JPH07114940A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH07114940A
JPH07114940A JP5284317A JP28431793A JPH07114940A JP H07114940 A JPH07114940 A JP H07114940A JP 5284317 A JP5284317 A JP 5284317A JP 28431793 A JP28431793 A JP 28431793A JP H07114940 A JPH07114940 A JP H07114940A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
carbon material
battery
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284317A
Other languages
Japanese (ja)
Inventor
Atsushi Suemori
敦 末森
Yoshihiro Shoji
良浩 小路
Yuji Yamamoto
祐司 山本
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5284317A priority Critical patent/JPH07114940A/en
Publication of JPH07114940A publication Critical patent/JPH07114940A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce a capacity deterioration rate due to electric charging/discharging of a battery and realize an excellent cycle characteristic by restraining decomposition of a non-aqueous electrolyte at the surface of a carbon material by the effect of a coating film made of triester phosphate produced at the surface of the carbon material. CONSTITUTION:A non-aqueous electrolyte secondary battery comprises a positive electrode, and a negative electrode made of a carbon material having 3.37Angstrom or less of a (d) value (d002) at a grid surface (002), and a non-aqueous electrolyte. If the carbon material is composed of a high capacity material having such high crystallinity as a (d) value less than 3.37Angstrom , it is confirmed that decomposition deterioration of the non-aqueous electrolyte is prominent. The non-aqueous electrolyte includes 0.1-10wt% of triester phosphate expressed by the formula I (wherein R<1>, R<2> and R<3> represent an alkyl or phenyl group having C1-4 individual). If the included quantity is less than 0.1wt.%, a coating film having a sufficient thickness cannot be formed so that decomposition at the surface of the carbon material cannot be restrained. If the quantity exceeds 10wt.%, a coating film becomes excessively thick so that permeability of a lithium ion is deteriorated, thus resulting in an increase in reaction resistance of an electrode plate and reduction cycle characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
係わり、詳しくはサイクル特性の改善を目的とした、非
水電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a non-aqueous electrolyte for the purpose of improving cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
コークス、黒鉛等の炭素材料が、可撓性に優れること、
樹枝状の電析リチウムの成長に因る内部短絡の虞れが無
いことなどの理由から、従前の金属リチウムに代わる非
水電解液二次電池の新しい負極材料として提案されてい
る。
2. Description of the Related Art In recent years,
Carbon materials such as coke and graphite have excellent flexibility,
It has been proposed as a new negative electrode material for a non-aqueous electrolyte secondary battery, which replaces the conventional metal lithium, because there is no possibility of internal short circuit due to the growth of dendritic electrodeposited lithium.

【0003】しかしながら、結晶性が高い、すなわち黒
鉛化度が大きい炭素材料を負極材料として用いると、充
放電サイクルの進行に伴い炭素負極上で非水電解液がガ
スの発生を伴って分解するため電池容量が次第に低下す
るという問題があった。すなわち、黒鉛化度が大きい炭
素材料には、高容量化が可能であるという利点がある反
面、非水電解液と反応し易いためサイクル特性が良くな
いという欠点があるのである。
However, when a carbon material having a high crystallinity, that is, a high degree of graphitization, is used as a negative electrode material, the non-aqueous electrolyte solution decomposes on the carbon negative electrode with the generation of gas as the charge / discharge cycle progresses. There was a problem that the battery capacity gradually decreased. That is, a carbon material having a high degree of graphitization has an advantage that it can have a high capacity, but has a drawback that it has poor cycle characteristics because it easily reacts with a non-aqueous electrolyte.

【0004】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、黒鉛化度が大きい
炭素材料を負極材料とする非水電解液二次電池のサイク
ル特性を改善することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve cycle characteristics of a non-aqueous electrolyte secondary battery using a carbon material having a high degree of graphitization as a negative electrode material. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池(以下「本発明電
池」と称する。)は、正極と、格子面(002)面にお
けるd値(d002 )が3.37Å以下である炭素材料を
負極材料とする負極と、非水電解液とを備える非水電解
液二次電池において、前記非水電解液に下記化2で示す
リン酸トリエステルが0.1〜10重量%添加されてい
ることを特徴とする。
A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object (hereinafter referred to as "the present battery") has a positive electrode and a lattice plane (002) plane. A non-aqueous electrolyte secondary battery comprising a negative electrode using a carbon material having a d value (d 002 ) of 3.37 Å or less as a negative electrode material and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is represented by the following chemical formula 2. It is characterized in that 0.1 to 10% by weight of phosphoric acid triester is added.

