JPH07122296A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH07122296A
JPH07122296A JP5285666A JP28566693A JPH07122296A JP H07122296 A JPH07122296 A JP H07122296A JP 5285666 A JP5285666 A JP 5285666A JP 28566693 A JP28566693 A JP 28566693A JP H07122296 A JPH07122296 A JP H07122296A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
battery
positive electrode
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5285666A
Other languages
Japanese (ja)
Other versions
JP3213459B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Yuji Yamamoto
祐司 山本
Atsushi Suemori
敦 末森
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28566693A priority Critical patent/JP3213459B2/en
Publication of JPH07122296A publication Critical patent/JPH07122296A/en
Application granted granted Critical
Publication of JP3213459B2 publication Critical patent/JP3213459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance cycle characteristic of a battery having a negative electrode made of a carbon material by including a vinylene carbonate derivative of specific structure into a non-aqueous electrolyte. CONSTITUTION:Containing of a vinylene carbonate derivative expressed by the formula into a non-aqueous electrolyte can restrain decomposing deterioration of the non-aqueous electrolyte because the derivative is stable with respect to lithium and is liable to exist in the vicinity of a negative electrode 2. A positive electrode 1 and the negative electrode 2 are housed inside a negative electrode can 7 in a spirally wound state via a separator 3, into which the non-aqueous electrolyte is injected. The positive electrode 1 is connected to a positive electrode outside terminal via a positive electrode lead 4 while the negative electrode 2 is connected to the negative electrode can 7 via a negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy. In the formula, R<1> and R<2> indepently represent an alkyl group having l-3 carbon numbers. Furthermore, the use of 3,4- dimethylvinylene carbonate as a solvent of the non-aqueous electrolyte during electric charging/discharging can enhance a cycle characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
係わり、詳しくはサイクル特性の改善を目的とした、非
水電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a non-aqueous electrolyte for the purpose of improving cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
コークス、黒鉛等の炭素材料が、可撓性に優れること、
樹枝状の電析リチウムの成長に因る内部短絡の虞れが無
いことなどの理由から、従前の金属リチウムに代わる非
水電解液二次電池の新しい負極材料として提案されてい
る。
2. Description of the Related Art In recent years,
Carbon materials such as coke and graphite have excellent flexibility,
It has been proposed as a new negative electrode material for a non-aqueous electrolyte secondary battery, which replaces the conventional metal lithium, because there is no possibility of internal short circuit due to the growth of dendritic electrodeposited lithium.

【0003】このように、負極材料として炭素材料を用
いた電池では、非水電解液の種類により電池特性が大き
く変化することが知られている。この場合、非水電解液
にエチレンカーボネート、ジメチルカーボネート又はビ
ニレンカーボネート等の炭酸エステルを用いると、炭素
材料からなる負極の電気化学的特性を十分に発揮させる
ことができる。
As described above, it is known that in a battery using a carbon material as the negative electrode material, the battery characteristics greatly change depending on the type of non-aqueous electrolyte. In this case, when a carbonic acid ester such as ethylene carbonate, dimethyl carbonate or vinylene carbonate is used for the non-aqueous electrolyte, the electrochemical characteristics of the negative electrode made of a carbon material can be sufficiently exhibited.

【0004】しかしながら、炭素材料を負極材料として
用い、且つ、炭酸エステルを非水電解液の溶媒として用
いた場合には、充放電サイクルの進行に伴い炭素負極上
で非水電解液がガスの発生を伴って分解するため電池容
量が次第に低下するという問題が生じる。すなわち、炭
素材料と炭酸エステルとを組み合わせて用いると高容量
化が可能であるという利点がある反面、非水電解液の分
解が生じ易いためサイクル特性が良くないという欠点が
あるのである。このような欠点は、結晶性が高い、すな
わち黒鉛化度が大きい炭素材料を負極材料に用いた場合
に特に生じ易い。
However, when the carbon material is used as the negative electrode material and the carbonic acid ester is used as the solvent of the nonaqueous electrolytic solution, the nonaqueous electrolytic solution generates gas on the carbon negative electrode as the charging / discharging cycle progresses. As a result, the battery capacity is gradually reduced because of the decomposition. That is, when a carbon material and a carbonic acid ester are used in combination, there is an advantage that the capacity can be increased, but on the other hand, there is a disadvantage that the cycle characteristics are not good because the non-aqueous electrolyte is easily decomposed. Such a defect is likely to occur particularly when a carbon material having high crystallinity, that is, having a high degree of graphitization is used as the negative electrode material.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、炭素材料を負極材
料とする非水電解液二次電池のサイクル特性を改善する
にある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve cycle characteristics of a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池(以下「本発明電
池」と称する。)は、正極と、炭素材料を負極材料とす
る負極と、非水電解液とを備える非水電解液二次電池に
おいて、前記非水電解液に化2に示すビニレンカーボネ
ート誘導体が含まれていることを特徴とする。
A non-aqueous electrolyte secondary battery according to the present invention (hereinafter referred to as "the present battery") for achieving the above object comprises a positive electrode and a carbon material as a negative electrode material. A non-aqueous electrolyte secondary battery comprising a negative electrode and a non-aqueous electrolyte is characterized in that the non-aqueous electrolyte contains the vinylene carbonate derivative shown in Chemical formula 2.

