JP4082853B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4082853B2
JP4082853B2 JP2000212527A JP2000212527A JP4082853B2 JP 4082853 B2 JP4082853 B2 JP 4082853B2 JP 2000212527 A JP2000212527 A JP 2000212527A JP 2000212527 A JP2000212527 A JP 2000212527A JP 4082853 B2 JP4082853 B2 JP 4082853B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
lithium
solvent
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212527A
Other languages
Japanese (ja)
Other versions
JP2002025609A (en
Inventor
崇 岡本
精司 吉村
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000212527A priority Critical patent/JP4082853B2/en
Publication of JP2002025609A publication Critical patent/JP2002025609A/en
Application granted granted Critical
Publication of JP4082853B2 publication Critical patent/JP4082853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、リチウムを活物質とする負極と、正極と、溶質及び溶媒を含む非水電解液とを備えたリチウム二次電池に係り、非水電解液を改善して、リチウム二次電池におけるサイクル特性を向上させるようにした点に特徴を有するものである。
【0002】
【従来の技術】
近年、高出力,高エネルギー密度の新型電池として、リチウムを活物質とする負極と、正極と、溶質及び溶媒を含む非水電解液とを備えた高起電力のリチウム二次電池が利用されるようになった。
【0003】
ここで、このようなリチウム二次電池においては、その非水電解液として、プロピレンカーボネートやジメチルカーボネート等の溶媒に、ヘキサフルオロリン酸リチウムLiPF6 や過塩素酸リチウムLiClO4 等の溶質を溶解させたものが一般に使用され、またその負極には、金属リチウム、リチウム合金、リチウムイオンの吸蔵,放出が可能な炭素材料等が用いられていた。
【0004】
しかし、このようなリチウム二次電池の場合、充放電時において上記の非水電解液が負極と反応し、これにより非水電解液や負極における特性が次第に低下して、リチウム二次電池におけるサイクル特性が著しく低下するという問題があった。
【0005】
そして、近年においては、特開平5−19204号公報に示されるように、非水電解液の溶媒に亜リン酸トリエチルを添加し、負極においてリチウムのデンドライトが発生するのを抑制すると共に、非水電解液と負極とが反応するのを抑制するようにしたものが提案されている。
【0006】
しかし、このように非水電解液の溶媒に亜リン酸トリエチルを添加した場合においても、依然として、充放電時において非水電解液と負極とが反応するのを十分に抑制することができず、リチウム二次電池におけるサイクル特性を十分に向上させることができなかった。
【0007】
【発明が解決しようとする課題】
この発明は、リチウムを活物質とする負極と、正極と、溶質及び溶媒を含む非水電解液とを備えたリチウム二次電池における上記のような問題を解決することを課題とするものであり、充放電時において非水電解液が負極と反応するのを十分に抑制して、サイクル特性に優れたリチウム二次電池が得られるようにすることを課題とするものである。
【0008】
【課題を解決するための手段】
この発明におけるリチウム二次電池においては、上記のような課題を解決するため、リチウムを活物質とする負極と、正極と、溶質及び溶媒を含む非水電解液とを備えたリチウム二次電池において、上記の非水電解液の溶媒に、亜リン酸エステルにフッ素が結合された化合物が2〜10体積%の範囲で含有されるようにしたのである。
【0009】
そして、この発明におけるリチウム二次電池のように、非水電解液の溶媒に、亜リン酸エステルにフッ素が結合された化合物を含有させると、これによって負極の表面にイオン伝導性に優れた安定な被膜が形成され、この被膜により、充放電を行った場合に非水電解液が負極と反応するのが抑制され、リチウム二次電池におけるサイクル特性が向上すると考えられる。
【0010】
ここで、非水電解液の溶媒中に上記の亜リン酸エステルにフッ素が結合された化合物を含有させるにあたって、上記の化合物を含有させる量が少ないと、負極の表面に上記のような被膜が十分に形成されなくなって、非水電解液と負極とが反応するのを十分に抑制することができなくなる一方、上記の化合物を含有させる量が多くなりすぎると、上記の被膜が厚くなり過ぎて、充放電反応が起こりにくくなるため、非水電解液の溶媒中に上記の化合物を2〜10体積%の範囲で含有させるようにした
【0011】
また、上記の亜リン酸エステルにフッ素が結合された化合物としては、負極の表面に、さらにイオン伝導性に優れた安定な被膜が形成されて、リチウム二次電池におけるサイクル特性がさらに向上されるようにするため、例えば、亜リン酸トリ(トリフルオロメチル)(CF 3 O) 3 を用いることが好ましい
【0012】
なお、この発明におけるリチウム二次電池は、上記のように非水電解液の溶媒中に上記のような化合物を含有させることを特徴とするものであり、非水電解液に使用する溶媒や溶質の種類、また正極や負極に使用する材料等については特に限定されず、非水電解質電池において従来より使用されているものを用いることができる。
【0013】
ここで、上記の非水電解液における溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ブチレンカーボネート(BC)等の環状炭酸エステルや、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボート(EMC)等の鎖状炭酸エステルや、1,2−ジエトキシエタン(DEE)、1,2−ジメトキシエタン(DME)、エトキシメトキシエタン(EME)等の溶媒を単独若しくは2種以上混合させて用いることができ、特に、リチウム二次電池のサイクル特性を向上させるためには、上記の環状炭酸エステルと鎖状炭酸エステルとを混合させた混合溶媒を用いることが好ましい。
【0014】
また、上記の非水電解液において、上記の溶媒に溶解させる溶質としては、例えば、LiPF6 、LiBF4 、LiN(C2 5 SO2 2 、LiAsF6 、LiSbF6 、LiBiF4 、LiAlF4 、LiGaF4 、LiInF4 、LiClO4 、LiN(CF3 SO2 2 、LiCF3 SO3 、LiC(CF3 SO2 3 等のリチウム化合物を使用することができ、特に、リチウム二次電池のサイクル特性を向上させるためには、LiPF6 、LiBF4 、LiN(C2 5 SO2 2 、LiN(CF3 SO2 2 を使用することが好ましい。
【0015】
また、この発明のリチウム二次電池において、その正極を構成する正極材料としては、例えば、二酸化マンガン、リチウム含有マンガン酸化物、リチウム含有コバルト酸化物、リチウム含有バナジウム酸化物、リチウム含有ニッケル酸化物、リチウム含有鉄酸化物、リチウム含有クロム酸化物、リチウム含有チタン酸化物等を使用することができる。
【0016】
また、この発明のリチウム二次電池において、その負極を構成する負極材料としては、金属リチウム、Li−Al,Li−In,Li−Sn,Li−Pb,Li−Bi,Li−Ga,Li−Sr,Li−Si,Li−Zn,Li−Cd,Li−Ca,Li−Ba等のリチウム合金、リチウムイオンの吸蔵,放出が可能な黒鉛,コークス,有機物焼成体等の炭素材料等を使用することができ、特に、リチウム二次電池のサイクル特性を向上させるためには、イオンの吸蔵,放出が可能な黒鉛等の炭素材料を用いることが好ましい。
【0017】
【実施例】
以下、この発明に係るリチウム二次電池について実施例をあげて具体的に説明すると共に、この実施例におけるリチウム二次電池においてはサイクル特性が向上することを比較例をあげて明らかにする。なお、この発明に係るリチウム二次電池は下記の実施例に示したものに限定されるものでなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0018】
(実施例A1)
実施例A1においては、正極と負極とを下記のようにして作製すると共に、非水電解液を下記のようにして調製し、図1に示すような扁平なコイン型のリチウム二次電池を作製した。
【0019】
[正極の作製]
正極を作製するにあたっては、正極材料としてリチウム含有二酸化コバルトLiCoO2 粉末を用い、このLiCoO2 粉末と、導電剤のカーボンブラック粉末と、結着剤のフッ素樹脂粉末とを85:10:5の重量比で混合した正極合剤を円板状に鋳型成型し、これを真空中において250℃で2時間熱処理して、正極を作製した。
【0020】
[負極の作製]
負極を作製するにあたっては、負極材料として黒鉛粉末を用い、この黒鉛粉末と結着剤のフッ素樹脂粉末とを90:5の重量比で混合した負極合剤を円板状に鋳型成型し、これを真空中において250℃で2時間熱処理して、負極を作製した。
【0021】
[非水電解液の調製]
非水電解液の調製するにあたっては、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pとを47.5:47.5:5の体積比で混合させた混合溶媒に、溶質としてヘキサフルオロリン酸リチウムLiPF6 を1モル/リットルの濃度になるように溶解させて非水電解液を調製した。
【0022】
[電池の作製]
電池を作製するにあたっては、図1に示すように、上記の正極1をステンレス鋼板(SUS316)からなる正極集電体5に取り付ける一方、上記の負極2をステンレス鋼板(SUS304)からなる負極集電体6に取り付け、ポリプロピレン製の微多孔膜からなるセパレータ3に上記の非水電解液を含浸させ、このセパレータ3を上記の正極1と負極2との間に介在させて、これらを正極缶4aと負極缶4bとで形成される電池ケース4内に収容させ、正極集電体5を介して正極1を正極缶4aに接続させる一方、負極集電体6を介して負極2を負極缶4bに接続させ、この正極缶4aと負極缶4bとを絶縁パッキン7によって電気的に絶縁させて、外径が24mm、厚さが3mm、容量が70mAhになったリチウム二次電池を作製した。なお、このリチウム二次電池を充放電する前の内部抵抗は約10Ωであった。
【0023】
参考例A2)
参考例A2においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、リン酸トリ(トリフルオロメチル)(CF3 O)3 POとを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0024】
参考例A3)
参考例A3においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、ホウ酸トリ(トリフルオロメチル)B(OCF33 とを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0025】
参考例A4)
参考例A4においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、硫酸ジ(トリフルオロメチル)(CF3 O)2 SO2 とを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0026】
参考例A5)
参考例A5においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、亜リン酸トリ(トリクロロメチル)(CCl3 O)3 Pとを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0027】
(比較例X1)
比較例X1においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを50:50の体積比で混合させただけの混合溶媒を用い、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0028】
(比較例X2)
比較例X2においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、亜リン酸トリメチル(CH3 O)3 Pとを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0029】
(比較例X3)
比較例X3においては、上記の実施例A1における非水電解液の調製において、その溶媒として、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、リン酸トリメチル(CH3 O)3 POとを47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにし、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このリチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0030】
そして、上記のように作製した実施例A1〜A6及び比較例X1〜X3の各リチウム二次電池を、充電電流10mAで充電終止電圧4.2Vまで充電した後、放電電流10mAで放電終止電圧3.0Vまで放電し、これを1サイクルとして充放電を繰り返し、放電容量が初期の放電容量の半分に低下するまでのサイクル数を求め、その結果を下記の表1に示した。
【0031】
【表1】

Figure 0004082853
【0032】
この結果から明らかなように、非水電解液の溶媒に、亜リン酸エステルやリン酸エステルやホウ酸エステルや硫酸エステルや亜硫酸エステルにハロゲン基が結合された化合物を添加させた実施例A1、参考例A2〜A6の各リチウム二次電池は、このような化合物を添加させていない比較例X1のリチウム二次電池や、ハロゲン基が結合されていない亜リン酸エステルやリン酸エステルを添加させた比較例X2,X3の各リチウム二次電池に比べて、放電容量が初期の放電容量の半分に低下するまでのサイクル数が多くなり、サイクル特性が向上していた。
【0033】
また、実施例A1、参考例A2〜A6の各リチウム二次電池を比較した場合、上記の化合物において結合されているハロゲンが塩素である参考例A6のリチウム二次電池に比べて、上記の化合物において結合されているハロゲンがフッ素である実施例A1、参考例A2〜A5の各リチウム二次電池の方がさらにサイクル特性が向上しており、特に、上記の化合物として亜リン酸トリ(トリフルオロメチル)(CF3O)3 Pを使用した実施例A1のリチウム二次電池において、最も優れたサイクル特性が得られた。
【0034】
実施例B3,B4及び参考例B1,B2,B5
実施例B3,B4及び参考例B1,B2,B5においては、上記の実施例A1における非水電解液の調製において、その溶媒として、実施例A1の場合と同様に、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pとの混合溶媒を用いる一方、これらの溶媒を混合させる体積比を下記の表2に示すように変更し、ECとDMCと(CF3O)3 Pとの体積比を、参考例B1においては49.9:49.9:0.2に、参考例B2においては49.5:49.5:1に、実施例B3においては49:49:2に、実施例B4においては45:45:10に、参考例B5においては40:40:20にした。
【0035】
そして、このような混合溶媒を用いる以外は、上記の実施例A1の場合と同様にして実施例B3,B4及び参考例B1,B2,B5の各リチウム二次電池を作製した。なお、このようにして作製した各リチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0036】
また、このようにして作製した実施例B3,B4及び参考例B1,B2,B5の各リチウム二次電池についても、上記の実施例A1、参考例A2〜A6及び比較例X1〜X3の場合と同様にして、放電容量が初期の放電容量の半分に低下するまでのサイクル数を求め、その結果を上記の実施例A1のリチウム二次電池の結果と合わせて、下記の表2に示した。
【0037】
【表2】
Figure 0004082853
【0038】
この結果から明らかなように、上記の混合溶媒中に亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pが0.2〜20体積%の範囲で含有された実施例B3,B4及び参考例B1,B2,B5の各リチウム二次電池においても、比較例X1〜X3の各リチウム二次電池に比べて、放電容量が初期の放電容量の半分に低下するまでのサイクル数が多くなり、サイクル特性が向上していた。特に、混合溶媒中に亜リン酸トリ(トリフルオロメチル)(CF3O)3 Pが2〜10体積%の範囲で含有された実施例A1,B3,B4のリチウム二次電池は、参考例B1,B2,B5のリチウム二次電池に比べてサイクル特性がさらに向上していた。
【0039】
(実施例C1〜C6)
実施例C1〜C6においては、上記の実施例A1における非水電解液の調製において、その溶媒として、実施例A1の場合と同様に、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pとを47.5:47.5:5の体積比で混合させた混合溶媒を用いる一方、この混合溶媒に溶解させる溶質の種類を下記の表3に示すように変更し、実施例C1においてはテトラフルオロホウ酸リチウムLiBF4 を、実施例C2においてはヘキサフルオロ砒酸リチウムLiAsF6 を、実施例C3においてはトリフルオロメタンスルホン酸リチウムLiCF3 SO3 を、実施例C4においてはリチウムトリフルオロメタンスルホン酸イミドLiN(CF3 SO2 2 を、実施例C5においてはリチウムペンタフルオロエタンスルホン酸イミドLiN(C2 5 SO2 2 を、実施例C6においてはリチウムトリフルオロメタンスルホン酸メチドLiC(CF3 SO2 3 を用い、それぞれ1モル/リットルの濃度になるように溶解させて、各非水電解液を調製した。
【0040】
そして、このように調製した各非水電解液を用いる以外は、上記の実施例A1の場合と同様にして実施例C1〜C6の各リチウム二次電池を作製した。なお、このようにして作製した各リチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0041】
また、このようにして作製した実施例C1〜C6の各リチウム二次電池についても、上記の実施例A1、参考例A2〜A6及び比較例X1〜X3の場合と同様にして、放電容量が初期の放電容量の半分に低下するまでのサイクル数を求め、その結果を上記の実施例A1のリチウム二次電池の結果と合わせて、下記の表3に示した。
【0042】
【表3】
Figure 0004082853
【0043】
この結果から明らかなように、上記の混合溶媒に溶解させる溶質に、LiBF4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiC(CF3 SO2 3 を用いた実施例C1〜C6の各リチウム二次電池においても、比較例X1〜X3の各リチウム二次電池に比べて、放電容量が初期の放電容量の半分に低下するまでのサイクル数が多くなり、サイクル特性が向上していた。特に、溶質にLiPF6 、LiBF4 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 を用いた実施例A1,C1,C4,C5のリチウム二次電池においては、サイクル特性がさらに向上していた。
【0044】
(実施例D1〜D7)
実施例D1〜D7においては、上記の実施例A1における非水電解液の調製において、実施例A1の場合と同様に、溶媒に亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pを加えるようにする一方、この(CF3 O)3 Pを添加させる溶媒の種類を変更し、下記の表4に示すように、実施例D1においてはブチレンカーボネート(BC)とジメチルカーボネート(DMC)と(CF3 O)3 Pとを、実施例D2においてはビニレンカーボネート(VC)とジメチルカーボネート(DMC)と(CF3 O)3 Pとを、実施例D3においてはγ−ブチロラクトン(γ−BL)とジメチルカーボネート(DMC)と(CF3 O)3 Pとを、実施例D4においてはスルホラン(SL)とジメチルカーボネート(DMC)と(CF3 O)3 Pとを、実施例D5においてはエチレンカーボネート(EC)とメチルエチルカーボネート(EMC)と(CF3 O)3 Pとを、実施例D6においてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)と(CF3 O)3 Pとを、それぞれ47.5:47.5:5の体積比で混合させた混合溶媒を用いるようにした。
【0045】
そして、このような混合溶媒を用いる以外は、上記の実施例A1の場合と同様にして実施例D1〜D6の各リチウム二次電池を作製した。なお、このようにして作製した各リチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0046】
また、このようにして作製した実施例D1〜D6の各リチウム二次電池についても、上記の実施例A1、参考例A2〜A6及び比較例X1〜X3の場合と同様にして、放電容量が初期の放電容量の半分に低下するまでのサイクル数を求め、その結果を上記の実施例A1のリチウム二次電池の結果と合わせて、下記の表4に示した。
【0047】
【表4】
Figure 0004082853
【0048】
この結果から明らかなように、亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pを添加させる溶媒に上記のような各溶媒を用いた場合においても、比較例X1〜X3の各リチウム二次電池に比べて、放電容量が初期の放電容量の半分に低下するまでのサイクル数が多くなり、サイクル特性が向上していた。
【0049】
(実施例E1,E2)
実施例E1,E2においては、上記の実施例A1のリチウム二次電池における負極だけを変更し、下記の表5に示すように、実施例E1においては金属リチウムを円板状に成形したものを、実施例E2においてはLi−Al合金を円板状に成形したものを用い、それ以外は、上記の実施例A1の場合と同様にしてリチウム二次電池を作製した。なお、このようにして作製した各リチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0050】
(比較例X4,X5)
比較例X4,X5においては、上記の比較例X1の場合と同様に、非水電解液の溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを50:50の体積比で混合させただけの混合溶媒を用い、上記の比較例X1のリチウム二次電池と負極だけを変更し、下記の表5に示すように、比較例X4においては金属リチウムを円板状に成形したものを、比較例X5においてはLi−Al合金を円板状に成形したものを用いて、リチウム二次電池を作製した。なお、このようにして作製した各リチウム二次電池も充放電する前の内部抵抗が約10Ωであった。
【0051】
そして、上記のようにして作製した実施例E1,E2及び比較例X4,X5の各リチウム二次電池についても、上記の実施例A1、参考例A2〜A6及び比較例X1〜X3の場合と同様にして、放電容量が初期の放電容量の半分に低下するまでのサイクル数を求め、その結果を上記の実施例A1及び比較例X1のリチウム二次電池の結果と合わせて、下記の表5に示した。
【0052】
【表5】
Figure 0004082853
【0053】
この結果から明らかなように、負極の材料に、黒鉛,金属リチウム,Li−Al合金の何れを用いた場合においても、上記のように非水電解液の溶媒に亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pを添加させた実施例A1,E1,E2の各リチウム二次電池は、非水電解液の溶媒に亜リン酸トリ(トリフルオロメチル)(CF3 O)3 Pを添加させていない比較例X1,X4,X5の各リチウム二次電池に比べて、放電容量が初期の放電容量の半分に低下するまでのサイクル数が多くなり、サイクル特性が向上していた。特に、負極の材料に、黒鉛を用いた実施例A1のリチウム二次電池において、サイクル特性が著しく向上していた。
【0054】
【発明の効果】
以上詳述したように、この発明におけるリチウム二次電池においては、非水電解液の溶媒に、亜リン酸エステルにフッ素が結合された化合物を2〜10体積%の範囲で含有させるようにしたため、これにより負極の表面にイオン伝導性に優れた安定な被膜が形成され、この被膜により充放電を行った場合に非水電解液が負極と反応するのが抑制され、リチウム二次電池におけるサイクル特性が向上した。
【図面の簡単な説明】
【図1】この発明の実施例及び比較例において作製したリチウム二次電池の内部構造を示した断面説明図である。
【符号の説明】
1 正極
2 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery including a negative electrode using lithium as an active material, a positive electrode, and a nonaqueous electrolytic solution containing a solute and a solvent. In the lithium secondary battery, the nonaqueous electrolytic solution is improved. This is characterized in that the cycle characteristics are improved.
[0002]
[Prior art]
