JPH09167635A - Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery - Google Patents

Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery

Info

Publication number
JPH09167635A
JPH09167635A JP7327697A JP32769795A JPH09167635A JP H09167635 A JPH09167635 A JP H09167635A JP 7327697 A JP7327697 A JP 7327697A JP 32769795 A JP32769795 A JP 32769795A JP H09167635 A JPH09167635 A JP H09167635A
Authority
JP
Japan
Prior art keywords
electrolytic solution
battery
substituted alkyl
alkyl group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7327697A
Other languages
Japanese (ja)
Inventor
Akio Hibara
昭男 檜原
Keiichi Yokoyama
恵一 横山
Shigeru Fujita
茂 藤田
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Sony Corp
Original Assignee
Mitsui Petrochemical Industries Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd, Sony Corp filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP7327697A priority Critical patent/JPH09167635A/en
Publication of JPH09167635A publication Critical patent/JPH09167635A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/122

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure adequately chemical stability. SOLUTION: (1) A nonaqueous electrolytic solution having a high withstand voltage can be obtained, by using an organic solvent containing, as an electrolyte solvent, an ester of sulfurous acid having halogen atom substituted alkyl groups expressed by the formula and, in particular, an ester of sulfurous acid having fluorine atom substituted alkyl groups. A battery in which such a nonaqueous electrolytic solution is used can generate a high voltage and is also excellent in battery characteristics. (2) In the formula, R<1> and R<2> , which may be identical or different from each other, represent for alkyl groups or halogen atom substituted alkyl groups, and at least one of the two, R<1> R<2> , represents for a halogen atom substituted alkyl group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来の技術】従来から、非水電解液を用いた電池は、
高電圧、高エネルギー密度を有すると共に、貯蔵性など
の信頼性に優れているため、広く民生用電子機器の電源
に用いられている。このような電池の負極物質として、
アルカリ又はアルカリ土類金属は高い還元能力をもち、
高いエネルギ−密度を持つ電池を得ることができるた
め、電極物質として早くから利用されている。また、正
極物質としてはLiCoO2、LiNiO2、LiMn2
4等のリチウム塩と遷移金属との複合酸化物やMo
2、TiS2等の遷移金属硫化物、MnO2、V25
の遷移金属酸化物等が使用される。
2. Description of the Related Art Conventionally, a battery using a non-aqueous electrolyte is
Since it has a high voltage and a high energy density and has excellent reliability such as storability, it is widely used as a power source for consumer electronic devices. As a negative electrode material for such a battery,
Alkali or alkaline earth metals have high reducing ability,
Since it is possible to obtain a battery having a high energy density, it has been used as an electrode material for a long time. Further, as the positive electrode material, LiCoO 2 , LiNiO 2 , LiMn 2
Composite oxide of lithium salt such as O 4 and transition metal, Mo
Transition metal sulfides such as S 2 and TiS 2 , transition metal oxides such as MnO 2 and V 2 O 5 are used.

【0002】しかし、アルカリ金属又はアルカリ土類金
属を負電極とする電池は、充放電を繰り返すと電解液中
の金属イオンが不均一に電極上に析出溶解し、デンドラ
イトと呼ばれる針状の反応性の高い金属が析出し堆積す
る場合が多い。このようなデンドライトは、電極から脱
落して電極としての作用を喪失させ電池の寿命を短くす
る原因になり、また、苛酷な条件下では正極と負極を隔
てるセパレーターを貫通して局所的に内部ショートを起
こさせ、発熱の原因になる可能性もある。
However, in a battery using an alkali metal or alkaline earth metal as a negative electrode, the metal ions in the electrolytic solution are non-uniformly deposited and dissolved on the electrode when charging and discharging are repeated, and needle-like reactivity called dendrite. In many cases, a high metal is deposited and deposited. Such dendrites fall off the electrode and lose its function as an electrode, shortening the battery life.Also, under severe conditions, the dendrite penetrates the separator that separates the positive electrode and the negative electrode, causing a local internal short circuit. It may cause a fever and cause fever.