【0007】[0007]

【化2】 〔但し、R1 及びR2 は各独立して、炭素数1〜3のア
ルキル基を表す。〕
[Chemical 2] [However, R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms. ]

【0008】上記化2で示されるビニレンカーボネート
誘導体の具体例としては、3,4−ジメチルビニレンカ
ーボネート、3,4−ジエチルビニレンカーボネート及
び3,4−ジプロピルビニレンカーボネートが挙げられ
る。
Specific examples of the vinylene carbonate derivative represented by the above chemical formula 2 include 3,4-dimethylvinylene carbonate, 3,4-diethylvinylene carbonate and 3,4-dipropylvinylene carbonate.

【0009】非水電解液がビニレンカーボネート誘導体
を含む場合には、当該誘導体はリチウムに対して安定で
あり、しかも負極の近傍に存在し易いということに起因
して、非水電解液の分解劣化が抑制される。
When the non-aqueous electrolyte contains a vinylene carbonate derivative, the derivative is stable against lithium and easily exists in the vicinity of the negative electrode, which causes decomposition and deterioration of the non-aqueous electrolyte. Is suppressed.

【0010】特に、炭素材料のd002 が3.37Å以下
の結晶性の高い高容量の炭素材料を用いた場合には、非
水電解液の分解劣化が特に著しく認められるので、本発
明の効果が十分に発揮される。かかる結晶性の高い炭素
材料としては、黒鉛(天然黒鉛及び人造黒鉛)の他、例
えば高圧処理などにより結晶性を高めてd002 値を3.
37Å以下にした変性コークスが挙げられる。
In particular, when a high-capacity carbon material having high crystallinity and d 002 of 3.37Å or less is used, decomposition and deterioration of the non-aqueous electrolyte is particularly noticeable. Is fully demonstrated. Examples of such a carbon material having high crystallinity include graphite (natural graphite and artificial graphite), as well as high crystallinity to enhance the crystallinity so that the d 002 value is 3.
Examples of the modified coke are 37 Å or less.

【0011】また、非水電解液の溶媒としては、ビニレ
ンカーボネート誘導体の単独溶媒を用いることができる
他、ビニレンカーボネート誘導体と他の溶媒との混合溶
媒を用いることもできる。この場合、他の溶媒として
は、エチレンカーボネート、ビニレンカーボネート、プ
ロピレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、エトキシメトキシエタンなどが例示
されるが、この混合する溶媒がエチレンカーボネート、
ジメチルカーボネート、ビニレンカーボネート等の易分
解性の炭酸エステルの場合に、化2に示すビニレンカー
ボネート誘導体を非水電解液中に含有させることによる
サイクル特性改善効果が特に顕著に発現される。
As the solvent of the non-aqueous electrolyte, a single solvent of the vinylene carbonate derivative can be used, or a mixed solvent of the vinylene carbonate derivative and another solvent can be used. In this case, other solvents include ethylene carbonate, vinylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-
Diethoxyethane, ethoxymethoxyethane and the like are exemplified, but the mixed solvent is ethylene carbonate,
In the case of an easily decomposable carbonic acid ester such as dimethyl carbonate or vinylene carbonate, the effect of improving the cycle characteristics by incorporating the vinylene carbonate derivative shown in Chemical formula 2 into the non-aqueous electrolyte is particularly remarkable.

【0012】さらに、非水電解液の溶媒が混合溶媒から
成る場合に、ビニレンカーボネート誘導体の非水電解液
に占める割合を5〜50体積%に規制すれば、本発明の
効果が一層発現されることになる。これは、同割合が5
体積%未満の場合は、負極近傍に存在するビニレンカー
ボネート誘導体が少ないため、非水電解液の炭素材料表
面での分解を充分に抑制することができなくなり、サイ
クル特性を充分に改善することができないからであり、
一方同割合が50体積%を越えた場合は、非水電解液の
電導度が低下して、充放電反応の円滑性が若干損なわ
れ、サイクル特性が低下するからである。
Further, when the solvent of the non-aqueous electrolyte is composed of a mixed solvent, the effect of the present invention is further exhibited by limiting the proportion of the vinylene carbonate derivative in the non-aqueous electrolyte to 5 to 50% by volume. It will be. This is the same ratio 5
If it is less than the volume%, the vinylene carbonate derivative existing in the vicinity of the negative electrode is small, so that the decomposition of the non-aqueous electrolyte on the surface of the carbon material cannot be sufficiently suppressed and the cycle characteristics cannot be sufficiently improved. From
On the other hand, if the ratio exceeds 50% by volume, the conductivity of the non-aqueous electrolyte solution is lowered, the smoothness of the charge / discharge reaction is slightly impaired, and the cycle characteristics are lowered.

【0013】本発明は、炭素材料を負極材料として用い
た場合に問題となっていた非水電解液の分解劣化を、当
該非水電解液に化2に示すビニレンカーボネート誘導体
を含有せしめることにより、非水電解液の分解を抑制
し、もってサイクル特性の改善を実現したものである。
それゆえ、正極材料、非水電解液の溶質などについては
従来非水電解液二次電池用として提案され、或いは実用
されている種々の材料を特に制限なく用いることが可能
である。
According to the present invention, by incorporating the vinylene carbonate derivative shown in Chemical formula 2 into the non-aqueous electrolytic solution, the decomposition degradation of the non-aqueous electrolytic solution, which has been a problem when a carbon material is used as a negative electrode material, The decomposition of the non-aqueous electrolyte is suppressed, and thus the cycle characteristics are improved.
Therefore, as the positive electrode material, the solute of the non-aqueous electrolytic solution, and the like, various materials that have been proposed or put into practical use for the non-aqueous electrolytic solution secondary battery can be used without particular limitation.

【0014】正極材料(活物質)としては、LiCoO
2 、LiNiO2 、LiMnO2 、LiFeO2 が例示
され、また非水系電解液の溶質としては、LiPF6
LiClO4 、LiCF3 SO3 が例示される。
LiCoO is used as the positive electrode material (active material).
The 2, LiNiO 2, LiMnO 2, LiFeO 2 and the like, also the solute of the non-aqueous electrolyte solution, LiPF 6,
Examples are LiClO 4 and LiCF 3 SO 3 .

【0015】[0015]

【作用】非水電解液の溶媒としてビニレンカーボネート
誘導体を単独で用いた場合には、ビニレンカーボネート
誘導体はリチウムに対して安定であるので、非水電解液
の分解劣化が抑制される。
When the vinylene carbonate derivative is used alone as the solvent for the non-aqueous electrolytic solution, the vinylene carbonate derivative is stable against lithium, so that decomposition and deterioration of the non-aqueous electrolytic solution is suppressed.

【0016】また、非水電解液として、ビニレンカーボ
ネート誘導体と他の易分解性の炭酸エステルとの混合溶
媒を用いた場合には、ビニレンカーボネート誘導体が負
極近傍に存在し易いため他の易分解性の炭酸エステルが
負極に近づき難くなり、その結果易分解性の炭酸エステ
ルの分解劣化が抑制されることになる。
When a mixed solvent of a vinylene carbonate derivative and another easily decomposable carbonic acid ester is used as the non-aqueous electrolyte, the vinylene carbonate derivative is likely to be present in the vicinity of the negative electrode so that the other easily decomposable solution is obtained. It becomes difficult for the carbonic acid ester to approach the negative electrode, and as a result, decomposition degradation of the easily decomposable carbonic acid ester is suppressed.

