JPH07254436A - Lithium secondary battery and manufacture thereof - Google Patents

Lithium secondary battery and manufacture thereof

Info

Publication number
JPH07254436A
JPH07254436A JP6045736A JP4573694A JPH07254436A JP H07254436 A JPH07254436 A JP H07254436A JP 6045736 A JP6045736 A JP 6045736A JP 4573694 A JP4573694 A JP 4573694A JP H07254436 A JPH07254436 A JP H07254436A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
oxalate
added
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6045736A
Other languages
Japanese (ja)
Other versions
JP3287376B2 (en
Inventor
Takashi Suzuki
貴志 鈴木
Hideaki Nagura
秀哲 名倉
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP04573694A priority Critical patent/JP3287376B2/en
Publication of JPH07254436A publication Critical patent/JPH07254436A/en
Application granted granted Critical
Publication of JP3287376B2 publication Critical patent/JP3287376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a lithium secondary battery of a large charging/discharging capacity and of a high energy density. CONSTITUTION:Lithium oxalate (Li2C2O4) is added to one or two or all among a positive electrode including a sufficient quantity of lithium, a negative electrode comprising carbon material, and nonaqueous electrolyte. The upper limit value of the total addition quantity of the lithium oxalate is half the mole number of lithium quantity equivalent to irreversible capacity of the negative electrode carbon material. The lithium oxalate is oxidized (a) by charging in the first cycle to be decomposed into lithium ions and carbon dioxide. The lithium ions (b) generated by decomposition are reduced (c) in the negative electrode to be supplied for the irreversible capacity part, and all the lithium deintercalated from the positive electrode act as the irreversible capacity in charge and discharge after that. As a result, charging/discharging cycle characteristics and a discharging capacity of a lithium secondary battery are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムのドープ工程
を付加しなくても負極を構成する炭素質材料内部にリチ
ウムをドープさせることができ、充放電サイクル特性及
び放電容量を向上させることができるリチウム二次電池
とその製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention makes it possible to dope lithium into the carbonaceous material forming the negative electrode without adding a lithium doping step, and to improve charge / discharge cycle characteristics and discharge capacity. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】リチウム二次電池の負極を炭素質材料と
したものは、卑な電位でリチウムの吸蔵・放出を可逆的
に行うことが可能であり、充放電サイクル中での容量劣
化が少なく、優れた耐久性を示すことで注目されてい
る。これはリチウムと炭素質材料との層間化合物が可逆
的に形成されることを利用したものであって、セパレー
タを介し、十分な量のリチウムを含有する正極、炭素質
材料である負極および非水電解液で電池を組立て終った
状態では放電状態であるが、組立後に第1サイクル目の
充電を行うと、正極中のリチウムは電気化学的に負極炭
素質材料の層間にドープされて放電可能な状態になる。
このドープされたリチウムは、放電によって脱ドープ
し、再び正極中に戻り、以後これを繰り返すことにな
る。
2. Description of the Related Art A lithium secondary battery having a negative electrode made of a carbonaceous material is capable of reversibly occluding and releasing lithium at a base potential, and has little capacity deterioration during charge and discharge cycles. , Has attracted attention because of its excellent durability. This utilizes the fact that an intercalation compound of lithium and a carbonaceous material is reversibly formed, and a positive electrode containing a sufficient amount of lithium, a negative electrode which is a carbonaceous material, and a non-aqueous substance are separated through a separator. Although the battery is in a discharged state when the battery is assembled with the electrolytic solution, the lithium in the positive electrode is electrochemically doped between the layers of the negative electrode carbonaceous material and can be discharged when the battery is charged in the first cycle after the assembly. It becomes a state.
This doped lithium is dedoped by discharge, returned to the positive electrode again, and this is repeated thereafter.

【0003】ところが実際には電解液の種類により程度
の差はあるが、第1サイクルにおけるリチウムのドープ
量に対して脱ドープ量は100%とはならずに、両者の
間に差を生じる。本明細書では、炭素質材料の第1サイ
クルにおけるリチウムドープ量とリチウム脱ドープ量と
の差を「炭素質材料の不可逆容量」と呼ぶこととする。
かかる不可逆容量が発生する主な原因は、a.ドープさ
れたリチウム量の何%かは不活性化して炭素質材料中に
残存すること、b.充電中、リチウムがドープされると
同時に、この電気化学反応に関与しているリチウムの一
部が電解液の還元分解に消費されることが考えられる。
この不可逆容量の存在の結果、以後の全てのサイクルは
容量が減少したままで充放電が繰り返されることになる
し、電解液の還元分解により発生した気体が電池内圧を
上昇させて電解液漏液の原因を作ったりした。
Actually, though there is a degree of difference depending on the type of electrolyte, the dedoping amount does not become 100% with respect to the lithium doping amount in the first cycle, and there is a difference between the two. In the present specification, the difference between the lithium doping amount and the lithium dedoping amount in the first cycle of the carbonaceous material will be referred to as “irreversible capacity of the carbonaceous material”.
The main causes of the irreversible capacity are a. Some of the doped lithium amount is inactivated and remains in the carbonaceous material, b. It is conceivable that during charging, lithium is doped and at the same time, part of lithium involved in this electrochemical reaction is consumed for reductive decomposition of the electrolytic solution.
As a result of the existence of this irreversible capacity, the charge and discharge are repeated with the capacity reduced in all subsequent cycles, and the gas generated by the reductive decomposition of the electrolytic solution raises the internal pressure of the battery and leaks the electrolytic solution. I made the cause of.

【0004】移動可能なリチウム量が当該電池の充放電
容量となるこの種の二次電池において、第1サイクルに
おける脱ドープ時に移動可能なリチウム量を減少させな
いため、負極での第1サイクルに発生する容量損失分
に相当するリチウムを含んだ正極物質を補填する。電
池組立前に予め炭素質材料にリチウムをドープさせるた
めの工程を設けるといった手段を採る提案がある。しか
し、の場合は、増加させた正極物質の量だけ限られた
電池の内部空間が占有されるため、体積・重量エネルギ
ー密度が低下し、の場合は、炭素質材料にリチウムを
ドープする工程として、例えば気相のリチウムを炭素材
料に接触させるとか、炭素質粉末とリチウム金属とを不
活性ガスまたは除湿空気雰囲気中で混合後、加熱または
加圧するとか、あるいは炭素質材料極に対極をリチウム
金属として、リチウム塩を含む有機電解液中で外部短絡
または電解する等の工程を追加するといった、いずれも
煩雑な処理を行うことになり、設備費や工数の増加、こ
れらに伴う製造単価の増大を招く欠点があった。
In a secondary battery of this type in which the amount of lithium that can be transferred becomes the charge and discharge capacity of the battery, the amount of lithium that can be transferred is not decreased during dedoping in the first cycle, so that it occurs in the first cycle at the negative electrode. The positive electrode material containing lithium corresponding to the amount of capacity loss is compensated. There has been a proposal to take measures such as previously providing a step for doping lithium into a carbonaceous material before assembling a battery. However, in the case of, since the limited internal space of the battery is occupied by the increased amount of the positive electrode material, the volume / weight energy density decreases, and in the case of, as a step of doping the carbonaceous material with lithium. , For example, by contacting lithium in a gas phase with a carbon material, mixing carbonaceous powder and lithium metal in an inert gas or dehumidified air atmosphere, and then heating or pressurizing the carbonaceous material electrode with a lithium metal counter electrode. As a result, a complicated process such as adding a step such as external short-circuiting or electrolyzing in an organic electrolytic solution containing a lithium salt will be performed, resulting in an increase in equipment expenses and man-hours, and an increase in manufacturing unit price accompanying these. There was a drawback to invite.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、負極
を構成する炭素質材料にリチウムをドープさせるのに、
エネルギー密度の低下を伴ったり、面倒なリチウムのド
ープ工程を付加しなくても済み、充放電サイクル特性や
充放電容量を向上させることができるリチウム二次電池
およびその製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to dope lithium into a carbonaceous material constituting a negative electrode,
An object of the present invention is to provide a lithium secondary battery and a manufacturing method thereof, which can improve charge / discharge cycle characteristics and charge / discharge capacity without requiring a troublesome lithium doping step with a reduction in energy density. Is.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、正極と、セパレータと、炭素質材料から
なる負極に、非水電解液を備えて構成された非水電解液
二次電池において、前記正極、負極、非水電解液の何れ
か一つ又は二つ又は全部に蓚酸リチウムLi22 4
が添加されていて、その蓚酸リチウムの全添加量の上限
は、負極炭素質材料の不可逆容量に相当するリチウム量
の半分のモル数としたことを特徴とするものである。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte solution comprising a positive electrode, a separator, a negative electrode made of a carbonaceous material, and a non-aqueous electrolyte solution. In the secondary battery, any one or two or all of the positive electrode, the negative electrode, and the non-aqueous electrolyte may be lithium oxalate Li 2 C 2 O 4
Is added, and the upper limit of the total amount of lithium oxalate added is set to be half the number of moles of the lithium amount corresponding to the irreversible capacity of the negative electrode carbonaceous material.

【0007】蓚酸リチウムの化学当量は2であるから、
負極炭素質材料の不可逆容量に相当するリチウムの量の
半分のモル数の蓚酸リチウムを添加することで不可逆容
量分のリチウムを全て補填することが可能である。第1
サイクルの充電時にはその大部分が全て分解され、その
後の充放電においては電解液の溶質としても作用しな
い。
Since the chemical equivalent of lithium oxalate is 2,
It is possible to supplement all the irreversible capacity of lithium by adding lithium oxalate in a mole number that is half the amount of lithium corresponding to the irreversible capacity of the negative electrode carbonaceous material. First
Most of it is decomposed at the time of charging of the cycle, and it does not act as a solute of the electrolytic solution at the subsequent charging and discharging.

【0008】蓚酸リチウム添加量が上記した上限値以下
であっても、蓚酸リチウムを全く添加しない場合と比較
すると、本発明の効果の一部は十分に得ることができ
る。
Even if the amount of lithium oxalate added is less than or equal to the above-mentioned upper limit value, some of the effects of the present invention can be sufficiently obtained as compared with the case where lithium oxalate is not added at all.

【0009】これに反し、上記した上限値を超えた場合
には、炭素質材料中に吸蔵可能なリチウム量は限られて
いるため、正極側から負極側に移動する可逆的なリチウ
ム量が減少し、その結果、電池容量が低下するので不可
である。
On the other hand, when the amount exceeds the above upper limit, the amount of lithium that can be stored in the carbonaceous material is limited, so that the amount of reversible lithium that moves from the positive electrode side to the negative electrode side decreases. However, as a result, the battery capacity decreases, which is not possible.

【0010】正極、負極、非水電解液のどの部位に蓚酸
リチウムを添加するかは何等限定されるものではない。
製造工程の簡略化からすると、そのうちの一つに添加す
ることが望ましい。
There is no limitation on which part of the positive electrode, the negative electrode, or the non-aqueous electrolyte solution to which lithium oxalate is added.
From the viewpoint of simplifying the manufacturing process, it is desirable to add it to one of them.

【0011】負極の炭素質材料は如何なるものでも使用
可能で、電池の使用目的に応じて任意に選択された炭素
質材料の不可逆容量に応じて、添加する蓚酸リチウムの
全量が設定されることになる。
Any carbonaceous material for the negative electrode can be used, and the total amount of lithium oxalate to be added is set according to the irreversible capacity of the carbonaceous material arbitrarily selected according to the purpose of use of the battery. Become.

【0012】正極材料は、この種の電池に使用される如
何なるものでもよいが、特に十分な量のリチウムを含ん
だ材料を用いることが好ましい。例えばLiMn2 4
や一般式LiMn2 (ただしMはCo、Niの少なくと
も一種を表す。従って、例えばLiCoO2 やLiCo
0,8 Ni0,2 2 等)で表される複合金属酸化物やリチ
ウムを含んだ層間化合物が好適である。
The positive electrode material may be any material used in this type of battery, but it is particularly preferable to use a material containing a sufficient amount of lithium. For example, LiMn 2 O 4
Or the general formula LiMn 2 (where M represents at least one of Co and Ni. Therefore, for example, LiCoO 2 or LiCo
A mixed metal oxide represented by 0,8 Ni 0,2 O 2 or the like and an intercalation compound containing lithium are preferable.

【0013】非水電解液は、有機溶媒と電解質を適宜組
み合わせて調整される。これら有機溶媒と電解質もこの
種の電池に用いられるものであればいずれも使用可能で
ある。例示するならば、有機溶媒としてはプロピレンカ
ーボネート、エチレンカーボネート,1,2−ジメトキ
シエタン、1,2−ジエトキシタン、γ−ブチロラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、4−メチル−1,3−ジオ
キソラン、ジエチルエーテル−テル、スルホラン等であ
る。電解質としてはLiClO4 、LiAsF6 、Li
BF4 、LiPF6 、LiCF3 SO3 、LiN(CF
3 SO3 2 、LiCl等である。
The non-aqueous electrolytic solution is prepared by appropriately combining an organic solvent and an electrolyte. Any of these organic solvents and electrolytes can be used as long as they are used in this type of battery. For example, the organic solvent may be propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxytan, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1. , 3-dioxolane, diethyl ether-tel, sulfolane and the like. As the electrolyte, LiClO 4 , LiAsF 6 , Li
BF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF
3 SO 3 ) 2 , LiCl and the like.

【0014】本発明になるリチウム二次電池の電池形態
は、コイン型、スパイラル型の別を問うものではなく、
いずれも採用可能である。
The battery type of the lithium secondary battery according to the present invention does not matter whether it is a coin type or a spiral type.
Either can be adopted.

【0015】[0015]

【作 用】正極中に蓚酸リチウムを添加した場合(図1参照) ;正
極中に添加された蓚酸リチウムLi2 2 4 は、第1
サイクル目の充電によって酸化され(符号a)、リチウ
ムイオンと二酸化炭素に分解する。蓚酸リチウムの酸化
分解電位は、正極中のリチウムがデインターカレートさ
れる電位よりも卑なため、蓚酸リチウムの酸化分解が、
正極中のリチウムのデインタカレートよりも優先的に起
こる。分解によって生成したリチウムイオン(b)は、
負極で還元され(c)、不可逆容量分に補填されること
になり、正極からデインタカレートしたリチウムはその
後の充放電において全て可逆容量として作用することが
可能となる。
[ Operation ] When lithium oxalate is added to the positive electrode (see Fig. 1) ; Lithium oxalate Li 2 C 2 O 4 added to the positive electrode is
It is oxidized by the charge in the cycle (reference numeral a) and decomposed into lithium ions and carbon dioxide. Since the oxidative decomposition potential of lithium oxalate is less than the potential at which lithium in the positive electrode is deintercalated, the oxidative decomposition of lithium oxalate is
It occurs preferentially over deintercalation of lithium in the positive electrode. The lithium ion (b) produced by the decomposition is
The lithium is reduced (c) at the negative electrode and compensated for the irreversible capacity, and the lithium deintercalated from the positive electrode can all act as a reversible capacity in the subsequent charge and discharge.

【0016】非水電解液に蓚酸リチウムを添加した場合
(図2参照);非水電解液に添加された蓚酸リチウムL
2 2 4 は、リチウムイオンと蓚酸イオンに電離す
る(d)。第1サイクルの充電において、蓚酸イオンは
正極で酸化され(e)二酸化炭素が生成し、負極ではリ
チウムイオンが還元されて(f)不可逆容量分に補填さ
れる。蓚酸イオンの酸化電位は、正極中のリチウムがデ
インタカレートされるよりも卑であるため、蓚酸イオン
の酸化が正極中のリチウムのデインターカレートよりも
優先的に起こる。以上の作用により、正極からデインタ
ーカレートしたリチウムは、その後の充放電において全
て可逆容量として作用することが可能となる。
When lithium oxalate is added to the non-aqueous electrolyte
(See FIG. 2) ; Lithium oxalate L added to the non-aqueous electrolyte
i 2 C 2 O 4 ionizes into lithium ions and oxalate ions (d). In the charging in the first cycle, the oxalate ions are oxidized at the positive electrode to generate (e) carbon dioxide, and the lithium ions are reduced at the negative electrode to (f) fill the irreversible capacity. Since the oxidation potential of oxalate ions is lower than that of lithium in the positive electrode that is deintercalated, the oxidation of oxalate ions occurs preferentially over the deintercalation of lithium in the positive electrode. With the above action, all the lithium deintercalated from the positive electrode can act as a reversible capacity in the subsequent charge / discharge.

【0017】負極中に蓚酸リチウムを添加した場合(図
3参照);負極中に添加された蓚酸リチウムLi2 2
4 は、第1サイクル目の充電によって還元され
(g)、リチウムと蓚酸イオンに分解する。蓚酸リチウ
ムの還元分解電位は、負極に非水電解液中のリチウムイ
オンがドープされる電位と一部重なっているため最初は
競争反応として起こるが、負極電位が充電反応の進行と
ともに卑に移行して、蓚酸リチウムの還元分解電位以下
になると蓚酸リチウムの還元分解反応が優先的に起こ
る。還元分解によって生成したリチウムは、非水電解液
を介して炭素質材料と短絡状態になるため、そのまま炭
素質材料中にドープされ(h)、不可逆容量分に補填さ
れる。一方、還元分解によって生成した蓚酸イオンは非
水電解液中に溶出し(i)、正極で酸化されて(j)二
酸化炭素になる。以上の作用により、正極からデインタ
ーカレートしたリチウム量と同量のリチウムが、その後
の充放電において、全て可逆容量として作用することが
可能となる。
When lithium oxalate is added to the negative electrode (Fig.
3) ; Lithium oxalate Li 2 C 2 added in the negative electrode
O 4 is reduced (g) by the charge in the first cycle and decomposes into lithium and oxalate ions. The reductive decomposition potential of lithium oxalate first occurs as a competitive reaction because it partially overlaps with the potential at which the negative electrode is doped with lithium ions in the non-aqueous electrolyte, but the negative electrode potential shifts to a base as the charging reaction progresses. When the reductive decomposition potential of lithium oxalate becomes lower than the reductive decomposition potential, the reductive decomposition reaction of lithium oxalate occurs preferentially. Lithium produced by reductive decomposition is short-circuited with the carbonaceous material via the non-aqueous electrolytic solution, and thus is directly doped into the carbonaceous material (h) and compensated for the irreversible capacity. On the other hand, oxalate ions generated by reductive decomposition are eluted in the non-aqueous electrolyte solution (i) and are oxidized at the positive electrode to (j) carbon dioxide. With the above action, the same amount of lithium as the amount of lithium deintercalated from the positive electrode can act as a reversible capacity in the subsequent charge and discharge.

【0018】以上は正極、非水電解液、負極の何れかに
蓚酸リチウムを添加した場合であるが、正極、負極、非
水電解液のうちの二つ又は全部に添加しても、その全添
加量が負極炭素質材料の不可逆容量に相当するリチウム
量の半分のモル数である上限値を超えなければ、上記し
た反応が添加された各々の部分において進行し、結果的
にはエネルギー密度を低下させることなく、またリチウ
ムのドープ工程を付加することなく、負極を構成する炭
素質材料にリチウムがドープされ、充放電サイクル特性
及び充放電容量を向上させることになる。
The above is the case where lithium oxalate is added to either the positive electrode, the non-aqueous electrolytic solution or the negative electrode, but even if it is added to two or all of the positive electrode, the negative electrode and the non-aqueous electrolytic solution, all of them are added. If the addition amount does not exceed the upper limit value which is half the number of moles of the lithium amount corresponding to the irreversible capacity of the negative electrode carbonaceous material, the above-mentioned reaction proceeds in each portion to which the energy density is reduced. The carbonaceous material forming the negative electrode is doped with lithium without lowering the temperature and without adding a lithium doping step, thereby improving the charge / discharge cycle characteristics and the charge / discharge capacity.

【0019】添加する蓚酸リチウムの量が上限値以下の
場合でも、上記の作用はそれなりに得られ、効果的に働
くことになる。
Even when the amount of lithium oxalate added is less than or equal to the upper limit value, the above effect can be obtained to some extent and the work can be effectively performed.

【0020】第1サイクルの充放電による蓚酸リチウム
反応によって生成した反応生成ガスを放出後に封口する
ことは、防爆対策や電解液漏出防止対策上、有効であ
る。
It is effective in terms of explosion-proof measures and electrolyte leakage prevention measures to seal the reaction product gas generated by the lithium oxalate reaction due to the charge and discharge in the first cycle after releasing the gas.

【0021】[0021]

【実施例】図4は、従来公知の巻回式リチウム二次電池
の電池構造である。同図に基づいて本発明の構成につい
て述べると、以下のとおりである。
EXAMPLE FIG. 4 shows a battery structure of a conventionally known winding type lithium secondary battery. The configuration of the present invention will be described below with reference to FIG.

【0022】正極板1:正極活物質のLiCoO2 は酸
化コバルトと炭酸リチウム(Li2 CO3 )をモル比で
2:1に混合し、空気中で900℃,9時間加熱したも
のを用いた。重量4.7gのLiCoO2 を準備し、そ
のLiCoO2 と、導電材のカーボン粉末と、結着剤の
PTFEの水性ディスパージョンを、重量比で100:
10:10の割合で混合し(PTFEの水性ディスパー
ジョンの割合は、そのうちの固形分の割合である。)、
水でペースト状に混練したものを、厚さ30μmのアル
ミニウム箔の両面に塗着後、乾燥、圧延、切断して帯状
正極シートを作製し、このシートの一部をシートの長手
方向に対して垂直に合剤を掻き取り、アルミニウム製正
極リード板4を集電体上にスポット溶接して取付けた。
ここで正極部に蓚酸リチウムを添加する場合は、上記ペ
ースト状に混練したものに所定量の蓚酸リチウム粉末
(関東化学社製、特級試薬)を添加、混練した。
Positive electrode plate 1 : LiCoO 2 as a positive electrode active material was a mixture of cobalt oxide and lithium carbonate (Li 2 CO 3 ) in a molar ratio of 2: 1 and heated in air at 900 ° C. for 9 hours. . LiCoO 2 having a weight of 4.7 g was prepared, and the LiCoO 2 , the carbon powder of the conductive material, and the aqueous dispersion of PTFE as the binder were mixed in a weight ratio of 100:
The mixture was mixed at a ratio of 10:10 (the ratio of the aqueous dispersion of PTFE is the ratio of the solid content thereof),
A paste-like mixture that was kneaded with water into a paste was applied to both sides of an aluminum foil having a thickness of 30 μm, dried, rolled, and cut to produce a strip-shaped positive electrode sheet, and a part of this sheet was placed in the longitudinal direction of the sheet. The mixture was scraped vertically, and the aluminum positive electrode lead plate 4 was spot-welded and attached onto the current collector.
Here, when lithium oxalate was added to the positive electrode part, a predetermined amount of lithium oxalate powder (special grade reagent manufactured by Kanto Chemical Co., Inc.) was added and kneaded to the above kneaded paste.

【0023】負極炭素材料極2:重量1.9gの中国産
燐片状天然黒鉛を準備し、この炭素質粉末と、結着剤と
してのPTFE水性ディスパージョンを重量比で10
0:5の割合で混合し(PTFEの水性ディスパージョ
ンの割合は、そのうちの固形分の割合である。)、水で
ペースト状に混練したものをニッケル製エキスパンドメ
タルに圧入し、乾燥、切断して帯状負極シートを作成
し、このシートの一部をシートの長手方向に対して垂直
に合剤を掻き取り、ニッケル製負極リード板5を集電体
上にスポット溶接して取付けた。ここで負極部に蓚酸リ
チウムを添加する場合は、上記ペースト状に混練したも
のに所定量の蓚酸リチウム粉末(関東化学社製、特級試
薬)を添加、混練した。
Negative electrode carbon material electrode 2 : A scaly natural graphite produced in China with a weight of 1.9 g was prepared, and this carbonaceous powder and PTFE aqueous dispersion as a binder were mixed in a weight ratio of 10
The mixture was mixed at a ratio of 0: 5 (the proportion of the aqueous dispersion of PTFE is the proportion of the solid content thereof), kneaded in a paste form with water, press-fitted into a nickel expanded metal, dried and cut. A strip-shaped negative electrode sheet was prepared by scraping the mixture in a direction perpendicular to the longitudinal direction of the sheet, and the nickel negative electrode lead plate 5 was spot-welded and attached onto the current collector. When lithium oxalate was added to the negative electrode portion, a predetermined amount of lithium oxalate powder (special grade reagent manufactured by Kanto Chemical Co., Inc.) was added and kneaded to the above kneaded paste.

【0024】電解液:電解質としての過塩素酸リチウム
(LiClO4 )をエチレンカーボネイト、1,2−ジ
メトキシエタン(1:1)の混合溶媒中に1モル/lの
割合で溶かして電解液とした。ここで電解液に蓚酸リチ
ウムを添加する場合は、蓚酸リチウム粉末(関東化学社
製、特級試薬)を所定量添加して溶解させた。
Electrolytic solution : Lithium perchlorate (LiClO 4 ) as an electrolyte was dissolved in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane (1: 1) at a ratio of 1 mol / l to prepare an electrolytic solution. . When lithium oxalate was added to the electrolytic solution, a predetermined amount of lithium oxalate powder (Kanto Chemical Co., Inc. special grade reagent) was added and dissolved.

【0025】組立て:上記した正極板1と炭素材料極2
をポリプロピレン製の多孔質フィルムセパレータ3を介
して渦巻き状に巻回したものをポリプロピレン製絶縁底
板6aに載置し、ケース6内に挿入後、負極リード板5
を負極端子を兼ねたケース6の円形底面の中心位置にス
ポット溶接した。ついで、上記した電解液を2.3ml
注入してから、上方を解放した状態で、充電電流170
(mA)、放電電流170(mA)の定電流で第1サイ
クルの充放電を行って反応生成ガスを放出した後に、ア
ルミニウム製正極リード板4をアルミニウム製封口板に
スポット溶接し、ポリプロピレン製の絶縁板や、電池内
圧が異常に上昇したときに内部のガスを外部へ放出させ
るための安全弁7、ポリプロピレン製の絶縁ガスケット
8を用いて封口し、単3形(14.5φmm/50m
m)の電池とした。
Assembly : Positive electrode plate 1 and carbon material electrode 2 described above
A spirally wound polypropylene film is placed on a polypropylene insulating bottom plate 6a through a porous film separator 3 made of polypropylene, which is inserted into the case 6 and then the negative electrode lead plate 5
Was spot-welded to the center position of the circular bottom surface of the case 6 which also served as the negative electrode terminal. Then 2.3 ml of the above electrolyte
After injection, charge current 170
(MA), after discharging the reaction product gas by charging and discharging the first cycle with a constant current of discharge current 170 (mA), the positive electrode lead plate 4 made of aluminum was spot-welded to the sealing plate made of aluminum and made of polypropylene. Sealed using an insulating plate, a safety valve 7 for releasing internal gas to the outside when the internal pressure of the battery rises abnormally, and an insulating gasket 8 made of polypropylene, and the AA type (14.5φ mm / 50 m
The battery of m) was used.

【0026】充放電サイクル試験に供した電池(表1参
照):蓚酸リチウムの添加上限値である0.0054mo
l を正極、負極、非水電解液の何れか一つの部位に添加
した電池A〜電池Cと、二つの部位に等分に分けて添加
した電池D〜電池Fと、三つの全部位に分けて添加した
電池Gと、その上限値の半分の蓚酸リチウムを正極にの
み添加した電池Hと、正極および負極に添加した電池
I、更にその約半分の蓚酸リチウムを非水電解液にのみ
添加した電池Jを作製した。同時に蓚酸リチウムを全く
添加しない比較用の電池Kも作製した。
Batteries used in the charge / discharge cycle test (see Table 1)
See) : 0.0054mo which is the upper limit of addition of lithium oxalate.
l is added to any one of the positive electrode, the negative electrode, and the non-aqueous electrolyte, battery A to battery C, and battery D to battery F to which two parts are added equally and divided into all three parts. Added battery G, battery H added with half the upper limit of lithium oxalate only to the positive electrode, battery I added to the positive and negative electrodes, and about half the lithium oxalate added only to the non-aqueous electrolyte. Battery J was prepared. At the same time, a comparative battery K containing no lithium oxalate was also prepared.

【0027】[0027]

【表1】 [Table 1]

【0028】充放電サイクル試験とその試験結果(表2
参照):上記の電池A〜Kを、170mAの定電流で、
上限カットオフ電圧4.2V、下限カットオフ電圧3.
2Vとして、第2サイクルより第100サイクルまで充
放電サイクル試験を行った。その結果は表2のとおりで
ある。
Charge / discharge cycle test and its test results (Table 2
Reference) : The above batteries A to K are operated at a constant current of 170 mA,
Upper limit cutoff voltage 4.2V, lower limit cutoff voltage 3.
A charging / discharging cycle test was performed from the second cycle to the 100th cycle at 2V. The results are shown in Table 2.

【0029】蓚酸リチウム添加部位を異にした電池A〜
電池Gに有意差は認められなかったし、電池Jの場合で
も、蓚酸リチウムを全く添加していない電池Kに比べ
て、第2サイクル以降における放電容量が大きく、エネ
ルギー密度が向上することを確認できた。
Batteries A with different lithium oxalate addition sites
No significant difference was observed in Battery G, and it was confirmed that even in the case of Battery J, the discharge capacity after the second cycle was large and the energy density was improved as compared with Battery K in which lithium oxalate was not added at all. did it.

【0030】尚、電池Kで、Li/Li電位基準で0
Vになるまで170mAの定電流でリチウムを吸蔵した
後、同じ電流でリチウムを放出させた場合、不可逆容量
は145mAhであった。
In the battery K, 0 on the basis of Li + / Li potential.
When lithium was occluded at a constant current of 170 mA until reaching V and then lithium was released at the same current, the irreversible capacity was 145 mAh.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明は、十分な量のリチウムを含んだ
正極、炭素質材料からなる負極及び非水電解液の何れか
一つ又は二つ又は全部に蓚酸リチウムが添加されたもの
であって、その蓚酸リチウムの全添加量の上限値は、負
極炭素質材料の不可逆容量に相当するリチウム量の半分
のモル数としたことによって、充放電容量が大きく、エ
ネルギー密度が高いリチウム二次電池を提供することが
でき、その工業的価値は大である。
INDUSTRIAL APPLICABILITY The present invention is one in which lithium oxalate is added to any one or two or all of a positive electrode containing a sufficient amount of lithium, a negative electrode made of a carbonaceous material and a non-aqueous electrolyte. The upper limit of the total amount of lithium oxalate added is set to be half the number of moles of the amount of lithium corresponding to the irreversible capacity of the negative electrode carbonaceous material, so that the lithium secondary battery has a large charge / discharge capacity and a high energy density. Can be provided, and its industrial value is great.

【0033】蓚酸リチウムの全添加量が上記した上限値
よりも小であっても、蓚酸リチウムを全く添加していな
い電池に比べると、第2サイクル以降における放電容量
が大きく、エネルギー密度が向上する。
Even if the total amount of lithium oxalate added is smaller than the above upper limit value, the discharge capacity after the second cycle is large and the energy density is improved as compared with a battery in which lithium oxalate is not added at all. .

【0034】また、蓚酸リチウム反応後に封口すること
で、第1サイクルの充放電時に激しく生じる反応生成ガ
スが放出されているので、防爆や電解液漏出の防止上、
甚だ有効である。
Further, by sealing after the lithium oxalate reaction, the reaction product gas that is violently generated during the charge and discharge of the first cycle is released, so in terms of explosion proof and prevention of electrolyte leakage,
It is very effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】蓚酸リチウムを正極中に添加した場合の説明図
である。
FIG. 1 is an explanatory diagram when lithium oxalate is added to a positive electrode.

【図2】蓚酸リチウムを非水電解液中に添加した場合の
説明図である。
FIG. 2 is an explanatory diagram when lithium oxalate is added to a non-aqueous electrolyte solution.

【図3】蓚酸リチウムを負極中に添加した場合の説明図
である。
FIG. 3 is an explanatory diagram when lithium oxalate is added to the negative electrode.

【図4】リチウム二次電池の断面図である。FIG. 4 is a cross-sectional view of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

1は正極板 2は負極炭素材料極 3はセパレータ 4は正極リード板 5は負極リード板 6はケース 1 is a positive electrode plate 2 is a negative electrode carbon material electrode 3 is a separator 4 is a positive electrode lead plate 5 is a negative electrode lead plate 6 is a case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日野 義久 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshihisa Hino 5 36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Inventor Yoshiro Harada 5 36-11 Shimbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 十分な量のリチウムを含んだ正極、炭
素質材料からなる負極及び非水電解液の何れか一つ又は
二つ又は全部に蓚酸リチウムが添加されたものであっ
て、その蓚酸リチウムの全添加量の上限値は、負極炭素
質材料の不可逆容量に相当するリチウム量の半分のモル
数としたことを特徴とするリチウム二次電池。
1. A positive electrode containing a sufficient amount of lithium, a negative electrode made of a carbonaceous material, and a non-aqueous electrolytic solution to which lithium oxalate is added, and the oxalic acid is the same. A lithium secondary battery, wherein the upper limit of the total amount of lithium added is half the number of moles of the amount of lithium corresponding to the irreversible capacity of the negative electrode carbonaceous material.
【請求項2】 蓚酸リチウムの全添加量は上限値より
も小としたことを特徴とする請求項1のリチウム二次電
池。
2. The lithium secondary battery according to claim 1, wherein the total amount of lithium oxalate added is smaller than the upper limit value.
【請求項3】 セパレータを介してケース内に挿入さ
れる十分な量のリチウムを含んだ正極板と炭素材料から
なる負極、および該ケースに注入される非水電解液の、
何れか一つ又は二つ又は全部に蓚酸リチウムを添加し、
その蓚酸リチウムの全添加量の上限値は、負極炭素質材
料の不可逆容量に相当するリチウム量の半分のモル数と
し、ケース上方を解放した状態で第1サイクルの充放電
を行って反応生成ガスを放出させた後に封口することを
特徴とするリチウム二次電池の製造方法。
3. A positive electrode plate containing a sufficient amount of lithium, which is inserted into a case via a separator, and a negative electrode made of a carbon material, and a non-aqueous electrolyte injected into the case,
Add lithium oxalate to any one or two or all,
The upper limit of the total amount of lithium oxalate added is half the number of moles of lithium corresponding to the irreversible capacity of the negative electrode carbonaceous material, and the reaction product gas is charged by discharging the first cycle with the upper part of the case open. A method for manufacturing a lithium secondary battery, which comprises sealing after releasing the lithium.
JP04573694A 1994-03-16 1994-03-16 Lithium secondary battery and method of manufacturing the same Expired - Fee Related JP3287376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04573694A JP3287376B2 (en) 1994-03-16 1994-03-16 Lithium secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04573694A JP3287376B2 (en) 1994-03-16 1994-03-16 Lithium secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07254436A true JPH07254436A (en) 1995-10-03
JP3287376B2 JP3287376B2 (en) 2002-06-04

Family

ID=12727612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04573694A Expired - Fee Related JP3287376B2 (en) 1994-03-16 1994-03-16 Lithium secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3287376B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097873A (en) * 1996-09-24 1998-04-14 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JP2011210609A (en) * 2010-03-30 2011-10-20 Denso Corp Lithium secondary battery and method of manufacturing the same
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2011157958A1 (en) * 2010-06-17 2011-12-22 Centre National De La Recherche Scientifique Method for producing a lithium or sodium battery
CN103441236A (en) * 2013-09-11 2013-12-11 东莞新能源科技有限公司 Lithium ion battery cathode plate, lithium ion battery and preparation method of lithium ion battery
JP2014063790A (en) * 2012-09-20 2014-04-10 Konica Minolta Inc Photoelectric conversion element and solar battery
JP2015069951A (en) * 2013-10-01 2015-04-13 オートモーティブエナジーサプライ株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US9123957B2 (en) 2011-10-12 2015-09-01 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR20190012858A (en) * 2017-07-28 2019-02-11 주식회사 엘지화학 Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR20190089775A (en) * 2018-01-23 2019-07-31 세종대학교산학협력단 Secondary battery having positive electrode comprising organic acid metal salt
KR20200010272A (en) * 2017-05-24 2020-01-30 로베르트 보쉬 게엠베하 Anode Composition and Method for Prelithiating an Anode
CN111900490A (en) * 2020-07-01 2020-11-06 江苏天鹏电源有限公司 Preparation method of pole piece and cylindrical battery
CN114300680A (en) * 2021-12-10 2022-04-08 华东理工大学 Modified lithium oxalate, preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057385A1 (en) 2006-08-30 2008-03-06 Shin-Etsu Chemical Co., Ltd. Separator for non-aqueous secondary battery, making method, and non-aqueous electrolyte secondary battery
CN108028138B (en) 2016-01-22 2019-05-03 旭化成株式会社 Cathode precursor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097873A (en) * 1996-09-24 1998-04-14 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JP2011210609A (en) * 2010-03-30 2011-10-20 Denso Corp Lithium secondary battery and method of manufacturing the same
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2011157958A1 (en) * 2010-06-17 2011-12-22 Centre National De La Recherche Scientifique Method for producing a lithium or sodium battery
FR2961634A1 (en) * 2010-06-17 2011-12-23 Centre Nat Rech Scient PROCESS FOR THE PRODUCTION OF A LITHIUM OR SODIUM BATTERY
CN103038924A (en) * 2010-06-17 2013-04-10 国立科学研究中心 Method for producing a lithium or sodium battery
JP2013529830A (en) * 2010-06-17 2013-07-22 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for producing lithium or sodium battery
US9123957B2 (en) 2011-10-12 2015-09-01 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2014063790A (en) * 2012-09-20 2014-04-10 Konica Minolta Inc Photoelectric conversion element and solar battery
CN103441236A (en) * 2013-09-11 2013-12-11 东莞新能源科技有限公司 Lithium ion battery cathode plate, lithium ion battery and preparation method of lithium ion battery
JP2015069951A (en) * 2013-10-01 2015-04-13 オートモーティブエナジーサプライ株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US10181619B2 (en) 2013-10-01 2019-01-15 Automotive Energy Supply Corporation Method of manufacturing nonaqueous electrolyte secondary battery
KR20200010272A (en) * 2017-05-24 2020-01-30 로베르트 보쉬 게엠베하 Anode Composition and Method for Prelithiating an Anode
KR20190012858A (en) * 2017-07-28 2019-02-11 주식회사 엘지화학 Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
US11811018B2 (en) 2017-07-28 2023-11-07 Lg Energy Solution, Ltd. Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
KR20190089775A (en) * 2018-01-23 2019-07-31 세종대학교산학협력단 Secondary battery having positive electrode comprising organic acid metal salt
CN111900490A (en) * 2020-07-01 2020-11-06 江苏天鹏电源有限公司 Preparation method of pole piece and cylindrical battery
CN114300680A (en) * 2021-12-10 2022-04-08 华东理工大学 Modified lithium oxalate, preparation method and application thereof

Also Published As

Publication number Publication date
JP3287376B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2000040526A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2006236653A (en) Nonaqueous electrolyte and nonaqueous electrochemical device using it
JP4219187B2 (en) Non-aqueous lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JP2002134168A (en) Electrolyte for lithium secondary battery
JPH11185809A (en) Lithium second battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH03108261A (en) Nonaqueous solvent secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JP2000090970A (en) Lithium secondary battery
JPH1083835A (en) Manufacture of non-aqueous electrolytic secondary battery
JP2004259680A (en) Non-aqueous lithium secondary battery
JP3119945B2 (en) Lithium secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery
JP3121902B2 (en) Manufacturing method of lithium secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JPH09283181A (en) Non-aqueous electrolyte secondary battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees