JPH03134970A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH03134970A
JPH03134970A JP1272837A JP27283789A JPH03134970A JP H03134970 A JPH03134970 A JP H03134970A JP 1272837 A JP1272837 A JP 1272837A JP 27283789 A JP27283789 A JP 27283789A JP H03134970 A JPH03134970 A JP H03134970A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
solvent secondary
aqueous solvent
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272837A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Nobuo Eda
江田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1272837A priority Critical patent/JPH03134970A/en
Publication of JPH03134970A publication Critical patent/JPH03134970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the high-voltage, high-capacity and high-rate charge/ discharge characteristics by forming a negative electrode with a carbonic material applied with expansion treatment. CONSTITUTION:A negative electrode is obtained by carbonizing or graphitizing an organism, numerous cracks are generated between layers, and an active material is stored in a carbonic material largely expanded in the C-axis direc tion. Coal pitch carbon fibers (spacing d<002>=3.37Angstrom ) are immersed in a complex solution mixed and stirred with naphthalene and metallic lithium at the 1:1 mol% in tetrahydrofuran, for example, they are reacted in the inert gas atmo sphere, then it is washed with tetrahydrofuran as a residual compound, and it is quickly heat-treated at a high temperature near 1,000 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水溶媒2次電池、詳しくは小形、軽量の新
規な2次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a novel compact and lightweight secondary battery.

従来の技術 近年、民生用電子機器のポータプル化、コードレス化が
急速に進んでおり、これらの駆動用電源を担う小形、軽
量で、かつ高エネルギー密度を有する2次電池への要望
が高まっている。かかる観点から、非水系2次電池、特
にリチウム2次電池は、とりわけ高電圧、高エネルギー
密度を有する電池としてその期待は大きく、開発が急が
れている。
Conventional technology In recent years, consumer electronic devices have rapidly become portable and cordless, and there is an increasing demand for small, lightweight, and high-energy-density secondary batteries that serve as the power source for driving these devices. . From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries with especially high voltage and high energy density, and their development is urgently needed.

従来、リチウム2次電池の正極活物質には、二酸化マン
ガン、五酸化バナジウム、二硫化チタンなどが用いられ
ており、この正極と、リチウム負極および有機電解液と
で電池を構成し、充放電を繰り返している。ところが、
一般に負極にリチウム金属を用いた2次電池では充電時
に生成するデンドライト状リチウムによる内部短絡や活
物質と電解液の副反応といった課題が2次電池化への大
きな障害となっている。更には、高率充放電特性や過放
電特性においも満足するものが見い出されていない。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, etc. have been used as positive electrode active materials for lithium secondary batteries, and the battery is composed of this positive electrode, a lithium negative electrode, and an organic electrolyte, and is used for charging and discharging. It's repeating. However,
In general, secondary batteries that use lithium metal for the negative electrode have problems such as internal short circuits due to dendrite-like lithium generated during charging and side reactions between the active material and the electrolyte, which are major obstacles to the development of secondary batteries. Furthermore, no material has been found that satisfies high rate charge/discharge characteristics or overdischarge characteristics.

一方、層状化合物のインターカレーション反応を利用し
た新しいタイプの電極活物質が注目を集めており、古く
から黒鉛層間化合物が2次電池の電極材料として用いら
れている。
On the other hand, a new type of electrode active material that utilizes the intercalation reaction of layered compounds is attracting attention, and graphite intercalation compounds have been used as electrode materials for secondary batteries for a long time.

特に、Cl0−PF   BFヶーイオン等のアニt オンを取りこんだ黒鉛層間化合物は正極として用いられ
、一方、Li SNa+等のカチオンを取りこんだ黒鉛
層間化合物は負極として考えられている。しかしながら
、かかるカチオンを取りこんだ黒鉛層間化合物は極めて
不安定であり、黒鉛材料を負極として用いた場合、電池
としての安定性に欠けると共に容量も低く、更には電解
液の分解を伴うために、リチウム負極の代替となり得る
ものではなかった。
In particular, graphite intercalation compounds incorporating anit ions such as Cl0-PFBF- ions are used as positive electrodes, while graphite intercalation compounds incorporating cations such as Li SNa+ are considered as negative electrodes. However, graphite intercalation compounds that incorporate such cations are extremely unstable, and when a graphite material is used as a negative electrode, it lacks stability as a battery, has a low capacity, and is accompanied by decomposition of the electrolyte, making it difficult to use lithium. It could not be used as a substitute for the negative electrode.