【0003】このような、アルカリ金属やアルカリ土類
金属からなる負極の問題点であったデンドライトの生成
を解決するために、電池の負極に炭素材料を使用し、正
極にLiCoO2、LiNiO2、LiMn24等のリチ
ウムと遷移金属との複合酸化物を使用したロッキングチ
ェア型と呼ばれる二次電池が研究されてきた。この電池
においてリチウムは、充放電時にイオン状態のまま炭素
負極と金属酸化物正極との間を行き来するのみであり、
金属状態にはならないためデンドライトが生成しない。
このため、過充電、外部ショート、釘刺し、押しつぶし
等の実験によっても安全性が確認され、安全性が向上し
たため民生用高エネルギ−電池として広く流布するよう
になり、急速に普及している。
In order to solve the problem of dendrite formation, which has been a problem of the negative electrode made of alkali metal or alkaline earth metal, a carbon material is used for the negative electrode of the battery, and LiCoO 2 , LiNiO 2 , for the positive electrode, A secondary battery called a rocking chair type using a composite oxide of lithium and a transition metal such as LiMn 2 O 4 has been studied. In this battery, lithium only moves back and forth between the carbon negative electrode and the metal oxide positive electrode in an ionic state during charging and discharging,
No dendrite is generated because it does not become metallic.
For this reason, safety has been confirmed by experiments such as overcharging, external short-circuiting, nail puncturing, and crushing. Since the safety has been improved, it has been widely spread as a consumer high-energy battery, and is rapidly spreading.

【0004】[0004]

【発明が解決しようとする課題】上述した電池に使用さ
れる電解液は、有機溶媒にリチウム塩を溶解したものが
使用されるが、電池が良好な性能を示すには電解液は負
極と正極に対して安定である必要がある。すなわち本発
明は、高い耐酸化電圧を示し電機化学的に安定で、電池
のサイクル特性を向上する非水電解液を提供することを
目的とする。また、本発明は高電圧を発生できると共
に、電池特性の優れた非水電解液電池を提供することを
も目的とする。
The electrolytic solution used in the above-mentioned battery is a solution of a lithium salt dissolved in an organic solvent, and the electrolytic solution must be a negative electrode and a positive electrode in order for the battery to exhibit good performance. Need to be stable against. That is, it is an object of the present invention to provide a non-aqueous electrolyte solution that exhibits a high oxidation withstand voltage, is electrochemically stable, and improves the cycle characteristics of a battery. Another object of the present invention is to provide a non-aqueous electrolyte battery that can generate high voltage and has excellent battery characteristics.

【0005】[0005]

【課題を解決するための手段】発明者らは、安全に高電
圧を発生できると共に、電池特性の優れた非水電解液電
池を提供するために、耐電圧が高い電解液を見出すため
鋭意研究を行った。その結果、一般式[1]で示される
ハロゲン原子置換亜硫酸エステル化合物を含有する非水
電解液を用いると、電解液の耐電圧が向上することを見
出し本発明に至った。
DISCLOSURE OF THE INVENTION In order to provide a non-aqueous electrolyte battery which is capable of safely generating a high voltage and has excellent battery characteristics, the inventors of the present invention have earnestly studied to find an electrolyte solution having a high withstand voltage. I went. As a result, they have found that the use of a non-aqueous electrolytic solution containing a halogen atom-substituted sulfite compound represented by the general formula [1] improves the withstand voltage of the electrolytic solution, and has reached the present invention.

【0006】[0006]

【化2】 Embedded image

【0007】式中、R1及びR2は同一又は異なっていて
もよくアルキル基又はハロゲン原子置換アルキル基を表
し、少なくとも一方はハロゲン原子置換アルキル基を表
し、好適には、ハロゲン原子置換アルキル基はフッ素原
子置換アルキル基である。更に好ましくは、一般式
[1]において、式中R1は−CH3、−CH2CH3、−
CH2CF3、−CH2CF2H、−CH2CF2CF3、−
CH2CF2CF2H及び−CH(CF32の群から選択
される基であり、R2が−CH2CF3、−CH2CF
2H、−CH2CF2CF3、−CH2CF2CF2H及び−
CH(CF32の群から選択される基であることが望ま
しい。
In the formula, R 1 and R 2 may be the same or different and each represents an alkyl group or a halogen atom-substituted alkyl group, at least one of which represents a halogen atom-substituted alkyl group, preferably a halogen atom-substituted alkyl group. Is a fluorine atom-substituted alkyl group. More preferably, in the general formula [1], R 1 is —CH 3 , —CH 2 CH 3 , —
CH2CF 3, -CH 2 CF 2 H , -CH 2 CF 2 CF 3, -
CH 2 CF 2 CF 2 H and a group selected from the group of —CH (CF 3 ) 2 , wherein R 2 is —CH 2 CF 3 , —CH 2 CF.
2 H, -CH 2 CF 2 CF 3, -CH 2 CF 2 CF 2 H and -
It is preferably a group selected from the group of CH (CF 3 ) 2 .

【0008】また、本発明の非水電解液電池は、電解液
として上述した非水電解液を使用するものであり、好適
にはその正極はリチウムと遷移金属との複合酸化物を主
成分として含む材料からなる。電解液として、一般式
[1]で表される亜硫酸エステルを含有する電解液は、
酸化による電解液溶媒の分解が起こりにくく、電導度に
も優れている。また、本発明の非水溶媒電池は、サイク
ル特性に優れ、優れた電池特性をも示す。
Further, the non-aqueous electrolyte battery of the present invention uses the above-mentioned non-aqueous electrolyte solution as an electrolyte solution, and preferably the positive electrode contains a composite oxide of lithium and a transition metal as a main component. Consist of materials. As the electrolytic solution, an electrolytic solution containing a sulfite represented by the general formula [1] is
The decomposition of the electrolyte solvent due to oxidation does not occur easily, and the conductivity is excellent. In addition, the non-aqueous solvent battery of the present invention has excellent cycle characteristics and excellent battery characteristics.

【0009】[0009]

【発明の実施の形態】本発明の非水電解液は、一般式
[1]で表される亜硫酸エステル化合物を含有するもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The nonaqueous electrolytic solution of the present invention contains a sulfite compound represented by the general formula [1].

【0010】[0010]

【化3】 Embedded image

【0011】一般式[1]において、炭酸エステルのR
1はアルキル基又はハロゲン原子置換アルキル基を表
し、R2はハロゲン原子置換アルキル基を表す。アルキ
ル基としては、メチル基、エチル基、プロピル基、イソ
プロピル基等が挙げられ、特にメチル基又はエチル基が
好ましい。ハロゲン原子置換アルキル基としては、フッ
素原子置換アルキル基、塩素原子置換アルキル基、臭素
原子置換アルキル基などが挙げられるが、特にフッ素原
子置換アルキル基であることが望ましく、2,2−ジフ
ルオロエチル基、2,2,2−トリフルオロエチル基、
2,2,3,3−テトラフルオロプロピル基、2,2,
3,3,3−ペンタフルオロプロピル基、2H−ヘキサ
フルオロ−2−プロピル基等が挙げられる。
In the general formula [1], R of carbonic acid ester
1 represents an alkyl group or a halogen atom-substituted alkyl group, and R 2 represents a halogen atom-substituted alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group and the like, and a methyl group or an ethyl group is particularly preferable. Examples of the halogen atom-substituted alkyl group include a fluorine atom-substituted alkyl group, a chlorine atom-substituted alkyl group, and a bromine atom-substituted alkyl group. Particularly, a fluorine atom-substituted alkyl group is preferable, and a 2,2-difluoroethyl group is preferable. , 2,2,2-trifluoroethyl group,
2,2,3,3-tetrafluoropropyl group, 2,2
Examples include a 3,3,3-pentafluoropropyl group and a 2H-hexafluoro-2-propyl group.

【0012】このような亜硫酸エステルとして、亜硫酸
メチル−2,2−ジフルオロエチル基、亜硫酸メチル−
2,2,2−トリフルオロエチル基、亜硫酸メチル−
2,2,3,3−テトラフルオロプロピル基、亜硫酸メ
チル−2,2,3,3,3−ペンタフルオロプロピル
基、亜硫酸メチル−2H−ヘキサフルオロ−2−プロピ
ル基、亜硫酸エチル−2,2−ジフルオロエチル基、亜
硫酸エチル−2,2,2−トリフルオロエチル基、亜硫
酸エチル−2,2,3,3−テトラフルオロプロピル
基、亜硫酸エチル−2,2,3,3,3−ペンタフルオ
ロプロピル基、亜硫酸エチル−2H−ヘキサフルオロ−
2−プロピル基、亜硫酸ジ−2,2,2−トリフルオロ
エチル、亜硫酸−2,2,2−トリフルオロエチル−
2,2,3,3−テトラフルオロプロピル基、亜硫酸−
2,2,2−トリフルオロエチル−2,2,3,3,3
−ペンタフルオロプロピル、亜硫酸−2,2,2−トリ
フルオロエチル−2H−ヘキサフルオロ−2−プロピル
基等を挙げることができる。これらの亜硫酸エステル
は、上述の1種又は2種以上を混合して、電解液溶媒と
して用いることができる。
Examples of such sulfite include methyl sulfite-2,2-difluoroethyl group and methyl sulfite-
2,2,2-trifluoroethyl group, methyl sulfite-
2,2,3,3-tetrafluoropropyl group, methyl sulfite-2,2,3,3,3-pentafluoropropyl group, methyl sulfite-2H-hexafluoro-2-propyl group, ethyl sulfite-2,2 -Difluoroethyl group, ethyl sulfite-2,2,2-trifluoroethyl group, ethyl sulfite-2,2,3,3-tetrafluoropropyl group, ethyl sulfite-2,2,3,3,3-pentafluoro Propyl group, ethyl sulfite-2H-hexafluoro-
2-propyl group, di-2,2,2-trifluoroethyl sulfite, 2,2,2-trifluoroethyl sulfite-
2,2,3,3-tetrafluoropropyl group, sulfurous acid-
2,2,2-trifluoroethyl-2,2,3,3,3
-Pentafluoropropyl, sulfite-2,2,2-trifluoroethyl-2H-hexafluoro-2-propyl group and the like can be mentioned. These sulfites can be used as an electrolyte solution solvent by mixing one or more of the above.

【0013】電解液溶媒は、このような亜硫酸エステル
単独でもよいが、炭酸プロピレン等の環状炭酸エステ
ル、γ−ブチロラクトン又はスルホラン等の高誘電率溶
媒との混合溶媒を用いることによって電解質の溶解度を
高めることができ、電気電導度を向上することができ
る。環状炭酸エステルとしては5〜6員環の炭酸エステ
ルを用いることができるが、5員環の炭素エステルが望
ましく、特に炭酸エチレン、炭酸プロピレン、炭酸ブチ
レン、炭酸ビニレンが好ましい。
The electrolyte solution solvent may be such a sulfite ester alone, but the solubility of the electrolyte is increased by using a mixed solvent with a cyclic ester carbonate such as propylene carbonate or a high dielectric constant solvent such as γ-butyrolactone or sulfolane. It is possible to improve the electric conductivity. As the cyclic carbonic acid ester, a carbonic acid ester of a 5-membered ring can be used, but a carbonic acid ester of a 5-membered ring is preferable, and ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate are particularly preferable.

【0014】前述した亜硫酸エステルとこのような環状
炭酸エステルとの混合溶媒として用いる場合には、亜硫
酸エステルの割合は溶媒全体に対して10体積%以上と
することが望ましい。また、電解液溶媒として高い電導
度を得るためには、前述の環状炭酸エステルのような高
誘電率溶媒を用いるだけでなく、イオン移動速度の速い
低粘度溶媒を用いることも有効である。例えば、前述の
亜硫酸エステルと環状炭酸エステルとの混合溶媒に、更
に通常の電池用電解液溶媒として用いられるエーテル
系、鎖状エステル系、鎖状炭酸エステル系等の非水溶媒
を適宜添加することによって電解液の粘度を低下するこ
とがができ、電導度を高めることができる。特に、鎖状
エステルは耐電圧が高く耐酸化性に優れるため望まし
く、このような鎖状エステルとして炭酸ジメチル、炭酸
メチルエチル、炭酸ジエチルが挙げられる。この場合に
も亜硫酸エステルの割合は溶媒全体に対して10体積%
以上とすることが望ましい。
When used as a mixed solvent of the above-mentioned sulfite ester and such cyclic ester carbonate, the proportion of the sulfite ester is preferably 10% by volume or more with respect to the entire solvent. Further, in order to obtain high conductivity as the electrolyte solution solvent, it is effective to use not only a high dielectric constant solvent such as the above-mentioned cyclic carbonic acid ester but also a low viscosity solvent having a high ion transfer rate. For example, to the mixed solvent of sulfite ester and cyclic carbonic acid ester described above, a nonaqueous solvent such as an ether type, a chain ester type, a chain carbonic acid ester type, etc., which is used as a normal electrolyte solvent for a battery, may be appropriately added. As a result, the viscosity of the electrolytic solution can be reduced and the electrical conductivity can be increased. In particular, a chain ester is desirable because it has a high withstand voltage and excellent oxidation resistance, and examples of such a chain ester include dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. Also in this case, the proportion of sulfite is 10% by volume based on the whole solvent.
It is desirable to make the above.

【0015】このような電解液溶媒に溶解する電解質と
しては、通常の電池電解液に用いられる電解質を使用す
ることができ、LiPF6、LiBF4、LiAsF6
LiCF3SO3、LiN(SO2CF52、LiC(S
2CF33、LiAlCl3、LiSiF6等のリチウ
ム塩が望ましく、特にLiPF6、LiBF4が望まし
い。
As the electrolyte that dissolves in such an electrolyte solution solvent, an electrolyte that is used in an ordinary battery electrolyte solution can be used, and LiPF 6 , LiBF 4 , LiAsF 6 ,
LiCF 3 SO 3 , LiN (SO 2 CF 5 ) 2 , LiC (S
Lithium salts such as O 2 CF 3 ) 3 , LiAlCl 3 and LiSiF 6 are desirable, and LiPF 6 and LiBF 4 are particularly desirable.

【0016】電解質を溶媒に溶解する濃度として、0.
1〜3モル/リットルで実施することができるが、好ま
しくは0.5〜1.5モル/リットルで用いることがで
きる。本発明の非水電解液電池は、電解液として上述し
た非水電解液を使用するものであり、負極材料として
は、アルカリ金属、アルカリ土類金属等の金属材料、金
属硫化物及び各種炭素材料を用いることができるが、特
にリチウムイオンをドープ・脱ドープできる炭素材料が
望ましい。このような炭素材料として、グラファイト
(黒鉛)、非晶質炭素、カーボンブラック、カーボンフ
ァイバ等が挙げられる。
The concentration at which the electrolyte is dissolved in the solvent is 0.
It can be carried out at 1 to 3 mol / l, preferably 0.5 to 1.5 mol / l. The non-aqueous electrolyte battery of the present invention uses the above-mentioned non-aqueous electrolyte solution as an electrolyte solution, and as the negative electrode material, a metal material such as an alkali metal or an alkaline earth metal, a metal sulfide and various carbon materials. However, a carbon material that can be doped with and dedoped with lithium ions is particularly desirable. Examples of such a carbon material include graphite (graphite), amorphous carbon, carbon black, and carbon fiber.

【0017】また、正極材料としては、MoS2、Ti
2等の遷移金属硫化物、MnO2、V25等の遷移金属
酸化物、あるいはLiCoO2、LiMnO2、LiMn
24、LiNiO2などのリチウムと遷移金属とからな
る複合酸化物を用いることができる。特に、起電圧の高
いリチウムと遷移金属とからなる複合酸化物の場合に本
発明の効果が発揮される。
Further, as the positive electrode material, MoS 2 , Ti
Transition metal sulfides such as S 2, transition metal oxides such as MnO 2, V 2 O 5, or LiCoO 2, LiMnO 2, LiMn
A composite oxide composed of lithium and a transition metal such as 2 O 4 or LiNiO 2 can be used. In particular, the effect of the present invention is exerted in the case of a composite oxide composed of lithium and a transition metal having a high electromotive voltage.

【0018】本発明において電池の形状、形態は特に限
定されず、円筒型、角型、コイン型、カード型、大型な
ど様々な形状、形態等をとることができる。本発明の非
水電解液電池は、サイクル特性に優れ、高電圧を発生す
ることもでき電池特性も優れたものである。
In the present invention, the shape and form of the battery are not particularly limited, and various shapes and forms such as a cylinder type, a square type, a coin type, a card type and a large size can be adopted. The non-aqueous electrolyte battery of the present invention has excellent cycle characteristics, can generate high voltage, and has excellent battery characteristics.

【0019】[0019]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。 1.酸化耐電圧の測定 電解液として、亜硫酸ジトリフルオロエチル(DTFE
SUと略す)に電解質として六フッ化リン酸リチウム
(LiPF6)を25℃で飽和するまで溶解(約0.5
mol/l)し、25mlの電解液を調製した(実施例
1)。また、亜硫酸メチルトリフルオロエチル(MTF
ESUと略す)にLiPF6を1mol/l溶解した電
解液を調製した(実施例2)。
EXAMPLES The present invention will be specifically described below with reference to examples. 1. Measurement of oxidative withstand voltage As an electrolyte, ditrifluoroethyl sulfite (DTFE)
Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte is dissolved in SU (abbreviated as SU) at 25 ° C. until saturated (about 0.5
mol / l) to prepare 25 ml of electrolytic solution (Example 1). In addition, methyl trifluoroethyl sulfite (MTF
An electrolyte solution was prepared by dissolving LiPF 6 in 1 mol / l in ESU) (Example 2).

【0020】作用極及び対極に白金を使用し、参照電極
にリチウム金属を使用した3電極式対電圧測定セルに上
記電解液を入れ、ポテンシオガルバノスタットで50m
V/sec、25℃で電位走引して行った。酸化分解電
流が流れなかった電圧(Li/Li+)を酸化耐電圧と
した。比較例として、亜硫酸ジメチル(DMSUと略
す)にLiPF6を1mol/l溶解した電解液を調製
した(比較例1)。これらの測定結果を表1に示す。
The above electrolytic solution was placed in a three-electrode type counter-voltage measuring cell using platinum for the working electrode and the counter electrode and lithium metal for the reference electrode, and a potentiogalvanostat was used for 50 m.
The electric potential was applied at 25 ° C. for V / sec. The voltage (Li / Li + ) at which the oxidative decomposition current did not flow was defined as the oxidation withstand voltage. As a comparative example, an electrolytic solution was prepared by dissolving LiPF 6 in 1 mol / l in dimethyl sulfite (abbreviated as DMSU) (Comparative Example 1). Table 1 shows the measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から、実施例1(及び実施例2)のフ
ッ素原子置換アルキル基を有する亜硫酸エステルの電解
液は、アルキル基のみを有する亜硫酸エステルのDMS
Uよりも耐電圧が向上し、酸化されにくいことがわか
る。 2.電導度の測定 電解液として、亜硫酸ジトリフルオロエチル(DTFE
SU)と炭酸プロピレン(PCと略す)との体積比1:
1の混合溶媒に、LiPF6を1mol/l溶解したも
のを用いた(実施例3)。この電解液の電気電導度をイ
ンピーダンスメータを用いて25℃、10kHzで測定
した。
From Table 1, the electrolyte solution of the sulfite ester having a fluorine atom-substituted alkyl group of Example 1 (and Example 2) is the DMS of sulfite ester having only an alkyl group.
It can be seen that the withstand voltage is higher than U and is less likely to be oxidized. 2. Measurement of electric conductivity As an electrolyte, ditrifluoroethyl sulfite (DTFE)
Volume ratio of SU) to propylene carbonate (abbreviated as PC) 1:
LiPF 6 dissolved in 1 mol / l in the mixed solvent of 1 was used (Example 3). The electric conductivity of this electrolytic solution was measured at 25 ° C. and 10 kHz using an impedance meter.

【0023】比較例2として、一般的な電解液であるP
Cと炭酸ジエチル(DECと略す)との体積比1:1の
混合溶媒からなる電解液を用いて実施例3と同様に電気
電導度を測定した。これらの結果を表2に示す。
As Comparative Example 2, P which is a general electrolytic solution
The electrical conductivity was measured in the same manner as in Example 3 using an electrolytic solution containing a mixed solvent of C and diethyl carbonate (abbreviated as DEC) in a volume ratio of 1: 1. Table 2 shows the results.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から、本発明の電解液は実用レベルの
電導度を示すことがわかる。 3.電池性能 図1に示すような電池寸法が外径20mm、高さ2.5
mmのコイン形非水電解液電池を作成した。負極1には
リチウム金属を、正極2にはLiCoO2を85重量部
に導電剤としてグラファイト12重量部、結合剤として
フッ素樹脂3重量部を加えた混合物を加圧成形したもの
を用いた。これら負極1、正極2を構成する物質は、ポ
リプロピレンから成る多孔質セパレータ3を介してそれ
ぞれ負極缶4および正極缶5に圧着されている。このよ
うな電池の電解液として、PC、DTFESUを体積比
で1:1の割合で混合した溶媒にLiPF6を1mol
/l溶解させたものを用い、封口ガスケット6により封
入した(実施例4)。
From Table 2, it can be seen that the electrolytic solution of the present invention exhibits a practical level of electrical conductivity. 3. Battery performance The battery size as shown in Fig. 1 is 20 mm in outer diameter and 2.5 in height.
A mm-shaped non-aqueous electrolyte battery was prepared. For the negative electrode 1, lithium metal was used, and for the positive electrode 2, a mixture obtained by adding 85 parts by weight of LiCoO 2 to 12 parts by weight of graphite as a conductive agent and 3 parts by weight of a fluororesin as a binder was used, which was pressure-molded. The substances forming the negative electrode 1 and the positive electrode 2 are respectively pressure-bonded to the negative electrode can 4 and the positive electrode can 5 via the porous separator 3 made of polypropylene. As an electrolyte for such a battery, 1 mol of LiPF 6 is mixed with a solvent in which PC and DTFESU are mixed at a volume ratio of 1: 1.
/ L was used as a melted solution, and the solution was sealed with a sealing gasket 6 (Example 4).

【0026】このように作成した電池について、上限電
圧を4.2Vとした電流1.0mAの定電流定電圧充電
を10時間行ない、続いて1.0mAの定電流で3.0
Vとなるまで放電する、というサイクルを繰返した。図
2は、その結果を示すもので、初期の容量を100%と
した時の容量維持率をサイクル数に対してプロットした
ものである。
The battery thus prepared was charged with a constant current and a constant voltage of 1.0 mA for 10 hours with an upper limit voltage of 4.2 V, and then 3.0 at a constant current of 1.0 mA.
The cycle of discharging until V was repeated. FIG. 2 shows the results, and is a plot of the capacity retention ratio with respect to the number of cycles when the initial capacity is 100%.

【0027】また電解液溶媒として、PC/MTFES
U(体積比1:1)(実施例5)、PC/DMSU(体
積比1:1)(比較例3)、PC/DEC(体積比1:
1)(比較例4)を用いた以外は上述の電池と同様に作
成したコイン電池について同様の実験を行なった。その
結果を合せて図2に示す。図2から明かなように、本実
施例による電解液を用いた電池は、耐電圧も高く、リチ
ウムとの反応性も低いので、優れたサイクル特性を示し
た。
As an electrolyte solvent, PC / MTFES
U (volume ratio 1: 1) (Example 5), PC / DMSU (volume ratio 1: 1) (Comparative Example 3), PC / DEC (volume ratio 1:
1) The same experiment was performed on a coin battery prepared in the same manner as the above battery except that (Comparative Example 4) was used. The results are shown together in FIG. As is clear from FIG. 2, the battery using the electrolytic solution according to the present example has a high withstand voltage and low reactivity with lithium, and thus exhibits excellent cycle characteristics.

【0028】[0028]

【発明の効果】以上述べたように本発明の非水電解液
は、ハロゲン原子置換アルキル基を有する亜硫酸エステ
ル、特にフッ素原子置換アルキル基を有する亜硫酸エス
テルを電解液溶媒として含む有機溶媒を用いることによ
り、耐電圧が高く、十分な電導度を示す。このため、こ
のような電解液を用いた本発明の電池は、サイクル特性
に優れ、高電圧を発生することができ、電池特性にも優
れている。
As described above, the non-aqueous electrolytic solution of the present invention uses an organic solvent containing a sulfite ester having a halogen atom-substituted alkyl group, particularly a sulfite ester having a fluorine atom-substituted alkyl group as an electrolytic solution solvent. Therefore, it has a high withstand voltage and exhibits sufficient electric conductivity. Therefore, the battery of the present invention using such an electrolytic solution has excellent cycle characteristics, can generate high voltage, and is excellent in battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による電池の1実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention.

【図2】 本発明の実施例による電池の性能を示す図。FIG. 2 is a diagram showing the performance of a battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・負極 2・・・・・・正極 1 ... Negative electrode 2 ... Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 茂 東京都品川区北品川六丁目7番35号 ソニ ー株式会社内 (72)発明者 小丸 篤雄 東京都品川区北品川六丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Fujita 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Atsoo Komaru 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式[1]で表される亜硫酸エステル化
合物を含有することを特徴とする非水電解液。 【化1】 (式中R1、R2は同一又は異なっていてもよくアルキル
基又はハロゲン原子置換アルキル基を表し、少なくとも
一方R2はハロゲン原子置換アルキル基を表す。)
1. A non-aqueous electrolytic solution containing a sulfite compound represented by the general formula [1]. Embedded image (In the formula, R 1 and R 2 may be the same or different and each represents an alkyl group or a halogen atom-substituted alkyl group, and at least one R 2 represents a halogen atom-substituted alkyl group.)
【請求項2】請求項1記載の一般式[1]において、R
1、R2の少なくとも一方はフッ素原子置換アルキル基で
あることを特徴とする請求項1記載の非水電解液。
2. In the general formula [1] according to claim 1, R is
2. The non-aqueous electrolyte solution according to claim 1 , wherein at least one of 1 and R 2 is a fluorine atom-substituted alkyl group.
【請求項3】請求項1記載の一般式[1]において、R
1は−CH3、−CH2CH3、−CH2CF3、−CH2
2H、−CH2CF2CF3、−CH2CF2CF2H及び
−CH(CF32の群から選択される基であり、R2
−CH2CF3、−CH2CF2H、−CH2CF2CF3
−CH2CF2CF2H及び−CH(CF32の群から選
択される基であることを特徴とする請求項2記載の非水
電解液。
3. In the general formula [1] according to claim 1, R is
1 -CH 3, -CH 2 CH 3, -CH2CF 3, -CH 2 C
F 2 H, -CH 2 CF 2 CF 3, -CH 2 CF 2 CF 2 H and -CH (CF 3) a group selected from the second group, R 2 is -CH 2 CF 3, -CH 2 CF 2 H, -CH 2 CF 2 CF 3,
Nonaqueous electrolytic solution according to claim 2, wherein it is a group selected from -CH 2 CF 2 CF 2 H and -CH (CF 3) 2 groups.
【請求項4】請求項1記載の一般式[1]において、R
1及びR2が−CH2CF3であることを特徴とする請求項
1記載の非水電解液。
4. In the general formula [1] according to claim 1, R is
The non-aqueous electrolyte according to claim 1, wherein 1 and R 2 are —CH 2 CF 3 .
【請求項5】一般式[1]で表される亜硫酸エステル化
合物を電解液溶媒の10体積%以上含むことを特徴とす
る請求項1ないし4いずれか1項記載の非水電解液。
5. The non-aqueous electrolytic solution according to claim 1, which contains the sulfite compound represented by the general formula [1] in an amount of 10% by volume or more of the electrolytic solution solvent.
【請求項6】請求項1から請求項5のいずれか1項記載
の非水電解液を使用することを特徴とした非水電解液電
池。
6. A non-aqueous electrolyte battery using the non-aqueous electrolyte according to any one of claims 1 to 5.
【請求項7】リチウムと遷移金属との複合酸化物を主成
分として含む正極を備えたことを特徴とする請求項6記
載の非水電解液電池。
7. The non-aqueous electrolyte battery according to claim 6, further comprising a positive electrode containing a composite oxide of lithium and a transition metal as a main component.
JP7327697A 1995-12-15 1995-12-15 Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery Withdrawn JPH09167635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7327697A JPH09167635A (en) 1995-12-15 1995-12-15 Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7327697A JPH09167635A (en) 1995-12-15 1995-12-15 Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery

Publications (1)

Publication Number Publication Date
JPH09167635A true JPH09167635A (en) 1997-06-24

Family

ID=18201972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7327697A Withdrawn JPH09167635A (en) 1995-12-15 1995-12-15 Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery

Country Status (1)

Country Link
JP (1) JPH09167635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019932A1 (en) * 1997-10-15 1999-04-22 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
JP2002025609A (en) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery
JP2006339020A (en) * 2005-06-02 2006-12-14 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using it
US7611801B2 (en) 2004-10-13 2009-11-03 Samsung Sdi Co., Ltd. Non-aqueous electrolyte, rechargeable lithium battery, and rechargeable battery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019932A1 (en) * 1997-10-15 1999-04-22 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
JP2002025609A (en) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery
US7611801B2 (en) 2004-10-13 2009-11-03 Samsung Sdi Co., Ltd. Non-aqueous electrolyte, rechargeable lithium battery, and rechargeable battery system
JP2006339020A (en) * 2005-06-02 2006-12-14 Mitsubishi Chemicals Corp Nonaqueous electrolyte and lithium secondary battery using it

Similar Documents

Publication Publication Date Title
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5466364B2 (en) Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
KR101108945B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JP3304187B2 (en) Electrolyte for lithium secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH11307120A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP4607317B2 (en) Primary battery
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2000294278A (en) Nonaqueous electrolyte and secondary battery using it
JPH07254436A (en) Lithium secondary battery and manufacture thereof
JPH0963644A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2003021707A1 (en) Nonaqueous electrolyte
JP2001057235A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH09167635A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery
JPH10149840A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11273734A (en) Flame resistant nonaqueous electrolytic solution and secondary battery using it
JP2000294279A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3571762B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304