JP3213459B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3213459B2 JP3213459B2 JP28566693A JP28566693A JP3213459B2 JP 3213459 B2 JP3213459 B2 JP 3213459B2 JP 28566693 A JP28566693 A JP 28566693A JP 28566693 A JP28566693 A JP 28566693A JP 3213459 B2 JP3213459 B2 JP 3213459B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous electrolyte
- carbonate
- negative electrode
- battery
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解液二次電池に
係わり、詳しくはサイクル特性の改善を目的とした、非
水電解液の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a non-aqueous electrolyte for the purpose of improving cycle characteristics.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
コークス、黒鉛等の炭素材料が、可撓性に優れること、
樹枝状の電析リチウムの成長に因る内部短絡の虞れが無
いことなどの理由から、従前の金属リチウムに代わる非
水電解液二次電池の新しい負極材料として提案されてい
る。2. Description of the Related Art In recent years,
Coke, carbon material such as graphite, excellent in flexibility,
It has been proposed as a new negative electrode material for a non-aqueous electrolyte secondary battery in place of conventional metallic lithium because there is no risk of internal short circuit due to the growth of dendritic lithium.
【0003】このように、負極材料として炭素材料を用
いた電池では、非水電解液の種類により電池特性が大き
く変化することが知られている。この場合、非水電解液
にエチレンカーボネート、ジメチルカーボネート又はビ
ニレンカーボネート等の炭酸エステルを用いると、炭素
材料からなる負極の電気化学的特性を十分に発揮させる
ことができる。As described above, it is known that in a battery using a carbon material as a negative electrode material, the battery characteristics greatly change depending on the type of the non-aqueous electrolyte. In this case, when a carbonate such as ethylene carbonate, dimethyl carbonate, or vinylene carbonate is used for the non-aqueous electrolyte, the electrochemical characteristics of the negative electrode made of a carbon material can be sufficiently exhibited.
【0004】しかしながら、炭素材料を負極材料として
用い、且つ、炭酸エステルを非水電解液の溶媒として用
いた場合には、充放電サイクルの進行に伴い炭素負極上
で非水電解液がガスの発生を伴って分解するため電池容
量が次第に低下するという問題が生じる。すなわち、炭
素材料と炭酸エステルとを組み合わせて用いると高容量
化が可能であるという利点がある反面、非水電解液の分
解が生じ易いためサイクル特性が良くないという欠点が
あるのである。このような欠点は、結晶性が高い、すな
わち黒鉛化度が大きい炭素材料を負極材料に用いた場合
に特に生じ易い。However, when a carbon material is used as a negative electrode material and a carbonate is used as a solvent for the non-aqueous electrolyte, the non-aqueous electrolyte generates gas on the carbon negative electrode as the charge / discharge cycle progresses. As a result, the battery capacity gradually decreases. That is, when a carbon material and a carbonic acid ester are used in combination, there is an advantage that the capacity can be increased, but there is a disadvantage that the non-aqueous electrolyte is easily decomposed and the cycle characteristics are not good. Such a defect tends to occur particularly when a carbon material having high crystallinity, that is, a high degree of graphitization is used for the negative electrode material.
【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、炭素材料を負極材
料とする非水電解液二次電池のサイクル特性を改善する
にある。The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the cycle characteristics of a nonaqueous electrolyte secondary battery using a carbon material as a negative electrode material.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池(以下「本発明電
池」と称する。)は、正極と、格子面(002)面にお
けるd値(d 002 )が3.37Å以下の炭素材料を負極
材料とする負極と、エチレンカーボネート、ジメチルカ
ーボネート及びビニレンカーボネートよりなる群から選
ばれた少なくとも一種の炭酸エステルが含まれている非
水電解液とを備える非水電解液二次電池において、前記
非水電解液に化2に示すビニレンカーボネート誘導体が
含まれていることを特徴とする。In order to achieve the above object, a nonaqueous electrolyte secondary battery according to the present invention (hereinafter referred to as "battery of the present invention") has a positive electrode and a lattice (002) plane. You
A negative electrode made of a carbon material having a d value (d 002 ) of 3.37 ° C. or less, and ethylene carbonate and dimethyl carbonate.
-Selected from the group consisting of carbonate and vinylene carbonate
A nonaqueous electrolyte secondary battery comprising at least one type of carbonated nonaqueous electrolyte, wherein the nonaqueous electrolyte contains a vinylene carbonate derivative represented by Chemical Formula 2. I do.
【0007】[0007]
【化2】 〔但し、R1 及びR2 は各独立して、炭素数1〜3のア
ルキル基を表す。〕Embedded image [However, R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms. ]
【0008】上記化2で示されるビニレンカーボネート
誘導体の具体例としては、3,4−ジメチルビニレンカ
ーボネート、3,4−ジエチルビニレンカーボネート及
び3,4−ジプロピルビニレンカーボネートが挙げられ
る。Specific examples of the vinylene carbonate derivative represented by Chemical formula 2 include 3,4-dimethylvinylene carbonate, 3,4-diethylvinylene carbonate, and 3,4-dipropylvinylene carbonate.
【0009】非水電解液がビニレンカーボネート誘導体
を含む場合には、当該誘導体はリチウムに対して安定で
あり、しかも負極の近傍に存在し易いということに起因
して、非水電解液の分解劣化が抑制される。When the non-aqueous electrolyte contains a vinylene carbonate derivative, the derivative is stable with respect to lithium and easily exists near the negative electrode. Is suppressed.
【0010】本発明において、負極材料を、d 002 が
3.37Å以下の結晶性の高い高容量の炭素材料に限定
しているのは、この負極材料を使用した場合に、非水電
解液の分解劣化が特に問題となるからである。かかる結
晶性の高い炭素材料としては、黒鉛(天然黒鉛及び人造
黒鉛)の他、例えば高圧処理などにより結晶性を高めて
d 002 値を3.37Å以下にした変性コークスが挙げら
れる。 In the present invention, d 002 is a negative electrode material.
Limited to high-capacity carbon materials with high crystallinity of 3.37 ° or less
The reason is that when this negative electrode material is used,
This is because decomposition degradation of the lysate is a particular problem. Such a conclusion
Graphite (natural graphite and artificial graphite)
In addition to graphite, increase the crystallinity by high pressure treatment, for example.
Modified coke having a d 002 value of 3.37 ° or less is mentioned.
It is.
【0011】本発明においては、非水電解液の溶媒とし
て、化2に示すビニレンカーボネート誘導体と、エチレ
ンカーボネート、ジメチルカーボネート及びビニレンカ
ーボネートよりなる群から選ばれた少なくとも一種の炭
酸エステルとを含む混合溶媒が使用される。化2に示す
ビニレンカーボネート誘導体と混合する溶媒が上記の易
分解性の炭酸エステルの場合に、化2に示すビニレンカ
ーボネート誘導体を非水電解液中に含有させることによ
るサイクル特性改善効果が特に顕著に発現されるからで
ある。 In the present invention, the solvent of the non-aqueous electrolyte is
And a vinylene carbonate derivative shown in Chemical formula 2
Carbonate, dimethyl carbonate and vinyleneca
At least one charcoal selected from the group consisting of carbonates
A mixed solvent containing an acid ester is used. Shown in Chemical formula 2
The solvent mixed with the vinylene carbonate derivative is
In the case of decomposable carbonate, vinyleneca shown in Chemical formula 2
The carbonate derivative in the non-aqueous electrolyte.
Cycle characteristic improvement effect is particularly pronounced.
is there.
【0012】さらに、ビニレンカーボネート誘導体の非
水電解液に占める割合を5〜50体積%に規制すれば、
本発明の効果が一層発現されることになる。これは、同
割合が5体積%未満の場合は、負極近傍に存在するビニ
レンカーボネート誘導体が少ないため、非水電解液の炭
素材料表面での分解を充分に抑制することができなくな
り、サイクル特性を充分に改善することができないから
であり、一方同割合が50体積%を越えた場合は、非水
電解液の電導度が低下して、充放電反応の円滑性が若干
損なわれ、サイクル特性が低下するからである。 Furthermore, if restricting the percentage of non-aqueous electrolyte bi two alkylene carbonate derivative 5 to 50% by volume,
The effect of the present invention will be further exhibited. This is because, when the proportion is less than 5% by volume, the amount of the vinylene carbonate derivative present in the vicinity of the negative electrode is small, so that the decomposition of the non-aqueous electrolyte on the surface of the carbon material cannot be sufficiently suppressed, and the cycle characteristics are deteriorated. On the other hand, if the proportion exceeds 50% by volume, the conductivity of the non-aqueous electrolyte decreases, the smoothness of the charge / discharge reaction is slightly impaired, and the cycle characteristics deteriorate. It is because it falls.
【0013】本発明は、d 002 が3.37Å以下の結晶
性の高い高容量の炭素材料を負極材料として用い、且つ
非水電解液として、易分解性の炭酸エステル(エチレン
カーボネート、ジメチルカーボネート及びビニレンカー
ボネート)を含む溶媒を用いた場合に問題となっていた
非水電解液の分解劣化を、当該非水電解液に化2に示す
ビニレンカーボネート誘導体を含有せしめることによ
り、非水電解液中の易分解性の炭酸エステルの分解を抑
制し、もってサイクル特性の改善を実現したものであ
る。それゆえ、正極材料、非水電解液の溶質などについ
ては従来非水電解液二次電池用として提案され、或いは
実用されている種々の材料を特に制限なく用いることが
可能である。The present invention relates to a crystal having d 002 of 3.37 ° or less.
High-capacity carbon material with a high capacity as the negative electrode material, and
As a non-aqueous electrolyte, a readily decomposable carbonate (ethylene
Carbonate, dimethyl carbonate and vinylene car
Decomposition and degradation of the non-aqueous electrolyte, which has been a problem when using a solvent containing (carbonate), can be easily performed in the non-aqueous electrolyte by adding the vinylene carbonate derivative shown in Chemical formula 2 to the non-aqueous electrolyte. It is intended to suppress the decomposition of the decomposable carbonate and thereby to improve the cycle characteristics. Therefore, with respect to the positive electrode material, the solute of the non-aqueous electrolyte, and the like, it is possible to use various materials which are conventionally proposed or practically used for the non-aqueous electrolyte secondary battery without any particular limitation.
【0014】正極材料(活物質)としては、LiCoO
2 、LiNiO2 、LiMnO2 、LiFeO2 が例示
され、また非水系電解液の溶質としては、LiPF6 、
LiClO4 、LiCF3 SO3 が例示される。As a positive electrode material (active material), LiCoO
The 2, LiNiO 2, LiMnO 2, LiFeO 2 and the like, also the solute of the non-aqueous electrolyte solution, LiPF 6,
LiClO 4 and LiCF 3 SO 3 are exemplified.
【0015】[0015]
【0016】本発明電池においては、非水電解液とし
て、化2で示されるビニレンカーボネート誘導体と易分
解性の炭酸エステルとを含む混合溶媒が用いられるの
で、ビニレンカーボネート誘導体が負極近傍に存在し易
く、このため易分解性の炭酸エステルが負極に近づき難
くなり、その結果易分解性の炭酸エステルの分解劣化が
抑制されることになる。In the battery of the present invention , a mixed solvent containing a vinylene carbonate derivative represented by Chemical Formula 2 and a readily decomposable carbonate ester is used as the non-aqueous electrolyte. Easy to be nearby
Therefore, the easily decomposable carbonate ester hardly approaches the negative electrode, and as a result, the degradation of the easily decomposable carbonate ester is suppressed.
【0017】因みに、金属リチウムを負極材料とする非
水電解液二次電池においても、充放電サイクルの進行に
伴い金属リチウムと非水電解液とが反応して反応生成物
(有機物)からなる被膜が金属リチウムの表面に生成
し、この被膜の生成により極板反応抵抗が増大して、サ
イクル特性が低下するという問題がある。しかし、金属
リチウムが負極材料である場合は、たとえ非水電解液に
ビニレンカーボネート誘導体を含有せしめても、金属リ
チウムと非水電解液との反応物被膜の生成を抑制できな
いため、サイクル特性が改善されることはない。従っ
て、非水電解液へのビニレンカーボネート誘導体の添加
によるサイクル特性改善効果は、負極材料が結晶性の高
い炭素材料の場合にのみ認められる効果と言い得る。Incidentally, even in a non-aqueous electrolyte secondary battery using lithium metal as a negative electrode material, as the charge / discharge cycle progresses, the lithium metal reacts with the non-aqueous electrolyte to form a coating composed of a reaction product (organic substance). Are formed on the surface of lithium metal, and the formation of this coating increases the electrode plate reaction resistance, resulting in a problem that the cycle characteristics deteriorate. However, when lithium metal is the negative electrode material, even if the vinylene carbonate derivative is contained in the nonaqueous electrolyte, the formation of a reactant film between the lithium metal and the nonaqueous electrolyte cannot be suppressed, so that the cycle characteristics are improved. It will not be done. Therefore, the effect of improving the cycle characteristics by adding the vinylene carbonate derivative to the non-aqueous electrolyte can be said to be an effect recognized only when the negative electrode material is a highly crystalline carbon material.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.
【0019】(実施例1)単3型(AAサイズ)の非水
電解液二次電池(本発明電池)を作製した。(Example 1) AA type (AA size) non-aqueous electrolyte secondary batteries (batteries of the present invention) were prepared.