【0006】[0006]

【化2】 〔但し、式中、R1 、R2 及びR3 は各独立して、炭素
数1〜4のアルキル基又はフェニル基を表す。〕
[Chemical 2] [In the formula, R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 4 carbon atoms or a phenyl group. ]

【0007】本発明においては、非水電解液にリン酸ト
リエステルが添加されており、このリン酸トリエステル
が炭素材料に吸着されてリチウムイオン透過性の被膜
(保護膜)を炭素材料表面に形成し、この被膜が非水電
解液の分解劣化を抑制するのである。
In the present invention, phosphoric acid triester is added to the non-aqueous electrolyte, and the phosphoric acid triester is adsorbed on the carbon material to form a lithium ion permeable coating (protective film) on the surface of the carbon material. The formed film suppresses the decomposition and deterioration of the non-aqueous electrolyte.

【0008】リン酸トリエステルとしては、リン酸トリ
メチル、リン酸トリエチル、リン酸トリプロピル、リン
酸トリブチル又はリン酸トリフェニルが例示される。
Examples of the phosphoric acid triester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate and triphenyl phosphate.

【0009】炭素材料のd002 が3.37Å以下に規制
されるのは、d002 が3.37Å以下の結晶性の高い高
容量の炭素材料を用いた場合に、非水電解液の分解劣化
が特に著しく認められるからである。かかる結晶性の高
い炭素材料としては、黒鉛(天然黒鉛及び人造黒鉛)の
他、例えば高圧処理などにより結晶性を高めてd002
を3.37Å以下にした変性コークスが挙げられる。
The d 002 of the carbon material is regulated to 3.37 Å or less, because when a high-capacity carbon material with a high crystallinity of d 002 of 3.37 Å or less is used, the decomposition deterioration of the non-aqueous electrolyte is caused. Is particularly noticeable. Examples of such a carbon material having high crystallinity include graphite (natural graphite and artificial graphite), and modified coke having a d 002 value of 3.37 Å or less by enhancing crystallinity by, for example, high pressure treatment.

【0010】本発明におけるリン酸トリエステルの添加
量が非水電解液の総量に対して0.1〜10重量%に規
制されるのは、同添加量が0.1重量%未満の場合は、
充分な厚さの被膜が形成されないため、非水電解液の炭
素材料表面での分解を充分に抑制することができなくな
り、サイクル特性を充分に改善することができないから
であり、一方同添加量が10重量%を越えた場合は、被
膜が厚くなり過ぎてリチウムイオン透過性が悪くなるた
め、極板の反応抵抗が増大し、サイクル特性が低下する
からである。
The addition amount of phosphoric acid triester in the present invention is regulated to 0.1 to 10% by weight with respect to the total amount of the non-aqueous electrolyte, when the addition amount is less than 0.1% by weight. ,
This is because a film with a sufficient thickness cannot be formed, so that the decomposition of the non-aqueous electrolyte on the surface of the carbon material cannot be sufficiently suppressed and the cycle characteristics cannot be sufficiently improved. If more than 10% by weight, the coating becomes too thick and the lithium ion permeability deteriorates, so the reaction resistance of the electrode plate increases and the cycle characteristics deteriorate.

【0011】本発明は、結晶性の高い炭素材料を負極材
料として用いた場合に問題となっていた非水電解液の分
解劣化を、当該非水電解液にリン酸トリエステルを所定
量添加し、炭素材料の表面に被膜を生成せしめて非水電
解液の分解を抑制し、もってサイクル特性の改善を実現
したものである。それゆえ、正極材料、非水電解液の溶
質及び溶媒などについては従来非水電解液二次電池用と
して提案され、或いは実用されている種々の材料を特に
制限なく用いることが可能である。
According to the present invention, decomposition and deterioration of a non-aqueous electrolytic solution, which has been a problem when a highly crystalline carbon material is used as a negative electrode material, is caused by adding a predetermined amount of phosphoric acid triester to the non-aqueous electrolytic solution. By forming a film on the surface of the carbon material, the decomposition of the non-aqueous electrolyte is suppressed, and thus the cycle characteristics are improved. Therefore, as the positive electrode material, the solute of the non-aqueous electrolyte solution, the solvent, and the like, various materials that have been conventionally proposed or put into practical use for the non-aqueous electrolyte secondary battery can be used without particular limitation.