【0017】因みに、金属リチウムを負極材料とする非
水電解液二次電池においても、充放電サイクルの進行に
伴い金属リチウムと非水電解液とが反応して反応生成物
(有機物)からなる被膜が金属リチウムの表面に生成
し、この被膜の生成により極板反応抵抗が増大して、サ
イクル特性が低下するという問題がある。しかし、金属
リチウムが負極材料である場合は、たとえ非水電解液に
ビニレンカーボネート誘導体を含有せしめても、金属リ
チウムと非水電解液との反応物被膜の生成を抑制できな
いため、サイクル特性が改善されることはない。従っ
て、非水電解液へのビニレンカーボネート誘導体の添加
によるサイクル特性改善効果は、負極材料が結晶性の高
い炭素材料の場合にのみ認められる効果と言い得る。
Incidentally, also in a non-aqueous electrolyte secondary battery using metallic lithium as a negative electrode material, a film formed of a reaction product (organic substance) by reaction between metallic lithium and the non-aqueous electrolyte as the charging / discharging cycle progresses. Is generated on the surface of metallic lithium, and the reaction of the electrode plate increases due to the formation of this coating, which causes a problem of deterioration in cycle characteristics. However, when metallic lithium is the negative electrode material, even if the non-aqueous electrolyte contains a vinylene carbonate derivative, it is not possible to suppress the formation of a reactant coating film of metallic lithium and the non-aqueous electrolyte, so that cycle characteristics are improved. It will not be done. Therefore, it can be said that the effect of improving the cycle characteristics by adding the vinylene carbonate derivative to the non-aqueous electrolytic solution is an effect that can be recognized only when the negative electrode material is a carbon material having high crystallinity.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0019】(実施例1)単3型(AAサイズ)の非水
電解液二次電池(本発明電池)を作製した。
Example 1 AA type (AA size) non-aqueous electrolyte secondary battery (the battery of the present invention) was produced.

【0020】〔正極〕正極活物質としてのLiNiO2
と導電剤としての人造黒鉛とを重量比9:1で混合して
得た混合物を、ポリフッ化ビニリデンの5重量%N−メ
チルピロリドン(NMP)溶液に分散させてスラリーを
調製し、このスラリーをドクターブレード法にて正極集
電体としてのアルミニウム箔の両面に塗布した後、15
0°Cで2時間真空乾燥して正極を作製した。
[Positive electrode] LiNiO 2 as a positive electrode active material
And a mixture of artificial graphite as a conductive agent in a weight ratio of 9: 1 were dispersed in a 5 wt% N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride to prepare a slurry. After applying on both sides of the aluminum foil as the positive electrode current collector by the doctor blade method, 15
Vacuum drying was carried out at 0 ° C. for 2 hours to prepare a positive electrode.

【0021】〔負極〕黒鉛粉末(d002 =3.35Å、
Lc=2000Å)を結着剤としてのポリフッ化ビニリ
デンの5重量%NMP溶液に分散させてスラリーを調製
し、このスラリーをドクターブレード法にて負極集電体
としての銅箔の両面に塗布した後、150°Cで2時間
真空乾燥して負極を作製した。
[Negative electrode] Graphite powder (d 002 = 3.35Å,
Lc = 2000Å) was dispersed in a 5 wt% NMP solution of polyvinylidene fluoride as a binder to prepare a slurry, and the slurry was applied to both sides of a copper foil as a negative electrode current collector by a doctor blade method. The negative electrode was manufactured by vacuum drying at 150 ° C. for 2 hours.

【0022】〔非水電解液〕体積混合比率が30:70
の3,4−ジメチルビニレンカーボネート(3,4−ジ
メチルVC;前記化2において、R1 及びR2 が共にメ
チル基のもの)とジメチルカーボネート(DMC)との
混合溶媒に、LiPF6 を1M(モル/リットル)の割
合で溶かして非水電解液を調製した。
[Non-aqueous electrolyte] Volume mixing ratio is 30:70
LiPF 6 in a mixed solvent of dimethyl carbonate (DMC) and 3,4-dimethylvinylene carbonate (3,4-dimethyl VC; wherein R 1 and R 2 are both methyl groups in Chemical Formula 2) of 1 M ( A non-aqueous electrolytic solution was prepared by dissolving it at a ratio of (mol / l).

【0023】〔電池の作製〕以上の正負両極及び非水電
解液を用いて単3型の本発明電池BA1を作製した。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
(ヘキストセラニーズ社製、商品名「セルガード」)を
使用し、これに先の非水電解液を含浸させた。
[Production of Battery] AA-type battery BA1 of the present invention was produced using the above-described positive and negative electrodes and a non-aqueous electrolyte. As the separator, a polypropylene microporous film (Hoechst Celanese Co., Ltd., trade name “Celgard”) was used and impregnated with the above non-aqueous electrolyte.

【0024】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、非水系電解液を注
入されたセパレータ3を介して渦巻き状に巻き取られた
状態で負極缶7内に収容されており、正極1は正極リー
ド4を介して正極外部端子6に、また負極2は負極リー
ド5を介して負極缶7に接続され、電池内部で生じた化
学エネルギーを電気エネルギーとして外部へ取り出し得
るようになっている。
FIG. 1 is a sectional view schematically showing the produced battery BA1 of the present invention. The illustrated battery BA1 of the present invention comprises a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive electrode external terminal 6, negative electrode can 7
And so on. The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a spirally wound state via the separator 3 in which the non-aqueous electrolyte solution is injected, and the positive electrode 1 is connected to the outside of the positive electrode via the positive electrode lead 4. The terminal 6 and the negative electrode 2 are connected to the negative electrode can 7 via the negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy to the outside.