最近になって、各種炭化水素あるいは高分子材料を炭素
化して得られた疑黒鉛材料のn−ドープ体が負極として
有効であり、利用率が比較的高く電池としての安定性に
優れ、小形、軽量の2次電池を提供し得ることが見ださ
れ、盛んに研究が行われている。
Recently, n-doped pseudographite materials obtained by carbonizing various hydrocarbons or polymeric materials have been found to be effective as negative electrodes, have relatively high utilization rates, are excellent in battery stability, are compact, It has been discovered that a lightweight secondary battery can be provided, and research is being actively conducted.

発明が解決しようとする課題 一般に、黒鉛層間にインターカレートされ得るリチウム
の量は、炭素6原子に対しリチウム1原子が挿入された
第1ステージの黒鉛層間化合物C6L iが上限である
と報告されており、その場合活物質は372mAh/ 
gの容量を持つことになる。
Problems to be Solved by the Invention Generally, it is reported that the upper limit of the amount of lithium that can be intercalated between graphite layers is the first stage graphite intercalation compound C6L i in which one lithium atom is inserted for every six carbon atoms. In that case, the active material is 372mAh/
It has a capacity of g.

前述の疑黒鉛材料を電極材に用い、リチウムの吸蔵およ
び放出量を求めたところ150〜200mAh/gca
rbonの容量しか得られず、また充放電に伴う炭素極
の分極が大きいために、例えばLiCoO2などの正極
と組み合わせた場合、満足のいく容量、電圧を得ること
は困難である。
Using the aforementioned pseudographite material as an electrode material, the amount of lithium absorbed and released was determined to be 150 to 200 mAh/gca.
Since only a capacity of rbon can be obtained and the polarization of the carbon electrode is large during charging and discharging, it is difficult to obtain a satisfactory capacity and voltage when combined with a positive electrode such as LiCoO2.

本発明は、上記のような従来の課題を解消し、高電圧、
高容量を有し、更には高率充放電特性に優れた非水溶媒
2次電池を提供することを目的としている。
The present invention solves the conventional problems as described above, and
The object of the present invention is to provide a non-aqueous solvent secondary battery that has a high capacity and also has excellent high rate charge/discharge characteristics.

課題を解決するための手段 この課題を解決するため本発明は、負極の炭素質材料に
膨張化処理を施したもの、好ましくは炭素繊維を使用す
ることにより、炭素極の利用率を向上させ、分極を抑制
したものである。
Means for Solving the Problem In order to solve this problem, the present invention improves the utilization rate of the carbon electrode by using a carbonaceous material of the negative electrode subjected to an expansion treatment, preferably carbon fiber. It suppresses polarization.

作用 負極材として用いる炭素質材料は、ある程度の乱層構造
を有した疑黒鉛材料が好まれるが、充放電に伴う層間の
膨張および収縮の影響によって利用率は低く、また分極
が大きくなるために高率充放電が困難となる。ところが
、本発明による膨張性の炭素繊維は、層間に無数のクラ
ックを生じてC軸方向に膨張しているために、層間隔が
広く、リチウムの吸蔵および放出が容易である。その結
果利用率が向上し、また分極も小さくなることから、高
電圧、高容量で、かつ高率充放電が可能な2次電池を構
成することができる。
As the carbonaceous material used as the working negative electrode material, a pseudographite material with a certain degree of turbostratic structure is preferred, but its utilization rate is low due to the effects of expansion and contraction between layers during charging and discharging, and polarization increases. High rate charge/discharge becomes difficult. However, the expandable carbon fiber according to the present invention has numerous cracks between the layers and expands in the C-axis direction, so the interlayer spacing is wide and lithium can be easily absorbed and released. As a result, the utilization rate is improved and the polarization is reduced, so it is possible to construct a secondary battery that has high voltage, high capacity, and can be charged and discharged at a high rate.

一般に、膨脹黒鉛と呼ばれているものは、天然黒鉛粉末
を原料として黒鉛−硫酸層間化合物あるいはその残留化
合物を急熱することにより得られることが知られており
、圧縮成形によってガスケット材等に用いられている。
In general, expanded graphite is known to be obtained by rapidly heating a graphite-sulfuric acid intercalation compound or its residual compound using natural graphite powder as a raw material, and is used for gasket materials etc. by compression molding. It is being

ところが、この膨脹黒鉛を負極炭素材として使用すると
、充放電に伴い成形体が膨潤し、元の形状を維持できな
くなることからサイクル特性において乏しい結果となる
。しかしながら、炭素繊維を用いた場合は膨張後も繊維
の形状を維持しており、良好なサイクル特性を得ること
ができる。
However, when this expanded graphite is used as a negative electrode carbon material, the molded body swells during charging and discharging and cannot maintain its original shape, resulting in poor cycle characteristics. However, when carbon fibers are used, the shape of the fibers is maintained even after expansion, and good cycle characteristics can be obtained.

実施例 以下本発明の実施例を、第1図、第2図を参照して説明
する。 テトラヒドロフラン(THF)中にナフタレン
および金属リチウムを1対1のモル比で混合し攪拌する
と、溶液中でリチウムとナフタレンの錯体が生成する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. When naphthalene and metallic lithium are mixed in tetrahydrofuran (THF) at a molar ratio of 1:1 and stirred, a complex of lithium and naphthalene is formed in the solution.

この錯体溶液中に市販の石炭ピッチ系炭素繊維 (面間隔d002 = 3.37 A )を浸漬し、不
活性ガス雰囲気下で1日放置し反応させた。そうすると
錯体中のナフタレンは炭素繊維と置換し、層間にリチウ
ムおよびTHFを取りこんだ3元系層間化合物LiC2
o(THE)。が生成した。反応生成物はTHFで洗浄
し残留化合物とした後、1000℃近い高温で急熱処理
を行った。
Commercially available coal-pitch carbon fibers (planar spacing d002 = 3.37 A) were immersed in this complex solution and allowed to react for one day under an inert gas atmosphere. Then, naphthalene in the complex is replaced with carbon fiber, forming a ternary intercalation compound LiC2 that incorporates lithium and THF between the layers.
o(THE). was generated. The reaction product was washed with THF to form a residual compound, and then subjected to rapid heat treatment at a high temperature of nearly 1000°C.

その結果、炭素繊維はC軸方向に10倍以上に膨張し、
d002は3.50Aであった。得られた炭素繊維は粉
砕し、粉末の状態にした。本実施例では、負極炭素質材
料が吸蔵、放出し得るリチウムの量および炭素極の分極
特性を検討するために、炭素極を正極、金属リチウムを
負極としたコイン形電池を構成し評価を行った。第1図
にそのコイン形電池の縦断面図を示す。図において1は
耐有機電解液性ステンレス鋼板を加工した電池ケース、
2は同材料の封口板、3はステンレス製の正極集電体で
、ケース1の内面にスポット溶接されている。
As a result, the carbon fiber expands more than 10 times in the C-axis direction,
d002 was 3.50A. The obtained carbon fibers were crushed into powder. In this example, in order to examine the amount of lithium that can be occluded and released by the negative electrode carbonaceous material and the polarization characteristics of the carbon electrode, a coin-shaped battery was constructed and evaluated with the carbon electrode as the positive electrode and metallic lithium as the negative electrode. Ta. FIG. 1 shows a longitudinal cross-sectional view of the coin-shaped battery. In the figure, 1 is a battery case made of organic electrolyte-resistant stainless steel plate;
2 is a sealing plate made of the same material, and 3 is a positive electrode current collector made of stainless steel, which are spot welded to the inner surface of the case 1.

4は金属リチウム負極で封口板2に圧着されている。5
は正極合剤で、前述の炭素繊維粉末85重量部に、フッ
素樹脂結着剤15重量部を混合したちの0、05 gを
集電体3の上に充填後、成形したものである。6は微孔
性のポリプロピレン製セバレタ、7はポリプロピレン製
絶縁バッキングである。電解液には炭酸プロピレンと1
.2−ジメトキシエタンの等容積混合溶媒に、過塩素酸
リチウムを1モル/lの割合で溶解したものを用いた。
4 is a metallic lithium negative electrode which is pressed onto the sealing plate 2. 5
The positive electrode mixture was prepared by mixing 85 parts by weight of the carbon fiber powder described above with 15 parts by weight of a fluororesin binder, filling 0.05 g onto the current collector 3, and then molding the mixture. 6 is a microporous polypropylene separator, and 7 is a polypropylene insulating backing. The electrolyte contains propylene carbonate and 1
.. Lithium perchlorate was dissolved in an equal volume mixed solvent of 2-dimethoxyethane at a ratio of 1 mol/l.

評価試験は、充放電電流密度0.3mA/ ct 、充
電終止電圧2、OV、放電終止電圧0.05Vの条件下
で定電流充放電試験を行った。
In the evaluation test, a constant current charge/discharge test was performed under the conditions of a charge/discharge current density of 0.3 mA/ct, an end-of-charge voltage of 2, OV, and an end-of-discharge voltage of 0.05V.

なおこの電池の寸法は直径20mm 、総高1゜6mm
である。
The dimensions of this battery are 20mm in diameter and 1°6mm in total height.
It is.

第2図には各炭素繊維を用いた電池の10サイクル目で
の充放電曲線の比較を示す。電池1は従来の石炭ピッチ
系炭素繊維を粉砕後、未処理のまま使用した場合であり
、同様に疑黒鉛化性を有し、炭素前駆体の異なる、例え
ば石油ピッチ系、ポリアクリロニトリル(PAN)系、
気相成長系炭素繊維を用いた場合のばらつきを斜線で示
した。電池2は膨張性炭素を用いた場合である。放電曲
線から明らかなように、従来例では容量、つまり吸蔵し
得るリチウム量は140〜160mAh/g carb
onと低い値であるが、本改良品では350mAh/g
 carbonと従来の2倍以上の容量を有し、上限と
されている372mAh/g carbon (C6L
 i )に非常に近いことがわかる。また充電曲線の比
較から改良品は従来例に比べ、非常に分極が小さいこと
がわかる。従って、より高電流密度での充放電が可能で
あるといえる。
FIG. 2 shows a comparison of charge-discharge curves at the 10th cycle of batteries using each carbon fiber. Battery 1 is a case in which conventional coal pitch-based carbon fibers are used untreated after being pulverized, and they similarly have pseudographitization properties and are made using different carbon precursors, such as petroleum pitch-based carbon fibers or polyacrylonitrile (PAN). system,
The variation when using vapor-grown carbon fiber is indicated by diagonal lines. Battery 2 uses expandable carbon. As is clear from the discharge curve, in the conventional example, the capacity, that is, the amount of lithium that can be occluded, was 140 to 160 mAh/g carb.
on, which is a low value, but this improved product has a low value of 350mAh/g.
It has a capacity more than twice that of conventional carbon, and has an upper limit of 372mAh/g carbon (C6L
It can be seen that it is very close to i). Furthermore, a comparison of the charging curves shows that the improved product has much smaller polarization than the conventional example. Therefore, it can be said that charging and discharging at a higher current density is possible.

発明の効果 以上の説明から明らかなように、膨脹性炭素繊維などの
膨張性炭素質材料にリチウムなどの活物質を吸蔵させた
負極炭素質材料を用いた本発明による非水溶媒2次電池
は、カチオンをドープした層状化合物、例えばLiCo
O2などの正極と組み合わせることにより、高電圧、高
容量を有し、更には高率充放電が可能な2次電池を得る
ことができるという効果がある。
Effects of the Invention As is clear from the above explanation, the nonaqueous solvent secondary battery according to the present invention using a negative electrode carbonaceous material in which an active material such as lithium is occluded in an expandable carbonaceous material such as an expandable carbon fiber has the following effects: , cation-doped layered compounds, e.g. LiCo
By combining it with a positive electrode such as O2, it is possible to obtain a secondary battery that has high voltage, high capacity, and can be charged and discharged at a high rate.

なお、実施例では、石炭ピッチ系炭素繊維を原料とした
膨脹性炭素繊維を使用したが、原料の炭素繊維に石油ピ
ッチ系、PAN系、および気相成長系炭素繊維を用いて
も、同様の効果が得られた。
In the examples, expandable carbon fibers made from coal pitch-based carbon fibers were used; however, similar effects can be obtained even if petroleum pitch-based, PAN-based, or vapor-grown carbon fibers are used as the raw material carbon fibers. It worked.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるコイン形電池の縦断面
図、第2図は10サイクル目の充放電曲線の比較を示す
図である。 1・・・・ケース、2・・・・封口板、3−・・正極集
電体、4・・・・負極、5・・・・正極、6・・・・セ
ノくレタ、7・・・・絶縁バッキング。
FIG. 1 is a longitudinal cross-sectional view of a coin-shaped battery in an example of the present invention, and FIG. 2 is a diagram showing a comparison of charge-discharge curves at the 10th cycle. 1... Case, 2... Sealing plate, 3-... Positive electrode current collector, 4... Negative electrode, 5... Positive electrode, 6... Senokureta, 7... ...Insulating backing.

Claims (3)

【特許請求の範囲】[Claims] (1)再充電可能な正極と、非水電解液と、再充電可能
な負極とを備えた非水溶媒2次電池において; 該負極は、有機物を炭素化あるいは黒鉛化して得られる
ものであって、かつその層間に無数のクラックを生じて
C軸方向に大きく膨脹した炭素質材料に、活物質を吸蔵
させたものである非水溶媒2次電池。
(1) In a non-aqueous solvent secondary battery comprising a rechargeable positive electrode, a non-aqueous electrolyte, and a rechargeable negative electrode; the negative electrode is obtained by carbonizing or graphitizing an organic substance. A non-aqueous solvent secondary battery is a non-aqueous solvent secondary battery in which an active material is occluded in a carbonaceous material which expands greatly in the C-axis direction by forming numerous cracks between the layers.
(2)上記炭素質材料は、C軸方向に10倍以上膨張し
た炭素繊維である特許請求の範囲第1項記載の非水溶媒
2次電池。
(2) The non-aqueous solvent secondary battery according to claim 1, wherein the carbonaceous material is carbon fiber expanded by 10 times or more in the C-axis direction.
(3)上記炭素質材料は、炭素繊維を原料とし、リチウ
ム、ナトリウムなどのアルカリ金属および非水溶媒を層
間に取りこんだ3元系層間化合物あるいはその残留化合
物を、高温で急熱することにより得られた膨脹性炭素繊
維である特許請求の範囲第1項または第2項記載の非水
溶媒2次電池。
(3) The above carbonaceous material is obtained by rapidly heating a ternary intercalation compound or its residual compound made of carbon fiber and incorporating an alkali metal such as lithium or sodium and a nonaqueous solvent between the layers at high temperature. 3. The non-aqueous solvent secondary battery according to claim 1 or 2, which is an expandable carbon fiber made of polyester.
JP1272837A 1989-10-19 1989-10-19 Nonaqueous solvent secondary battery Pending JPH03134970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272837A JPH03134970A (en) 1989-10-19 1989-10-19 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272837A JPH03134970A (en) 1989-10-19 1989-10-19 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH03134970A true JPH03134970A (en) 1991-06-07

Family

ID=17519468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272837A Pending JPH03134970A (en) 1989-10-19 1989-10-19 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH03134970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726942A1 (en) * 1994-11-15 1996-05-15 Japan Storage Battery Co Ltd SECONDARY BATTERY WITH ORGANIC ELECTROLYTE
JP2008257888A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726942A1 (en) * 1994-11-15 1996-05-15 Japan Storage Battery Co Ltd SECONDARY BATTERY WITH ORGANIC ELECTROLYTE
JP2008257888A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
KR100237580B1 (en) Non-aqueous electrolyte battery and its production method
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
US5292601A (en) Nonaqueous electrolyte secondary battery
KR102316342B1 (en) Silicon-based composite, negative electrode and lithium secondary battery comprising the same
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
KR102321261B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP3532016B2 (en) Organic electrolyte secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2002208434A5 (en)
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
KR100555817B1 (en) Carbonaceous Precursor, Carbonaceous Anode Material, and Nonaqueous Rechargeable Battery
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JPH03134970A (en) Nonaqueous solvent secondary battery
JPH03245473A (en) Non-aqueous solvent secondary cell
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH03285273A (en) Nonaqueous electrolyte secondary battery
JPH09129236A (en) Negative active material for lithium secondary battery and lithium secondary battery
JPH03289068A (en) Nonaqueous electrolyte secondary battery