【0012】正極材料(活物質)としては、LiCoO
2 、LiNiO2 、LiMnO2 、LiFeO2 が例示
され、また非水系電解液としては、エチレンカーボネー
ト、ビニレンカーボネート、プロピレンカーボネートな
どの有機溶媒や、これらとジメチルカーボネート、ジエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、エトキシメトキシエタンなどの低
沸点溶媒との混合溶媒に、LiPF6 、LiClO4
LiCF3 SO3 などの溶質を0.7〜1.5M(モル
/リットル)の割合で溶かした溶液が例示される。
LiCoO is used as the positive electrode material (active material).
2, LiNiO 2, LiMnO 2, LiFeO 2 and the like, and as a non-aqueous electrolyte solution, ethylene carbonate, vinylene carbonate, and an organic solvent such as propylene carbonate, these and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane , 1, 2
In a mixed solvent with a low boiling point solvent such as diethoxyethane or ethoxymethoxyethane, LiPF 6 , LiClO 4 ,
A solution in which a solute such as LiCF 3 SO 3 is dissolved at a ratio of 0.7 to 1.5 M (mol / liter) is exemplified.

【0013】[0013]

【作用】非水電解液に添加されたリン酸トリエステルが
結晶性の高い炭素材料の表面に吸着され、炭素材料の表
面に吸着被膜(保護膜)が形成されるので、炭素材料表
面における非水電解液の分解劣化が抑制される。
[Function] Since the phosphoric acid triester added to the non-aqueous electrolyte is adsorbed on the surface of the carbon material having high crystallinity and an adsorption film (protective film) is formed on the surface of the carbon material, the non-electrolytic property on the surface of the carbon material is reduced. Degradation and deterioration of the water electrolyte is suppressed.

【0014】因みに、金属リチウムを負極材料とする非
水電解液二次電池においても、充放電サイクルの進行に
伴い金属リチウムと非水電解液とが反応して反応生成物
(有機物)からなる被膜が金属リチウムの表面に生成
し、この被膜の生成により極板反応抵抗が増大して、サ
イクル特性が低下するという問題がある。しかし、金属
リチウムが負極材料である場合は、たとえ非水電解液に
リン酸トリエステルを添加しても、金属リチウムと非水
電解液との反応生成物被膜の上にリン酸トリエステルの
吸着被膜がさらに生成するだけであり、サイクル特性が
改善されることはない。従って、非水電解液へのリン酸
トリエステルの添加によるサイクル特性改善効果は、負
極材料が結晶性の高い炭素材料の場合にのみ認められる
効果と言い得る。
By the way, also in a non-aqueous electrolyte secondary battery using metallic lithium as a negative electrode material, a coating formed of a reaction product (organic substance) by reacting metallic lithium with the non-aqueous electrolyte as the charging / discharging cycle progresses. Is generated on the surface of metallic lithium, and the reaction of the electrode plate increases due to the formation of this coating, which causes a problem of deterioration in cycle characteristics. However, when metallic lithium is the negative electrode material, even if phosphoric acid triester is added to the non-aqueous electrolyte, the adsorption of phosphoric acid triester on the reaction product film of metallic lithium and the non-aqueous electrolyte is adsorbed. Only more coating is formed, and cycle performance is not improved. Therefore, it can be said that the effect of improving the cycle characteristics by adding the phosphoric acid triester to the non-aqueous electrolyte can be recognized only when the negative electrode material is a carbon material having high crystallinity.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0016】(実施例1)単3型(AAサイズ)の非水
電解液二次電池(本発明電池)を作製した。
Example 1 AA type (AA size) non-aqueous electrolyte secondary battery (the battery of the present invention) was produced.

【0017】〔正極〕正極活物質としてのLiCoO2
と導電剤としての人造黒鉛とを重量比9:1で混合して
得た混合物を、ポリフッ化ビニリデンの5重量%N−メ
チルピロリドン(NMP)溶液に分散させてスラリーを
調製し、このスラリーをドクターブレード法にて正極集
電体としてのアルミニウム箔の両面に塗布した後、15
0°Cで2時間真空乾燥して正極を作製した。
[Positive electrode] LiCoO 2 as a positive electrode active material
And a mixture of artificial graphite as a conductive agent in a weight ratio of 9: 1 were dispersed in a 5 wt% N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride to prepare a slurry. After applying on both sides of the aluminum foil as the positive electrode current collector by the doctor blade method, 15
Vacuum drying was carried out at 0 ° C. for 2 hours to prepare a positive electrode.

【0018】〔負極〕黒鉛粉末(d002 =3.354
Å)を結着剤としてのポリフッ化ビニリデンの5重量%
NMP溶液に分散させてスラリーを調製し、このスラリ
ーをドクターブレード法にて負極集電体としての銅箔の
両面に塗布した後、150°Cで2時間真空乾燥して負
極を作製した。
[Negative Electrode] Graphite powder (d 002 = 3.354)
Å) 5% by weight of polyvinylidene fluoride as a binder
A slurry was prepared by dispersing the slurry in an NMP solution, and the slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and then vacuum dried at 150 ° C. for 2 hours to produce a negative electrode.

【0019】〔非水電解液〕エチレンカーボネートとジ
メチルカーボネートとの等体積混合溶媒に、LiPF6
を1Mの割合で溶かし、次いでリン酸トリメチルを添加
混合してリン酸トリメチルを0.1重量%含有する非水
電解液を調製した。
[Non-aqueous Electrolyte] LiPF 6 was added to a mixed solvent of ethylene carbonate and dimethyl carbonate in an equal volume.
Was dissolved at a ratio of 1 M, and then trimethyl phosphate was added and mixed to prepare a non-aqueous electrolytic solution containing 0.1% by weight of trimethyl phosphate.

【0020】〔電池の作製〕以上の正負両極及び非水電
解液を用いて単3型の本発明電池BA1を作製した。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
(ヘキストセラニーズ社製、商品名「セルガード」)を
使用し、これに先の非水電解液を含浸させた。
[Production of Battery] AA-type battery BA1 of the present invention was produced using the positive and negative electrodes and the non-aqueous electrolyte described above. As the separator, a polypropylene microporous film (Hoechst Celanese Co., Ltd., trade name “Celgard”) was used and impregnated with the above non-aqueous electrolyte.

【0021】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、非水系電解液を注
入されたセパレータ3を介して渦巻き状に巻き取られた
状態で負極缶7内に収容されており、正極1は正極リー
ド4を介して正極外部端子6に、また負極2は負極リー
ド5を介して負極缶7に接続され、電池内部で生じた化
学エネルギーを電気エネルギーとして外部へ取り出し得
るようになっている。
FIG. 1 is a sectional view schematically showing the produced battery BA1 of the present invention. The illustrated battery BA1 of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive electrode external terminal 6, negative electrode can 7
And so on. The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a spirally wound state via the separator 3 in which the non-aqueous electrolyte solution is injected, and the positive electrode 1 is connected to the outside of the positive electrode via the positive electrode lead 4. The terminal 6 and the negative electrode 2 are connected to the negative electrode can 7 via the negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy to the outside.

【0022】(比較例1)リン酸トリメチルを添加混合
しなかったこと以外は実施例1と同様にして、非水電解
液を調製した。次いで、この非水電解液を用いたこと以
外は実施例1と同様にして単3型の比較電池BC1を作
製した。
Comparative Example 1 A non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that trimethyl phosphate was not added and mixed. Next, an AA type comparative battery BC1 was produced in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used.

【0023】〔サイクル特性〕本発明電池BA1及び比
較電池BC1(サイクル初期の放電容量はいずれも60
0mAhである。)について、200mAで充電終止電
圧4.2Vまで充電した後、200mAで放電終止電圧
2.75Vまで放電して、各電池のサイクル特性を調べ
た。結果を図2に示す。
[Cycle Characteristics] The battery BA1 of the present invention and the comparative battery BC1 (the discharge capacity at the beginning of the cycle are both 60
It is 0 mAh. ) Was charged to a final charge voltage of 4.2 V at 200 mA and then discharged to a final discharge voltage of 2.75 V at 200 mA to examine the cycle characteristics of each battery. The results are shown in Figure 2.

【0024】図2は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA1の1000サイクル目の放電容量は、581.
9mAh(容量劣化率:3.5%)と大きいのに対し
て、比較電池BC1の1000サイクル目の放電容量は
482.3mAh(容量劣化率:20%)と小さい。こ
のことから、充放電サイクル時の非水電解液の分解に起
因する放電容量の低下が、非水電解液にリン酸トリメチ
ルを添加することにより顕著に抑制されることが分か
る。
FIG. 2 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. The discharge capacity at the 1000th cycle of the battery BA1 is 581.
The discharge capacity at 1000th cycle of the comparative battery BC1 is as small as 482.3 mAh (capacity deterioration rate: 20%), while it is as large as 9 mAh (capacity deterioration rate: 3.5%). From this, it is understood that the decrease in discharge capacity due to the decomposition of the non-aqueous electrolyte during charge / discharge cycles is significantly suppressed by adding trimethyl phosphate to the non-aqueous electrolyte.

【0025】〈リン酸トリメチルの添加量とサイクル特
性との関係〉リン酸トリメチルの添加量を0.05重量
%、5重量%、10重量%又は20重量%としたこと以
外は実施例1と同様にして、本発明電池及び比較電池を
作製した。次いで、先と同じ条件で充放電サイクル試験
を行って各電池の1000サイクル目の容量劣化率を求
め、リン酸トリメチルの添加量とサイクル特性との関係
を調べた。結果を表1に示す。なお、表1には、先の図
1に示した本発明電池BA1及び比較電池BC1の10
00サイクル目の容量劣化率も、比較の便宜のために示
してある。
<Relationship between Addition Amount of Trimethyl Phosphate and Cycle Characteristics> Example 1 except that the addition amount of trimethyl phosphate was 0.05% by weight, 5% by weight, 10% by weight or 20% by weight. Similarly, a battery of the present invention and a comparative battery were produced. Next, a charge / discharge cycle test was performed under the same conditions as above to determine the capacity deterioration rate at the 1000th cycle of each battery, and the relationship between the amount of trimethyl phosphate added and the cycle characteristics was investigated. The results are shown in Table 1. In addition, in Table 1, 10 of the battery BA1 of the present invention and the comparative battery BC1 shown in FIG.
The capacity deterioration rate at the 00th cycle is also shown for convenience of comparison.

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、非水電解液に対するリン酸トリ
メチルの添加量を0.1〜10重量%とした場合に、容
量劣化率を特に小さくすることができ、優れたサイクル
特性を発現する非水電解液二次電池が得られることが分
かる。
From Table 1, when the amount of trimethyl phosphate added to the non-aqueous electrolyte is 0.1 to 10% by weight, the capacity deterioration rate can be made particularly small and excellent cycle characteristics are exhibited. It can be seen that a water electrolyte secondary battery can be obtained.

【0028】叙上の実施例では、本発明を単3型電池に
適用する場合を例に挙げて説明したが、本発明電池はそ
の形状に特に制限はなく、扁平型、角型など、他の種々
の形状の非水電解液二次電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to an AA type battery has been described as an example. However, the shape of the battery of the present invention is not particularly limited, and a flat type, a square type, etc. The present invention can be applied to non-aqueous electrolyte secondary batteries of various shapes.

【0029】また、上記実施例では、リン酸トリエステ
ルとしてリン酸トリメチルを用いる場合を例に挙げて説
明したが、リン酸トリエチル、リン酸トリブチル、リン
酸トリフェニルなどの外、他のリン酸トリエステルを用
いた場合にも同様の優れたサイクル特性を発現する非水
電解液二次電池を得ることが可能である。
In the above embodiments, the case where trimethyl phosphate is used as the phosphate triester has been described as an example. However, in addition to triethyl phosphate, tributyl phosphate, triphenyl phosphate, and other phosphates. Even when a triester is used, it is possible to obtain a non-aqueous electrolyte secondary battery exhibiting similar excellent cycle characteristics.

【0030】[0030]

【発明の効果】炭素材料の表面における非水電解液の分
解が、炭素材料の表面に生成したリン酸トリエステルの
被膜により抑制されるので、本発明電池は充放電サイク
ルの進行に伴う容量劣化率が小さくサイクル特性に優れ
るなど、本発明は優れた特有の効果を奏する。
Since the decomposition of the non-aqueous electrolyte solution on the surface of the carbon material is suppressed by the coating film of phosphoric acid triester formed on the surface of the carbon material, the capacity of the battery of the present invention is deteriorated as the charge / discharge cycle progresses. The present invention has excellent peculiar effects such as a low rate and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a sectional view of an AA battery of the present invention.

【図2】本発明電池及び比較電池のサイクル特性を示す
グラフである。
FIG. 2 is a graph showing cycle characteristics of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、格子面(002)面におけるd値
(d002 )が3.37Å以下である炭素材料を負極材料
とする負極と、非水電解液とを備える非水電解液二次電
池において、前記非水電解液に下記化1で示すリン酸ト
リエステルが0.1〜10重量%添加されていることを
特徴とする非水電解液二次電池。 【化1】 〔但し、式中、R1 、R2 及びR3 は各独立して、炭素
数1〜4のアルキル基又はフェニル基を表す。〕
1. A non-aqueous electrolyte solution comprising a positive electrode, a negative electrode whose negative electrode material is a carbon material having a d value (d 002 ) of 3.37 Å or less on a lattice plane (002) plane, and a non-aqueous electrolyte solution. In the secondary battery, a phosphoric acid triester represented by the following chemical formula 1 is added in an amount of 0.1 to 10% by weight to the non-aqueous electrolyte solution. [Chemical 1] [In the formula, R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 4 carbon atoms or a phenyl group. ]
【請求項2】前記リン酸トリエステルが、リン酸トリメ
チル、リン酸トリエチル、リン酸トリプロピル、リン酸
トリブチル又はリン酸トリフェニルである請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the phosphoric acid triester is trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate or triphenyl phosphate.
JP5284317A 1993-10-18 1993-10-18 Non-aqueous electrolyte secondary battery Pending JPH07114940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284317A JPH07114940A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284317A JPH07114940A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07114940A true JPH07114940A (en) 1995-05-02

Family

ID=17676990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284317A Pending JPH07114940A (en) 1993-10-18 1993-10-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07114940A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050916A1 (en) * 1999-05-03 2000-11-08 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte in rechargeable electrochemical cells
EP1213782A2 (en) * 2000-11-27 2002-06-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6511772B2 (en) 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6919141B2 (en) 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2005347240A (en) * 2004-05-31 2005-12-15 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing it
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
US7309548B2 (en) 2001-04-19 2007-12-18 Sanyo Electric Co., Ltd Lithium secondary battery
WO2009107786A1 (en) 2008-02-29 2009-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2012079604A (en) * 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2012142297A (en) * 1995-06-28 2012-07-26 Ube Ind Ltd Nonaqueous secondary battery
WO2013032593A2 (en) * 2011-08-31 2013-03-07 Uchicago Argonne, Llc Redox shuttles for overcharge protection of lithium batteries
JP2019003941A (en) * 2017-06-12 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. Lithium secondary battery including phosphate-based additive
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142297A (en) * 1995-06-28 2012-07-26 Ube Ind Ltd Nonaqueous secondary battery
US6919141B2 (en) 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1050916A1 (en) * 1999-05-03 2000-11-08 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte in rechargeable electrochemical cells
EP1213782A2 (en) * 2000-11-27 2002-06-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1213782A3 (en) * 2000-11-27 2003-11-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6511772B2 (en) 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US7309548B2 (en) 2001-04-19 2007-12-18 Sanyo Electric Co., Ltd Lithium secondary battery
US7981551B2 (en) 2004-05-31 2011-07-19 Samsung Sdi Co., Ltd. Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
JP2005347240A (en) * 2004-05-31 2005-12-15 Samsung Sdi Co Ltd Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing it
JP4545036B2 (en) * 2004-05-31 2010-09-15 三星エスディアイ株式会社 Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
KR20100120164A (en) 2008-02-29 2010-11-12 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
WO2009107786A1 (en) 2008-02-29 2009-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8916298B2 (en) 2008-02-29 2014-12-23 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US9083058B2 (en) 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
JP2012079604A (en) * 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion battery
WO2013032593A2 (en) * 2011-08-31 2013-03-07 Uchicago Argonne, Llc Redox shuttles for overcharge protection of lithium batteries
WO2013032593A3 (en) * 2011-08-31 2013-05-10 Uchicago Argonne, Llc Redox shuttles for overcharge protection of lithium batteries
JP2019003941A (en) * 2017-06-12 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. Lithium secondary battery including phosphate-based additive
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same
KR20240055899A (en) 2021-11-05 2024-04-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Flame-retardant non-aqueous electrolyte and secondary battery using the same

Similar Documents

Publication Publication Date Title
JP3316412B2 (en) Lithium secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JP4056117B2 (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
US6764791B2 (en) Rechargeable lithium battery
JPH07114940A (en) Non-aqueous electrolyte secondary battery
JPH07235297A (en) Nonaqueous electrolyte secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH06295725A (en) Nonaqueous secondary battery
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4082853B2 (en) Lithium secondary battery
JPH09147910A (en) Lithium secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3188032B2 (en) Lithium secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3519766B2 (en) Non-aqueous secondary battery
JPH08171936A (en) Lithium secondary battery
JP5110057B2 (en) Lithium secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP3213458B2 (en) Non-aqueous electrolyte secondary battery
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same