【0025】(比較例1)3,4−ジメチルビニレンカ
ーボネートとDMCとの混合溶媒に代えて、体積混合比
率が30:70のエチレンカーボネートとDMCとの混
合溶媒を用いたこと以外は実施例1と同様にして、非水
電解液を調製した。次いで、この非水電解液を用いたこ
と以外は実施例1と同様にして単3型の比較電池BC1
を作製した。
Comparative Example 1 Example 1 was repeated except that a mixed solvent of ethylene carbonate and DMC with a volume mixing ratio of 30:70 was used in place of the mixed solvent of 3,4-dimethylvinylene carbonate and DMC. A nonaqueous electrolytic solution was prepared in the same manner as in. Then, AA type comparative battery BC1 was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
Was produced.

【0026】(比較例2)3,4−ジメチルビニレンカ
ーボネートとDMCとの混合溶媒に代えて、体積混合比
率が30:70のビニレンカーボネートとDMCとの混
合溶媒を用いたこと以外は実施例1と同様にして、非水
電解液を調製した。次いで、この非水電解液を用いたこ
と以外は実施例1と同様にして単3型の比較電池BC2
を作製した。
Comparative Example 2 Example 1 was repeated except that a mixed solvent of vinylene carbonate and DMC having a volume mixing ratio of 30:70 was used in place of the mixed solvent of 3,4-dimethylvinylene carbonate and DMC. A nonaqueous electrolytic solution was prepared in the same manner as in. Then, AA type comparative battery BC2 was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
Was produced.

【0027】〔サイクル特性〕本発明電池BA1及び比
較電池BC1、BC2(サイクル初期の放電容量はいず
れも600mAhである。)について、200mAで充
電終止電圧4.2Vまで充電した後、200mAで放電
終止電圧2.75Vまで放電して、各電池のサイクル特
性を調べた。結果を図2に示す。
[Cycle Characteristics] The battery BA1 of the present invention and the comparative batteries BC1 and BC2 (the discharge capacities at the initial stage of the cycle are all 600 mAh) were charged at 200 mA to a cutoff voltage of 4.2 V, and then discharged at 200 mA The battery was discharged to a voltage of 2.75V and the cycle characteristics of each battery were examined. The results are shown in Figure 2.

【0028】図2は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA1の1000サイクル目の放電容量は、550m
Ah(容量劣化率:8%)と大きいのに対して、比較電
池BC1,BC2の1000サイクル目の放電容量は共
に420mAh(容量劣化率:30%)と小さい。この
ことから、充放電サイクル時の非水電解液の分解に起因
する放電容量の低下が、非水電解液の溶媒に3,4−ジ
メチルビニレンカーボネートを含有させることにより顕
著に抑制されることが分かる。
FIG. 2 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. The discharge capacity at the 1000th cycle of the battery BA1 is 550 m
Ah (capacity deterioration rate: 8%) is large, whereas the discharge capacities of the 1000th cycle of the comparative batteries BC1 and BC2 are both small at 420 mAh (capacity deterioration rate: 30%). From this, the decrease in discharge capacity due to the decomposition of the nonaqueous electrolytic solution during the charge / discharge cycle can be significantly suppressed by incorporating 3,4-dimethylvinylene carbonate in the solvent of the nonaqueous electrolytic solution. I understand.

【0029】〈3,4−ジメチルビニレンカーボネート
の体積混合比率とサイクル特性との関係〉正極活物質と
してLiCoO2 を用い、且つ、3,4−ジメチルビニ
レンカーボネートとDMCとの体積混合比率を0:10
0、5:95、10:90、20:80、30:70、
40:60、50:50、60:40、70:30、8
0:20、90:10又は100:0としたこと以外は
実施例1と同様にして、本発明電池及び比較電池を作製
した。次いで、先と同じ条件で充放電サイクル試験を行
って各電池の1000サイクル目の容量劣化率を求め、
3,4−ジメチルビニレンカーボネートとDMCとの体
積混合比率と、サイクル特性との関係を調べた。結果を
図3に示す。
<Relationship between Volume Mixing Ratio of 3,4-Dimethylvinylene Carbonate and Cycle Characteristics> LiCoO 2 was used as the positive electrode active material, and the volume mixing ratio of 3,4-dimethylvinylene carbonate and DMC was 0: 10
0, 5:95, 10:90, 20:80, 30:70,
40:60, 50:50, 60:40, 70:30, 8
A battery of the present invention and a comparative battery were produced in the same manner as in Example 1 except that the ratio was 0:20, 90:10 or 100: 0. Then, a charge / discharge cycle test was performed under the same conditions as above to obtain the capacity deterioration rate at the 1000th cycle of each battery,
The relationship between the volume mixing ratio of 3,4-dimethylvinylene carbonate and DMC and the cycle characteristics was examined. The results are shown in Fig. 3.

【0030】図3は、縦軸に放電容量(mAh)を、ま
た横軸に3,4−ジメチルビニレンカーボネートとDM
Cとの体積混合比率をとって示したグラフであり、同図
に示すように、非水電解液に対する3,4−ジメチルビ
ニレンカーボネートの割合を5〜50体積%とした場合
に、容量劣化率を特に小さくすることができ、優れたサ
イクル特性を発現する非水電解液二次電池が得られるこ
とが分かる。
In FIG. 3, the vertical axis represents discharge capacity (mAh) and the horizontal axis represents 3,4-dimethylvinylene carbonate and DM.
6 is a graph showing a volume mixing ratio with C, and as shown in the figure, when the ratio of 3,4-dimethylvinylene carbonate to the non-aqueous electrolyte is 5 to 50% by volume, the capacity deterioration rate It can be seen that a non-aqueous electrolyte secondary battery exhibiting excellent cycle characteristics can be obtained by making it particularly small.

【0031】(実施例2)LiNiO2 に代えてLiC
oO2 を正極活物質に用いたこと以外は実施例1と同様
にして正極を作製し、且つ3,4−ジメチルビニレンカ
ーボネートとDMCとの混合溶媒に代えて3,4−ジエ
チルビニレンカーボネート(前記化2において、R1
びR2 が共にエチル基のもの)の単独溶媒を用いたこと
以外は実施例1と同様にして、非水電解液を調製した。
次いで、これら正極及び非水電解液を用いたこと以外は
実施例1と同様にして単3型の本発明電池BA2を作製
した。
(Example 2) LiC instead of LiNiO 2
A positive electrode was prepared in the same manner as in Example 1 except that oO 2 was used as the positive electrode active material, and 3,4-diethylvinylene carbonate (the above-mentioned was used instead of the mixed solvent of 3,4-dimethylvinylene carbonate and DMC). A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a single solvent in which R 1 and R 2 were both ethyl groups was used.
Next, an AA-type battery BA2 of the present invention was produced in the same manner as in Example 1 except that these positive electrode and non-aqueous electrolyte were used.

【0032】(比較例3)3,4−ジエチルビニレンカ
ーボネートの単独溶媒に代えてエチレンカーボネートの
単独溶媒を用いたこと以外は実施例2と同様にして、非
水電解液を調製した。次いで、この非水電解液を用いた
こと以外は実施例2と同様にして単3型の比較電池BC
3を作製した。
(Comparative Example 3) A non-aqueous electrolytic solution was prepared in the same manner as in Example 2 except that a single solvent of ethylene carbonate was used in place of the single solvent of 3,4-diethylvinylene carbonate. Then, an AA type comparative battery BC was prepared in the same manner as in Example 2 except that this non-aqueous electrolyte was used.
3 was produced.

【0033】(比較例4)3,4−ジエチルビニレンカ
ーボネートの単独溶媒に代えてビニレンカーボネートの
単独溶媒を用いたこと以外は実施例2と同様にして、非
水電解液を調製した。次いで、この非水電解液を用いた
こと以外は実施例2と同様にして単3型の比較電池BC
4を作製した。
(Comparative Example 4) A non-aqueous electrolytic solution was prepared in the same manner as in Example 2 except that the sole solvent of vinylene carbonate was used in place of the sole solvent of 3,4-diethylvinylene carbonate. Then, an AA type comparative battery BC was prepared in the same manner as in Example 2 except that this non-aqueous electrolyte was used.
4 was produced.

【0034】〔サイクル特性〕本発明電池BA2及び比
較電池BC3、BC4について、前記サイクル特性試験
と同様の条件で充放電して、各電池のサイクル特性を調
べた。結果を図4に示す。
[Cycle Characteristics] The battery BA2 of the present invention and the comparative batteries BC3 and BC4 were charged and discharged under the same conditions as in the cycle characteristic test, and the cycle characteristics of each battery were examined. The results are shown in Fig. 4.

【0035】図4は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA2の1000サイクル目の放電容量は、330m
Ah(容量劣化率:15%)と大きいのに対して、比較
電池BC3,BC4の1000サイクル目の放電容量は
共に230mAh(容量劣化率:40%)と小さい。こ
のことから、充放電サイクル時の非水電解液の分解に起
因する放電容量の低下が、非水電解液の溶媒に3,4−
ジエチルビニレンカーボネートを用いることにより顕著
に抑制されることが分かる。
FIG. 4 is a graph showing the cycle characteristics of each battery, with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the number of cycles (times). As shown in FIG. The discharge capacity at the 1000th cycle of the battery BA2 is 330 m
While Ah (capacity deterioration rate: 15%) is large, the discharge capacities of the comparative batteries BC3 and BC4 at the 1000th cycle are both small at 230 mAh (capacity deterioration rate: 40%). From this, the decrease in the discharge capacity due to the decomposition of the non-aqueous electrolyte during the charge / discharge cycle was caused by 3,4-
It can be seen that the use of diethyl vinylene carbonate remarkably suppresses it.

【0036】叙上の実施例では、本発明を単3型電池に
適用する場合を例に挙げて説明したが、本発明電池はそ
の形状に特に制限はなく、扁平型、角型など、他の種々
の形状の非水電解液二次電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to an AA type battery has been described as an example, but the present invention battery is not particularly limited in its shape, and may be a flat type, a square type or the like. The present invention can be applied to non-aqueous electrolyte secondary batteries of various shapes.

【0037】また、上記実施例では、ビニレンカーボネ
ート誘導体として3,4−ジメチルビニレンカーボネー
ト及び3,4−ジエチルビニレンカーボネートを用いる
場合を例に挙げて説明したが、3,4−ジプロピルビニ
レンカーボネートなどの外、他のビニレンカーボネート
誘導体を用いた場合にも同様の優れたサイクル特性を発
現する非水電解液二次電池を得ることが可能である。
In the above embodiments, the case where 3,4-dimethylvinylene carbonate and 3,4-diethylvinylene carbonate are used as the vinylene carbonate derivative has been described as an example. However, 3,4-dipropylvinylene carbonate, etc. In addition to the above, it is possible to obtain a non-aqueous electrolyte secondary battery exhibiting the same excellent cycle characteristics when another vinylene carbonate derivative is used.

【0038】[0038]

【発明の効果】炭素材料の表面における非水電解液の分
解が抑制されるので、本発明電池は充放電サイクルの進
行に伴う容量劣化率が小さくサイクル特性に優れるな
ど、本発明は優れた特有の効果を奏する。
EFFECTS OF THE INVENTION Since the decomposition of the non-aqueous electrolyte on the surface of the carbon material is suppressed, the battery of the present invention has a small capacity deterioration rate with the progress of charge / discharge cycles and is excellent in cycle characteristics. Produce the effect of.

【図面の簡単な説明】[Brief description of drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a sectional view of an AA battery of the present invention.

【図2】本発明電池及び比較電池のサイクル特性を示す
グラフである。
FIG. 2 is a graph showing cycle characteristics of a battery of the present invention and a comparative battery.

【図3】3,4−ジメチルビニレンカーボネートとDM
Cとの体積混合比率と、放電容量との関係を示すグラフ
である。
FIG. 3: 3,4-Dimethylvinylene carbonate and DM
7 is a graph showing the relationship between the volume mixing ratio with C and the discharge capacity.

【図4】本発明電池及び比較電池のサイクル特性を示す
グラフである。
FIG. 4 is a graph showing cycle characteristics of the battery of the present invention and the comparative battery.

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と、炭素材料を負極材料とする負極
と、非水電解液とを備える非水電解液二次電池におい
て、前記非水電解液に、化1に示すビニレンカーボネー
ト誘導体が含まれていることを特徴とする非水電解液二
次電池。 【化1】 〔但し、R1 及びR2 は各独立して、炭素数1〜3のア
ルキル基を表す。〕
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a carbon material as a negative electrode material, and a non-aqueous electrolytic solution, wherein the non-aqueous electrolytic solution contains a vinylene carbonate derivative shown in Chemical formula 1. A non-aqueous electrolyte secondary battery characterized in that [Chemical 1] [However, R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms. ]
【請求項2】前記炭素材料の格子面(002)面におけ
るd値(d002 )が3.37Å以下である請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a d value (d 002 ) on a lattice plane (002) plane of the carbon material is 3.37 Å or less.
【請求項3】前記非水電解液に、さらにエチレンカーボ
ネート、ジメチルカーボネート及びビニレンカーボネー
トよりなる群から選ばれた少なくとも一種の炭酸エステ
ルが含まれている請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte further contains at least one carbonate ester selected from the group consisting of ethylene carbonate, dimethyl carbonate and vinylene carbonate. .
【請求項4】前記ビニレンカーボネート誘導体の前記非
水電解液中に占める割合が、5〜50体積%である請求
項1記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the proportion of the vinylene carbonate derivative in the non-aqueous electrolyte is 5 to 50% by volume.
JP28566693A 1993-10-20 1993-10-20 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3213459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28566693A JP3213459B2 (en) 1993-10-20 1993-10-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28566693A JP3213459B2 (en) 1993-10-20 1993-10-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07122296A true JPH07122296A (en) 1995-05-12
JP3213459B2 JP3213459B2 (en) 2001-10-02