【0020】〔正極〕正極活物質としてのLiNiO2
と導電剤としての人造黒鉛とを重量比9:1で混合して
得た混合物を、ポリフッ化ビニリデンの5重量%N−メ
チルピロリドン(NMP)溶液に分散させてスラリーを
調製し、このスラリーをドクターブレード法にて正極集
電体としてのアルミニウム箔の両面に塗布した後、15
0°Cで2時間真空乾燥して正極を作製した。[Positive electrode] LiNiO 2 as a positive electrode active material
A mixture obtained by mixing the graphite and artificial graphite as a conductive agent at a weight ratio of 9: 1 was dispersed in a 5% by weight N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride to prepare a slurry. After applying to both sides of aluminum foil as a positive electrode current collector by doctor blade method, 15
Vacuum drying was performed at 0 ° C. for 2 hours to produce a positive electrode.
【0021】〔負極〕黒鉛粉末(d002 =3.35Å、
Lc=2000Å)を結着剤としてのポリフッ化ビニリ
デンの5重量%NMP溶液に分散させてスラリーを調製
し、このスラリーをドクターブレード法にて負極集電体
としての銅箔の両面に塗布した後、150°Cで2時間
真空乾燥して負極を作製した。[Anode] Graphite powder (d 002 = 3.35 °,
Lc = 2000 °) is dispersed in a 5 wt% NMP solution of polyvinylidene fluoride as a binder to prepare a slurry, and this slurry is applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method. And vacuum drying at 150 ° C. for 2 hours to produce a negative electrode.
【0022】〔非水電解液〕体積混合比率が30:70
の3,4−ジメチルビニレンカーボネート(3,4−ジ
メチルVC;前記化2において、R1 及びR2 が共にメ
チル基のもの)とジメチルカーボネート(DMC)との
混合溶媒に、LiPF6 を1M(モル/リットル)の割
合で溶かして非水電解液を調製した。[Non-aqueous electrolyte] The volume mixing ratio is 30:70.
In a mixed solvent of 3,4-dimethylvinylene carbonate (3,4-dimethylVC; R 1 and R 2 are both methyl groups in the above formula 2) and dimethyl carbonate (DMC), 1M of LiPF 6 was added. (Mol / liter) to prepare a non-aqueous electrolyte.
【0023】〔電池の作製〕以上の正負両極及び非水電
解液を用いて単3型の本発明電池BA1を作製した。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
(ヘキストセラニーズ社製、商品名「セルガード」)を
使用し、これに先の非水電解液を含浸させた。[Preparation of Battery] AA type battery BA1 of the present invention was prepared using the positive and negative electrodes and the nonaqueous electrolyte described above. As the separator, a microporous polypropylene membrane (manufactured by Hoechst Celanese Co., Ltd., trade name "Celgard") was used, and this was impregnated with the above nonaqueous electrolyte.
【0024】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、非水系電解液を注
入されたセパレータ3を介して渦巻き状に巻き取られた
状態で負極缶7内に収容されており、正極1は正極リー
ド4を介して正極外部端子6に、また負極2は負極リー
ド5を介して負極缶7に接続され、電池内部で生じた化
学エネルギーを電気エネルギーとして外部へ取り出し得
るようになっている。FIG. 1 is a cross-sectional view schematically showing a manufactured battery BA1 of the present invention. The illustrated battery BA1 of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3 separating these two electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive external terminal 6, negative can 7
Etc. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound through a separator 3 into which a non-aqueous electrolyte is injected. The terminal 6 and the negative electrode 2 are connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be taken out as electric energy.
【0025】(比較例1)3,4−ジメチルビニレンカ
ーボネートとDMCとの混合溶媒に代えて、体積混合比
率が30:70のエチレンカーボネートとDMCとの混
合溶媒を用いたこと以外は実施例1と同様にして、非水
電解液を調製した。次いで、この非水電解液を用いたこ
と以外は実施例1と同様にして単3型の比較電池BC1
を作製した。Comparative Example 1 Example 1 was repeated except that a mixed solvent of ethylene carbonate and DMC having a volume mixing ratio of 30:70 was used instead of the mixed solvent of 3,4-dimethylvinylene carbonate and DMC. A non-aqueous electrolyte was prepared in the same manner as described above. Next, the AA comparative battery BC1 was manufactured in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
Was prepared.
【0026】(比較例2)3,4−ジメチルビニレンカ
ーボネートとDMCとの混合溶媒に代えて、体積混合比
率が30:70のビニレンカーボネートとDMCとの混
合溶媒を用いたこと以外は実施例1と同様にして、非水
電解液を調製した。次いで、この非水電解液を用いたこ
と以外は実施例1と同様にして単3型の比較電池BC2
を作製した。Comparative Example 2 Example 1 was repeated except that a mixed solvent of vinylene carbonate and DMC having a volume mixing ratio of 30:70 was used in place of the mixed solvent of 3,4-dimethylvinylene carbonate and DMC. A non-aqueous electrolyte was prepared in the same manner as described above. Then, the AA type comparative battery BC2 was manufactured in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
Was prepared.
【0027】〔サイクル特性〕本発明電池BA1及び比
較電池BC1、BC2(サイクル初期の放電容量はいず
れも600mAhである。)について、200mAで充
電終止電圧4.2Vまで充電した後、200mAで放電
終止電圧2.75Vまで放電して、各電池のサイクル特
性を調べた。結果を図2に示す。[Cycle Characteristics] The battery BA1 of the present invention and the comparative batteries BC1 and BC2 (the discharge capacity at the beginning of the cycle is 600 mAh) were charged at 200 mA to a charge end voltage of 4.2 V and then stopped at 200 mA. The battery was discharged to a voltage of 2.75 V, and the cycle characteristics of each battery were examined. The results are shown in FIG.
【0028】図2は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA1の1000サイクル目の放電容量は、550m
Ah(容量劣化率:8%)と大きいのに対して、比較電
池BC1,BC2の1000サイクル目の放電容量は共
に420mAh(容量劣化率:30%)と小さい。この
ことから、充放電サイクル時の非水電解液の分解に起因
する放電容量の低下が、非水電解液の溶媒に3,4−ジ
メチルビニレンカーボネートを含有させることにより顕
著に抑制されることが分かる。FIG. 2 is a graph showing the cycle characteristics of each battery, the vertical axis showing the discharge capacity (mAh), and the horizontal axis showing the number of cycles (times). As shown in FIG. The discharge capacity at the 1000th cycle of the battery BA1 is 550 m
The discharge capacity at the 1000th cycle of the comparative batteries BC1 and BC2 is as small as 420 mAh (capacity deterioration rate: 30%), whereas the Ah is large (capacity deterioration rate: 8%). From this, the decrease in the discharge capacity due to the decomposition of the non-aqueous electrolyte during the charge / discharge cycle is significantly suppressed by including 3,4-dimethylvinylene carbonate in the solvent of the non-aqueous electrolyte. I understand.
【0029】〈3,4−ジメチルビニレンカーボネート
の体積混合比率とサイクル特性との関係〉正極活物質と
してLiCoO2 を用い、且つ、3,4−ジメチルビニ
レンカーボネートとDMCとの体積混合比率を0:10
0、5:95、10:90、20:80、30:70、
40:60、50:50、60:40、70:30、8
0:20、90:10又は100:0としたこと以外は
実施例1と同様にして、本発明電池及び比較電池を作製
した。次いで、先と同じ条件で充放電サイクル試験を行
って各電池の1000サイクル目の容量劣化率を求め、
3,4−ジメチルビニレンカーボネートとDMCとの体
積混合比率と、サイクル特性との関係を調べた。結果を
図3に示す。<Relationship between volume mixing ratio of 3,4-dimethylvinylene carbonate and cycle characteristics> LiCoO 2 is used as a positive electrode active material, and the volume mixing ratio of 3,4-dimethylvinylene carbonate and DMC is 0: 10
0, 5:95, 10:90, 20:80, 30:70,
40:60, 50:50, 60:40, 70:30, 8
A battery of the present invention and a comparative battery were produced in the same manner as in Example 1 except that 0:20, 90:10 or 100: 0 was used. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the capacity deterioration rate at the 1000th cycle of each battery.
The relationship between the volume mixing ratio of 3,4-dimethylvinylene carbonate and DMC and the cycle characteristics was examined. The results are shown in FIG.
【0030】図3は、縦軸に放電容量(mAh)を、ま
た横軸に3,4−ジメチルビニレンカーボネートとDM
Cとの体積混合比率をとって示したグラフであり、同図
に示すように、非水電解液に対する3,4−ジメチルビ
ニレンカーボネートの割合を5〜50体積%とした場合
に、容量劣化率を特に小さくすることができ、優れたサ
イクル特性を発現する非水電解液二次電池が得られるこ
とが分かる。In FIG. 3, the vertical axis represents the discharge capacity (mAh), and the horizontal axis represents 3,4-dimethylvinylene carbonate and DMH.
5 is a graph showing the volume mixing ratio with C, and as shown in the figure, when the ratio of 3,4-dimethylvinylene carbonate to the nonaqueous electrolyte is 5 to 50% by volume, the capacity deterioration rate It can be seen that the non-aqueous electrolyte secondary battery exhibiting excellent cycle characteristics can be obtained.
【0031】[0031]
【0032】[0032]
【0033】[0033]
【0034】[0034]
【0035】[0035]
【0036】叙上の実施例では、本発明を単3型電池に
適用する場合を例に挙げて説明したが、本発明電池はそ
の形状に特に制限はなく、扁平型、角型など、他の種々
の形状の非水電解液二次電池に適用し得るものである。In the embodiments described above, the case where the present invention is applied to an AA battery is described as an example. However, the shape of the battery of the present invention is not particularly limited. Which can be applied to non-aqueous electrolyte secondary batteries of various shapes.
【0037】また、上記実施例では、ビニレンカーボネ
ート誘導体として3,4−ジメチルビニレンカーボネー
トを用いる場合を例に挙げて説明したが、3,4−ジエ
チルビニレンカーボネート、3,4−ジプロピルビニレ
ンカーボネートなどの外、他のビニレンカーボネート誘
導体を用いた場合にも同様の優れたサイクル特性を発現
する非水電解液二次電池を得ることが可能である。In the above embodiment, 3,4-dimethylvinylene carbonate was used as the vinylene carbonate derivative.
While the case of using the door has been described as an example, 3,4-diethyl
It is possible to obtain a non-aqueous electrolyte secondary battery that exhibits similar excellent cycle characteristics even when other vinylene carbonate derivatives are used in addition to tylvinylene carbonate, 3,4-dipropylvinylene carbonate, and the like. .
【0038】[0038]
【発明の効果】炭素材料の表面における非水電解液の分
解が抑制されるので、本発明電池は充放電サイクルの進
行に伴う容量劣化率が小さくサイクル特性に優れるな
ど、本発明は優れた特有の効果を奏する。Since the decomposition of the non-aqueous electrolyte on the surface of the carbon material is suppressed, the battery of the present invention has a unique characteristic that the battery has a small capacity deterioration rate along with the progress of the charge / discharge cycle and excellent cycle characteristics. Has the effect of
【図1】単3型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of an AA battery of the present invention.
【図2】本発明電池及び比較電池のサイクル特性を示す
グラフである。FIG. 2 is a graph showing cycle characteristics of the battery of the present invention and a comparative battery.
【図3】3,4−ジメチルビニレンカーボネートとDM
Cとの体積混合比率と、放電容量との関係を示すグラフ
である。FIG. 3: 3,4-dimethylvinylene carbonate and DM
6 is a graph showing a relationship between a volume mixing ratio with C and a discharge capacity.
BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭62−90863(JP,A) 特開 平2−215059(JP,A) 特開 昭63−121260(JP,A) 特開 平4−169075(JP,A) 特開 平2−172162(JP,A) 特開 平5−13088(JP,A) 特開 平6−52887(JP,A) 特開 平6−275271(JP,A) 特開 平4−95362(JP,A) 特開 平5−211070(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/58 H01M 4/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, inventor 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-62-90863 (JP, A) JP-A-2-215059 (JP, A) JP-A-63-121260 (JP, A) JP-A-4-169075 (JP JP, A) JP-A-2-172162 (JP, A) JP-A-5-13088 (JP, A) JP-A-6-52887 (JP, A) JP-A-6-275271 (JP, A) JP JP-A-4-95362 (JP, A) JP-A-5-211070 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/58 H01M 4/02
Claims (2)
(d 002 )が3.37Å以下の炭素材料を負極材料とす
る負極と、エチレンカーボネート、ジメチルカーボネー
ト及びビニレンカーボネートよりなる群から選ばれた少
なくとも一種の炭酸エステルが含まれている非水電解液
とを備える非水電解液二次電池において、前記非水電解
液に、化1に示すビニレンカーボネート誘導体が含まれ
ていることを特徴とする非水電解液二次電池。 【化1】 〔但し、R1 及びR2 は各独立して、炭素数1〜3のア
ルキル基を表す。〕1. A d value in a positive electrode and a lattice plane (002) plane
A negative electrode using a carbon material (d 002 ) of 3.37 ° or less as a negative electrode material; ethylene carbonate and dimethyl carbonate;
And vinylene carbonate.
A non-aqueous electrolyte secondary battery comprising at least one non-aqueous electrolyte solution containing a carbonate ester , wherein the non-aqueous electrolyte solution contains a vinylene carbonate derivative represented by Chemical Formula 1. Non-aqueous electrolyte secondary battery. Embedded image [However, R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms. ]
水電解液中に占める割合が、5〜50体積%である請求
項1記載の非水電解液二次電池。2. The method of claim 1, wherein the vinylene carbonate derivative is
The non-aqueous electrolyte secondary battery according to claim 1 , wherein the proportion of the non-aqueous electrolyte in the aqueous electrolyte is 5 to 50% by volume .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28566693A JP3213459B2 (en) | 1993-10-20 | 1993-10-20 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28566693A JP3213459B2 (en) | 1993-10-20 | 1993-10-20 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07122296A JPH07122296A (en) | 1995-05-12 |
JP3213459B2 true JP3213459B2 (en) | 2001-10-02 |
Family
ID=17694486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28566693A Expired - Fee Related JP3213459B2 (en) | 1993-10-20 | 1993-10-20 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3213459B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7680750B2 (en) | 2006-06-29 | 2010-03-16 | General Electric Company | Method of planning train movement using a three step optimization engine |
US7715977B2 (en) | 2003-02-27 | 2010-05-11 | General Electric Company | System and method for computer aided dispatching using a coordinating agent |
US7725249B2 (en) | 2003-02-27 | 2010-05-25 | General Electric Company | Method and apparatus for congestion management |
US7734383B2 (en) | 2006-05-02 | 2010-06-08 | General Electric Company | Method and apparatus for planning the movement of trains using dynamic analysis |
US7797087B2 (en) | 2003-02-27 | 2010-09-14 | General Electric Company | Method and apparatus for selectively disabling train location reports |
US7797088B2 (en) | 2006-05-02 | 2010-09-14 | General Electric Company | Method and apparatus for planning linked train movements |
US7813846B2 (en) | 2005-03-14 | 2010-10-12 | General Electric Company | System and method for railyard planning |
US7829226B2 (en) | 2005-06-07 | 2010-11-09 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery |
US7908047B2 (en) | 2004-06-29 | 2011-03-15 | General Electric Company | Method and apparatus for run-time incorporation of domain data configuration changes |
US7937193B2 (en) | 2003-02-27 | 2011-05-03 | General Electric Company | Method and apparatus for coordinating railway line of road and yard planners |
US8082071B2 (en) | 2006-09-11 | 2011-12-20 | General Electric Company | System and method of multi-generation positive train control system |
US8292172B2 (en) | 2003-07-29 | 2012-10-23 | General Electric Company | Enhanced recordation device for rail car inspections |
US8433461B2 (en) | 2006-11-02 | 2013-04-30 | General Electric Company | Method of planning the movement of trains using pre-allocation of resources |
US8498762B2 (en) | 2006-05-02 | 2013-07-30 | General Electric Company | Method of planning the movement of trains using route protection |
US8589057B2 (en) | 2003-02-27 | 2013-11-19 | General Electric Company | Method and apparatus for automatic selection of alternative routing through congested areas using congestion prediction metrics |
US8751073B2 (en) | 2006-03-20 | 2014-06-10 | General Electric Company | Method and apparatus for optimizing a train trip using signal information |
US8768543B2 (en) | 2006-03-20 | 2014-07-01 | General Electric Company | Method, system and computer software code for trip optimization with train/track database augmentation |
US9669851B2 (en) | 2012-11-21 | 2017-06-06 | General Electric Company | Route examination system and method |
US9733625B2 (en) | 2006-03-20 | 2017-08-15 | General Electric Company | Trip optimization system and method for a train |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2719161B1 (en) * | 1994-04-22 | 1996-08-02 | Accumulateurs Fixes | Electrochemical rechargeable lithium battery with carbon anode. |
JP3440870B2 (en) * | 1999-04-27 | 2003-08-25 | 新神戸電機株式会社 | Cylindrical lithium-ion battery |
JP2003115325A (en) * | 2001-07-27 | 2003-04-18 | Mitsubishi Chemicals Corp | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same |
JP4618399B2 (en) | 2002-06-11 | 2011-01-26 | 日本電気株式会社 | Secondary battery electrolyte and secondary battery using the same |
JP5169400B2 (en) | 2008-04-07 | 2013-03-27 | Necエナジーデバイス株式会社 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
JP2010198922A (en) | 2009-02-25 | 2010-09-09 | Sony Corp | Secondary battery |
JP5966525B2 (en) * | 2012-03-30 | 2016-08-10 | 三菱化学株式会社 | Non-aqueous electrolyte for non-aqueous electrolyte secondary battery and battery using the same |
-
1993
- 1993-10-20 JP JP28566693A patent/JP3213459B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7715977B2 (en) | 2003-02-27 | 2010-05-11 | General Electric Company | System and method for computer aided dispatching using a coordinating agent |
US7725249B2 (en) | 2003-02-27 | 2010-05-25 | General Electric Company | Method and apparatus for congestion management |
US7797087B2 (en) | 2003-02-27 | 2010-09-14 | General Electric Company | Method and apparatus for selectively disabling train location reports |
US7937193B2 (en) | 2003-02-27 | 2011-05-03 | General Electric Company | Method and apparatus for coordinating railway line of road and yard planners |
US8589057B2 (en) | 2003-02-27 | 2013-11-19 | General Electric Company | Method and apparatus for automatic selection of alternative routing through congested areas using congestion prediction metrics |
US8292172B2 (en) | 2003-07-29 | 2012-10-23 | General Electric Company | Enhanced recordation device for rail car inspections |
US7908047B2 (en) | 2004-06-29 | 2011-03-15 | General Electric Company | Method and apparatus for run-time incorporation of domain data configuration changes |
US7813846B2 (en) | 2005-03-14 | 2010-10-12 | General Electric Company | System and method for railyard planning |
US7829226B2 (en) | 2005-06-07 | 2010-11-09 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery |
US8852818B2 (en) | 2005-06-07 | 2014-10-07 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery |
US8768543B2 (en) | 2006-03-20 | 2014-07-01 | General Electric Company | Method, system and computer software code for trip optimization with train/track database augmentation |
US9733625B2 (en) | 2006-03-20 | 2017-08-15 | General Electric Company | Trip optimization system and method for a train |
US8751073B2 (en) | 2006-03-20 | 2014-06-10 | General Electric Company | Method and apparatus for optimizing a train trip using signal information |
US7797088B2 (en) | 2006-05-02 | 2010-09-14 | General Electric Company | Method and apparatus for planning linked train movements |
US8498762B2 (en) | 2006-05-02 | 2013-07-30 | General Electric Company | Method of planning the movement of trains using route protection |
US7734383B2 (en) | 2006-05-02 | 2010-06-08 | General Electric Company | Method and apparatus for planning the movement of trains using dynamic analysis |
US7680750B2 (en) | 2006-06-29 | 2010-03-16 | General Electric Company | Method of planning train movement using a three step optimization engine |
US8082071B2 (en) | 2006-09-11 | 2011-12-20 | General Electric Company | System and method of multi-generation positive train control system |
US8433461B2 (en) | 2006-11-02 | 2013-04-30 | General Electric Company | Method of planning the movement of trains using pre-allocation of resources |
US9669851B2 (en) | 2012-11-21 | 2017-06-06 | General Electric Company | Route examination system and method |
Also Published As
Publication number | Publication date |
---|---|
JPH07122296A (en) | 1995-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3213459B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3316412B2 (en) | Lithium secondary battery | |
US20030180618A1 (en) | Nonaqueous electrolyte secondary battery | |
JPH09147913A (en) | Nonaqueous electrolyte battery | |
JPH08236155A (en) | Lithium secondary battery | |
JPH10247519A (en) | Lithium secondary battery | |
JP2002025611A (en) | Nonaqueous electrolyte secondary battery | |
JPH07235297A (en) | Nonaqueous electrolyte secondary battery | |
JP3244389B2 (en) | Lithium secondary battery | |
JP3349399B2 (en) | Lithium secondary battery | |
JPH11273725A (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using it | |
JPH07114940A (en) | Non-aqueous electrolyte secondary battery | |
JP2003031259A (en) | Nonaqueous electrolyte secondary battery | |
JPH09147910A (en) | Lithium secondary battery | |
JP4915025B2 (en) | Nonaqueous electrolyte and lithium secondary battery | |
JP4042082B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
JP4042083B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
JP3188032B2 (en) | Lithium secondary battery | |
JPH08306386A (en) | Manaqueous electrolyte secondary battery | |
JPH08171936A (en) | Lithium secondary battery | |
JP2002313416A (en) | Non-aqueous electrolyte secondary battery | |
JP3268924B2 (en) | Non-aqueous electrolyte battery | |
JPH11273723A (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using same | |
JP4161396B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH08171934A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |