metal include LiNi (1-xy) Mn x Co y O 2 (GSM), conductive carbon as a conductive material for imparting conductivity, and Epsiguard TM (Kurita Water Ind. Ltd.) and a binder containing a mixture of polyvinylidenfluoride (PVDF) in a ratio of 93: 3.5: 0.5: 3 in an appropriate amount of N-methyl pyrrolidone (NMP) to mix a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less After obtaining, it was coated on aluminum sheet, dried and rolled to prepare a positive electrode.
  • GSM LiNi (1-xy) Mn x Co y O 2
  • Epsiguard TM Kerta Water Ind. Ltd.
  • NMP N-methyl pyrrolidone
  • an electrode assembly having a polyolefin porous sheet as a separator was introduced into a battery case of an aluminum exterior material, and then 1.15 in a nonaqueous solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3.
  • a lithium secondary battery was prepared by injecting a non-aqueous electrolyte solution in which LiPF 6 was dissolved to M to the battery case.
  • the lithium secondary battery was manufactured to have a thickness of 12 mm, a width of 216 mm, and a length of 216 mm, and a design capacity of 46 Ah for electrical characteristics evaluation.
  • the negative electrode active material capable of absorbing and desorbing lithium ions carbon microspheres (China Steel Chemical Corporation), conductive carbon as a conductive material for imparting conductivity, and Epsiguard TM (Kurita Water Ind. Ltd. ) And a mixture of PVdF (polyvinylidenfluoride) as a binder in a ratio of 85: 7.5: 0.5: 7 are mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less. Then, it was coated on a copper sheet, dried, and then rolled to prepare a negative electrode.
  • NMP N-methyl pyrrolidone
  • a positive electrode active material composed of a lithium-containing transition metal LiNi (1-xy) Mn x Co y O 2 (GSSM), a conductive carbon and a binder as a conductive material for imparting conductivity
  • PVdF polyvinylidenfluoride
  • the mixture mixed at the ratio of 3: 3 was mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C.) or less, which was coated on an aluminum sheet, dried, and rolled Was prepared.
  • NMP N-methyl pyrrolidone
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode was prepared by mixing the negative electrode active material, the conductive material, the gas adsorbent, and the binder in a ratio of 85: 7: 1: 7.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode was prepared by mixing the negative electrode active material, the conductive material, the gas adsorbent, and the binder in a ratio of 85: 7.7: 0.3: 7.
  • the negative electrode active material capable of absorbing and desorbing lithium ions carbon microspheres (meso-carbon microbeads, China Steel Chemical Corporation), conductive carbon for imparting conductivity, and conductive carbon and PVdF (polyvinylidenfluoride) as a binder are 85: 8: 7.
  • the mixture was mixed in an appropriate amount of NMP (N-methyl pyrrolidone) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 °C) or less, and then coated on a copper sheet, dried and rolled to prepare a negative electrode It was.
  • NMP N-methyl pyrrolidone
  • Examples of the positive electrode active material made of a lithium-containing transition metal include LiNi (1-xy) Mn x Co y O 2 (GSM), conductive carbon as a conductive material for imparting conductivity, and Epsiguard TM (Kurita Water Ind. Ltd.) and a binder containing a mixture of polyvinylidenfluoride (PVDF) in a ratio of 93: 3.5: 0.5: 3 in an appropriate amount of N-methyl pyrrolidone (NMP) to mix a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less After obtaining, it was coated on aluminum sheet, dried and rolled to prepare a positive electrode.
  • GSM LiNi (1-xy) Mn x Co y O 2
  • Epsiguard TM Kerta Water Ind. Ltd.
  • NMP N-methyl pyrrolidone
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
  • the negative electrode active material capable of absorbing and desorbing lithium ions carbon microspheres (meso-carbon microbeads, China Steel Chemical Corporation), conductive carbon for imparting conductivity, and conductive carbon and PVdF (polyvinylidenfluoride) as a binder are 85: 8: 7.
  • the mixture was mixed in an appropriate amount of NMP (N-methyl pyrrolidone) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 °C) or less, and then coated on a copper sheet, dried and rolled to prepare a negative electrode It was.
  • NMP N-methyl pyrrolidone
  • a positive electrode active material composed of a lithium-containing transition metal LiNi (1-xy) Mn x Co y O 2 (GSSM), a conductive carbon and a binder as a conductive material for imparting conductivity
  • PVdF polyvinylidenfluoride
  • the mixture mixed at the ratio of 3: 3 was mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C.) or less, which was coated on an aluminum sheet, dried, and rolled Was prepared.
  • NMP N-methyl pyrrolidone
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
  • the change in specific capacity and initial efficiency of the electrode can be seen as a difference within the error range, even if a gas adsorbent is added to the electrode active material layer it can be seen that there is no significant difference in the change in capacity of the electrode.
  • Example 2 is a graph showing cycle characteristics at room temperature and 60 ° C. of a lithium secondary battery according to Example 1 and Comparative Example 1 of the present invention.
  • the cycle characteristics of the lithium secondary battery shown in Table 3 and Figure 2 it can be seen that the cycle characteristics of the embodiment in which the gas adsorbent is added to the electrode active material layer at both room temperature and high temperature than the comparative example. This may be because the gas generated when the electrolytic solution is decomposed electrochemically or physically is adsorbed by the gas adsorbent. In addition, there is a slight difference in cycle characteristics depending on the content of the gas adsorbent to be added, which is determined to be an effect of increasing the number of sites capable of adsorbing the gas as the amount is added.
  • the self-discharge rate characteristics at high temperatures shown in Table 4 and FIG. 3 show excellent characteristics in capacity retention rate and thickness change rate as gas adsorbents are added. This may be determined as an effect of the gas adsorbent absorbing the gas generated in the battery according to the physical reaction.
  • Example 4 is a graph showing the nail penetration test results of the lithium secondary battery according to Example 1 and Comparative Example 1 of the present invention.

Abstract

The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery comprising same, and one embodiment according to the present invention can provide a secondary battery having a long cycle life by having gas absorbent material in an electrode active material layer to selectively absorb residual moisture in the material of the lithium secondary battery and gas which can be electrochemically and physically generated, and furthermore, by blocking the cause of ignition which can arise from within the battery at the source by having the gas absorbent material absorb the gas generated within the battery, the present invention can improve the safety of the lithium secondary battery.

Description

리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지Electrode for lithium secondary battery and lithium secondary battery comprising same
본 발명은 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 자세하게는 리튬 이차전지 내에 발생하는 가스를 흡수하는 가스 흡착재를 포함하는 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery electrode and a lithium secondary battery comprising the same, and more particularly, to a lithium secondary battery electrode comprising a gas adsorbent absorbing gas generated in the lithium secondary battery, and a lithium secondary battery comprising the same. .
리튬 이차전지는 각각의 집전체에 리튬 이온의 탈삽입이 가능한 활물질이 도포되어 있는 양극과 음극 및 상기 양극과 음극 사이에 이들을 전기적으로 절연시키는 다공성 세퍼레이터가 개재된 조립체에 리튬염을 포함한 유기 전해액 또는 폴리머 전해액이 충전되어 있는 구조로 이루어져 있다.The lithium secondary battery may include an organic electrolyte solution including lithium salt in an assembly including a positive electrode and a negative electrode having an active material capable of inserting and removing lithium ions on each current collector, and a porous separator that electrically insulates them between the positive and negative electrodes. It consists of a structure filled with a polymer electrolyte solution.
리튬 이차전지는, 그 재료 또는 제조공정 중에 수 ppm의 수분을 포함할 수 있는데, 이러한 수분은 리튬 이차전지가 사용됨에 따라 충방전이 이루어지면서, 음극과 전해액과의 반응, 양극과 전해액과의 반응 또는 세퍼레이터와 전해액과의 반응 등에 의해 전지 내부에 가스를 형성시킨다. 이는 전지의 수명열화를 야기시킬 뿐만 아니라 전지의 안전성에도 영향을 미치게 된다.The lithium secondary battery may contain several ppm of water during its material or manufacturing process, which is charged and discharged as the lithium secondary battery is used, and reacts with the negative electrode and the electrolyte, and with the positive electrode and the electrolyte. Alternatively, gas is formed inside the battery by reaction between the separator and the electrolyte solution. This not only causes a deterioration of battery life but also affects battery safety.
최근 들어 리튬 이차전지가 대용량화되면서, 상기 문제점은 더욱 크게 부각되고 있으며, 이를 제어하기 위한 방안으로 리튬 이차전지의 조립과정 중 가스제거 공정을 더 추가하거나, 또는 전지에 주입되는 전해액에 가스 발생 억제재를 첨가하고 있다.In recent years, as the capacity of lithium secondary batteries has increased, the problem has been more highlighted. As a method for controlling this, additional gas removal processes may be added during assembly of lithium secondary batteries, or a gas generating inhibitor may be added to the electrolyte injected into the battery. I add it.
이처럼, 통상적으로 알려진 기술들은 소형의 리튬 이차전지를 제작하는 과정에서는 전지의 성능에 영향을 주지 않으면서, 큰 어려움 없이 적용할 수 있다. 그러나, 최근 리튬 이차전지의 대형화 또는 구조의 다양화를 고려하면, 공정의 용이성과 성능의 개선이 동시에 요구되어야 하는데, 상기 통상적인 기술들을 적용하기에는 어려움이 따른다.As such, conventionally known technologies may be applied without significant difficulty in the process of manufacturing a small lithium secondary battery without affecting the performance of the battery. However, in consideration of the recent increase in the size of the lithium secondary battery or the diversification of the structure, the ease of the process and the improvement of the performance must be simultaneously required, and it is difficult to apply the conventional techniques.
본 발명이 해결하고자 하는 기술적 과제는, 상기와 같은 종래의 문제점을 해결하기 위한 것으로서, 리튬 이차전지의 내부에서 발생하는 가스를 제어하여 장수명 사이클 및 안전성이 향상된 리튬 이차전지용 전극 및 그를 포함하는 리튬 이차전지를 제공하는 것이다.The technical problem to be solved by the present invention is to solve the conventional problems as described above, by controlling the gas generated in the lithium secondary battery, a lithium secondary battery electrode and a lithium secondary battery including a long life cycle and improved safety It is to provide a battery.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면에 따르면, 전극 집전체; 및 상기 전극 집전체의 적어도 일면에 형성되되, 전극 활물질, 도전재, 바인더 및 가스 흡착재를 포함하는 전극 활물질층;을 포함하는 리튬 이차전지용 전극이 제공된다.In order to achieve the above technical problem, according to an aspect of the present invention, the electrode current collector; And an electrode active material layer formed on at least one surface of the electrode current collector, the electrode active material layer including an electrode active material, a conductive material, a binder, and a gas adsorption material.
여기서, 상기 가스 흡착재는, 실리카겔, 벤토나이트 또는 이들의 혼합물일 수 있다.Here, the gas adsorbent may be silica gel, bentonite or a mixture thereof.
그리고, 상기 가스 흡착재의 함량은, 상기 전극 활물질 100 중량부를 기준으로, 0.05 내지 1.5 중량부일 수 있다.In addition, the content of the gas adsorbent may be 0.05 to 1.5 parts by weight based on 100 parts by weight of the electrode active material.
그리고, 상기 가스 흡착재의 평균 입경은, 0.8 내지 20 ㎛일 수 있다.In addition, the average particle diameter of the gas adsorbent may be 0.8 to 20 ㎛.
그리고, 상기 가스 흡착재의 BET 측정법에 의한 비표면적은, 1 내지 50 m2/g일 수 있다.In addition, the specific surface area by the BET measuring method of the gas adsorbent may be 1 to 50 m 2 / g.
한편, 상기 전극 활물질은, 리튬 함유 전이금속 산화물일 수 있다.Meanwhile, the electrode active material may be a lithium-containing transition metal oxide.
이때, 상기 리튬 함유 전이금속 산화물은, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, 및 LiMn2-zCozO4(0<z<2)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.In this case, the lithium-containing transition metal oxide is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 < c <1, a + b + c = 1), LiNi 1-y Co y O 2 , LiCo 1-y Mn y O 2 , LiNi 1-y Mn y O 2 (O ≦ y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , and LiMn 2-z Co z O 4 (0 <z <2) may be any one selected from the group consisting of or a mixture of two or more thereof.
그리고, 상기 전극 활물질은, 리튬 금속, 탄소재 및 금속 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.The electrode active material may be any one selected from the group consisting of lithium metal, a carbon material, and a metal compound, or a mixture of two or more thereof.
이때, 상기 탄소재는, 연화탄소, 경화탄소, 천연 흑연, 키시흑연, 열분해 탄소, 액정 피치계 탄소섬유, 메조페이스 흑연 분말, 탄소 미소구체, 액정피치, 석유계 코크스 및 석탄계 코크스로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.In this case, the carbon material is selected from the group consisting of soft carbon, hardened carbon, natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber, mesoface graphite powder, carbon microspheres, liquid crystal pitch, petroleum coke and coal-based coke It may be any one or a mixture of two or more thereof.
그리고, 상기 금속 화합물은, Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr 및 Ba으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 금속 원소를 함유하는 화합물 또는 이들의 혼합물일 수 있다.The metal compound is formed of Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, and Ba. It may be any one selected from the group or a compound containing two or more metal elements thereof or a mixture thereof.
한편, 본 발명의 다른 측면에 따르면, 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서, 상기 양극 및 상기 음극 중 1종 이상이 전술한 본 발명에 따른 전극인 것을 특징으로 하는 리튬 이차전지가 제공된다.On the other hand, according to another aspect of the invention, the anode; cathode; A separator interposed between the positive electrode and the negative electrode; And an electrolyte solution, wherein at least one of the positive electrode and the negative electrode is an electrode according to the present invention as described above, there is provided a lithium secondary battery.
본 발명의 일 실시예에 따르면, 가스 흡착재가 전극 활물질층에 포함됨으로써 리튬 이차전지를 구성하는 물질에 잔존하는 수분, 및 전기화학적 또는 물리적으로 발생할 수 있는 가스를 선택적으로 흡수함으로써 장수명 사이클의 리튬 이차전지를 제공할 수 있다.According to one embodiment of the present invention, the gas adsorbent is included in the electrode active material layer to selectively absorb the moisture remaining in the material constituting the lithium secondary battery, and the gas which may occur electrochemically or physically, thereby increasing the lithium secondary battery of a long life cycle. A battery can be provided.
나아가, 가스 흡착재가 포함됨으로써 내부 이상 현상으로 발생할 수 있는 열을 제어할 수 있으며, 또한 전지 내부에서 발생된 가스를 흡수함으로써 전지 내부에서 발생할 수 있는 발화요인을 원천적으로 차단하여, 리튬 이차전지의 안전성을 향상시킬 수 있다.In addition, the gas adsorbent is included to control heat generated by internal abnormalities, and by absorbing the gas generated inside the battery, it is possible to fundamentally block ignition factors that may occur inside the battery, thereby ensuring safety of the lithium secondary battery. Can improve.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은, 본 발명의 일 실시예에 따른 리튬 이차전지용 전극의 단면을 모식적으로 나타낸 도면이다.1 is a diagram schematically showing a cross section of an electrode for a lithium secondary battery according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예 및 비교예에 따른 리튬 이차전지의 상온 및 60 ℃에서의 사이클 특성을 나타낸 그래프이다.2 is a graph showing cycle characteristics at room temperature and 60 ° C. of a rechargeable lithium battery according to one embodiment and a comparative example of the present invention.
도 3은, 본 발명의 실시예 및 비교예에 따른 리튬 이차전지의 고온 저장시의 자가 방전율을 나타낸 그래프이다.3 is a graph showing the self-discharge rate during high temperature storage of the lithium secondary battery according to the Examples and Comparative Examples of the present invention.
도 4는, 본 발명의 일 실시예 및 일 비교예에 따른 리튬 이차전지의 못 관통 시험결과를 나타낸 그래프이다.Figure 4 is a graph showing the nail penetration test results of the lithium secondary battery according to an embodiment and one comparative example of the present invention.
[부호의 설명][Description of the code]
10: 전극 집전체10: electrode current collector
20: 전극 활물질층20: electrode active material layer
21: 전극 활물질21: electrode active material
22: 도전재22: conductive material
23: 바인더23: binder
24: 가스 흡착재24: gas adsorbent
100: 리튬 이차전지용 전극100: lithium secondary battery electrode
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail with reference to the drawings. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.In addition, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention various equivalents that may be substituted for them at the time of the present application It should be understood that there may be water and variations.
도 1은, 본 발명의 일 실시예에 따른 리튬 이차전지용 전극의 단면을 모식적으로 나타낸 도면이다. 도 1을 참조하면, 본 발명의 일 측면에 따른 리튬 이차전지용 전극(100)은, 전극 집전체(10); 및 상기 전극 집전체(10)의 적어도 일면에 형성되되, 전극 활물질(21), 전도성을 부여하는 도전재(22), 결착력을 부여하는 바인더(23) 및 가스 흡착 능력을 지닌 가스 흡착재(24)를 포함하는 전극 활물질층(20);을 포함한다.1 is a diagram schematically showing a cross section of an electrode for a lithium secondary battery according to an embodiment of the present invention. 1, the lithium secondary battery electrode 100 according to an aspect of the present invention, the electrode current collector 10; And an electrode active material 21, a conductive material 22 to impart conductivity, a binder 23 to impart a binding force, and a gas adsorption material 24 having a gas adsorption capacity, formed on at least one surface of the electrode current collector 10. It includes; an electrode active material layer 20 comprising a.
이때, 상기 가스 흡착재(24)는, 물리적 흡착 또는 화학적 흡착 중 어느 방식으로 흡착을 하는지는 제한되지 않고, 가스 흡수 능력을 지닌 것이라면 제한되지 않고 사용될 수 있다.In this case, the gas adsorbent 24 is not limited in any way of physical adsorption or chemical adsorption, and may be used without limitation as long as it has gas absorption capability.
여기서, 상기 가스 흡착재(24)는, 주로 실리카겔, 벤토나이트 또는 이들의 혼합물일 수 있다. 특히, 상기 혼합물인 경우, 실리카겔과 벤토나이트의 혼합 비율에 따라 물리적 흡착방법과 화학적 흡착방법을 가진 가스 흡착재로 구분하게 된다.Here, the gas adsorbent 24 may be mainly silica gel, bentonite or a mixture thereof. In particular, in the case of the mixture, it is classified into a gas adsorbent having a physical adsorption method and a chemical adsorption method according to the mixing ratio of silica gel and bentonite.
상기 실리카겔은 규산의 콜로이드 용액을 응고시켜 제조한 흡착재로서, 방습제 또는 흡수제로 잘 알려져 있다. SiO2의 조성으로 이루어져 있고, 기공도가 매우 큰 다공질 구조이며, 기공의 분포 또는 크기가 매우 균일하다. 실리카겔은 미세한 구멍들이 서로 연결되어 방대한 그물로 연결된 과립형 비결정상 입자이며, 광대한 표면적에 따른 흡착능력이 매우 뛰어나다는 것이 특징이다.The silica gel is an adsorbent prepared by solidifying a colloidal solution of silicic acid, and is well known as a desiccant or absorbent. It is composed of SiO 2 , has a very large porosity, and has a very uniform distribution or size of pores. Silica gel is a granular amorphous particle with fine pores connected to each other and connected by a massive net, and is characterized by its excellent adsorption capacity according to the vast surface area.
상기 벤토나이트는 몬모릴로 나이트계의 팽창성 3층판(Si-Al-Si)으로 이루어진 점토이며, 납석 화학구조식인 Al2Si4(OH)의 조성으로 이루어져 있다. 벤토나이트는 중간층인 깁사이트(Gibbsite)층에서 발생하는 전하의 불균형으로 인해, 벤토나이트 각층의 모서리는 양성(+), 표면은 음성(-)이 존재하는 양극성을 나타내며, 이러한 양극성으로 인해 수분 및 가스의 흡착성능을 갖게 된다. 그리고, 이러한 양극성으로 인해 더더욱 많은 가스 및 수분을 끌어당기게 되어 층간의 공간으로 흡착되게 한다.The bentonite is clay made of montmorillonite-based expandable three-layer plate (Si-Al-Si), and is composed of Al 2 Si 4 (OH), which is a feldspar chemical formula. Bentonite is bipolar due to the unbalance of charge generated in the Gibbsite layer, which is an intermediate layer.Bentonite has a positive polarity at each corner of the bentonite layer and a negative surface at the surface thereof. It has the adsorption performance. And, due to this bipolarity attracts more gas and moisture is to be adsorbed into the interlayer space.
한편, 산화알루미늄(Aluminum oxide) 중간층인 깁사이트(Gibbsite)층에서 3+가인 알루미늄(Al)이 2+가인 마그네슘(Mg)으로 대체되고, 1+가 만큼의 부족한 전하를 Na로 만족시킨 형태가 나트륨 벤토나이트인데, 이러한 나트륨 벤토나이트는 가스 및 수분 흡수성이 매우 우수하여, 무게의 5배까지 흡수할 수 있는 능력이 있다. 그리고, 화학적으로 활성을 일으키지 않기 때문에 원재료에 화학적 영향을 미치지 않는 특성이 있어, 리튬 이차전지의 전기화학적 특성에 영향을 미치지 않는다. 또한 높은 온도에서도 이러한 성질은 변하지 않아 내부적 또는 외부적인 요인에 의해 전지의 온도가 상승할지라도, 특성 변화 없이 가스 흡수 능력을 발휘하게 되어, 2차 발화의 연쇄 반응을 억제할 수 있는 특성을 지닌다. 본 발명에서 사용된 가스 흡착재는 평균 입경이 10 ㎛인 것을 기준으로 733 ml/min의 가스를 흡착할 수 있으며, 일정 온도 이상에서 내부에 흡착된 가스를 제거할 수도 있어 재활용이 가능하다.Meanwhile, in the Gibbsite layer, which is an intermediate layer of aluminum oxide, aluminum (Al) having 3+ valence is replaced with magnesium (Mg) having 2+ valence, and a form in which 1+ is insufficiently satisfied with Na is satisfied. Sodium bentonite, which is very good at absorbing gas and water, has the ability to absorb up to five times its weight. In addition, there is a characteristic that does not chemically affect the raw material because it does not cause chemical activity, and does not affect the electrochemical characteristics of the lithium secondary battery. In addition, even at a high temperature, such properties do not change, and even if the temperature of the battery is increased due to internal or external factors, the gas absorption ability is exhibited without changing the characteristics, and thus the chain reaction of secondary ignition is suppressed. The gas adsorbent used in the present invention may adsorb 733 ml / min of gas on the basis of an average particle diameter of 10 μm, and may be recycled since the gas adsorbed therein may be removed at a predetermined temperature or more.
그 결과, 본 발명의 일 실시예에 따른 가스 흡착재가 포함된 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지는 고온에서 장기간 방치하더라도 가스 발생률이 낮으며, 자가 방전율도 현저히 향상시킬 수 있다. 나아가, 가스 흡착재가 전지 내부에서 발생된 가스를 흡수함으로써 전지 내부에서 발생할 수 있는 발화요인을 원천적으로 차단하여, 리튬 이차전지의 안전성을 향상시킬 수 있다.As a result, the lithium secondary battery electrode and the lithium secondary battery including the gas adsorbent according to an embodiment of the present invention, even if left for a long time at high temperature gas generation rate is low, it is possible to significantly improve the self-discharge rate. Furthermore, by absorbing the gas generated in the battery, the gas adsorbent may fundamentally block ignition factors that may occur in the battery, thereby improving safety of the lithium secondary battery.
상기 가스 흡착재(24)의 함량은, 예를 들면 전극 활물질 100 중량부를 기준으로, 0.05 내지 1.5 중량부, 또는 0.1 내지 0.8 중량부일 수 있다. 상기 가스 흡착재(24)의 함량이 상기 수치범위를 초과하게 되면, 전지의 초기 효율 및 비용량 감소를 초래할 수 있으며, 저항으로 인한 출력특성 저하를 초래할 수 있다. 그리고, 가스 흡착재(24)의 함량이 상기 수치범위 미만이면, 가스 흡수능력이 작아져서 첨가에 따른 효과를 볼 수 없다.The gas adsorbent 24 may be, for example, 0.05 to 1.5 parts by weight, or 0.1 to 0.8 parts by weight based on 100 parts by weight of the electrode active material. When the content of the gas adsorbent 24 exceeds the numerical range, the initial efficiency and specific capacity of the battery may be reduced, and the output characteristic may be reduced due to the resistance. And, if the content of the gas adsorbent 24 is less than the above numerical range, the gas absorption capacity is small, the effect of the addition is not seen.
또한, 상기 가스 흡착재(24)의 평균 입경은 0.8 내지 20 ㎛, 또는 1 내지 10 ㎛일 수 있고, BET 측정법에 의한 비표면적은, 1 내지 50 m2/g, 또는 5 내지 20 m2/g일 수 있으나, 기공의 크기와 기공의 형태는 제한되지 않는다. 상기 평균 입경 및 비표면적의 범위를 벗어나는 가스 흡착재가 사용될 경우, 전극 활물질 슬러리 제조시 분산성이 확보되지 않을 수 있고, 전극 활물질 슬러리의 코팅성이 저하될 수 있으며, 이에 따라 가스 흡착 능력이 충분히 발휘되지 않거나, 전기화학적 특성이 저하될 수 있다.In addition, the average particle diameter of the gas adsorbent 24 may be 0.8 to 20 ㎛, or 1 to 10 ㎛, the specific surface area by the BET measurement method is 1 to 50 m 2 / g, or 5 to 20 m 2 / g It may be, but the size of the pores and the shape of the pores is not limited. When a gas adsorbent outside the range of the average particle diameter and specific surface area is used, dispersibility may not be secured during the preparation of the electrode active material slurry, and the coating property of the electrode active material slurry may be deteriorated, thereby sufficiently exhibiting the gas adsorption capacity. Or electrochemical properties may be degraded.
한편, 상기 전극 활물질(21)은, 양극 활물질 또는 음극 활물질일 수 있다.The electrode active material 21 may be a positive electrode active material or a negative electrode active material.
상기 전극 활물질(21)이 양극 활물질인 경우에는 리튬 함유 전이금속 산화물과 같은 통상의 양극 활물질이 사용될 수 있다.When the electrode active material 21 is a positive electrode active material, a conventional positive electrode active material such as a lithium-containing transition metal oxide may be used.
이때, 상기 리튬 함유 전이금속 산화물은, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, 및 LiMn2-zCozO4(0<z<2)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으나, 이에만 한정되는 것은 아니다.In this case, the lithium-containing transition metal oxide is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 < c <1, a + b + c = 1), LiNi 1-y Co y O 2 , LiCo 1-y Mn y O 2 , LiNi 1-y Mn y O 2 (O ≦ y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , and LiMn 2-z Co z O 4 (0 <z <2) may be any one selected from the group consisting of, or a mixture of two or more thereof, but is not limited thereto.
그리고, 상기 리튬 함유 전이금속 산화물의 평균 입경은 6 내지 16 ㎛이고, BET 측정법에 의한 비표면적은, 0.1 내지 1 m 2/g일 수 있으나, 이에만 한정하는 것은 아니다.The average particle diameter of the lithium-containing transition metal oxide is 6 to 16 μm, and the specific surface area by the BET measurement method may be 0.1 to 1 m 2 / g, but is not limited thereto.
한편, 상기 전극 활물질(21)이 음극 활물질인 경우에는, 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재 및 금속 화합물 또는 이들의 혼합물과 같은 통상의 음극 활물질이 사용될 수 있다.On the other hand, when the electrode active material 21 is a negative electrode active material, a conventional negative electrode active material such as lithium metal, carbon material and metal compounds or mixtures thereof in which lithium ions can be occluded and released can be used.
이때, 상기 탄소재로는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 메조페이스 흑연 분말(mesophase graphite powder(MGP)), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches), 석유계 코크스(petroleum derived cokes), 및 석탄계 코크스(coal tar derived cokes) 등의 고온 소성탄소가 대표적이다.In this case, as the carbon material, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber. (mesophase pitch based carbon fiber), mesophase graphite powder (MGP), meso-carbon microbeads, mesophase pitches, petroleum derived cokes, and coal based coke High-temperature calcined carbon such as (coal tar derived cokes) is typical.
그리고, 상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등의 금속 원소를 1종 이상 함유하는 화합물 및 이들의 혼합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.The metal compound may be Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, or the like. The compound containing 1 or more types of metal elements, and mixtures thereof are mentioned. These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved. Among them, one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
그리고, 상기 리튬 금속, 탄소재 및 금속 화합물의 평균 입경은 5 내지 30 ㎛이고, BET 측정법에 의한 비표면적은, 0.5 내지 50 m2/g일 수 있으나, 이에만 한정하는 것은 아니다.The average particle diameter of the lithium metal, the carbon material, and the metal compound is 5 to 30 μm, and the specific surface area by the BET measurement method may be 0.5 to 50 m 2 / g, but is not limited thereto.
한편, 상기 전극 집전체(10)는 전도성이 높은 금속으로, 상기 전극 활물질의 슬러리가 용이하게 접착할 수 있는 금속이면서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용될 수 있다. 구체적으로 양극용 전극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극용 전극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 전극 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.On the other hand, the electrode current collector 10 is a metal with high conductivity, any metal that can easily adhere the slurry of the electrode active material, and may be used as long as it is not reactive in the voltage range of the battery. Specifically, non-limiting examples of the positive electrode current collector is a foil prepared by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector are copper, gold, nickel or a copper alloy or these Foil produced by the combination of the above. In addition, the electrode current collector may be used by stacking substrates made of the materials.
본 발명의 일 측면에 따른 리튬 이차전지용 전극(100)은 당 분야에서 통상적으로 사용되는 제조방법에 따라 양극 또는 음극으로 제조될 수 있고, 예를 들면, 상기 전극은 전극 활물질, 도전재, 바인더, 가스 흡착재 및 고비점 용제를 이용해 혼련하여 전극 활물질 슬러리로 제조한 후, 이 전극 활물질 슬러리를 전극 집전체상에 직접 코팅하는 방법이나, 또는 전극 활물질 슬러리를 별도의 지지체 상부에 코팅하고 건조한 다음, 상기 지지체로부터 박리하여 얻어진 필름을 전극 집전체상에 라미네이션하는 방법이 있다. 이와 같이 제조된 전극은, 건조, 가압 성형한 후, 80℃ 내지 130℃ 정도의 온도로 2 시간 이상 진공 하에서 가열 처리함으로써 제조될 수 있다.Lithium secondary battery electrode 100 according to an aspect of the present invention may be prepared as a positive electrode or a negative electrode according to a manufacturing method commonly used in the art, for example, the electrode is an electrode active material, a conductive material, a binder, After kneading using a gas adsorbent and a high boiling point solvent to prepare an electrode active material slurry, the electrode active material slurry is directly coated on an electrode current collector, or the electrode active material slurry is coated on a separate support and dried, and then There exists a method of laminating the film obtained by peeling from a support body on an electrode collector. The electrode thus prepared may be manufactured by drying under pressure and then heat treatment under vacuum at a temperature of about 80 ° C. to 130 ° C. for at least 2 hours.
한편, 본 발명의 다른 측면에 따른 리튬 이차전지는, 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서, 상기 양극 및 상기 음극 중 1종 이상이 전술한 본 발명에 따른 리튬 이차전지용 전극인 것을 특징으로 하는 리튬 이차전지가 제공된다.On the other hand, a lithium secondary battery according to another aspect of the present invention, a positive electrode; cathode; A separator interposed between the positive electrode and the negative electrode; And an electrolyte solution, wherein at least one of the positive electrode and the negative electrode is a lithium secondary battery, wherein the lithium secondary battery electrode according to the present invention is provided.
이때, 상기 전해액에 포함되는 전해질은 리튬염으로서, 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온은, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.At this time, the electrolyte contained in the electrolyte is a lithium salt, those conventionally used in the lithium secondary battery electrolyte may be used without limitation. For example, the lithium salt anion, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, ( CF 3 SO 2) 3 C - , CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and (CF 3 CF 2 SO 2 ) 2 N -It can be any one selected from the group consisting of.
그리고, 상기 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.As the organic solvent included in the electrolyte, those conventionally used in the electrolyte for lithium secondary batteries may be used without limitation. Typical propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, Dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite and tetrahydrofuran or any one thereof 2 or more types of mixtures etc. can be used typically. In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in electrolytes well. Dimethyl carbonate and diethyl When a low viscosity, low dielectric constant linear carbonate, such as carbonate, is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be more preferably used.
그리고, 상기 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 선택적으로 더 포함할 수 있다.In addition, the electrolyte may optionally further include an additive such as an overcharge inhibitor included in a conventional electrolyte.
한편, 본 발명에서 사용되는 세퍼레이터로는, 종래에 세퍼레이터로서 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/프로필렌 공중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에만 한정되는 것은 아니다.On the other hand, as the separator used in the present invention, conventional porous polymer films conventionally used as separators, for example, ethylene homopolymer, propylene homopolymer, ethylene / propylene copolymer, ethylene / butene copolymer, ethylene / hexene air Porous polymer films made of polyolefin-based polymers, such as copolymers and ethylene / methacrylate copolymers, may be used alone or in a stack thereof, or conventional porous nonwoven fabrics such as high melting point glass fibers and polyethylene terephthalate fibers It is possible to use a nonwoven fabric such as, but is not limited thereto.
그리고, 본 발명의 일 측면에 따른 리튬 이차전지에서 사용되는 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 사용될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 사용될 수 있다.And, the battery case used in the lithium secondary battery according to an aspect of the present invention can be used that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, a cylindrical using a can, Square, pouch or coin type may be used.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
1. 실시예 1Example 1
(1) 리튬 이차전지용 음극의 제조(1) Preparation of negative electrode for lithium secondary battery
리튬 이온의 흡/탈장이 가능한 음극 활물질로는 탄소 미소구체(meso-carbon microbeads, China Steel Chemical Corporation), 전도성을 부여하기 위한 도전재로서 전도성 카본, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 및 바인더로서 PVdF(polyvinylidenfluoride)가 85:7.5:0.5:7의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 음극 활물질 슬러리를 얻은 후, 이를 구리 판박 위에 코팅하고 건조시킨 후 압연하여 음극을 제조하였다.As the negative electrode active material capable of absorbing and desorbing lithium ions, carbon microspheres (China Steel Chemical Corporation), conductive carbon as a conductive material for imparting conductivity, and Epsiguard ™ (Kurita Water Ind. Ltd. ) And a mixture of PVdF (polyvinylidenfluoride) as a binder in a ratio of 85: 7.5: 0.5: 7 are mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less. Then, it was coated on a copper sheet, dried, and then rolled to prepare a negative electrode.
(2) 리튬 이차전지용 양극의 제조(2) Preparation of Positive Electrode for Lithium Secondary Battery
리튬 함유 전이금속으로 이루어진 양극 활물질로는, LiNi(1-x-y)MnxCoyO2(지에스이엠社), 전도성을 부여하기 위한 도전재로서 전도성 카본, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 및 바인더로 PVdF(polyvinylidenfluoride)가 93:3.5:0.5:3의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 양극 활물질 슬러리를 얻은 후, 이를 알루미늄 판박 위에 코팅하고 건조시킨 후 압연하여 양극을 제조하였다.Examples of the positive electrode active material made of a lithium-containing transition metal include LiNi (1-xy) Mn x Co y O 2 (GSM), conductive carbon as a conductive material for imparting conductivity, and Epsiguard ™ (Kurita Water Ind. Ltd.) and a binder containing a mixture of polyvinylidenfluoride (PVDF) in a ratio of 93: 3.5: 0.5: 3 in an appropriate amount of N-methyl pyrrolidone (NMP) to mix a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less After obtaining, it was coated on aluminum sheet, dried and rolled to prepare a positive electrode.
(3) 리튬 이차전지의 제조(3) Manufacture of lithium secondary battery
상기 제조된 양극과 음극 사이에, 세퍼레이터로서 폴리올레핀 다공성 시트를 개재시킨 전극조립체를 알루미늄 외장재의 전지 케이스에 투입한 후, 에틸렌 카보네이트와 에틸메틸 카보네이트가 1:3의 체적 비율로 혼합된 비수용매에 1.15 M가 되도록 LiPF6를 용해시킨 비수전해액을 상기 전지 케이스에 주입하여 리튬 이차전지를 제조하였다. 상기 리튬 이차전지의 규격은 전기적 특성평가를 위해 두께 12 mm, 폭 216 mm 및 길이 216 mm가 되도록 제작하였고, 설계 용량은 46 Ah가 되도록 제조하였다.Between the positive electrode and the negative electrode prepared above, an electrode assembly having a polyolefin porous sheet as a separator was introduced into a battery case of an aluminum exterior material, and then 1.15 in a nonaqueous solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3. A lithium secondary battery was prepared by injecting a non-aqueous electrolyte solution in which LiPF 6 was dissolved to M to the battery case. The lithium secondary battery was manufactured to have a thickness of 12 mm, a width of 216 mm, and a length of 216 mm, and a design capacity of 46 Ah for electrical characteristics evaluation.
2. 실시예 22. Example 2
(1) 리튬 이차전지용 음극의 제조(1) Preparation of negative electrode for lithium secondary battery
리튬 이온의 흡/탈장이 가능한 음극 활물질로는 탄소 미소구체(meso-carbon microbeads, China Steel Chemical Corporation), 전도성을 부여하기 위한 도전재로서 전도성 카본, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 및 바인더로서 PVdF(polyvinylidenfluoride)가 85:7.5:0.5:7의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 음극 활물질 슬러리를 얻은 후, 이를 구리 판박 위에 코팅하고 건조시킨 후 압연하여 음극을 제조하였다.As the negative electrode active material capable of absorbing and desorbing lithium ions, carbon microspheres (China Steel Chemical Corporation), conductive carbon as a conductive material for imparting conductivity, and Epsiguard ™ (Kurita Water Ind. Ltd. ) And a mixture of PVdF (polyvinylidenfluoride) as a binder in a ratio of 85: 7.5: 0.5: 7 are mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less. Then, it was coated on a copper sheet, dried, and then rolled to prepare a negative electrode.
(2) 리튬 이차전지용 양극의 제조(2) Preparation of Positive Electrode for Lithium Secondary Battery
리튬 함유 전이금속으로 이루어진 양극 활물질로는, LiNi(1-x-y)MnxCoyO2(지에스이엠社), 전도성을 부여하기 위한 도전재로서 전도성 카본 및 바인더로 PVdF(polyvinylidenfluoride)가 93:4:3의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 양극 활물질 슬러리를 얻은 후, 이를 알루미늄 판박 위에 코팅하고 건조시킨 후 압연하여 양극을 제조하였다.As a positive electrode active material composed of a lithium-containing transition metal, LiNi (1-xy) Mn x Co y O 2 (GSSM), a conductive carbon and a binder as a conductive material for imparting conductivity, has PVdF (polyvinylidenfluoride) of 93: 4 The mixture mixed at the ratio of 3: 3 was mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C.) or less, which was coated on an aluminum sheet, dried, and rolled Was prepared.
(3) 리튬 이차전지의 제조(3) Manufacture of lithium secondary battery
상기 제조된 음극과 양극을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
3. 실시예 33. Example 3
음극 활물질, 도전재, 가스 흡착재 및 바인더를 85:7:1:7의 비율로 혼합하여 음극을 제조하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode was prepared by mixing the negative electrode active material, the conductive material, the gas adsorbent, and the binder in a ratio of 85: 7: 1: 7.
4. 실시예 44. Example 4
음극 활물질, 도전재, 가스 흡착재 및 바인더를 85:7.7:0.3:7의 비율로 혼합하여 음극을 제조하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the negative electrode was prepared by mixing the negative electrode active material, the conductive material, the gas adsorbent, and the binder in a ratio of 85: 7.7: 0.3: 7.
5. 실시예 55. Example 5
(1) 리튬 이차전지용 음극의 제조(1) Preparation of negative electrode for lithium secondary battery
리튬 이온의 흡/탈장이 가능한 음극 활물질로는 탄소 미소구체(meso-carbon microbeads, China Steel Chemical Corporation), 전도성을 부여하기 위한 도전재로서 전도성 카본 및 바인더로서 PVdF(polyvinylidenfluoride)가 85:8:7의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 음극 활물질 슬러리를 얻은 후, 이를 구리 판박 위에 코팅하고 건조시킨 후 압연하여 음극을 제조하였다.As the negative electrode active material capable of absorbing and desorbing lithium ions, carbon microspheres (meso-carbon microbeads, China Steel Chemical Corporation), conductive carbon for imparting conductivity, and conductive carbon and PVdF (polyvinylidenfluoride) as a binder are 85: 8: 7. The mixture was mixed in an appropriate amount of NMP (N-methyl pyrrolidone) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ℃) or less, and then coated on a copper sheet, dried and rolled to prepare a negative electrode It was.
(2) 리튬 이차전지용 양극의 제조(2) Preparation of Positive Electrode for Lithium Secondary Battery
리튬 함유 전이금속으로 이루어진 양극 활물질로는, LiNi(1-x-y)MnxCoyO2(지에스이엠社), 전도성을 부여하기 위한 도전재로서 전도성 카본, 가스 흡착재로서 Epsiguard™(Kurita Water Ind. Ltd.) 및 바인더로 PVdF(polyvinylidenfluoride)가 93:3.5:0.5:3의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 양극 활물질 슬러리를 얻은 후, 이를 알루미늄 판박 위에 코팅하고 건조시킨 후 압연하여 양극을 제조하였다.Examples of the positive electrode active material made of a lithium-containing transition metal include LiNi (1-xy) Mn x Co y O 2 (GSM), conductive carbon as a conductive material for imparting conductivity, and Epsiguard ™ (Kurita Water Ind. Ltd.) and a binder containing a mixture of polyvinylidenfluoride (PVDF) in a ratio of 93: 3.5: 0.5: 3 in an appropriate amount of N-methyl pyrrolidone (NMP) to mix a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C) or less After obtaining, it was coated on aluminum sheet, dried and rolled to prepare a positive electrode.
(3) 리튬 이차전지의 제조(3) Manufacture of lithium secondary battery
상기 제조된 음극과 양극을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
6. 비교예 16. Comparative Example 1
(1) 리튬 이차전지용 음극의 제조(1) Preparation of negative electrode for lithium secondary battery
리튬 이온의 흡/탈장이 가능한 음극 활물질로는 탄소 미소구체(meso-carbon microbeads, China Steel Chemical Corporation), 전도성을 부여하기 위한 도전재로서 전도성 카본 및 바인더로서 PVdF(polyvinylidenfluoride)가 85:8:7의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 음극 활물질 슬러리를 얻은 후, 이를 구리 판박 위에 코팅하고 건조시킨 후 압연하여 음극을 제조하였다.As the negative electrode active material capable of absorbing and desorbing lithium ions, carbon microspheres (meso-carbon microbeads, China Steel Chemical Corporation), conductive carbon for imparting conductivity, and conductive carbon and PVdF (polyvinylidenfluoride) as a binder are 85: 8: 7. The mixture was mixed in an appropriate amount of NMP (N-methyl pyrrolidone) to obtain a negative electrode active material slurry having a viscosity of 3,500 cPa (25 ℃) or less, and then coated on a copper sheet, dried and rolled to prepare a negative electrode It was.
(2) 리튬 이차전지용 양극의 제조(2) Preparation of Positive Electrode for Lithium Secondary Battery
리튬 함유 전이금속으로 이루어진 양극 활물질로는, LiNi(1-x-y)MnxCoyO2(지에스이엠社), 전도성을 부여하기 위한 도전재로서 전도성 카본 및 바인더로 PVdF(polyvinylidenfluoride)가 93:4:3의 비율로 혼합된 혼합물을 적당량의 NMP(N-methyl pyrrolidone)에 혼합하여 3,500 cPa(25 ℃)이하의 점도의 양극 활물질 슬러리를 얻은 후, 이를 알루미늄 판박 위에 코팅하고 건조시킨 후 압연하여 양극을 제조하였다.As a positive electrode active material composed of a lithium-containing transition metal, LiNi (1-xy) Mn x Co y O 2 (GSSM), a conductive carbon and a binder as a conductive material for imparting conductivity, has PVdF (polyvinylidenfluoride) of 93: 4 The mixture mixed at the ratio of 3: 3 was mixed with an appropriate amount of N-methyl pyrrolidone (NMP) to obtain a positive electrode active material slurry having a viscosity of 3,500 cPa (25 ° C.) or less, which was coated on an aluminum sheet, dried, and rolled Was prepared.
(3) 리튬 이차전지의 제조(3) Manufacture of lithium secondary battery
상기 제조된 음극과 양극을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared negative electrode and positive electrode were used.
7. 전극의 비용량 및 초기효율 평가7. Evaluation of specific capacity and initial efficiency of electrode
상기 실시예 1 및 비교예 1에 따라 제조된 전극에 대해서 비용량 및 초기 효율을 측정하여, 하기 표 1에 나타내었다.Specific amount and initial efficiency of the electrodes prepared according to Example 1 and Comparative Example 1 were measured, and are shown in Table 1 below.
표 1
실시예 1 비교예 1
비용량 초기 효율 비용량 초기 효율
양극 158.2mAh/g 89.2% 157.0mAh/g 89.4%
음극 321.2mAh/g 89.0% 310.3mAh/g 92.5%
Table 1
Example 1 Comparative Example 1
Specific quantity Initial efficiency Specific quantity Initial efficiency
anode 158.2 mAh / g 89.2% 157.0 mAh / g 89.4%
cathode 321.2 mAh / g 89.0% 310.3mAh / g 92.5%
상기 표 1을 참조하면, 전극의 비용량 및 초기 효율의 변화는 오차 범위 내의 차이로 볼 수 있으며, 전극 활물질층에 가스 흡착재가 첨가된다고 하더라도 전극의 용량 변화에는 큰 차이가 없는 것으로 볼 수 있다.Referring to Table 1, the change in specific capacity and initial efficiency of the electrode can be seen as a difference within the error range, even if a gas adsorbent is added to the electrode active material layer it can be seen that there is no significant difference in the change in capacity of the electrode.
8. 리튬 이차전지의 특성 평가8. Characterization of lithium secondary battery
상기 실시예 및 비교예에 따라 제조된 리튬 이차전지에 대해서, 충·방전 사이클 장치를 이용하여 초기 비용량, 초기 효율, 방전 특성, 상온 및 고온에서의 사이클 특성에 대한 평가를 진행하였고, 그 결과를 표 2 및 표 3과, 도 2에 나타내었다.For the lithium secondary batteries manufactured according to the above Examples and Comparative Examples, the initial specific capacity, initial efficiency, discharge characteristics, cycle characteristics at room temperature and high temperature were evaluated using a charge / discharge cycle apparatus. Are shown in Table 2 and 3, and FIG.
표 2
초기 비용량 [mAh/g] 초기 효율[%] 10.0 C 방전 특성(vs. 0.5C)[%]
실시예 1 137.3 80.2 95.2
실시예 2 143.1 81.6 95.8
실시예 3 138.3 81.0 95.7
실시예 4 144.7 82.1 95.6
실시예 5 142.6 81.9 95.1
비교예 1 146.2 83.3 95.2
TABLE 2
Initial specific capacity [mAh / g] Initial Efficiency [%] 10.0 C discharge characteristic (vs. 0.5C) [%]
Example 1 137.3 80.2 95.2
Example 2 143.1 81.6 95.8
Example 3 138.3 81.0 95.7
Example 4 144.7 82.1 95.6
Example 5 142.6 81.9 95.1
Comparative Example 1 146.2 83.3 95.2
상기 표 2를 참조하면, 표 1에서와 마찬가지로 전극 활물질층에 가스 흡착재가 첨가되더라도 리튬 이차전지의 초기 비용량 및 초기 효율에 크게 영향을 미치지 않는 것을 확인할 수 있다. 그리고, 고율 방전 특성에서도 가스 흡착재의 첨가 유무 및 첨가량에 따라 급격한 효율 변화가 없는 것으로 보아 가스 흡착재가 전극에서 큰 저항으로 작용하지 않는다는 것을 확인할 수 있다.Referring to Table 2, as shown in Table 1, even if the gas adsorbent is added to the electrode active material layer it can be confirmed that does not significantly affect the initial specific capacity and initial efficiency of the lithium secondary battery. In addition, even in high-rate discharge characteristics, there is no sudden change in efficiency depending on the presence or absence of the gas adsorbent and the amount of the gas adsorbent, indicating that the gas adsorbent does not act as a large resistance in the electrode.
표 3
1,000번째 사이클에서 효율 (상온) 500번째 사이클에서 효율(60℃)
실시예 1 95.5% 84.8%
실시예 2 94.5% 84.1%
실시예 3 95.2% 85.0%
실시예 4 93.7% 81.7%
실시예 5 94.7% 83.0%
비교예 1 86.5% 80.3%
TABLE 3
Efficiency at 1,000th cycle (room temperature) Efficiency at 500th Cycle (60 ° C)
Example 1 95.5% 84.8%
Example 2 94.5% 84.1%
Example 3 95.2% 85.0%
Example 4 93.7% 81.7%
Example 5 94.7% 83.0%
Comparative Example 1 86.5% 80.3%
도 2는, 본 발명의 실시예 1 및 비교예 1에 따른 리튬 이차전지의 상온 및 60 ℃에서의 사이클 특성을 나타낸 그래프이다.2 is a graph showing cycle characteristics at room temperature and 60 ° C. of a lithium secondary battery according to Example 1 and Comparative Example 1 of the present invention.
상기 표 3과 도 2에 나타낸 리튬 이차전지의 사이클 특성을 살펴보면, 상온 및 고온에서 모두, 가스 흡착재가 전극 활물질층에 첨가된 실시예의 사이클 특성이 비교예보다 높은 것을 확인할 수 있다. 이는 전해액이 전기 화학적 또는 물리적으로 분해될 때 발생하는 가스가, 가스 흡착재에 의해 흡착되었기 때문인 것으로 사료된다. 그리고, 첨가되는 가스 흡착재의 함량에 따라 사이클 특성에서 다소 차이를 보이는데, 이는 첨가되는 양이 많을수록 가스를 흡착할 수 있는 사이트가 많아짐에 따른 효과인 것으로 판단된다.Looking at the cycle characteristics of the lithium secondary battery shown in Table 3 and Figure 2, it can be seen that the cycle characteristics of the embodiment in which the gas adsorbent is added to the electrode active material layer at both room temperature and high temperature than the comparative example. This may be because the gas generated when the electrolytic solution is decomposed electrochemically or physically is adsorbed by the gas adsorbent. In addition, there is a slight difference in cycle characteristics depending on the content of the gas adsorbent to be added, which is determined to be an effect of increasing the number of sites capable of adsorbing the gas as the amount is added.
한편, 상기 실시예 및 비교예에 따라 제조된 리튬 이차전지에 대해, 자가 방전율 및 안전성 시험을 진행하였고, 그 결과를 표 4, 도 3 및 도 4에 나타내었다.On the other hand, for the lithium secondary battery prepared according to the above Examples and Comparative Examples, the self-discharge rate and safety test was carried out, the results are shown in Table 4, FIG. 3 and FIG.
표 4
자가 방전율(45 ℃/1 month) 못 관통 시험 (@SOC100%)
잔존 용량 [%] 전압 변화 [mV] 두께 변화율 [%]
실시예 1 92.6 -63 0.0 A
실시예 2 92.3 -66 0.0 A
실시예 3 93.0 -60 0.0 A
실시예 4 90.9 -80 0.2 B
실시예 5 92.0 -69 0.0 A
비교예 1 90.5 -92 1.1 D
Table 4
Self discharge rate (45 ℃ / 1 month) Nail Penetration Test (@ SOC100%)
Remaining capacity [%] Voltage change [mV] Thickness change rate [%]
Example 1 92.6 -63 0.0 A
Example 2 92.3 -66 0.0 A
Example 3 93.0 -60 0.0 A
Example 4 90.9 -80 0.2 B
Example 5 92.0 -69 0.0 A
Comparative Example 1 90.5 -92 1.1 D
(A: 변화 없음, B: 연기발생, C: 발화, D: 폭발)(A: no change, B: smoke, C: fire, D: explosion)
상기 표 4와 도 3 에 나타낸 고온에서의 자가 방전율 특성을 보면 가스 흡착재가 첨가됨에 따라 용량 유지율 및 두께 변화율에서 우수한 특성을 보이고 있다. 이는 물리적 반응에 따라 전지 내부에 발생하는 가스를 가스 흡착재가 흡수함에 따른 효과인 것으로 판단할 수 있다.The self-discharge rate characteristics at high temperatures shown in Table 4 and FIG. 3 show excellent characteristics in capacity retention rate and thickness change rate as gas adsorbents are added. This may be determined as an effect of the gas adsorbent absorbing the gas generated in the battery according to the physical reaction.
도 4는, 본 발명의 실시예 1 및 비교예 1에 따른 리튬 이차전지의 못 관통 시험결과를 나타낸 그래프이다.4 is a graph showing the nail penetration test results of the lithium secondary battery according to Example 1 and Comparative Example 1 of the present invention.
상기 표 4 및 도 4에 나타낸 못 관통 시험 결과를 보면, 가스 흡착재가 소량만이 첨가되더라도 내부에서 발생하는 가스를 흡수할 수 있다는 것을 알 수 있다. 가스 흡착재가 첨가되지 않은 비교예 1을 보면, 동일한 조건에서 폭발하는 것을 알 수 있지만, 가스 흡착재가 비교적 소량이 첨가된 실시예 4의 경우에는 연기가 발생하는 수준으로, 2차 사고를 예방할 수 있는 효과가 있는 것을 알 수 있다. 리튬 이차전지가 발화 또는 폭발이 되는 경우, 연쇄적으로 사고를 일으키게 되지만, 전지 내부에서 발생되는 가스를 흡수하게 되면, 전지의 발화요인을 원천적으로 차단할 수 있기 때문에, 리튬 이차전지의 안전성을 향상시키게 된다.From the nail penetration test results shown in Table 4 and FIG. 4, it can be seen that even if only a small amount of the gas adsorbent can absorb the gas generated therein. In Comparative Example 1, in which the gas adsorbent was not added, it can be seen that there is an explosion under the same conditions. It can be seen that it works. When a lithium secondary battery is ignited or exploded, it may cause an accident in series, but absorbing the gas generated inside the battery may fundamentally block the ignition factors of the battery, thereby improving the safety of the lithium secondary battery. do.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (11)

  1. 전극 집전체; 및Electrode current collectors; And
    상기 전극 집전체의 적어도 일면에 형성되되, 전극 활물질, 도전재, 바인더 및 가스 흡착재를 포함하는 전극 활물질층;을 포함하는 리튬 이차전지용 전극.And an electrode active material layer formed on at least one surface of the electrode current collector and including an electrode active material, a conductive material, a binder, and a gas adsorption material.
  2. 제1항에 있어서,The method of claim 1,
    상기 가스 흡착재는, 실리카겔, 벤토나이트 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극.The gas adsorbent is silica gel, bentonite or a mixture thereof.
  3. 제1항에 있어서,The method of claim 1,
    상기 가스 흡착재의 함량은, 상기 전극 활물질 100 중량부를 기준으로, 0.05 내지 1.5 중량부인 것을 특징으로 하는 리튬 이차전지용 전극.The content of the gas adsorbent is a lithium secondary battery electrode, characterized in that 0.05 to 1.5 parts by weight based on 100 parts by weight of the electrode active material.
  4. 제1항에 있어서,The method of claim 1,
    상기 가스 흡착재의 평균 입경은, 0.8 내지 20 ㎛인 것을 특징으로 하는 리튬 이차전지용 전극.The average particle diameter of the said gas adsorption material is 0.8-20 micrometers, The lithium secondary battery electrode characterized by the above-mentioned.
  5. 제1항에 있어서,The method of claim 1,
    상기 가스 흡착재의 BET 측정법에 의한 비표면적은, 1 내지 50 m2/g인 것을 특징으로 하는 리튬 이차전지용 전극.The specific surface area by the BET measuring method of the said gas adsorption material is 1-50 m <2> / g, The lithium secondary battery electrode characterized by the above-mentioned.
  6. 제1항에 있어서,The method of claim 1,
    상기 전극 활물질은, 리튬 함유 전이금속 산화물인 것을 특징으로 하는 리튬 이차전지용 전극.The electrode active material is a lithium secondary battery electrode, characterized in that the transition metal oxide.
  7. 제6항에 있어서,The method of claim 6,
    상기 리튬 함유 전이금속 산화물은, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, 및 LiMn2-zCozO4(0<z<2)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극.The lithium-containing transition metal oxide is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c < 1, a + b + c = 1), LiNi 1-y Co y O 2 , LiCo 1-y Mn y O 2 , LiNi 1-y Mn y O 2 (O ≦ y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , and LiMn 2-z Co z An electrode for a lithium secondary battery, characterized in that any one selected from the group consisting of O 4 (0 <z <2) or a mixture of two or more thereof.
  8. 제1항에 있어서,The method of claim 1,
    상기 전극 활물질은, 리튬 금속, 탄소재 및 금속 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극.The electrode active material is a lithium secondary battery electrode, characterized in that any one or a mixture of two or more selected from the group consisting of a lithium metal, a carbon material and a metal compound.
  9. 제8항에 있어서,The method of claim 8,
    상기 탄소재는, 연화탄소, 경화탄소, 천연 흑연, 키시흑연, 열분해 탄소, 액정 피치계 탄소섬유, 메조페이스 흑연 분말, 탄소 미소구체, 액정피치, 석유계 코크스 및 석탄계 코크스로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극.The carbon material is any one selected from the group consisting of soft carbon, hardened carbon, natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber, mesoface graphite powder, carbon microspheres, liquid crystal pitch, petroleum coke and coal coke. One or a mixture of two or more thereof, the lithium secondary battery electrode.
  10. 제8항에 있어서,The method of claim 8,
    상기 금속 화합물은, Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr 및 Ba으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 금속 원소를 함유하는 화합물 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극.The metal compound is selected from the group consisting of Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr and Ba. A lithium secondary battery electrode, characterized in that any one or a compound containing two or more metal elements or a mixture thereof.
  11. 양극; 음극; 상기 양극 및 상기 음극 사이에 개재된 세퍼레이터; 및 전해액;을 구비하는 리튬 이차전지로서,anode; cathode; A separator interposed between the positive electrode and the negative electrode; And an electrolyte solution, comprising:
    상기 양극 및 상기 음극 중 1종 이상이 제1항 내지 제10항 중 어느 한 항에 따른 전극인 것을 특징으로 하는 리튬 이차전지.At least one of the positive electrode and the negative electrode is a lithium secondary battery, characterized in that the electrode according to any one of claims 1 to 10.
PCT/KR2014/000953 2014-02-04 2014-02-04 Electrode for lithium secondary battery and lithium secondary battery comprising same WO2015119305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140012686A KR20150091896A (en) 2014-02-04 2014-02-04 Electrode for lithium secondary battery and lithium secondary battery including the same
KR10-2014-0012686 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119305A1 true WO2015119305A1 (en) 2015-08-13

Family

ID=53778099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000953 WO2015119305A1 (en) 2014-02-04 2014-02-04 Electrode for lithium secondary battery and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR20150091896A (en)
WO (1) WO2015119305A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126766A (en) * 1999-10-22 2001-05-11 Sony Corp Nonaqueous electrolyte secondary battery
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
JP2007026725A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Lithium ion secondary battery
KR20080023373A (en) * 2006-09-11 2008-03-14 주식회사 엘지화학 Electrode material including clay mineral and electrochemical cell employed with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126766A (en) * 1999-10-22 2001-05-11 Sony Corp Nonaqueous electrolyte secondary battery
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
JP2007026725A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Lithium ion secondary battery
KR20080023373A (en) * 2006-09-11 2008-03-14 주식회사 엘지화학 Electrode material including clay mineral and electrochemical cell employed with the same

Also Published As

Publication number Publication date
KR20150091896A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2014189329A1 (en) Lithium secondary battery comprising multilayered active material layer
WO2015034257A1 (en) Cathode additive for high-capacity lithium secondary battery
WO2017171409A1 (en) Anode for secondary battery, manufacturing method therefor, and secondary battery comprising same
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2015060697A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2012165758A1 (en) Lithium secondary battery
WO2015119306A1 (en) Separator for lithium secondary battery and lithium secondary battery comprising same
WO2014088270A1 (en) High-capacity anode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2019112390A1 (en) Anode active material for lithium secondary battery and method for manufacturing same
WO2013073901A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2015126082A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2011005054A2 (en) Non-aqueous electrolyte for rechargeable lithium batteries and a rechargeable lithium battery comprising the same
WO2012015241A2 (en) Nonaqueous electrolyte solution for lithium secondary battery, and lithium secondary battery containing same
WO2016104894A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2019147083A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery and lithium secondary battery comprising same
WO2010002089A1 (en) Cylindrical lithium secondary battery
WO2016060300A1 (en) Secondary battery anode comprising additive for improving low-temperature characteristic, and secondary battery comprising same
WO2016104904A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012074299A2 (en) Lithium rechargeable battery
WO2015047045A1 (en) Lithium secondary battery
WO2016053040A1 (en) Electrolyte additive for lithium secondary battery and non-aqueous electrolyte and lithium secondary battery comprising the electrolyte additive
WO2016052996A1 (en) Lithium secondary battery comprising non-aqueous electrolyte
WO2016104895A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881982

Country of ref document: EP

Kind code of ref document: A1