Family

ID=17694486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28566693A Expired - Fee Related JP3213459B2 (en) 1993-10-20 1993-10-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3213459B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311706A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2003115325A (en) * 2001-07-27 2003-04-18 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2010027628A (en) * 1994-04-22 2010-02-04 Mitsubishi Chemicals Corp Lithium storage battery with carbon anode
JP2013211226A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and battery using the same
US9005821B2 (en) 2009-02-25 2015-04-14 Sony Corporation Secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US7725249B2 (en) 2003-02-27 2010-05-25 General Electric Company Method and apparatus for congestion management
US7797087B2 (en) 2003-02-27 2010-09-14 General Electric Company Method and apparatus for selectively disabling train location reports
US7937193B2 (en) 2003-02-27 2011-05-03 General Electric Company Method and apparatus for coordinating railway line of road and yard planners
US20060212188A1 (en) 2003-02-27 2006-09-21 Joel Kickbusch Method and apparatus for automatic selection of alternative routing through congested areas using congestion prediction metrics
US7512481B2 (en) 2003-02-27 2009-03-31 General Electric Company System and method for computer aided dispatching using a coordinating agent
US8292172B2 (en) 2003-07-29 2012-10-23 General Electric Company Enhanced recordation device for rail car inspections
US7908047B2 (en) 2004-06-29 2011-03-15 General Electric Company Method and apparatus for run-time incorporation of domain data configuration changes
CA2599780A1 (en) 2005-03-14 2006-09-21 General Electric Company A system and method for railyard planning
KR101347671B1 (en) 2005-06-07 2014-01-03 히다치 막셀 가부시키가이샤 A secondary battery with nonaqueous electrolyte
US8768543B2 (en) 2006-03-20 2014-07-01 General Electric Company Method, system and computer software code for trip optimization with train/track database augmentation
US8370006B2 (en) 2006-03-20 2013-02-05 General Electric Company Method and apparatus for optimizing a train trip using signal information
US7797088B2 (en) 2006-05-02 2010-09-14 General Electric Company Method and apparatus for planning linked train movements
US7734383B2 (en) 2006-05-02 2010-06-08 General Electric Company Method and apparatus for planning the movement of trains using dynamic analysis
US8498762B2 (en) 2006-05-02 2013-07-30 General Electric Company Method of planning the movement of trains using route protection
US7680750B2 (en) 2006-06-29 2010-03-16 General Electric Company Method of planning train movement using a three step optimization engine
US8082071B2 (en) 2006-09-11 2011-12-20 General Electric Company System and method of multi-generation positive train control system
US8433461B2 (en) 2006-11-02 2013-04-30 General Electric Company Method of planning the movement of trains using pre-allocation of resources
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027628A (en) * 1994-04-22 2010-02-04 Mitsubishi Chemicals Corp Lithium storage battery with carbon anode
JP2012156142A (en) * 1994-04-22 2012-08-16 Mitsubishi Chemicals Corp Lithium storage battery having carbon anode
JP2000311706A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery
JP2003115325A (en) * 2001-07-27 2003-04-18 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US9005821B2 (en) 2009-02-25 2015-04-14 Sony Corporation Secondary battery
JP2013211226A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and battery using the same

Also Published As

Publication number Publication date
JP3213459B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US5352548A (en) Secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
JPH08236155A (en) Lithium secondary battery
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH07235297A (en) Nonaqueous electrolyte secondary battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3349399B2 (en) Lithium secondary battery
JPH11273725A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JPH07114940A (en) Non-aqueous electrolyte secondary battery
JPH09147910A (en) Lithium secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JPH07122297A (en) Non-aqueous electrolyte battery
US20030148190A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3188032B2 (en) Lithium secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US6403258B1 (en) Lithium secondary battery comprising tungsten composite oxide
JPH08171936A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees