JPH11185809A - Lithium second battery - Google Patents

Lithium second battery

Info

Publication number
JPH11185809A
JPH11185809A JP9354900A JP35490097A JPH11185809A JP H11185809 A JPH11185809 A JP H11185809A JP 9354900 A JP9354900 A JP 9354900A JP 35490097 A JP35490097 A JP 35490097A JP H11185809 A JPH11185809 A JP H11185809A
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
aromatic hydrocarbon
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9354900A
Other languages
Japanese (ja)
Inventor
Keisuke Ikeda
景介 池田
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9354900A priority Critical patent/JPH11185809A/en
Publication of JPH11185809A publication Critical patent/JPH11185809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery that allows the amount for irreversible capacity of lithium to be rapidly doped into a carbonaceous material constituting a negative electrode active material after the assembly of the battery without lowering energy density or adding a doping process and is thereby brought into a usable condition immediately after the assembly of the battery. SOLUTION: In a lithium secondary battery having a positive electrode 1 containing lithium expressed by a chemical formula LiMn2 O4 , a negative electrode 2 where a lithium metal 9 formed from a carbonaceous material is arranged in a short-circuited form, and a nonaqueous electrolytic solution, aromatic hydrocarbon to form a complex in cooperation with the lithium metal 2 such as naphthalene, phenanthlene and anthracene is added to the nonaqueous electrolytic solution at a mixing ratio of not more than 0.005 mol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極のリチウム離
脱工程を付加することなく、負極を構成する炭素質材料
内部に不可逆容量に相当するリチウムをドープさせるこ
とによって、充放電サイクル特性及び充放電容量を向上
させたリチウム二次電池に関するものである。
[0001] The present invention relates to a charge / discharge cycle characteristic and a charge / discharge cycle by doping lithium corresponding to an irreversible capacity into a carbonaceous material constituting a negative electrode without adding a lithium releasing step of the positive electrode. The present invention relates to a lithium secondary battery having an improved capacity.

【0002】[0002]

【従来の技術】近年、電子技術のめざましい進歩によ
り、電子機器は小型、軽量化の方向に進み、それに伴っ
て電池の小型、軽量化、さらに高エネルギー密度のもの
が求められている。この種の電池において、従来、ニッ
ケル・カドミウム電池等に代表されるアルカリ電池に代
わって、高エネルギー密度で容量が大きく保存性能に優
れる等の理由から、リチウムイオン二次電池に代表され
る非水電解液二次電池が利用されつつある。
2. Description of the Related Art In recent years, with the remarkable progress of electronic technology, electronic devices have been reduced in size and weight, and accordingly, there has been a demand for smaller and lighter batteries with higher energy density. In this type of battery, a non-aqueous battery such as a lithium-ion secondary battery has been conventionally used instead of an alkaline battery such as a nickel-cadmium battery because of its high energy density, large capacity, and excellent storage performance. Electrolyte secondary batteries are being used.

【0003】ところで、リチウム二次電池には、負極材
料の活物質としてリチウム金属やリチウム合金等を用い
るものと、卑な電位でリチウムの吸蔵,放出を可逆的に
行える炭素質物質を負極材料を用いるものとがあるが、
リチウム金属やリチウム合金を負極活物質として使用し
た二次電池ではリチウムの析出,合金の微粒子化等が生
じるという欠点があるのに対し、炭素質材料を負極材料
として使用した二次電池ではそのような欠点がなく、よ
って良好なサイクル特性が得られる。
Meanwhile, a lithium secondary battery uses a lithium metal or a lithium alloy as an active material of a negative electrode material, and a carbonaceous material capable of reversibly inserting and extracting lithium at a low potential. Some are used,
Secondary batteries that use lithium metal or a lithium alloy as the negative electrode active material have the disadvantages of lithium precipitation and alloy micronization, whereas secondary batteries that use a carbonaceous material as the negative electrode material do not. There are no significant drawbacks, and thus good cycle characteristics can be obtained.

【0004】ここで、当該炭素質材料を負極に用いた二
次電池は、組立後に充電しないと放電可能状態にならな
い。すなわち、この種の電池に対して第1サイクル目の
充電を行うと、正極中のリチウムが電気化学的に負極炭
素質材料の層間にドープされて放電可能状態になり、放
電を行うとそのドープされたリチウムが脱ドープし、再
び正極中に戻るという可逆的な充放電サイクルを繰り返
すものである。
[0004] Here, a secondary battery using the carbonaceous material for the negative electrode does not enter a dischargeable state unless charged after assembly. That is, when the battery of this type is charged in the first cycle, lithium in the positive electrode is electrochemically doped between the layers of the negative electrode carbonaceous material to be in a dischargeable state. The reversible charge / discharge cycle in which the doped lithium is dedoped and returns to the positive electrode again is repeated.

【0005】しかし、この炭素質材料にあっては、電解
液の種類によって、程度の差はあるものの、第1サイク
ルにおけるリチウムのドープ量に対して脱ドープ量が1
00%とはならず、何%かは不活性化して炭素質材料中
に残存し、以後のサイクルに関与しなくなる。
[0005] However, in this carbonaceous material, although the degree varies depending on the type of the electrolytic solution, the dedoping amount is 1 to the doping amount of lithium in the first cycle.
It does not become 00%, and some% is inactivated and remains in the carbonaceous material, and does not participate in the subsequent cycle.

【0006】一方、充放電反応は、リチウムイオンが正
極から負極、および負極から正極側に移動することによ
って行われるので、移動可能なリチウム量が当該電池の
充放電容量となる。しかしながら、前述のごとく第1サ
イクルにおける脱ドープ時に移動可能なリチウムイオン
の量が減少するため、以後のサイクル全てに亘って容量
が減少したままで充放電が繰り返されることになる。
On the other hand, the charge / discharge reaction is carried out by moving lithium ions from the positive electrode to the negative electrode and from the negative electrode to the positive electrode, so that the amount of movable lithium is the charge / discharge capacity of the battery. However, as described above, the amount of lithium ions that can move during the undoping in the first cycle decreases, so that charge and discharge are repeated with the capacity reduced throughout the subsequent cycles.

【0007】この問題を解決する手段として、(1) 負極
での第1サイクルに発生する容量損失分に相当するリチ
ウム量を含んだ正極物質を補填する、(2) 電池組立前
に、予め炭素質材料にリチウムをドープさせる工程を設
ける、といった方法がある。
As means for solving this problem, (1) a positive electrode material containing an amount of lithium corresponding to a capacity loss generated in the first cycle at the negative electrode is supplemented. A method of providing a step of doping lithium into a porous material.

【0008】しかし、(1) の方法では、増加させた正極
物質の量だけ電池空間内が占有されるため、体積、重量
エネルギー密度が低下する欠点がある。
However, the method (1) has a drawback that the volume and the weight energy density decrease because the battery space is occupied by the increased amount of the positive electrode material.

【0009】また、(2) の方法では、電池の製造工程
に、炭素質材料にリチウムをドープする工程を設けてお
く必要がある。即ち、これらの工程の具体例としては、
加熱により気相のリチウムを炭素質材料に接触反応させ
る方法や、不活性ガス、または除湿空気雰囲気中で、炭
素質粉末とリチウム金属とを混合した後、加熱、または
加圧する方法や、リチウム塩を含む有機電解液中で、炭
素質材料極に対極をリチウム金属として外部短絡または
電解する方法等がある。しかし、これらはいずれも煩雑
な処理を伴い、量産設備設置のための費用や工程数の増
加及びこれらに伴う製造単価の増大を招く欠点があっ
た。
In the method (2), it is necessary to provide a step of doping lithium into the carbonaceous material in the battery manufacturing process. That is, as specific examples of these steps,
A method in which gas phase lithium is brought into contact with a carbonaceous material by heating, a method in which carbonaceous powder and lithium metal are mixed in an inert gas or dehumidified air atmosphere, and then heated or pressurized; And a method of externally short-circuiting or electrolyzing the counter electrode of the carbonaceous material electrode with lithium metal in an organic electrolytic solution containing. However, each of these methods involves complicated processing, and has a drawback of increasing the cost and the number of steps for installing mass-production equipment and increasing the manufacturing unit price associated therewith.

【0010】以上の問題点を解決する手段として、特開
平5−251111号公報に開示されたものがある。こ
れは、負極炭素質材料にリチウム金属を短絡させた状態
に配置して電池ケース内に収装し、ケース内への非水電
解液の注液により前記リチウム金属と前記負極との間に
内部短絡を起こさせ、電気化学反応を生じさせて、炭素
質材料にリチウムがドープされるようにする方去であ
る。
As means for solving the above-mentioned problems, there is one disclosed in Japanese Patent Application Laid-Open No. 5-251111. This is because lithium metal is short-circuited to the negative electrode carbonaceous material, placed in the battery case, and the non-aqueous electrolyte is injected into the case to form an internal space between the lithium metal and the negative electrode. This may cause a short circuit and an electrochemical reaction to cause the carbonaceous material to be doped with lithium.

【0011】電極巻回型(スパイラル型)リチウム二次
電池を例にとった場合のこの方法の適用例を、図1〜図
4に示す。この図1〜図4は、本発明の実施形態を示す
図であるが、便宜上これを併用して説明する。即ち、図
1に示すように、組立工程中において負極リード板5の
スポット溶接時に、リチウム箔9を巻き付けたU字形の
ニッケルワイヤ10をともにスポット溶接して負極2に
短絡させる。また、図2に示すように、負極リード板5
の外周に、あらかじめリチウム箔9を巻き付ける。さら
に、図3のように、有底筒形の電池ケース6の底部を除
く内側側面に0.13gのリチウム箔9を貼設し、その
表面をポリプロピレン(PP)製セパレータ3で覆う。
また、図4のように、有底筒形の電池ケース6の内側底
部に0.13gのドーナツ型に形成されたリチウム箔9
を貼設し、その上にPP製絶縁板6aを配設する。これ
ら図1〜図4に示したいずれかの形態において、上記方
法を適用し、非水電解液を電池ケース内に注液すること
により、リチウム金属と前記負極は電気化学的に短絡状
態となり炭素質材料にリチウムがドープされる。
FIGS. 1 to 4 show application examples of this method in the case of an electrode wound type (spiral type) lithium secondary battery as an example. FIG. 1 to FIG. 4 are views showing an embodiment of the present invention. That is, as shown in FIG. 1, during the spot welding of the negative electrode lead plate 5 during the assembling process, the U-shaped nickel wire 10 around which the lithium foil 9 is wound is spot-welded together to short-circuit the negative electrode 2. In addition, as shown in FIG.
A lithium foil 9 is wound around the outer periphery of the substrate in advance. Further, as shown in FIG. 3, 0.13 g of lithium foil 9 is attached to the inner side surface of the bottomed cylindrical battery case 6 excluding the bottom, and the surface is covered with a polypropylene (PP) separator 3.
As shown in FIG. 4, a 0.13 g donut-shaped lithium foil 9 is formed on the inner bottom of a bottomed cylindrical battery case 6.
And a PP insulating plate 6a is disposed thereon. In any of the embodiments shown in FIGS. 1 to 4, by applying the above method and injecting a non-aqueous electrolyte into the battery case, the lithium metal and the negative electrode are electrochemically short-circuited and carbon The porous material is doped with lithium.

【0012】この方法によれば、短絡状態のリチウム金
属が非水電解液の注液後に化学反応により溶解して、順
次負極活物質を構成する炭素質材料中にドープされ、経
時変化により負極中に均一に分散するまで拡散する。そ
して、この反応を生じさせるためには、組立工程中に脱
ドープ時における補填分に相当する量のリチウム金属を
負極側に短絡状態に配置する工程を付加すればよいの
で、別途炭素質材料に対する煩雑なドープ工程が不要と
なり、このための設備費用の増加がなく、安価で高品質
のリチウム二次電池を提供することができる。
According to this method, the short-circuited lithium metal is dissolved by a chemical reaction after the injection of the non-aqueous electrolyte and is sequentially doped into the carbonaceous material constituting the negative electrode active material. Diffusion until homogeneously dispersed. Then, in order to cause this reaction, it is only necessary to add a step of arranging lithium metal in a short-circuit state on the negative electrode side in an amount equivalent to the amount compensated for at the time of dedoping during the assembling step. A complicated doping step is not required, and there is no increase in equipment cost for this, and an inexpensive and high-quality lithium secondary battery can be provided.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、この方
法を適用した場合、以下の問題点が出現した。
However, when this method is applied, the following problems appear.

【0014】(1)非水電解液を電池ケース内に注液す
る際、注液初期に収装したリチウム金属表面で気体が発
生し、電解液が劣下するとともに、そのリチウム金属の
一部が変色し、脱落する。
(1) When a non-aqueous electrolyte is injected into a battery case, gas is generated on the surface of the lithium metal accommodated in the initial stage of the injection, and the electrolyte deteriorates and a part of the lithium metal is deteriorated. Discolors and falls off.

【0015】(2)電池ケース内に収装したリチウム金
属が全て溶解し、負極炭素質材料にドープされるまでに
は6〜7日間程度の日数を要する。
(2) It takes about 6 to 7 days for all the lithium metal contained in the battery case to be dissolved and doped into the negative electrode carbonaceous material.

【0016】問題点(1)の原因は、電池ケース内に収
装したリチウム金属の電解液との接触面積が、炭素質材
料負極の電解液との接触面積に比べ極端に小さいことで
ある。このため炭素質材料負極全体がリチウムを吸蔵す
る速度に、リチウム金属の溶解する速度が追いつかない
からである。この問題を回避するには、負極と電解液と
の接触面積が徐々に増加するように注液速度を適度に操
作しなければならず、製造工程上時間を要し問題であ
る。
The cause of the problem (1) is that the contact area between the lithium metal electrolyte contained in the battery case and the electrolyte of the carbonaceous material negative electrode is extremely small. For this reason, the rate at which lithium metal dissolves cannot catch up with the rate at which the entire carbonaceous material negative electrode absorbs lithium. In order to avoid this problem, it is necessary to appropriately control the injection rate so as to gradually increase the contact area between the negative electrode and the electrolyte, which is time-consuming in the manufacturing process, which is a problem.

【0017】問題点(2)の原因は、炭素質材料に吸蔵
されたリチウム量に従って、この負極炭素質材料がリチ
ウムを吸蔵、放出する電位が、リチウム金属電位に非常
に近くなるからである。つまり、電池ケース内に収装し
たリチウム金属と負極炭素質材料との短絡反応が進行す
る駆動力は、負極炭素質材料がリチウムを吸蔵、放出す
る電位とリチウム金属電位との差であるため、この短絡
反応の反応速度は経時的に遅くなり、製造した電池が直
ぐに使用できない欠点があった。
The reason for the problem (2) is that the potential at which the negative electrode carbonaceous material stores and releases lithium becomes very close to the lithium metal potential according to the amount of lithium stored in the carbonaceous material. In other words, the driving force for the short-circuit reaction between the lithium metal accommodated in the battery case and the negative electrode carbonaceous material proceeds is the difference between the potential at which the negative electrode carbonaceous material absorbs and releases lithium and the lithium metal potential. The reaction speed of this short-circuit reaction becomes slow with time, and there is a disadvantage that the manufactured battery cannot be used immediately.

【0018】本発明は以上の問題点を解決するもので、
その目的は、エネルギー密度を低下させることなく、ま
たドープ工程を付加することなく、電池組立後に負極活
物質を構成する炭素質材料中にリチウムが速やかにドー
プされ、電池組立後直ぐに使用可能な状態となるリチウ
ム二次電池を提供することにある。
The present invention solves the above problems.
The purpose is to quickly dope lithium into the carbonaceous material constituting the negative electrode active material after battery assembly without lowering the energy density and without adding a doping process, so that the battery can be used immediately after battery assembly. It is an object of the present invention to provide a lithium secondary battery.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明のリチウム二次電池は、化学式LiMn2
4 で表されるリチウムを含む正極と、炭素質材料からな
りリチウム金属を短絡させた状態に配置した負極と、非
水電解液とを有するリチウム二次電池において、前記非
水電解液に、ナフタレン、フェナンスレン、アントラセ
ン等のリチウム金属と錯体を形成する芳香族炭化水素
を、0.05mol以下の配合比で添加したものであ
る。
To achieve the above object, a lithium secondary battery of the present invention has a chemical formula of LiMn 2 O
In a lithium secondary battery having a positive electrode containing lithium represented by 4 , a negative electrode made of a carbonaceous material and arranged in a state where lithium metal is short-circuited, and a nonaqueous electrolyte, the nonaqueous electrolyte contains naphthalene. , Phenanthrene, anthracene, or other aromatic metal which forms a complex with a lithium metal at a mixing ratio of 0.05 mol or less.

【0020】本発明のリチウム二次電池の具体的構成と
しては、リチウムを含む正極および炭素質材料からなる
負極をセパレータを介して配置し、前記負極にリチウム
金属を短絡させた状態に配置してケース内に収装し、ケ
ース内ヘの非水電解液の注液により前記リチウム金属と
前記負極との間に電気化学反応を生じさせる構造を形成
し、この非水電解液に、リチウムと錯体を形成する芳香
族炭化水素またはリチウム−芳香族錯体を0.05mo
l以下の配合比で添加するとよい。ここで芳香族炭化水
素またはリチウム−芳香族錯体と称したのは、いずれを
添加しても両者が可逆的に出現するためである。
As a specific configuration of the lithium secondary battery of the present invention, a lithium-containing positive electrode and a negative electrode made of a carbonaceous material are arranged via a separator, and lithium metal is short-circuited to the negative electrode. It is housed in a case and forms a structure that causes an electrochemical reaction between the lithium metal and the negative electrode by injecting a non-aqueous electrolyte into the case. The non-aqueous electrolyte contains lithium and a complex. To form an aromatic hydrocarbon or lithium-aromatic complex of 0.05 mol
1 or less. Here, the reason why they are referred to as an aromatic hydrocarbon or a lithium-aromatic complex is that both of them appear reversibly regardless of whether they are added.

【0021】この芳香族炭化水素錯体(ナフタレン、フ
エナンスレン、アントラセン等)は、炭素質材料の結晶
子の層間にカリウム、ナトリウム、リチウム等のアルカ
リ金属を溶媒中でインターカレートさせる場合に使用さ
れ、種々の特性が見出されている。
The aromatic hydrocarbon complex (naphthalene, phenanthrene, anthracene, etc.) is used for intercalating an alkali metal such as potassium, sodium, lithium or the like between layers of crystallites of a carbonaceous material in a solvent, Various properties have been found.

【0022】リチウムの場合を例にとると、粉末状のリ
チウム金属とグラファイトとを芳香族炭化水素を添加し
た有機溶媒中で撹拌すると、この芳香族炭化水素がリチ
ウム金属を溶解させ、リチウム−芳香族炭化水素錯体を
形成する。この錯体がグラファイトと接触することによ
ってリチウムが吸蔵(インターカレート)され、リチウ
ム−グラファイト層間化合物を形成し、再びもとの芳香
族炭化水素に戻る過程を繰り返すことによって、グラフ
ァイトにリチウムが吸蔵されると考えられている。この
時、リチウム−芳香族炭化水素錯体がグラファイトにリ
チウムを吸蔵されるのは、この錯体がリチウム金属電位
より貴であるが、リチウム−グラファイト層間化合物よ
りも卑であるためであると説明されている。
In the case of lithium, for example, when powdered lithium metal and graphite are stirred in an organic solvent to which an aromatic hydrocarbon has been added, the aromatic hydrocarbon dissolves the lithium metal and forms a lithium-aromatic substance. Form a group hydrocarbon complex. Lithium is absorbed (intercalated) by the contact of this complex with graphite, a lithium-graphite intercalation compound is formed, and the process of returning to the original aromatic hydrocarbon is repeated, whereby lithium is absorbed in graphite. It is believed that. At this time, the reason why the lithium-aromatic hydrocarbon complex occludes lithium in graphite is that this complex is more noble than the lithium metal potential but is more noble than the lithium-graphite intercalation compound. I have.

【0023】なお、後述するように本発明の芳香族炭化
水素またはリチウム−芳香族炭化水素錯体の添加量は少
な過ぎるとその効果は少なく、多過ぎると電池の内部抵
抗が増加し、放電終止電圧に達するまでの連続放電時間
が短くなるので、実際には0.001mol/l〜0.
05mol/lの添加量範囲に定めるのがよい。
As will be described later, if the amount of the aromatic hydrocarbon or lithium-aromatic hydrocarbon complex of the present invention is too small, the effect is small. If too large, the internal resistance of the battery increases, and the discharge cutoff voltage increases. In practice, the continuous discharge time until the temperature reaches 0.001 mol / l to 0.
It is preferable to determine the addition amount in the range of 05 mol / l.

【0024】この場合、正極材料としては、化学式Li
Mn2 4 で表されるリチウムを含む材料に限られる。
前記正極材料は、リチウム−芳香族炭化水素錯体電位に
対して貴であることから、リチウム−芳香族炭化水素錯
体と接蝕した際にリチウムを吸蔵する。しかし、前記正
極材料は量論組成以上のリチウムを吸蔵しても可逆的で
あるため問題はない。
In this case, the positive electrode material is represented by the chemical formula Li
It is limited to a material containing lithium represented by Mn 2 O 4 .
Since the positive electrode material is noble with respect to the potential of the lithium-aromatic hydrocarbon complex, it absorbs lithium when in contact with the lithium-aromatic hydrocarbon complex. However, there is no problem because the positive electrode material is reversible even if it stores lithium having a stoichiometric composition or more.

【0025】非水電解液は、有機溶媒と電解質とを適宜
組み合わせて調整されるが、これらの有機溶媒、電解質
も、この種の電池に用いられるものであれば、いずれも
使用可能である。例えば、有機溶媒としては、プロピレ
ンカーボネート、エチレンカーボネート、1,2−ジメ
トキシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソ
ラン、4−メチルー1,3ジオキソラン、ジエチルエー
テル、スルホラン等である。また電解質としては、Li
ClO4 、LiAsF6 、LiBF4 、LiPF6 、L
iCF3 SO3、LiCl等である。
The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used in this type of battery. For example, examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3 dioxolan, diethyl ether, sulfolane and the like. It is. As the electrolyte, Li
ClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , L
iCF 3 SO 3 , LiCl and the like.

【0026】以上の構成によれば、非水電解液の注液に
より、負極炭素質材料と短絡状態に配置されたリチウム
金属が溶解し、炭素質材料にリチウムがドープされると
ともに、予め添加した芳香族炭化水素またはリチウム−
芳香族炭化水素錯体からもドープされることになる。従
って、炭素質材料の電極電位がより速く卑に移行するた
め、非水電解液の酸化分解反応は起こり難くなる。
According to the above configuration, the lithium metal disposed in a short-circuit state with the negative electrode carbonaceous material is dissolved by the injection of the nonaqueous electrolyte, and the carbonaceous material is doped with lithium and added in advance. Aromatic hydrocarbon or lithium-
It will also be doped from the aromatic hydrocarbon complex. Accordingly, the electrode potential of the carbonaceous material shifts to a lower speed more quickly, so that the oxidative decomposition reaction of the non-aqueous electrolyte does not easily occur.

【0027】リチウム−芳香族炭化水素錯体を非水電解
液に添加した場合、リチウム−芳香族炭化水素錯体は負
極炭素質材料にリチウムをドープし、芳香族炭化水素に
変化する。芳香族炭化水素は負極炭素質材料と短絡状態
に配置されたリチウム金属と反応し、リチウム−芳香族
炭化水素錯体を形成する。リチウム−芳香族炭化水素錯
体は炭素質材料にリチウムをドープし、再び芳香族炭化
水素錯体に変化する。以上のように上記で示された過程
を繰り返すことにより、炭素質材料へのリチウムのドー
プを促進し、電池組立後直ぐに使用可能な状態になる。
When a lithium-aromatic hydrocarbon complex is added to a non-aqueous electrolyte, the lithium-aromatic hydrocarbon complex is converted into an aromatic hydrocarbon by doping the negative electrode carbonaceous material with lithium. The aromatic hydrocarbon reacts with the negative electrode carbonaceous material and the lithium metal arranged in a short circuit state to form a lithium-aromatic hydrocarbon complex. The lithium-aromatic hydrocarbon complex is obtained by doping the carbonaceous material with lithium, and is converted again into an aromatic hydrocarbon complex. By repeating the above-described process as described above, doping of the carbonaceous material with lithium is promoted, and the battery can be used immediately after the battery is assembled.

【0028】前記非水電解液に芳香族炭化水素錯体を添
加しただけでも、同様の循環を繰り返すことにより、炭
素質材料へのリチウムのドープが促進され、本発明の効
果が十分に得られる。
Even if only the aromatic hydrocarbon complex is added to the non-aqueous electrolyte, the same circulation is repeated to promote the doping of the carbonaceous material with lithium, and the effect of the present invention can be sufficiently obtained.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施形態を実施例
を中心に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described mainly with reference to examples.

【0030】図1は本発明による電極巻回型(スパイラ
ル型)の単3形リチウム二次電池の第1の実施形態を示
すものである。このリチウム二次電池は基本的には従来
と同様に、正極1,負極2の間にポリプロピレン(P
P)製多孔質フィルムからなるセパレータ3を挟んでス
パイラル状に巻回して巻回要素を形成し、その上部に前
記正極1側に接続する正極リード板4を、下部に前記負
極2側に接続する負極リード板5を突出させた状態でP
P絶縁板6aを介して有底筒形のケース6内に収装し、
負極リード板5を有底筒形ケース6の内底面中心にスポ
ット溶接により接続し、また安全弁付き正極端子板7の
底部に正極リード板4をスポット溶接し、その後非水電
解液をケース6内に注液し、正極端子板7を封口ガスケ
ット8を介してケース6の開口に嵌め付け、カシメ付け
ることによって電池を完成する。
FIG. 1 shows a first embodiment of an AA type lithium secondary battery of a wound electrode type (spiral type) according to the present invention. This lithium secondary battery basically has a polypropylene (P) between the positive electrode 1 and the negative electrode 2 as in the prior art.
P) A winding element is formed by spirally winding a separator 3 made of a porous film made of a porous film, and a positive electrode lead plate 4 connected to the positive electrode 1 side is connected to an upper part thereof, and a negative electrode 2 side is connected to a lower part thereof. P with the negative electrode lead plate 5
It is housed in the bottomed cylindrical case 6 via the P insulating plate 6a,
The negative electrode lead plate 5 is connected to the center of the inner bottom surface of the bottomed cylindrical case 6 by spot welding, and the positive electrode lead plate 4 is spot welded to the bottom of the positive electrode terminal plate 7 with a safety valve. And the positive electrode terminal plate 7 is fitted into the opening of the case 6 via the sealing gasket 8 and caulked to complete the battery.

【0031】前記正極1は、正極活物質であるLiMn
2 3 と、導電剤であるカーボン粉末とポリテトラフル
オロエチレン(以下PTFEと表す)の水性ディスパー
ジョンとを重量比で100:10:10の割合で混合
し、水でぺースト状に混練したものを集電体を構成する
厚さ30μmのアルミニウム箔の両面に塗布した後、乾
燥、圧延して所定の大きさに裁断した帯状のもので、前
記帯状の長手方向に直交して合剤の一部を掻き取り、こ
こに正極リード板4をスポット溶接した。なお、以上の
混合比率のうちPTFEの水性ディスパージョンの割合
はそのうちの固形分の割合である。
The positive electrode 1 is made of LiMn which is a positive electrode active material.
2 O 3 , a carbon powder as a conductive agent and an aqueous dispersion of polytetrafluoroethylene (hereinafter referred to as PTFE) were mixed at a weight ratio of 100: 10: 10, and kneaded in a paste with water. After applying the thing on both sides of a 30 μm thick aluminum foil constituting a current collector, the strip was dried, rolled and cut into a predetermined size, and the mixture was mixed at right angles to the longitudinal direction of the strip. A part was scraped off, and the positive electrode lead plate 4 was spot-welded thereto. The ratio of the aqueous dispersion of PTFE in the above mixture ratio is the ratio of the solid content.

【0032】前記活物質であるLiMn2 3 は、二酸
化マンガン(MnO2 )と、炭酸リチウム(LiC
3 )とをモル比で2:1に混合し、空気中で750℃
で7時間加熱したものを用いた。
LiMn 2 O 3 as the active material is composed of manganese dioxide (MnO 2 ) and lithium carbonate (LiC
O 3 ) at a molar ratio of 2: 1 and 750 ° C. in air.
For 7 hours.

【0033】前記負極2は、炭素質粉末とPTFE水性
ディスパージョンとを重量比で100:3の割合とし水
で混練したものを、ニッケル製エキスパンドメタルに圧
入し、乾燥、裁断して帯状に形成し、更にこの長手方向
と直交して一部を掻き取り、ここに負極リード板5をス
ポット溶接したものである。なお、PTFEの水性ディ
スパージョンの比率は前記と同様固形分の割合であり、
負極の炭素質粉末の重量は3.5gである。
The negative electrode 2 is formed by kneading a carbonaceous powder and an aqueous PTFE dispersion in a weight ratio of 100: 3 with water at a ratio of 100: 3, pressing into a nickel expanded metal, drying, and cutting to form a strip. Further, a part is scraped off in a direction perpendicular to the longitudinal direction, and the negative electrode lead plate 5 is spot-welded thereto. In addition, the ratio of the aqueous dispersion of PTFE is the ratio of the solid content as described above,
The weight of the carbonaceous powder of the negative electrode was 3.5 g.

【0034】また、この負極は、対極をリチウム金属と
して電流密度1mA/cm2 の定電流で充放電を行った
場合に、第lサイクルにおけるリチウムのドープ量が、
両極間電圧0.01Vまでで800mAh、脱ドープ量
が500mAhである。
When the negative electrode is charged and discharged at a constant current of 1 mA / cm 2 with a current density of 1 mA / cm 2 using lithium metal as a counter electrode, the doping amount of lithium in the first cycle is:
800 mAh up to a voltage between both electrodes of 0.01 V, and the dedoping amount is 500 mAh.

【0035】前記非水電解液は、過塩素酸リチウム(L
iClO4 )をプロピレンカーボネートと1,2−ジメ
トキシエタンとの混合溶媒に1mol/lの割合で溶解
したものを使用した。
The non-aqueous electrolyte is lithium perchlorate (L
iClO 4 ) dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a ratio of 1 mol / l was used.

【0036】組立工程中において、図1に示すように、
負極リード板5のスポット溶接時に、0.13gの発泡
状リチウム金属9を圧着したU字形のニッケルワイヤl
0を、ともにスポット溶接して負極2に短絡させてお
り、この後、非水電解液の注液を行っている。
During the assembly process, as shown in FIG.
At the time of spot welding of the negative electrode lead plate 5, a U-shaped nickel wire 1 to which 0.13 g of foamed lithium metal 9 has been crimped
0 is short-circuited to the negative electrode 2 by spot welding together, and then the non-aqueous electrolyte is injected.

【0037】また、前記電解液には、芳香族炭化水素
を、それぞれ0mol、0.001mol、0.005
mol、0.01mol、0.05mol、0.1mo
lの各種濃度で添加し、試作電池を完成した。
The electrolyte solution contains 0 mol, 0.001 mol, and 0.005 mol of an aromatic hydrocarbon, respectively.
mol, 0.01mol, 0.05mol, 0.1mo
1 at various concentrations to complete a prototype battery.

【0038】なお、上記芳香族炭化水素の代わりにリチ
ウム−芳香族炭化水素錯体に着目し、このリチウム−芳
香族炭化水素錯体についても、同様に、前記電解液に対
しそれぞれ0.001mol、0.005mol、0.
01mol、0.05mol、0.1molの各種濃度
で添加し、試作電池を完成したが、結果は、上記芳香族
炭化水素を添加した場合と同じになる。そこで、以下、
芳香族炭化水素を添加した場合とリチウム−芳香族炭化
水素錯体を添加した場合とを等価的に説明する。
Focusing on the lithium-aromatic hydrocarbon complex instead of the above-mentioned aromatic hydrocarbon, the lithium-aromatic hydrocarbon complex is also similarly 0.001 mol and 0.1 mol based on the electrolytic solution, respectively. 005 mol, 0.
A trial battery was completed by adding various concentrations of 01 mol, 0.05 mol, and 0.1 mol, and the result is the same as that when the aromatic hydrocarbon was added. Therefore,
The case where an aromatic hydrocarbon is added and the case where a lithium-aromatic hydrocarbon complex is added will be described equivalently.

【0039】[実験1]非水電解液にリチウム−芳香族
炭化水素錯体又は芳香族炭化水素を、それぞれ0mo
l、0.001mol、0.005mol、0.01m
ol、0.05mol、0.1molの各種濃度で添加
した電池につき、これらの電池の組立後、上限電圧4.
2V、下限電圧3.0Vとして、0.17Aの定電流で
20サイクルの充放電を行い、1サイクル目の充電容量
と20サイクル目の放電容量を計測した。この結果を図
5に示す。図5中、黒三角印は1サイクル目の充電容量
(Ah)を、黒丸印は20サイクル目の放電容量(A
h)を示す。この1サイクル目の充電容量と20サイク
ル目の放電容量の差(図中の黒三角印と黒丸印とのレベ
ル差)は、容量の劣化率を示すものである。なお、非水
電解液に芳香族炭化水素又はリチウム−芳香族炭化水素
錯体の添加量が0molの電池、即ち未添加の電池につ
いては、組立後140時間放置した後、充放電を開始し
た。
[Experiment 1] Lithium-aromatic hydrocarbon complex or aromatic hydrocarbon was added to a non-aqueous electrolyte at 0 mo, respectively.
1, 0.001 mol, 0.005 mol, 0.01 m
ol, 0.05 mol, and 0.1 mol of the batteries added at various concentrations, after assembling these batteries, the upper limit voltage is 4.
At 2 V and a lower limit voltage of 3.0 V, charge and discharge were performed for 20 cycles at a constant current of 0.17 A, and the charge capacity at the first cycle and the discharge capacity at the 20th cycle were measured. The result is shown in FIG. In FIG. 5, a black triangle indicates the charge capacity (Ah) at the first cycle, and a black circle indicates the discharge capacity (Ah) at the 20th cycle.
h). The difference between the charge capacity at the first cycle and the discharge capacity at the 20th cycle (the level difference between the black triangles and the black circles in the figure) indicates the rate of capacity deterioration. The battery in which the amount of the aromatic hydrocarbon or the lithium-aromatic hydrocarbon complex added to the nonaqueous electrolyte was 0 mol, that is, the battery without the addition, was left for 140 hours after assembly, and then started charging and discharging.

【0040】図5に示す特性より、リチウム−芳香族炭
化水素錯体又は芳香族炭化水素を、それぞれ0.001
mol、0.005mol、0.01mol、0.05
mol、0.1molの各種濃度で添加した場合、無添
加の場合よりも容量の大きいリチウム二次電池が得られ
ることが判る。また、添加量が0.001mol〜0.
01mol未満までは殆ど容量の劣化が認められず、
0.01mol以上になると容量の劣化が認められ始
め、0.1molの添加量になると20サイクル目の放
電容量(Ah)が無添加の場合と殆ど同じになる。従っ
て、リチウム−芳香族炭化水素錯体又は芳香族炭化水素
の添加量は、20サイクル目の放電容量(Ah)が無添
加の場合の値以下とならない範囲である0.01mol
未満、好ましくは容量の劣化率があまり大きくならない
0.05mol以下の値に止めるのが良いことが判る。
According to the characteristics shown in FIG. 5, the lithium-aromatic hydrocarbon complex or the aromatic
mol, 0.005 mol, 0.01 mol, 0.05
It can be seen that when added in various concentrations of 0.1 mol and 0.1 mol, a lithium secondary battery having a larger capacity than in the case of no addition can be obtained. Further, the amount of addition is 0.001 mol to 0.1 mol.
Up to less than 01 mol, almost no capacity deterioration was observed,
When the amount becomes 0.01 mol or more, deterioration of the capacity starts to be recognized, and when the amount is 0.1 mol, the discharge capacity (Ah) at the 20th cycle becomes almost the same as in the case where no addition is made. Accordingly, the addition amount of the lithium-aromatic hydrocarbon complex or the aromatic hydrocarbon is 0.01 mol, which is a range in which the discharge capacity (Ah) at the 20th cycle does not fall below the value in the case of no addition.
It can be seen that it is better to keep the value at less than 0.05 mol, preferably at a value of 0.05 mol or less at which the rate of deterioration of the capacity is not so large.

【0041】また、この図5のグラフでは、リチウム−
芳香族炭化水素錯体又は芳香族炭化水素の添加量が上述
した上限値0.05molを超えると急速に放電容量が
低下するが、これは過剰量の芳香族炭化水素の添加によ
って電池の内部抵抗が増加することを示唆している。
Further, in the graph of FIG.
When the addition amount of the aromatic hydrocarbon complex or the aromatic hydrocarbon exceeds the above-mentioned upper limit value of 0.05 mol, the discharge capacity rapidly decreases, but this is because the internal resistance of the battery is reduced by the addition of an excessive amount of the aromatic hydrocarbon. Suggests an increase.

【0042】[実験2]非水電解液にリチウム−芳香族
炭化水素錯体又は芳香族炭化水素を、それぞれ0.00
1mol、0.005mol、0.01mol、0.0
5mol、0.1molの各種濃度で添加した電池につ
き、これらの電池組立工程中において、注液の際、気体
発生の有無を確認した。この結果を表1に示す。
[Experiment 2] Lithium-aromatic hydrocarbon complex or aromatic hydrocarbon was added to the non-aqueous electrolyte at 0.00
1 mol, 0.005 mol, 0.01 mol, 0.0
Regarding the batteries added at various concentrations of 5 mol and 0.1 mol, during the battery assembling process, the presence or absence of gas generation at the time of injection was confirmed. Table 1 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】この表1に示すように、非水電解液にリチ
ウム−芳香族炭化水素錯体又は芳香族炭化水素を添加し
た場合、添加量が上記0.001mol〜0.05mo
l(実施例1〜実施例4)の範囲内では、注液時の気体
発生、すなわち電解液の分解は確認されなかった。これ
は、表1に左側に比較として示す添加量が0molの電
池、即ち未添加である従来の電池についてはガスの発生
が認められ、電池の膨らみや電解液の劣化等の不都合が
派生するのと対照的である。
As shown in Table 1, when a lithium-aromatic hydrocarbon complex or an aromatic hydrocarbon was added to the non-aqueous electrolyte, the addition amount was 0.001 mol to 0.05 mol.
Within the range of 1 (Examples 1 to 4), gas generation during injection, that is, decomposition of the electrolytic solution was not confirmed. This is because the generation of gas is recognized in the battery with the added amount of 0 mol shown in the left side of Table 1 as a comparison, that is, the conventional battery not added, which causes inconveniences such as swelling of the battery and deterioration of the electrolyte. And in contrast.

【0045】[実験3]非水電解液にリチウム−芳香族
炭化水素錯体又は芳香族炭化水素を、それぞれ0.00
1mol、0.005mol、0.01mol、0.0
5mol、0.1molの各種濃度で添加した電池につ
き、これらの電池に対して組立直後4.05Vまで0.
17Aの定電流で充電し、15分間放置した後、この電
池の電圧(電圧a(V))を測定した。さらに、この電
池をl20時間放置した後、再び電圧(電圧b(V))
を測定し、表2に示す計測値を得た。
[Experiment 3] A lithium-aromatic hydrocarbon complex or an aromatic hydrocarbon was added to a non-aqueous electrolyte at 0.00
1 mol, 0.005 mol, 0.01 mol, 0.0
Regarding the batteries added at various concentrations of 5 mol and 0.1 mol, these batteries were brought up to 4.05 V immediately after assembly.
The battery was charged at a constant current of 17 A and left for 15 minutes, and then the voltage (voltage a (V)) of the battery was measured. Furthermore, after leaving this battery for 120 hours, the voltage (voltage b (V))
Was measured, and the measured values shown in Table 2 were obtained.

【0046】[0046]

【表2】 [Table 2]

【0047】この表2において、コバルト錯体またはリ
チウム−コバルト錯体の添加濃度が0.005mol/
l以下の場合、l20時間放置後の電圧b値が15分間
放置後の電圧a値より高くなった。これは充電過程終了
後も、負極と短絡状態に配置したリチウム金属が全て溶
解できず残存し、この短絡反応が続いているためだと考
えられる。
In Table 2, the addition concentration of the cobalt complex or the lithium-cobalt complex was 0.005 mol /
In the case of 1 or less, the voltage b value after leaving for 120 hours was higher than the voltage a value after leaving for 15 minutes. It is considered that this is because even after the charging process, all the lithium metal arranged in a short-circuit state with the negative electrode could not be dissolved and remained, and this short-circuit reaction continued.

【0048】上記は、図1に示した実施形態、つまり組
立工程中において負極リード板5のスポット溶接時に、
0.13gの発泡状リチウム金属9を圧着したU字形の
ニッケルワイヤ10をともにスポット溶接して負極2に
短絡させた形態について説明したが、本発明はこれに限
定されない。即ち、図2に示すように、負極リード板5
の外周に、あらかじめリチウム箔9を巻き付けた形態
や、さらに、図3のように、有底筒形の電池ケース6の
底部を除く内側側面に0.13gのリチウム箔9を貼設
し、その表面をポリプロピレン製セパレータ3で覆った
形態であっても適用することができる。また、図4のよ
うに、有底筒形の電池ケース6の内側底部に0.13g
のドーナツ型に形成されたリチウム箔9を貼設し、その
上にPP絶縁板6aを配設した形態であっても適用する
ことができる。この場合、負極リード板5は、PP絶縁
板6aと前記ドーナツ型リチウム箔9との間に配置し、
前記リチウム箔9の中央開口部である電池ケース6の内
側底部中心位置にスポット溶接する。
The above is the embodiment shown in FIG. 1, that is, when spot welding the negative electrode lead plate 5 during the assembling process,
Although the U-shaped nickel wire 10 to which 0.13 g of the foamed lithium metal 9 has been crimped is spot-welded to short-circuit the negative electrode 2, the present invention is not limited to this. That is, as shown in FIG.
And a 0.13 g lithium foil 9 is stuck on the inner side surface of the bottomed cylindrical battery case 6 excluding the bottom, as shown in FIG. The present invention can be applied even when the surface is covered with a polypropylene separator 3. Also, as shown in FIG. 4, 0.13 g is attached to the inner bottom of the bottomed cylindrical battery case 6.
The present invention can also be applied to a case in which a donut-shaped lithium foil 9 is attached and a PP insulating plate 6a is provided thereon. In this case, the negative electrode lead plate 5 is disposed between the PP insulating plate 6a and the donut-shaped lithium foil 9,
Spot welding is carried out at the center of the inner bottom of the battery case 6, which is the center opening of the lithium foil 9.

【0049】これらの形態においても、非水電解液に芳
香族炭化水素またはリチウム−芳香族炭化水素錯体を添
加することによって、負極炭素質材料のロス容量分のリ
チウムイオンを正極のリチウムイオンの脱ドープを行わ
ずしてドープさせることができ、添加しないものに比べ
て、大きい容量のリチウム二次電池を得ることができる
等の利点が得られる。
Also in these embodiments, by adding an aromatic hydrocarbon or a lithium-aromatic hydrocarbon complex to the non-aqueous electrolyte, lithium ions corresponding to the loss capacity of the negative carbonaceous material are removed from the lithium ions of the positive electrode. It is possible to dope without doping, and to obtain an advantage that a lithium secondary battery having a larger capacity can be obtained as compared with one without doping.

【0050】[0050]

【発明の効果】以上説明したように本発明によれば、化
学式LiMn2 4 で表されるリチウムを含む正極と、
炭素質材料からなりリチウム金属を短絡させた状態に配
置した負極と、非水電解液とを有するリチウム二次電池
において、前記非水電解液にリチウム金属と錯体を形成
する芳香族炭化水素を添加したので、非水電解液の注液
により、負極炭素質材料と短絡状態に配置されたリチウ
ム金属が溶解し、炭素質材料にリチウムがドープされる
だけでなく、予め添加した芳香族炭化水素またはリチウ
ム−芳香族炭化水素錯体からもドープされることにな
る。従って、炭素質材料の電極電位がより速く卑に移行
するため、非水電解液の酸化分解反応は起こり難くな
る。
As described above, according to the present invention, a positive electrode containing lithium represented by the chemical formula LiMn 2 O 4 ,
In a lithium secondary battery including a negative electrode made of a carbonaceous material and arranged in a state where lithium metal is short-circuited and a non-aqueous electrolyte, an aromatic hydrocarbon that forms a complex with lithium metal is added to the non-aqueous electrolyte. Therefore, the injection of the non-aqueous electrolyte solution dissolves the lithium metal disposed in a short-circuit state with the negative carbonaceous material, not only doping the carbonaceous material with lithium, but also adding an aromatic hydrocarbon or a previously added aromatic hydrocarbon. It will also be doped from a lithium-aromatic hydrocarbon complex. Accordingly, the electrode potential of the carbonaceous material shifts to a lower speed more quickly, so that the oxidative decomposition reaction of the non-aqueous electrolyte does not easily occur.

【0051】よって、非水電解液を電池ケース内に注液
する際、注液初期に収装したリチウム金属表面で気体が
発生する不都合をなくし、電解液の劣化を防止すことが
できる。また、電池ケース内に収装したリチウム金属が
全て溶解して負極炭素質材料にドープされるまでの6〜
7日間もの長い待ち時間をなくし、電池組立後直ぐに使
用可能な状態なリチウム二次電池を得ることができる。
Therefore, when the non-aqueous electrolyte is injected into the battery case, the inconvenience of generating gas on the surface of the lithium metal accommodated at the beginning of the injection can be eliminated, and the deterioration of the electrolyte can be prevented. In addition, from 6 to 10 until all the lithium metal contained in the battery case is dissolved and doped into the negative electrode carbonaceous material.
It is possible to obtain a lithium secondary battery that can be used immediately after assembling the battery without having to wait as long as seven days.

【0052】また、本発明では、芳香族炭化水素を添加
することによって、負極炭素質材料のロス容量分のリチ
ウムイオンを正極のリチウムイオンの脱ドープを行わず
してドープできるようにしているため、添加しないもの
に比べて、大きい容量のリチウム二次電池を得ることが
できる。更に、この芳香族炭化水素は、0.05mol
以下の配合比で添加したので、放電終止電圧に達するま
での連続放電時間を長くすることができる。
Further, in the present invention, by adding an aromatic hydrocarbon, lithium ions corresponding to the loss capacity of the negative electrode carbonaceous material can be doped without dedoping lithium ions of the positive electrode. Thus, a lithium secondary battery having a larger capacity can be obtained as compared with the case where no lithium secondary battery is added. Furthermore, this aromatic hydrocarbon is 0.05 mol
Since it was added in the following mixing ratio, the continuous discharge time until the discharge end voltage was reached can be lengthened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るリチウム二次電池を
示す断面図である。
FIG. 1 is a sectional view showing a lithium secondary battery according to one embodiment of the present invention.

【図2】本発明の他の実施形態に係るリチウム二次電池
を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a lithium secondary battery according to another embodiment of the present invention.

【図3】本発明の別の実施形態に係るリチウム二次電池
を示す断面図である。
FIG. 3 is a sectional view showing a lithium secondary battery according to another embodiment of the present invention.

【図4】本発明の更に別の実施形態に係るリチウム二次
電池を示す断面図である。
FIG. 4 is a sectional view showing a lithium secondary battery according to still another embodiment of the present invention.

【図5】芳香族炭化水素又はリチウム−芳香族炭化水素
錯体の添加量と電池容量の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the amount of aromatic hydrocarbon or lithium-aromatic hydrocarbon complex added and the battery capacity.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極リード板 5 負極リード板 6 ケース 7 正極端子板 8 封口ガスケット 9 リチウム金属(リチウム箔) 10 ニッケルワイヤ REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead plate 5 negative electrode lead plate 6 case 7 positive terminal plate 8 sealing gasket 9 lithium metal (lithium foil) 10 nickel wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学式LiMn2 4 で表されるリチウ
ムを含む正極と、炭素質材料からなりリチウム金属を短
絡させた状態に配置した負極と、非水電解液とを有する
リチウム二次電池において、前記非水電解液に、ナフタ
レン、フェナンスレン、アントラセン等のリチウム金属
と錯体を形成する芳香族炭化水素を、0.05mol以
下の配合比で添加したことを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a positive electrode containing lithium represented by the chemical formula LiMn 2 O 4 , a negative electrode made of a carbonaceous material and having a lithium metal short-circuited, and a non-aqueous electrolyte. And a non-aqueous electrolyte containing an aromatic hydrocarbon which forms a complex with a lithium metal such as naphthalene, phenanthrene or anthracene in a mixing ratio of 0.05 mol or less.
JP9354900A 1997-12-24 1997-12-24 Lithium second battery Pending JPH11185809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9354900A JPH11185809A (en) 1997-12-24 1997-12-24 Lithium second battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9354900A JPH11185809A (en) 1997-12-24 1997-12-24 Lithium second battery

Publications (1)

Publication Number Publication Date
JPH11185809A true JPH11185809A (en) 1999-07-09

Family

ID=18440673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9354900A Pending JPH11185809A (en) 1997-12-24 1997-12-24 Lithium second battery

Country Status (1)

Country Link
JP (1) JPH11185809A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303250B1 (en) * 1999-04-09 2001-10-16 Matsushita Electric Industrial Co., Ltd. Secondary battery including an electrolytic solution with an organic additive
WO2003030292A1 (en) * 2001-09-27 2003-04-10 Nisshinbo Industries, Inc., Nonaqueous electrolyte secondary cell, power supply comprising the secondary cell, portable device, transportable or movable machine, electric apparatus for home use, and method for charging nonaqueous electrolyte secondary cell
KR100472506B1 (en) * 2002-08-10 2005-03-10 삼성에스디아이 주식회사 Rechargeable lithium batteries comprising non-aqueous electroyte containing polymerizable aromatic additives for overcharge protection
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
JP2008243828A (en) * 2008-06-02 2008-10-09 Sony Corp Negative electrode and manufacturing method for secondary battery
JP2008257888A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
JP2013037864A (en) * 2011-08-06 2013-02-21 Denso Corp Nonaqueous electrolyte secondary battery
JP2015043310A (en) * 2013-07-25 2015-03-05 株式会社デンソー Method for manufacturing alkali metal-containing active material and secondary battery
JP2021048121A (en) * 2019-09-12 2021-03-25 トヨタ自動車株式会社 Liquid composition, non-aqueous electrolyte secondary battery capacity recovery method, liquid composition manufacturing method, and non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303250B1 (en) * 1999-04-09 2001-10-16 Matsushita Electric Industrial Co., Ltd. Secondary battery including an electrolytic solution with an organic additive
WO2003030292A1 (en) * 2001-09-27 2003-04-10 Nisshinbo Industries, Inc., Nonaqueous electrolyte secondary cell, power supply comprising the secondary cell, portable device, transportable or movable machine, electric apparatus for home use, and method for charging nonaqueous electrolyte secondary cell
KR100472506B1 (en) * 2002-08-10 2005-03-10 삼성에스디아이 주식회사 Rechargeable lithium batteries comprising non-aqueous electroyte containing polymerizable aromatic additives for overcharge protection
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
JP2008257888A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
JP2008243828A (en) * 2008-06-02 2008-10-09 Sony Corp Negative electrode and manufacturing method for secondary battery
JP2013037864A (en) * 2011-08-06 2013-02-21 Denso Corp Nonaqueous electrolyte secondary battery
US9276288B2 (en) 2011-08-06 2016-03-01 Denso Corporation Nonaqueous electrolyte rechargeable battery
JP2015043310A (en) * 2013-07-25 2015-03-05 株式会社デンソー Method for manufacturing alkali metal-containing active material and secondary battery
JP2021048121A (en) * 2019-09-12 2021-03-25 トヨタ自動車株式会社 Liquid composition, non-aqueous electrolyte secondary battery capacity recovery method, liquid composition manufacturing method, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP3959915B2 (en) Non-aqueous electrolyte battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP2005166290A (en) Electrolyte and battery using it
CN104868168A (en) Nonaqueous electrolyte secondary battery
JP2001185213A5 (en)
JPH11185809A (en) Lithium second battery
JPH05144473A (en) Secondary battery with nonaqueous electrolyte
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3606778B2 (en) Method for adjusting characteristics of lithium ion secondary battery
JP4830178B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3119945B2 (en) Lithium secondary battery
JP3121902B2 (en) Manufacturing method of lithium secondary battery
JP2000243452A (en) Lithium-ion secondary battery
JPH1083835A (en) Manufacture of non-aqueous electrolytic secondary battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JPH0945330A (en) Nonaqueous secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP2845069B2 (en) Organic electrolyte secondary battery