JP2008257888A - Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element - Google Patents

Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element Download PDF

Info

Publication number
JP2008257888A
JP2008257888A JP2007095504A JP2007095504A JP2008257888A JP 2008257888 A JP2008257888 A JP 2008257888A JP 2007095504 A JP2007095504 A JP 2007095504A JP 2007095504 A JP2007095504 A JP 2007095504A JP 2008257888 A JP2008257888 A JP 2008257888A
Authority
JP
Japan
Prior art keywords
electrode
carbon material
lithium
electrochemical element
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007095504A
Other languages
Japanese (ja)
Inventor
Shuichi Ishimoto
修一 石本
Junji Koga
淳史 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2007095504A priority Critical patent/JP2008257888A/en
Publication of JP2008257888A publication Critical patent/JP2008257888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a carbon material for the electrode of an electrochemical element having high capacity, high cycle stability, and realizing high output (high current density) charging/discharging. <P>SOLUTION: The carbon material is manufactured in a process that forms a complex of a prescribed condensed polycyclic aromatic compound and a prescribed alkali metal in an ether solvent, a process that obtains a precursor of the carbon material by drying the alkali metal complex solution obtained, and then a process heat treating at 600-1,000°C. As the alkali metal, potassium, sodium, or lithium is used. As the condensed polycyclic aromatic compound, naphthalene, acenaphthylene, pyrene, anthracene, phenanthrene, or either one or two or more of these derivatives are used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二次電池やキャパシタなどの電気化学素子の電極材料に関し、さらに詳しくは、出力やサイクル特性に優れ、高電圧特性を有する電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極に関する。   The present invention relates to an electrode material for an electrochemical element such as a secondary battery or a capacitor. More specifically, the present invention relates to an electrode carbon material for an electrochemical element having excellent output and cycle characteristics and high voltage characteristics, a method for producing the same, and an electric The present invention relates to a chemical element electrode.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する電気化学素子が用いられる。このような電気化学素子としては、二次電池、電気二重層キャパシタがある。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, an electrochemical element having high energy density and high output density characteristics is used as a power source for driving the motor. Such electrochemical elements include secondary batteries and electric double layer capacitors.

上記二次電池には、鉛電池、ニッケル・カドミウム電池、ニッケル水素電池、またはプロトン電池などがある。これらの二次電池は、イオン伝導性の高い酸性またはアルカリ性の水系電解液を用いているため、充放電の際に大電流が得られるという優れた出力特性を有するが、水の電気分解電圧が1.23Vであるため、それ以上の高い電圧を得ることができない。電気自動車の電源としては、200V前後の高電圧が必要であるため、それだけ多くの電池を直列に接続しなければならず、電源の小型・軽量化には不利である。   Examples of the secondary battery include a lead battery, a nickel / cadmium battery, a nickel metal hydride battery, and a proton battery. Since these secondary batteries use an acidic or alkaline aqueous electrolyte having high ion conductivity, they have excellent output characteristics that a large current can be obtained during charging and discharging, but the electrolysis voltage of water is low. Since it is 1.23V, a voltage higher than that cannot be obtained. As a power source for an electric vehicle, a high voltage of about 200 V is necessary, so that many batteries have to be connected in series, which is disadvantageous for reducing the size and weight of the power source.

また、高電圧型の二次電池としては、有機電解液を用いたリチウムイオン二次電池が知られている。このリチウムイオン二次電池は、分解電圧の高い有機溶媒を電解液溶媒としているため、最も卑な電位を示すリチウムイオンを充放電反応に関与する電荷とすれば、3V以上の電位を示す。このリチウムイオン二次電池は、リチウムイオンを吸蔵、放出する炭素を負極とし、コバルト酸リチウム(LiCoO2)を正極として用いたものが主流である。電解液には、六フッ化リン酸リチウム(LiPF6)などのリチウム塩をエチレンカーボネートやプロピレンカーボネートなどの溶媒に溶解させたものが用いられている。このようなリチウムイオン二次電池は、平均作動電圧として3.6Vを示す。 As a high voltage type secondary battery, a lithium ion secondary battery using an organic electrolyte is known. Since this lithium ion secondary battery uses an organic solvent having a high decomposition voltage as the electrolyte solvent, if the lithium ion having the lowest potential is used as a charge involved in the charge / discharge reaction, it exhibits a potential of 3 V or more. This lithium ion secondary battery mainly uses carbon that absorbs and releases lithium ions as a negative electrode and lithium cobaltate (LiCoO 2 ) as a positive electrode. As the electrolytic solution, a solution obtained by dissolving a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) in a solvent such as ethylene carbonate or propylene carbonate is used. Such a lithium ion secondary battery has an average operating voltage of 3.6V.

さらに、セパレータを挟んで対向する電極と、電解液とを容器中に収容した電気二重層キャパシタであって、正極が活性炭を主体とする分極性電極であり、負極がリチウムをイオン化した状態で吸蔵、離脱しうる炭素材料に化学的方法又は電気化学的方法で予めリチウムを吸蔵させた炭素質材料を主体とする電極であり、電解液が非水系電解液である電気二重層キャパシタが知られている(特許文献1)。   Furthermore, an electric double layer capacitor in which an electrode facing each other with a separator in between and an electrolytic solution are contained in a container, the positive electrode is a polarizable electrode mainly composed of activated carbon, and the negative electrode is occluded in a state of ionizing lithium. There is known an electric double layer capacitor that is an electrode mainly composed of a carbonaceous material in which lithium is occluded in advance by a chemical method or an electrochemical method in a carbon material that can be detached, and the electrolytic solution is a non-aqueous electrolytic solution. (Patent Document 1).

このような炭素材料の単位重量当たりの電気容量は、リチウムのドープ量によって決まり、従って電池の充放電容量を大きくするためには、炭素材料のリチウムに対するドープ量をできる限り大きくすることが望ましい(理論的には、炭素原子6個に対してLi原子1個の割合が上限である)。   The electric capacity per unit weight of such a carbon material is determined by the doping amount of lithium. Therefore, in order to increase the charge / discharge capacity of the battery, it is desirable to increase the doping amount of the carbon material to lithium as much as possible ( Theoretically, the ratio of one Li atom to six carbon atoms is the upper limit).

また、負極に用いられる炭素材料は、結晶構造的に分類すると、易黒鉛化炭素と難黒鉛化炭素に分類される。易黒鉛化炭素の特長は、放電電位の平坦性に優れることであるが、充放電電流密度を上げるとその容量は極端に低下してしまうことが知られている。そこで、その用途としては、メモリバックアップ用の電気二重層キャパシタ、二次電池などの比較的電流密度の低い用途に限定される。   Moreover, the carbon material used for the negative electrode is classified into graphitizable carbon and non-graphitizable carbon when classified by crystal structure. The characteristic of graphitizable carbon is that it is excellent in flatness of the discharge potential, but it is known that the capacity decreases extremely when the charge / discharge current density is increased. Therefore, the application is limited to applications having a relatively low current density such as an electric double layer capacitor for memory backup and a secondary battery.

一方、難黒鉛化炭素の特長は、放電電位の平坦性には劣るものの、易黒鉛化炭素に比べ高い電流密度で充放電できることである。しかしながら、この難黒鉛化炭素を用いた場合でも電気自動車などの大電流を必要とする用途に対しては充分ではない。   On the other hand, the characteristic of non-graphitizable carbon is that it can be charged and discharged at a higher current density than easily graphitized carbon, although it is inferior in flatness of the discharge potential. However, even when this non-graphitizable carbon is used, it is not sufficient for applications requiring a large current, such as an electric vehicle.

このように易黒鉛化炭素、難黒鉛化炭素はともに特長と欠点を有しており、それらの特性を向上させる試みがなされ、現在まで種々の特許出願がなされている。例えば、結晶セルロースをチッ素ガス流下、1,800℃で焼成して得られる炭素物質(特許文献2参照)、石炭ピッチあるいは石油ピッチを不活性雰囲気で2,500℃以上で黒鉛化処理したもの(特許文献3参照)、2,000℃を超える高温で処理されたグラファイト化の進んだものなどが用いられ、金属リチウムやリチウム合金と比較して容量の低下はあるが、サイクル安定性のあるものが得られている。   Thus, both graphitizable carbon and non-graphitizable carbon have features and drawbacks. Attempts have been made to improve these characteristics, and various patent applications have been filed to date. For example, a carbon material obtained by firing crystalline cellulose at 1,800 ° C. under a nitrogen gas flow (see Patent Document 2), a coal pitch or a petroleum pitch graphitized at 2,500 ° C. or higher in an inert atmosphere (Refer to Patent Document 3), advanced graphitized material processed at a high temperature exceeding 2,000 ° C. is used, and although there is a decrease in capacity compared to metallic lithium and lithium alloy, it has cycle stability Things have been obtained.

このような炭素材料による負極は、金属リチウムやリチウム合金に比べて、充電状態、すなわち炭素にリチウムが吸蔵された状態においても、水との反応が充分に穏やかで、充放電に伴うデンドライトの形成もほとんどみられず、優れたものである。   The negative electrode made of such a carbon material has a sufficiently mild reaction with water even in a charged state, that is, in a state where lithium is occluded in carbon, compared to metallic lithium or lithium alloy, and formation of dendrite accompanying charging / discharging. It is an excellent one with almost no signs.

なお、易黒鉛化炭素と難黒鉛化炭素の分類方法としては、主にX線回折法によるd200の面間隔及びC軸方向、a軸方向の結晶子の大きさ、レーザーラマンスペクトル解析による積層構造と乱層構造の比率で分類する方法が用いられている。この2つの評価方法は、充分に炭化が終了した炭素(焼成温度1,500℃以上)に対して有効である。
特開平8−107048号公報 特開平3−176963号公報 特開平2−82466号公報
As the classification method graphitizable carbon and non-graphitizable carbon, mainly plane spacing and C-axis direction of the d 200 by X-ray diffraction method, a direction of the crystallite size, lamination by laser Raman spectral analysis A method of classifying by the ratio of structure and turbulent structure is used. These two evaluation methods are effective for carbon that has been sufficiently carbonized (firing temperature of 1,500 ° C. or higher).
Japanese Patent Laid-Open No. 8-1007048 Japanese Patent Laid-Open No. 3-176963 Japanese Patent Laid-Open No. 2-82466

しかしながら、上述したような特許文献1〜特許文献3に示された負極でも、高電流密度での充放電においては充分なサイクル安定性は得られていないという問題点があった。これは、易黒鉛化炭素から得られる炭素材料の面間隔が狭いために、黒鉛の面間にリチウムが入りづらく、そのため急速な充放電では、リチウムの吸蔵、放出が追従できず、容量が減少してしまうものと推定される。   However, even the negative electrodes shown in Patent Documents 1 to 3 as described above have a problem that sufficient cycle stability is not obtained in charge and discharge at a high current density. This is because the surface spacing of the carbon material obtained from graphitizable carbon is narrow, so it is difficult for lithium to enter between the surfaces of the graphite. Therefore, rapid charge and discharge cannot follow the insertion and extraction of lithium, reducing the capacity. It is estimated that it will.

本発明は、上述したような従来技術の問題点を解消するために提案されたものであって、その目的は、高容量でサイクル安定性に優れ、高出力(高電流密度)の充放電にも対応できる電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to provide high capacity, excellent cycle stability, and high output (high current density) charge / discharge. Is to provide a carbon material for an electrode for an electrochemical element, a method for producing the same, and an electrode for an electrochemical element.

本発明者等は、上記課題を解決すべく、リチウムイオン電池、電気二重層キャパシタ等の負極に用いる炭素材料、及びその製造方法について鋭意検討を重ねた結果、本発明を完成させるに至ったものである。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on carbon materials used for negative electrodes such as lithium ion batteries and electric double layer capacitors, and methods for producing the same. As a result, the present invention has been completed. It is.

(電極用炭素材料)
本発明に係る電極用炭素材料の出発材料としては、縮合多環芳香族化合物が用いられる。この縮合多環芳香族としては、特に限定されることなく、種々のものを用いることができるが、例えば、ナフタレン、アセナフチレン、ピレン、アントラセン、フェナンスレン等が比較的安価で大量に入手できることから好ましい。
(Carbon material for electrodes)
As a starting material for the electrode carbon material according to the present invention, a condensed polycyclic aromatic compound is used. The condensed polycyclic aromatic is not particularly limited, and various types can be used. For example, naphthalene, acenaphthylene, pyrene, anthracene, phenanthrene and the like are preferable because they are relatively inexpensive and available in large quantities.

また、ナフタレン、アセナフチレン、ピレン、アントラセン、フェナンスレン等に官能基をつけた縮合多環芳香族化合物の誘導体も同様に用いることができる。この官能基としては、メチル基、エチル基、ビニル基、フェニル基等の炭化水素基等の電子供与性基がリチウム錯体をより安定化させるので好ましい。また、これらの縮合多環芳香族化合物やその誘導体はそれぞれ単独で用いても良いし、2種以上を併用しても良い。   In addition, derivatives of condensed polycyclic aromatic compounds in which a functional group is added to naphthalene, acenaphthylene, pyrene, anthracene, phenanthrene, or the like can also be used. As this functional group, an electron donating group such as a hydrocarbon group such as a methyl group, an ethyl group, a vinyl group, or a phenyl group is preferable because it stabilizes the lithium complex. Moreover, these condensed polycyclic aromatic compounds and derivatives thereof may be used alone or in combination of two or more.

(電極用炭素材料の製造方法)
上記の縮合多環芳香族化合物とアルカリ金属を、エーテル類の有機溶媒中で混合する。この混合によって、縮合多環芳香族化合物は、図1に示すような錯体を形成するものと考えられる。この錯体が形成された溶液を乾燥することにより、エーテルが除去され、炭素材料の前駆体の粉末が得られる。続いて、この炭素材料の前駆体の粉末を、窒素等の不活性ガス雰囲気中で、600〜1000℃の温度範囲で12時間以上熱処理することにより、電極用炭素材料が得られる。
(Method for producing carbon material for electrode)
Said condensed polycyclic aromatic compound and alkali metal are mixed in an organic solvent of ethers. By this mixing, the condensed polycyclic aromatic compound is considered to form a complex as shown in FIG. By drying the solution in which this complex is formed, ether is removed and a precursor powder of the carbon material is obtained. Subsequently, the carbon material for an electrode is obtained by heat-treating the carbon material precursor powder in an inert gas atmosphere such as nitrogen in a temperature range of 600 to 1000 ° C. for 12 hours or more.

600℃未満の温度であると、得られる電極用炭素材料に不純物が多くなる。一方、1000℃を超えると、得られる電極用炭素材料を用いた電極では電気化学素子としての容量が低下してしまう。   When the temperature is lower than 600 ° C., impurities are increased in the obtained electrode carbon material. On the other hand, when the temperature exceeds 1000 ° C., the capacity of the electrochemical element is reduced in the electrode using the obtained electrode carbon material.

なお、アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等を用いることができるが、中でも、リチウム、ナトリウム、カリウムが好ましい。この理由としては、リチウム、ナトリウム、カリウムは原子半径が小さく、炭素の層間に入り込みやすいためである。   In addition, as an alkali metal, lithium, sodium, potassium, rubidium, cesium etc. can be used, for example, Among these, lithium, sodium, and potassium are preferable. This is because lithium, sodium, and potassium have small atomic radii and can easily enter between carbon layers.

上述したように、アルカリ金属の存在下に熱処理された炭素材料は、不要なアルカリ金属化合物が炭素材料に付着等しているので、これを除去する必要がある。そこで、メタノールやエタノール等のアルコール系溶媒や蒸留水等を用いて、炭素材料に不要に付着等したアルカリ金属化合物を溶解し、炭素材料を洗浄、濾過する。このようにして、電気化学素子の負極に用いられる炭素材料が得られる。   As described above, the carbon material that has been heat-treated in the presence of an alkali metal has an unnecessary alkali metal compound attached to the carbon material, and thus needs to be removed. Therefore, an alcoholic solvent such as methanol or ethanol, distilled water, or the like is used to dissolve an alkali metal compound that is unnecessarily adhered to the carbon material, and the carbon material is washed and filtered. Thus, the carbon material used for the negative electrode of an electrochemical element is obtained.

以上のような工程で作製された炭素材料は、炭素の層間にアルカリ金属が入り込み、層間が広く形成されるものと推定される。そしてその後の洗浄によってアルカリ金属は除去されるため、層間が広い炭素材料が得られる。   It is presumed that the carbon material produced by the process as described above is formed so that the alkali metal enters between the carbon layers and the layers are widely formed. And since an alkali metal is removed by subsequent washing | cleaning, the carbon material with a wide interlayer is obtained.

(電気化学素子用電極)
電極の作製は次のように行った。N−メチルピロリドン等の有機溶媒にポリフッ化ビニリデン等のバインダーを溶解し、この溶液に前述した炭素材料を混合してスラリーを作製した。このスラリーを、帯状の銅箔からなる集電体に均一の厚みに塗布し、乾燥して電極を形成する。このような電極はリチウムイオン二次電池、電気二重層キャパシタの負極として適用できる。
(Electrodes for electrochemical devices)
The electrode was produced as follows. A binder such as polyvinylidene fluoride was dissolved in an organic solvent such as N-methylpyrrolidone, and the above-described carbon material was mixed with this solution to prepare a slurry. This slurry is applied to a current collector made of a strip-shaped copper foil with a uniform thickness and dried to form an electrode. Such an electrode can be applied as a negative electrode of a lithium ion secondary battery or an electric double layer capacitor.

以下、本発明の電極を負極として用いたリチウム二次電池について説明する。リチウム二次電池は、例えば、ステンレスからなる有底円筒状のケースに電極群が収納されている。電極群は、正極、セパレータ及び負極をこの順序で積層した帯状物を負極が外側に位置するように渦巻き状に巻回した構造になっている。   Hereinafter, a lithium secondary battery using the electrode of the present invention as a negative electrode will be described. In the lithium secondary battery, for example, an electrode group is housed in a bottomed cylindrical case made of stainless steel. The electrode group has a structure in which a strip obtained by laminating a positive electrode, a separator, and a negative electrode in this order is wound in a spiral shape so that the negative electrode is located outside.

また、正極は、例えば、活物質に導電剤及びバインダーを適当な溶媒に混ぜてスラリーとし、このスラリーを集電体に塗布、乾燥して薄板状にすることにより作製されたものである。   The positive electrode is produced, for example, by mixing an active material with a conductive agent and a binder in a suitable solvent to form a slurry, and applying the slurry to a current collector and drying to form a thin plate.

この正極活物質は、コバルト、ニッケル、マンガン、バナジウム、チタン、モリブデン及び鉄の群から選ばれる少なくとも1種以上の金属を主体とし、且つ、リチウムを含む金属化合物を用いることが好ましい。前記金属化合物としては、リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn24、LiMnO2)が好適である。 The positive electrode active material is preferably a metal compound mainly composed of at least one metal selected from the group consisting of cobalt, nickel, manganese, vanadium, titanium, molybdenum, and iron, and containing lithium. As the metal compound, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMn 2 O 4 , LiMnO 2 ) are preferable.

また、導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDE)、スチレン−ブタジエンゴム(SBR)等を用いることができる。集電体としては、例えば、厚さが10〜40μmのアルミニウム箔、ステンレス箔、ニッケル箔等を用いることが好ましい。また、セパレータは、例えば、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムから形成されている。   Examples of the conductive agent include acetylene black, carbon black, and graphite. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDE), styrene-butadiene rubber (SBR), or the like can be used. As the current collector, for example, an aluminum foil, a stainless steel foil, a nickel foil or the like having a thickness of 10 to 40 μm is preferably used. Moreover, the separator is formed from the synthetic resin nonwoven fabric, the polyethylene porous film, and the polypropylene porous film, for example.

前記ケース内には、電極群とともに電解液が収容され、開口部が封口されてリチウム二次電池を構成する。   In the case, an electrolytic solution is accommodated together with the electrode group, and the opening is sealed to constitute a lithium secondary battery.

電解液としては、例えば、エチレンカーボネート、プロピレンンカーボネート、ブチレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、アセトニトリル、ベンゾニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランから選ばれる少なくとも1種の非水系溶媒に、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を溶解した電解液を用いる。 Examples of the electrolytic solution include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, acetonitrile, benzonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, Examples of at least one non-aqueous solvent selected from 2-methyltetrahydrofuran include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and arsenic hexafluoride. An electrolytic solution in which a lithium salt such as lithium (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ] is dissolved is used.

また電気二重層キャパシタとしては、正極に活性炭電極を用いた他は、前述のリチウム二次電池と同等の構成とすることができる。   The electric double layer capacitor can have the same configuration as the above-described lithium secondary battery except that an activated carbon electrode is used for the positive electrode.

本発明によれば、易黒鉛化炭素となり得る出発材料を用いた場合でも、通常の易黒鉛化炭素に比べ、炭素の面間隔が広く、急速な充放電が可能な炭素材料を得ることができる。   According to the present invention, even when a starting material that can be easily graphitized carbon is used, it is possible to obtain a carbon material that has a wide interplanar spacing of carbon and that can be rapidly charged and discharged compared to ordinary graphitizable carbon. .

これにより、高容量でサイクル安定性に優れ、高出力(高電流密度)の充放電にも対応できる電気化学素子の電極用炭素材料及びその製造方法、並びに電気化学素子用電極を提供することができる。   Thus, it is possible to provide a carbon material for an electrode for an electrochemical element, a method for producing the same, and an electrode for an electrochemical element, which can have high capacity, excellent cycle stability, and can be used for charge / discharge of high output (high current density). it can.

以下に、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
アセナフチレン(0.5mol/リットル)をTHF(テトラヒドロフラン)200mlに溶解させた後、金属リチウム(0.3mol/リットル)を入れて混合した。その後、得られた混合溶液を室温で24時間乾燥して、リチウムとアセナフチレンを混合した炭素材料前駆体の粉末を得た。この前駆体粉末を窒素雰囲気中、600℃の温度で3時間熱処理した。その後、得られた処理物を純水洗浄し、さらに70℃で24時間乾燥して炭素材料を得た。
Example 1
Acenaphthylene (0.5 mol / liter) was dissolved in 200 ml of THF (tetrahydrofuran), and then lithium metal (0.3 mol / liter) was added and mixed. Thereafter, the obtained mixed solution was dried at room temperature for 24 hours to obtain a carbon material precursor powder in which lithium and acenaphthylene were mixed. This precursor powder was heat-treated in a nitrogen atmosphere at a temperature of 600 ° C. for 3 hours. Thereafter, the treated product was washed with pure water and further dried at 70 ° C. for 24 hours to obtain a carbon material.

この炭素材料を用いて電極を作製した。電極の作製は次のように行った。N−メチルピロリドン90重量部に、ポリフッ化ビニリデンからなるバインダー10重量部を溶解し、この溶液に前述した炭素材料(100重量部)を混合してスラリーを作製した。このスラリーを、帯状の銅箔からなる厚み100μm、幅10mm、長さ10mmの集電体に均一の厚みに塗布し、乾燥して電極を形成した。   An electrode was produced using this carbon material. The electrode was produced as follows. 10 parts by weight of a binder made of polyvinylidene fluoride was dissolved in 90 parts by weight of N-methylpyrrolidone, and the above-mentioned carbon material (100 parts by weight) was mixed with this solution to prepare a slurry. This slurry was applied to a current collector made of a strip-shaped copper foil with a thickness of 100 μm, a width of 10 mm, and a length of 10 mm, and dried to form an electrode.

(実施例2)
実施例1の熱処理温度を800℃とした他は、実施例1と同様の工程で炭素材料を得た。この炭素材料を用いて電極を作製した。電極の作製方法は実施例1と同様である。
(Example 2)
A carbon material was obtained in the same process as in Example 1 except that the heat treatment temperature in Example 1 was 800 ° C. An electrode was produced using this carbon material. The method for manufacturing the electrode is the same as in Example 1.

(比較例1)
実施例1の熱処理温度を400℃とした他は、実施例1と同様の工程で炭素材料を得た。この炭素材料を用いて電極を作製した。電極の作製方法は実施例1と同様である。
(Comparative Example 1)
A carbon material was obtained in the same manner as in Example 1 except that the heat treatment temperature in Example 1 was set to 400 ° C. An electrode was produced using this carbon material. The method for manufacturing the electrode is the same as in Example 1.

(従来例1)
電極を作製する炭素材料として、難黒鉛化炭素(株式会社クレハ製:カーボトロンP)を用いた。この炭素材料を用いて電極を作製した。電極の作製方法は実施例1と同様である。
(Conventional example 1)
Non-graphitizable carbon (manufactured by Kureha Co., Ltd .: Carbotron P) was used as a carbon material for producing the electrode. An electrode was produced using this carbon material. The method for manufacturing the electrode is the same as in Example 1.

(測定結果)
これらの炭素材料についてXRD測定を行い、面間隔を算出すると共に、それぞれの炭素材料を用いて作製した電極の電荷移動抵抗を測定し、その結果を表1に示した。なお、電荷移動抵抗については、交流インピーダンス測定によって算出した。インピーダンス測定は、周波数範囲20KHz−10mHz、振幅10mVの条件で行った。インピーダンス測定によって得られた結果は複素平面表示し、そのときに現れる半円部分の直径を電荷移動抵抗とした。
(Measurement result)
These carbon materials were subjected to XRD measurement to calculate the interplanar spacing, and the charge transfer resistance of the electrodes prepared using the respective carbon materials was measured. The results are shown in Table 1. The charge transfer resistance was calculated by AC impedance measurement. The impedance measurement was performed under conditions of a frequency range of 20 KHz-10 mHz and an amplitude of 10 mV. The result obtained by the impedance measurement is displayed in a complex plane, and the diameter of the semicircular portion appearing at that time is defined as the charge transfer resistance.

表1から明らかなように、実施例1、実施例2及び比較例1の面間隔は、いずれも難黒鉛化炭素を用いた従来例1とほぼ同様の値を示した。   As can be seen from Table 1, the interplanar spacings of Example 1, Example 2 and Comparative Example 1 all showed substantially the same values as in Conventional Example 1 using non-graphitizable carbon.

また、電荷移動抵抗は、キャパシタの充放電特性の目安となる指標であり、電荷移動抵抗が小さいほど急速な充放電が可能となることを示しているが、表1から明らかなように、従来、易黒鉛化炭素よりも充放電特性が良好であるとされている難黒鉛化炭素を用いた従来例1よりも、実施例1及び実施例2の方が優れた値を示した。   Further, the charge transfer resistance is an index serving as a standard for the charge / discharge characteristics of the capacitor, and it is shown that rapid charge / discharge is possible as the charge transfer resistance is small. The values of Examples 1 and 2 were superior to those of Conventional Example 1 using non-graphitizable carbon, which is considered to have better charge / discharge characteristics than graphitizable carbon.

なお、表1において、比較例1の電荷移動抵抗が未測定なのは、後述する図2及び図3に示すように、炭素材料として不純物ピークが観測されたため、電極を作製しなかったためである。   In Table 1, the charge transfer resistance of Comparative Example 1 was not measured because an impurity peak was observed as a carbon material, as shown in FIGS. 2 and 3 described later, and no electrode was produced.

また、熱処理温度とXRD測定の関係を見ると、図2に示すように、実施例1及び実施例2では良好な結果が得られた。一方、熱処理温度が400℃の比較例1では、不純物と思われるピークが検出されたため詳細に調べたところ、図3に示すように、不純物が含まれていることが分かった。   Moreover, when the relationship between the heat treatment temperature and the XRD measurement was seen, good results were obtained in Example 1 and Example 2, as shown in FIG. On the other hand, in Comparative Example 1 where the heat treatment temperature was 400 ° C., since a peak that seemed to be an impurity was detected, a detailed examination revealed that impurities were contained as shown in FIG.

このように、不純物を含んだ炭素材料では、電極を作製したときに、不純物による予期せぬ挙動が発生するおそれがあるため、比較例1については電極としての評価を中止した。これらの結果から、熱処理は600℃以上の温度で行う必要があることが分かった。   Thus, in the carbon material containing impurities, when an electrode is produced, unexpected behavior due to the impurities may occur. Therefore, Comparative Example 1 was not evaluated as an electrode. From these results, it was found that the heat treatment needs to be performed at a temperature of 600 ° C. or higher.

縮合多環芳香族化合物とアルカリ金属をエーテル類の有機溶媒中で混合することによって形成される錯体を示す模式図。The schematic diagram which shows the complex formed by mixing a condensed polycyclic aromatic compound and an alkali metal in the organic solvent of ethers. 熱処理温度とXRD測定パターンの関係を示す図。The figure which shows the relationship between heat processing temperature and a XRD measurement pattern. 比較例1について、不純物の混入状態を示す図。The figure which shows the mixing state of an impurity about the comparative example 1. FIG.

Claims (7)

所定の縮合多環芳香族と所定のアルカリ金属をエーテル溶媒中で錯体化し、得られたアルカリ金属錯体溶液を乾燥して得た電極用炭素材料の前駆体を、600〜1000℃の温度範囲で熱処理することにより得られたことを特徴とする電気化学素子の電極用炭素材料。   A precursor of a carbon material for an electrode obtained by complexing a predetermined condensed polycyclic aromatic and a predetermined alkali metal in an ether solvent and drying the obtained alkali metal complex solution, in a temperature range of 600 to 1000 ° C. A carbon material for an electrode of an electrochemical element obtained by heat treatment. 前記アルカリ金属が、カリウム、ナトリウム、リチウムのいずれかであることを特徴とする請求項1に記載の電気化学素子の電極用炭素材料。   The carbon material for an electrode of an electrochemical element according to claim 1, wherein the alkali metal is any one of potassium, sodium, and lithium. 前記縮合多環芳香族が、ナフタレン、アセナフチレン、ピレン、アントラセン、フェナンスレン又はこれらの誘導体のいずれか、あるいは2以上であることを特徴とする請求項1又は請求項2に記載の電気化学素子の電極用炭素材料。   The electrode of an electrochemical element according to claim 1 or 2, wherein the condensed polycyclic aromatic is naphthalene, acenaphthylene, pyrene, anthracene, phenanthrene, or a derivative thereof, or two or more thereof. Carbon material. 所定の縮合多環芳香族と所定のアルカリ金属をエーテル溶媒中で錯体化する工程と、得られたアルカリ金属錯体溶液を乾燥して電極用炭素材料の前駆体を得る工程と、その後に、得られた電極用炭素材料の前駆体を600〜1000℃の温度範囲で熱処理する工程よりなることを特徴とする電気化学素子の電極用炭素材料の製造方法。   A step of complexing a predetermined condensed polycyclic aromatic and a predetermined alkali metal in an ether solvent, a step of drying the obtained alkali metal complex solution to obtain a precursor of a carbon material for an electrode, and A method for producing an electrode carbon material for an electrochemical element, comprising a step of heat-treating the obtained precursor of the electrode carbon material in a temperature range of 600 to 1000 ° C. 前記アルカリ金属が、カリウム、ナトリウム、リチウムのいずれかであることを特徴とする請求項4に記載の電気化学素子の電極用炭素材料の製造方法。   The method for producing a carbon material for an electrode of an electrochemical element according to claim 4, wherein the alkali metal is any one of potassium, sodium, and lithium. 前記縮合多環芳香族が、ナフタレン、アセナフチレン、ピレン、アントラセン、フェナンスレン又はこれらの誘導体のいずれか、あるいは2以上であることを特徴とする請求項4又は請求項5に記載の電気化学素子の電極用炭素材料の製造方法。   The electrode of an electrochemical device according to claim 4 or 5, wherein the condensed polycyclic aromatic is naphthalene, acenaphthylene, pyrene, anthracene, phenanthrene, or a derivative thereof, or two or more thereof. Carbon material manufacturing method. 請求項1乃至請求項3のいずれかに記載の電極用炭素材料を含有することを特徴とする電気化学素子用電極。   An electrode for an electrochemical element comprising the carbon material for an electrode according to any one of claims 1 to 3.
JP2007095504A 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element Pending JP2008257888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095504A JP2008257888A (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095504A JP2008257888A (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element

Publications (1)

Publication Number Publication Date
JP2008257888A true JP2008257888A (en) 2008-10-23

Family

ID=39981265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095504A Pending JP2008257888A (en) 2007-03-30 2007-03-30 Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element

Country Status (1)

Country Link
JP (1) JP2008257888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery
CN113039675A (en) * 2018-09-24 2021-06-25 威斯康星大学密尔沃基分校研究基金会公司 Chemical pre-basification of electrodes
US11411222B2 (en) 2018-01-26 2022-08-09 Korea Advanced Institute Of Science And Technology Conductive agent, slurry for forming electrode including same, electrode, and lithium secondary battery manufactured using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134970A (en) * 1989-10-19 1991-06-07 Matsushita Electric Ind Co Ltd Nonaqueous solvent secondary battery
JPH08250154A (en) * 1995-03-15 1996-09-27 Toshiba Corp Lithium secondary battery
JPH10312808A (en) * 1997-03-13 1998-11-24 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacture of negative electrode
JPH11185809A (en) * 1997-12-24 1999-07-09 Fuji Elelctrochem Co Ltd Lithium second battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134970A (en) * 1989-10-19 1991-06-07 Matsushita Electric Ind Co Ltd Nonaqueous solvent secondary battery
JPH08250154A (en) * 1995-03-15 1996-09-27 Toshiba Corp Lithium secondary battery
JPH10312808A (en) * 1997-03-13 1998-11-24 Toshiba Corp Nonaqueous electrolyte secondary battery and manufacture of negative electrode
JPH11185809A (en) * 1997-12-24 1999-07-09 Fuji Elelctrochem Co Ltd Lithium second battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195086A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery
US11411222B2 (en) 2018-01-26 2022-08-09 Korea Advanced Institute Of Science And Technology Conductive agent, slurry for forming electrode including same, electrode, and lithium secondary battery manufactured using same
CN113039675A (en) * 2018-09-24 2021-06-25 威斯康星大学密尔沃基分校研究基金会公司 Chemical pre-basification of electrodes
EP3857635A4 (en) * 2018-09-24 2022-07-06 UWM Research Foundation, Inc. Chemical prealkaliation of electrodes

Similar Documents

Publication Publication Date Title
KR101476043B1 (en) Carbon-silicone composite, preparation method thereof, and anode active material comprising the same
JP7082228B2 (en) Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material for lithium ion secondary battery, lithium A method for manufacturing a negative electrode for an ion secondary battery and a method for manufacturing a lithium ion secondary battery.
US9779883B2 (en) Partially surface-mediated lithium ion-exchanging cells and method for operating same
JP4346565B2 (en) Nonaqueous electrolyte secondary battery
JP6867821B2 (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
WO2017085911A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
WO2017208625A1 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP7078346B2 (en) Method for manufacturing negative electrode active material and lithium ion secondary battery
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
JP5660403B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP6104245B2 (en) Lithium ion secondary battery
JP6766143B2 (en) Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery
US10604410B2 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
WO2017085908A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
RU2656241C1 (en) Silicon material and negative electrode of secondary battery
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP5858297B2 (en) Negative electrode active material and power storage device
JP4354723B2 (en) Method for producing graphite particles
CN106450426B (en) Positive electrode material for nonaqueous electrolyte secondary battery and method for producing same
JP6065678B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP2008257888A (en) Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
JP5534368B2 (en) Negative electrode active material and power storage device
JP2009108444A (en) Method for producing mesophase pitch-based carbon fiber baked at low-temperature
US10217990B2 (en) Silicon material and negative electrode of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204