In recent years, a high-electromotive force lithium secondary battery including a negative electrode using lithium as an active material, a positive electrode, and a non-aqueous electrolyte containing a solute and a solvent has been used as a new battery with high output and high energy density. It became so.
[0003]
Here, in such a lithium secondary battery, a solute such as lithium hexafluorophosphate LiPF 6 or lithium perchlorate LiClO 4 is dissolved in a solvent such as propylene carbonate or dimethyl carbonate as the non-aqueous electrolyte. In general, metal anodes, lithium alloys, carbon materials capable of occluding and releasing lithium ions, and the like have been used for the negative electrode.
[0004]
However, in the case of such a lithium secondary battery, the above-described non-aqueous electrolyte reacts with the negative electrode during charging and discharging, and as a result, the characteristics of the non-aqueous electrolyte and the negative electrode gradually decrease, and the cycle in the lithium secondary battery There was a problem that the characteristics were remarkably deteriorated.
[0005]
In recent years, as disclosed in JP-A-5-19204, triethyl phosphite is added to the solvent of the non-aqueous electrolyte to suppress generation of lithium dendrites at the negative electrode, A solution that suppresses the reaction between the electrolytic solution and the negative electrode has been proposed.
[0006]
However, even when triethyl phosphite is added to the solvent of the non-aqueous electrolyte in this way, it still cannot sufficiently suppress the reaction between the non-aqueous electrolyte and the negative electrode during charging and discharging, The cycle characteristics in the lithium secondary battery could not be sufficiently improved.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems in a lithium secondary battery including a negative electrode using lithium as an active material, a positive electrode, and a nonaqueous electrolytic solution containing a solute and a solvent. An object of the present invention is to sufficiently suppress the nonaqueous electrolyte from reacting with the negative electrode during charge and discharge so that a lithium secondary battery having excellent cycle characteristics can be obtained.
[0008]
[Means for Solving the Problems]
In the lithium secondary battery according to the present invention, in order to solve the above-described problems, a lithium secondary battery including a negative electrode using lithium as an active material, a positive electrode, and a nonaqueous electrolytic solution containing a solute and a solvent. , the solvent of the nonaqueous electrolytic solution of the above is the compound fluorine is bonded to the phosphorous acid ester is the so that is contained in the range of 2-10% by volume.
[0009]
And, like the lithium secondary battery in the present invention, when the non-aqueous electrolyte solvent contains a compound in which fluorine is bonded to the phosphite , the surface of the negative electrode is stable with excellent ion conductivity. It is considered that the non-aqueous electrolyte is prevented from reacting with the negative electrode when charging / discharging is performed, and the cycle characteristics of the lithium secondary battery are improved.
[0010]
Here, when the amount of the compound is small when the compound containing fluorine in the phosphite is contained in the solvent of the non-aqueous electrolyte, the coating as described above is formed on the surface of the negative electrode. When the amount of the compound is too large, the coating film becomes too thick, while it is not sufficiently formed and the reaction between the non-aqueous electrolyte and the negative electrode cannot be sufficiently suppressed. Since the charge / discharge reaction is less likely to occur, the above compound is contained in the range of 2 to 10% by volume in the solvent of the nonaqueous electrolytic solution.
[0011]
As the above compounds with fluorine bonded to phosphite, on the surface of the anode, is formed stable film further excellent in ion conductivity, the cycle characteristics are further improved in the lithium secondary battery For example, tri (trifluoromethyl) phosphite (CF 3 O) 3 P is preferably used.
[0012]
The lithium secondary battery according to the present invention is characterized in that the above compound is contained in the solvent of the non-aqueous electrolyte as described above, and the solvent or solute used in the non-aqueous electrolyte is characterized in that The materials used for the positive electrode and the negative electrode are not particularly limited, and those conventionally used in nonaqueous electrolyte batteries can be used.
[0013]
Here, examples of the solvent in the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), butylene carbonate (BC), and dimethyl carbonate (DMC). ), Chain carbonates such as diethyl carbonate (DEC), methyl ethyl carbamate (EMC), 1,2-diethoxyethane (DEE), 1,2-dimethoxyethane (DME), ethoxymethoxyethane (EME) In order to improve the cycle characteristics of the lithium secondary battery, in particular, a mixed solvent in which the cyclic carbonate and the chain carbonate are mixed. Is preferably used.
[0014]
Further, the above non-aqueous electrolyte, as a solute dissolved in the above-described solvents, for example, LiPF 6, LiBF 4, LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiSbF 6, LiBiF 4, LiAlF 4 LiGaF 4 , LiInF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiC (CF 3 SO 2 ) 3, etc. can be used. In order to improve the cycle characteristics, it is preferable to use LiPF 6 , LiBF 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
[0015]
In the lithium secondary battery of the present invention, examples of the positive electrode material constituting the positive electrode include manganese dioxide, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing vanadium oxide, lithium-containing nickel oxide, Lithium-containing iron oxide, lithium-containing chromium oxide, lithium-containing titanium oxide and the like can be used.
[0016]
In the lithium secondary battery of the present invention, the negative electrode material constituting the negative electrode may be metallic lithium, Li—Al, Li—In, Li—Sn, Li—Pb, Li—Bi, Li—Ga, Li— Use lithium alloys such as Sr, Li-Si, Li-Zn, Li-Cd, Li-Ca, Li-Ba, etc., carbon materials such as graphite, coke, and organic fired bodies capable of occluding and releasing lithium ions. In particular, in order to improve the cycle characteristics of the lithium secondary battery, it is preferable to use a carbon material such as graphite capable of occluding and releasing ions.
[0017]
【Example】
Hereinafter, the lithium secondary battery according to the present invention will be specifically described with reference to examples, and it will be clarified with comparative examples that the cycle characteristics of the lithium secondary battery in this example are improved. The lithium secondary battery according to the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
[0018]
(Example A1)
In Example A1, a positive electrode and a negative electrode were prepared as follows, and a non-aqueous electrolyte was prepared as follows to produce a flat coin-type lithium secondary battery as shown in FIG. did.
[0019]
[Production of positive electrode]
In producing the positive electrode, lithium-containing cobalt dioxide LiCoO 2 powder was used as the positive electrode material, and the weight of the LiCoO 2 powder, the carbon black powder of the conductive agent, and the fluororesin powder of the binder was 85: 10: 5. The positive electrode mixture mixed at a ratio was cast into a disk shape and heat-treated at 250 ° C. for 2 hours in a vacuum to produce a positive electrode.
[0020]
[Production of negative electrode]
In producing the negative electrode, graphite powder was used as a negative electrode material, and a negative electrode mixture obtained by mixing the graphite powder and a binder fluororesin powder in a weight ratio of 90: 5 was molded into a disk shape, and this was molded. Was heat-treated in vacuum at 250 ° C. for 2 hours to produce a negative electrode.
[0021]
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, ethylene carbonate (EC), dimethyl carbonate (DMC), and tri (trifluoromethyl) phosphite (CF 3 O) 3 P were mixed at 47.5: 47.5: A non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate LiPF 6 as a solute in a mixed solvent mixed at a volume ratio of 5 to a concentration of 1 mol / liter.
[0022]
[Production of battery]
In producing the battery, as shown in FIG. 1, the positive electrode 1 is attached to a positive electrode current collector 5 made of a stainless steel plate (SUS316), while the negative electrode 2 is made of a negative electrode current collector made of a stainless steel plate (SUS304). A separator 3 made of a polypropylene microporous membrane is impregnated with the non-aqueous electrolyte, and the separator 3 is interposed between the positive electrode 1 and the negative electrode 2 so as to be positive electrode can 4a. And a negative electrode can 4b. The positive electrode 1 is connected to the positive electrode can 4a via the positive electrode current collector 5, and the negative electrode 2 is connected to the negative electrode can 4b via the negative electrode current collector 6. The positive electrode can 4a and the negative electrode can 4b were electrically insulated by the insulating packing 7 to produce a lithium secondary battery having an outer diameter of 24 mm, a thickness of 3 mm, and a capacity of 70 mAh. In addition, internal resistance before charging / discharging this lithium secondary battery was about 10 (ohm).
[0023]
( Reference Example A2)
In Reference Example A2, in the preparation of the non-aqueous electrolyte in Example A1 above, ethylene carbonate (EC), dimethyl carbonate (DMC), and tri (trifluoromethyl) phosphate (CF 3 O) were used as the solvent. 3 ) A lithium secondary battery was fabricated in the same manner as in Example A1 except that a mixed solvent in which 3 PO was mixed at a volume ratio of 47.5: 47.5: 5 was used. . This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0024]
( Reference Example A3)
In Reference Example A3, in the preparation of the non-aqueous electrolyte in Example A1 above, ethylene carbonate (EC), dimethyl carbonate (DMC), and tri (trifluoromethyl) borate B (OCF 3 ) were used as the solvent. ) 3 and 47.5: 47.5: to use a 5 mixed solvent were mixed at a volume ratio of, otherwise, to produce a lithium secondary battery in the same manner as that in the example A1. This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0025]
( Reference Example A4)
In Reference Example A4, ethylene carbonate (EC), dimethyl carbonate (DMC), and di (trifluoromethyl) sulfate (CF 3 O) were used as solvents in the preparation of the non-aqueous electrolyte in Example A1 above. A lithium secondary battery was fabricated in the same manner as in Example A1 except that a mixed solvent in which 2 SO 2 was mixed at a volume ratio of 47.5: 47.5: 5 was used. . This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0026]
( Reference Example A5)
In Reference Example A5, in the preparation of the non-aqueous electrolyte in Example A1 above, ethylene carbonate (EC), dimethyl carbonate (DMC), and tri (trichloromethyl) phosphite (CCl 3 O) were used as the solvent. ) A lithium secondary battery was produced in the same manner as in Example A1 except that a mixed solvent in which 3 P was mixed at a volume ratio of 47.5: 47.5: 5 was used. . This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0027]
(Comparative Example X1)
In Comparative Example X1, in the preparation of the non-aqueous electrolyte in Example A1 above, mixing was simply performed by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 50:50 as the solvent. A lithium secondary battery was produced in the same manner as in Example A1 except that a solvent was used. This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0028]
(Comparative Example X2)
In Comparative Example X2, in the preparation of the non-aqueous electrolyte in Example A1 above, as solvents, ethylene carbonate (EC), dimethyl carbonate (DMC), trimethyl phosphite (CH 3 O) 3 P and A lithium secondary battery was fabricated in the same manner as in Example A1 except that a mixed solvent was used in a volume ratio of 47.5: 47.5: 5. This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0029]
(Comparative Example X3)
In Comparative Example X3, ethylene carbonate (EC), dimethyl carbonate (DMC), and trimethyl phosphate (CH 3 O) 3 PO were used as solvents in the preparation of the non-aqueous electrolyte in Example A1 above. A lithium secondary battery was produced in the same manner as in Example A1 except that a mixed solvent mixed at a volume ratio of 47.5: 47.5: 5 was used. This lithium secondary battery also had an internal resistance of about 10Ω before charging / discharging.
[0030]
And after charging each lithium secondary battery of Examples A1 to A6 and Comparative Examples X1 to X3 manufactured as described above to a charge end voltage of 4.2 V at a charge current of 10 mA, a discharge end voltage of 3 at a discharge current of 10 mA. The battery was discharged to 0.0 V, and charging / discharging was repeated as one cycle, and the number of cycles until the discharge capacity decreased to half of the initial discharge capacity was determined. The results are shown in Table 1 below.
[0031]
[Table 1]
Figure 0004082853
[0032]
As is apparent from the results , Example A1 in which a compound in which a halogen group is bonded to a phosphite, a phosphate, a borate, a sulfate, or a sulfite is added to the solvent of the nonaqueous electrolyte solution , Each of the lithium secondary batteries of Reference Examples A2 to A6 was added with a lithium secondary battery of Comparative Example X1 in which such a compound was not added, or a phosphite or phosphate ester to which no halogen group was bonded. Compared to the lithium secondary batteries of Comparative Examples X2 and X3, the number of cycles until the discharge capacity decreased to half of the initial discharge capacity was increased, and the cycle characteristics were improved.
[0033]
Further, when the lithium secondary batteries of Example A1 and Reference Examples A2 to A6 were compared, the above compound was compared with the lithium secondary battery of Reference Example A6 in which the halogen bonded in the above compound was chlorine. In each of the lithium secondary batteries of Examples A1 and Reference Examples A2 to A5 in which the halogen bonded in FIG. 1 is fluorine, the cycle characteristics are further improved, and in particular, triphosphite (trifluoro) as the above compound In the lithium secondary battery of Example A1 using methyl) (CF 3 O) 3 P, the most excellent cycle characteristics were obtained.
[0034]
( Examples B3, B4 and Reference Examples B1, B2, B5 )
In Examples B3, B4 and Reference Examples B1, B2, B5 , in the preparation of the non-aqueous electrolyte in Example A1 above, as the solvent in the same manner as in Example A1, ethylene carbonate (EC), While using a mixed solvent of dimethyl carbonate (DMC) and tri (trifluoromethyl) phosphite (CF 3 O) 3 P, the volume ratio of mixing these solvents was changed as shown in Table 2 below. The volume ratio of EC, DMC, and (CF 3 O) 3 P was 49.9: 49.9: 0.2 in Reference Example B1, and 49.5: 49.5: 1 in Reference Example B2. In Example B3, the ratio was 49: 49: 2, 45:45:10 in Example B4, and 40:40:20 in Reference Example B5.
[0035]
And each lithium secondary battery of Example B3, B4 and reference example B1, B2, B5 was produced like the case of said Example A1 except using such a mixed solvent. In addition, each lithium secondary battery produced in this way also had an internal resistance of about 10Ω before charging / discharging.
[0036]
In addition, the lithium secondary batteries of Examples B3 and B4 and Reference Examples B1, B2 and B5 produced in this way are also the same as in the case of Example A1, Reference Examples A2 to A6 and Comparative Examples X1 to X3. Similarly, the number of cycles until the discharge capacity is reduced to half of the initial discharge capacity was determined, and the results are shown in Table 2 below together with the results of the lithium secondary battery of Example A1.
[0037]
[Table 2]
Figure 0004082853
[0038]
As is apparent from the results , Examples B3, B4 and Tri (trifluoromethyl) phosphite (CF 3 O) 3 P contained in the above mixed solvent in a range of 0.2 to 20% by volume and In each of the lithium secondary batteries of Reference Examples B1, B2, and B5, the number of cycles until the discharge capacity is reduced to half of the initial discharge capacity is larger than that of each of the lithium secondary batteries of Comparative Examples X1 to X3. The cycle characteristics were improved. In particular, the lithium secondary batteries of Examples A1, B3, and B4 in which tri (trifluoromethyl) phosphite (CF 3 O) 3 P was contained in a mixed solvent in a range of 2 to 10% by volume were used as reference examples. The cycle characteristics were further improved as compared with B1, B2, and B5 lithium secondary batteries .
[0039]
(Examples C1 to C6)
In Examples C1 to C6, in the preparation of the non-aqueous electrolyte in Example A1 above, as the solvent, as in Example A1, ethylene carbonate (EC), dimethyl carbonate (DMC), While using a mixed solvent in which tri (trifluoromethyl) phosphate (CF 3 O) 3 P was mixed at a volume ratio of 47.5: 47.5: 5, the types of solutes to be dissolved in this mixed solvent were as follows: In Example C1, lithium tetrafluoroborate LiBF 4 , Example C2 lithium hexafluoroarsenate LiAsF 6 , and Example C3 lithium trifluoromethanesulfonate LiCF 3 SO 3, the lithium trifluoromethanesulfonate imide LiN (CF 3 SO 2) 2 in example C4, example C Lithium pentafluoroethane sulfonic acid imide LiN (C 2 F 5 SO 2 ) 2 in, using lithium trifluoromethanesulfonate methide LiC (CF 3 SO 2) 3 In Example C6, the concentration of 1 mol / liter Each non-aqueous electrolyte was prepared by dissolving so as to be.
[0040]
And each lithium secondary battery of Examples C1-C6 was produced like the case of said Example A1 except using each non-aqueous electrolyte prepared in this way. In addition, each lithium secondary battery produced in this way also had an internal resistance of about 10Ω before charging / discharging.
[0041]
In addition, for each of the lithium secondary batteries of Examples C1 to C6 thus manufactured, the discharge capacity was initially set in the same manner as in Examples A1 , Reference Examples A2 to A6 and Comparative Examples X1 to X3. The number of cycles until the discharge capacity was reduced to half of the discharge capacity was obtained, and the results are shown in Table 3 below together with the results of the lithium secondary battery of Example A1.
[0042]
[Table 3]
Figure 0004082853
[0043]
As is clear from this result, the solutes dissolved in the above mixed solvent include LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC. Also in each of the lithium secondary batteries of Examples C1 to C6 using (CF 3 SO 2 ) 3 , the discharge capacity was reduced to half of the initial discharge capacity as compared with the lithium secondary batteries of Comparative Examples X1 to X3. As a result, the number of cycles required to increase the cycle characteristics was improved. In particular, in the lithium secondary batteries of Examples A1, C1, C4, and C5 using LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 as the solute, the cycle The characteristics were further improved.
[0044]
(Examples D1 to D7)
In Examples D1 to D7, in the preparation of the nonaqueous electrolytic solution in Example A1 above, tri (trifluoromethyl) phosphite (CF 3 O) 3 P was used as a solvent in the same manner as in Example A1. On the other hand, the kind of the solvent to which (CF 3 O) 3 P was added was changed, and as shown in Table 4 below, in Example D1, butylene carbonate (BC) and dimethyl carbonate (DMC) (CF 3 O) 3 P, vinylene carbonate (VC), dimethyl carbonate (DMC) and (CF 3 O) 3 P in Example D2, and γ-butyrolactone (γ-BL) in Example D3. And dimethyl carbonate (DMC) and (CF 3 O) 3 P, and in Example D4, sulfolane (SL), dimethyl carbonate (DMC) and (CF 3 O) 3 P, In Example D5, ethylene carbonate (EC), methyl ethyl carbonate (EMC), and (CF 3 O) 3 P were used. In Example D6, ethylene carbonate (EC), diethyl carbonate (DEC), and (CF 3 O) were used. 3 P was mixed in a volume ratio of 47.5: 47.5: 5, respectively.
[0045]
And each lithium secondary battery of Examples D1-D6 was produced like the case of said Example A1 except using such a mixed solvent. In addition, each lithium secondary battery produced in this way also had an internal resistance of about 10Ω before charging / discharging.
[0046]
In addition, for each of the lithium secondary batteries of Examples D1 to D6 thus manufactured, the discharge capacity was initially set in the same manner as in Examples A1 , Reference Examples A2 to A6, and Comparative Examples X1 to X3. The number of cycles until the discharge capacity was reduced to half of the discharge capacity was obtained, and the results are shown in Table 4 below together with the results of the lithium secondary battery of Example A1.
[0047]
[Table 4]
Figure 0004082853
[0048]
As is clear from these results, each lithium of Comparative Examples X1 to X3 was used even when each of the above solvents was used as a solvent to which tri (trifluoromethyl) phosphite (CF 3 O) 3 P was added. Compared to the secondary battery, the number of cycles until the discharge capacity was reduced to half of the initial discharge capacity increased, and the cycle characteristics were improved.
[0049]
(Examples E1, E2)
In Examples E1 and E2, only the negative electrode in the lithium secondary battery of Example A1 was changed. As shown in Table 5 below, in Example E1, lithium metal was molded into a disk shape. In Example E2, a lithium secondary battery was produced in the same manner as in Example A1 except that a Li-Al alloy formed into a disk shape was used. In addition, each lithium secondary battery produced in this way also had an internal resistance of about 10Ω before charging / discharging.
[0050]
(Comparative Examples X4 and X5)
In Comparative Examples X4 and X5, as in the case of Comparative Example X1, ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 50:50 as a solvent for the non-aqueous electrolyte. Using only a mixed solvent, only the lithium secondary battery and the negative electrode of Comparative Example X1 were changed, and as shown in Table 5 below, in Comparative Example X4, metallic lithium was formed into a disk shape, In Comparative Example X5, a lithium secondary battery was manufactured using a Li-Al alloy formed into a disk shape. In addition, each lithium secondary battery produced in this way also had an internal resistance of about 10Ω before charging / discharging.
[0051]
And also about each lithium secondary battery of Example E1, E2 and Comparative Example X4, X5 which were produced as mentioned above, it is the same as that of the case of said Example A1 , Reference Example A2- A6, and Comparative Example X1-X3. Thus, the number of cycles until the discharge capacity is reduced to half of the initial discharge capacity is obtained, and the results are combined with the results of the lithium secondary batteries of Example A1 and Comparative Example X1 above, and are shown in Table 5 below. Indicated.
[0052]
[Table 5]
Figure 0004082853
[0053]
As is clear from this result, when any of graphite, metallic lithium, and Li—Al alloy is used as the negative electrode material, triphosphite (trifluoromethyl phosphite) is used as the solvent for the non-aqueous electrolyte as described above. ) (CF 3 O) 3 P to which lithium secondary batteries of Examples A1, E1, and E2 were added were tri (trifluoromethyl) phosphite (CF 3 O) 3 P as a non-aqueous electrolyte solvent. Compared to the lithium secondary batteries of Comparative Examples X1, X4, and X5 in which no is added, the number of cycles until the discharge capacity was reduced to half of the initial discharge capacity was increased, and the cycle characteristics were improved. In particular, in the lithium secondary battery of Example A1 using graphite as the negative electrode material, the cycle characteristics were remarkably improved.
[0054]
【The invention's effect】
As described above in detail, in the lithium secondary battery according to the present invention, the solvent in which the fluorine is bonded to the phosphite is contained in the range of 2 to 10% by volume in the solvent of the non-aqueous electrolyte. As a result, a stable film having excellent ion conductivity is formed on the surface of the negative electrode, and when this film is charged and discharged, the non-aqueous electrolyte is prevented from reacting with the negative electrode, and the cycle in the lithium secondary battery Improved characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing the internal structure of a lithium secondary battery produced in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1 Positive electrode 2 Negative electrode

Claims (4)

リチウムを活物質とする負極と、正極と、溶質及び溶媒を含む非水電解液とを備えたリチウム二次電池において、上記の非水電解液の溶媒に、亜リン酸エステルにフッ素が結合された化合物が2〜10体積%の範囲で含有されていることを特徴とするリチウム二次電池。In a lithium secondary battery including a negative electrode using lithium as an active material, a positive electrode, and a nonaqueous electrolytic solution containing a solute and a solvent , fluorine is bonded to a phosphite in the solvent of the nonaqueous electrolytic solution. A lithium secondary battery, wherein the compound is contained in an amount of 2 to 10% by volume . 請求項1に記載したリチウム二次電池において、上記の非水電解液の溶媒が、環状炭酸エステルと鎖状炭酸エステルと上記の亜リン酸エステルにフッ素が結合された化合物との混合溶媒であることを特徴とするリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein the solvent of the non-aqueous electrolyte is a mixed solvent of a cyclic carbonate, a chain carbonate, and a compound in which fluorine is bonded to the phosphite. A lithium secondary battery characterized by that. 請求項1又は2に記載したリチウム二次電池において、上記の亜リン酸エステルにフッ素が結合された化合物が、亜リン酸トリ(トリフルオロメチル)であることを特徴とするリチウム二次電池。3. The lithium secondary battery according to claim 1, wherein the compound in which fluorine is bonded to the phosphite is tri (trifluoromethyl) phosphite. 請求項1〜3の何れか1項に記載したリチウム二次電池において、上記のリチウムを活物質とする負極に、イオンの吸蔵,放出が可能な炭素材料を用いたことを特徴とするリチウム二次電池。  The lithium secondary battery according to any one of claims 1 to 3, wherein a carbon material capable of occluding and releasing ions is used for the negative electrode using lithium as an active material. Next battery.
JP2000212527A 2000-07-13 2000-07-13 Lithium secondary battery Expired - Fee Related JP4082853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000212527A JP4082853B2 (en) 2000-07-13 2000-07-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212527A JP4082853B2 (en) 2000-07-13 2000-07-13 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002025609A JP2002025609A (en) 2002-01-25
JP4082853B2 true JP4082853B2 (en) 2008-04-30

Family

ID=18708442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212527A Expired - Fee Related JP4082853B2 (en) 2000-07-13 2000-07-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4082853B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910239B2 (en) * 2000-12-25 2012-04-04 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP4187959B2 (en) * 2001-10-24 2008-11-26 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
JP4836791B2 (en) 2004-07-16 2011-12-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
EP2485315A4 (en) * 2009-09-28 2015-01-28 Univ Shizuoka Nat Univ Corp Solvent for electrolytic solution, electrolytic solution, and gel-like electrolyte
JP2011150920A (en) * 2010-01-22 2011-08-04 Hitachi Vehicle Energy Ltd Lithium ion battery
WO2017078107A1 (en) 2015-11-05 2017-05-11 三井化学株式会社 Nonaqueous electrolyte solution for secondary batteries, and secondary battery
CN109994777B (en) * 2017-12-29 2021-07-13 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery
KR102094263B1 (en) * 2018-02-23 2020-03-30 에스케이이노베이션 주식회사 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
US11757135B2 (en) 2018-02-23 2023-09-12 Sk On Co., Ltd. Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
WO2019164164A1 (en) * 2018-02-23 2019-08-29 에스케이이노베이션 주식회사 Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593871A (en) * 1982-06-29 1984-01-10 Showa Denko Kk Battery
JPH09167635A (en) * 1995-12-15 1997-06-24 Mitsui Petrochem Ind Ltd Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery
JPH113728A (en) * 1997-04-17 1999-01-06 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP3658506B2 (en) * 1997-09-19 2005-06-08 三菱化学株式会社 Non-aqueous electrolyte battery
JP4407847B2 (en) * 1997-12-02 2010-02-03 株式会社デンソー Flame retardant electrolyte and non-aqueous electrolyte secondary battery
JP2000228216A (en) * 1999-02-08 2000-08-15 Denso Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001160415A (en) * 1999-12-01 2001-06-12 Mitsubishi Chemicals Corp Electrolyte for lithium secondary battery and lithium secondary battery using the electrolyte

Also Published As

Publication number Publication date
JP2002025609A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6489055B1 (en) Lithium secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
US20060014076A1 (en) Non-aqueous electrolyte secondary battery
JP4020571B2 (en) Lithium secondary battery
JP2001256997A (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH07320779A (en) Nonaqueous electrolytic battery
US20230095613A1 (en) Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising Same
JP4082853B2 (en) Lithium secondary battery
JP3229757B2 (en) Lithium secondary battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3831550B2 (en) Non-aqueous electrolyte battery
JP3639468B2 (en) Lithium secondary battery
JP4248258B2 (en) Lithium secondary battery
JP3573971B2 (en) Lithium secondary battery
JP3462764B2 (en) Non-aqueous electrolyte secondary battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP4439205B2 (en) Nonaqueous electrolyte secondary battery
JP2004095325A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees