JPH0737618A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0737618A
JPH0737618A JP5181141A JP18114193A JPH0737618A JP H0737618 A JPH0737618 A JP H0737618A JP 5181141 A JP5181141 A JP 5181141A JP 18114193 A JP18114193 A JP 18114193A JP H0737618 A JPH0737618 A JP H0737618A
Authority
JP
Japan
Prior art keywords
graphite
secondary battery
electrolyte secondary
negative electrode
spherical particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5181141A
Other languages
Japanese (ja)
Inventor
Toyoji Sugimoto
豊次 杉本
Yoshiyuki Ozaki
義幸 尾崎
Atsushi Otsuka
敦 大塚
Toru Takai
徹 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5181141A priority Critical patent/JPH0737618A/en
Publication of JPH0737618A publication Critical patent/JPH0737618A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery with high voltage, high capacity, and long life by constituting a negative electrode of graphite spherical particles having an optical aeolotropic single phase, and graphite fine powder smaller in particle size than the graphite spherical particles. CONSTITUTION:Graphite of a mean particle size of 6mum is obtained by heat treating mesocarbon microbeads (MCMB) produced in a carbonizing process of pitch, for example, at 2800 deg.C for graphitization. The process is controlled so that spacing in 202 planes of MCMB exists within the range of 3.36-3.39Angstrom . Artificial graphite fine powder having a spacing in 002 planes of 3.37Angstrom and a mean particle size of 3mum is mixed with MCMB in a mixing ratio of 3-15wt.% based on the weight of the MCMB together with a preferable binder, and the mixture is applied to both sides of a copper foil to constitute a negative electrode. Absorption/desorption reaction of lithium is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
さらに詳しくは小形、軽量で新規な二次電池の負極の改
良に関する。
The present invention relates to a non-aqueous electrolyte secondary battery,
More specifically, the present invention relates to a small, lightweight, and improved secondary battery negative electrode.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まっている。このような観点か
ら、非水系二次電池、特にリチウム二次電池は、とりわ
け高電圧、高エネルギー密度を有する電池としてその期
待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Along with this, there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a driving power source. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】従来、リチウム二次電池の正極活物質に
は、二酸化マンガン、五酸化バナジウム、二硫化チタン
等が用いられていた。これらの正極と、リチウム負極及
び有機電解液とで電池を構成し、充放電を繰り返してい
た。ところが、一般に負極にリチウム金属を用いた二次
電池では充放電時に生成するデンドライト状リチウムに
よる内部短絡や活物質と電解液の副反応といった課題が
二次電池化への大きな障害となっている。更には、高率
充放電特性や過放電特性においても満足するものが見出
されていない。
Heretofore, manganese dioxide, vanadium pentoxide, titanium disulfide and the like have been used as positive electrode active materials for lithium secondary batteries. A battery was constituted by these positive electrodes, a lithium negative electrode and an organic electrolytic solution, and charging and discharging were repeated. However, in a secondary battery using lithium metal for the negative electrode, problems such as internal short circuit due to dendrite-like lithium generated during charging and discharging and side reactions between the active material and the electrolyte are major obstacles to the conversion to a secondary battery. Further, no one has been found to be satisfactory in high-rate charge / discharge characteristics and over-discharge characteristics.

【0004】また昨今、リチウム電池の安全性が厳しく
指摘されており、負極にリチウム金属あるいはリチウム
合金を用いた電池系においては安全性の確保が非常に困
難な状態にある。
In recent years, the safety of lithium batteries has been pointed out severely, and it is very difficult to ensure the safety in battery systems using lithium metal or lithium alloy for the negative electrode.

【0005】一方、層状化合物のインターカレーション
反応を利用した新しいタイプの電極活物質が注目を集め
ており、古くから黒鉛層間化合物が二次電池の電極材料
として用いられている。特に、ClO4 -、PF6 -、BF
4 -イオン等のアニオンを取り込んだ黒鉛層間化合物は正
極として用いられる。
On the other hand, a new type of electrode active material utilizing the intercalation reaction of a layered compound has been attracting attention, and a graphite intercalation compound has been used as an electrode material for secondary batteries for a long time. In particular, ClO 4 , PF 6 , BF
Graphite intercalation compounds incorporating anions such as 4 - ions are used as positive electrodes.

【0006】一方、Li+、Na+等のカチオンを取り込
んだ黒鉛層間化合物は、負極として考えられている。し
かしカチオンを取り込んだ黒鉛層間化合物は、極めて不
安定であり、天然黒鉛や人造黒鉛を負極として用いた場
合、電池としての安定性に欠けると共に容量も低く、更
には電解液の分解を伴うために、リチウム負極の代替と
なり得るものではなかった。
On the other hand, graphite intercalation compounds incorporating cations such as Li + and Na + are considered as negative electrodes. However, the graphite intercalation compound incorporating cations is extremely unstable, and when natural graphite or artificial graphite is used as the negative electrode, it lacks stability as a battery, has a low capacity, and further decomposes the electrolytic solution. , Could not substitute for the lithium negative electrode.

【0007】最近になって、各種炭化水素あるいは高分
子材料を炭素化して得られた疑黒鉛材料のカチオンドー
プ体が負極として有効であり、利用率が比較的高く電池
としての安定性に優れることが見出された。そしてこれ
を用いた小形、軽量の二次電池について盛んに研究が行
われている。
Recently, a cation dope of pseudo graphite material obtained by carbonizing various hydrocarbons or polymer materials is effective as a negative electrode and has a relatively high utilization rate and excellent stability as a battery. Was found. And small and lightweight secondary batteries using the same are being actively researched.

【0008】一方、炭素材料を負極に用いることに伴
い、正極活物質としては、より高電圧を有し、かつLi
を含む化合物であるLiCoO2やLiMn24、更に
はこれらのCo及びMnの一部を他元素で置換した複合
酸化物を用いることが提案されている。
On the other hand, since a carbon material is used for the negative electrode, the positive electrode active material has a higher voltage and Li
It has been proposed to use LiCoO 2 or LiMn 2 O 4 which is a compound containing, and further a composite oxide in which some of Co and Mn are replaced with other elements.

【0009】[0009]

【発明が解決しようとする課題】前述のようなある程度
の乱層構造を有した疑黒鉛材料を負極材に用いた場合、
リチウムの吸蔵及び放出量を求めたところ、100〜1
50mAh/g carbonの容量しか得られず、ま
た充放電に伴う炭素極の分極が大きくなる。従って、例
えばLiCoO2 等の正極と組み合わせた場合、満足の
いく容量、電圧を得ることは困難である。
When a pseudo graphite material having a certain degree of disordered layer structure as described above is used as the negative electrode material,
The storage and release amount of lithium was calculated to be 100 to 1
Only a capacity of 50 mAh / g carbon can be obtained, and the polarization of the carbon electrode increases with charge and discharge. Therefore, when combined with a positive electrode such as LiCoO 2, it is difficult to obtain a satisfactory capacity and voltage.

【0010】一方、高結晶性の黒鉛材料を負極材に用い
た場合、充電時に黒鉛電極表面で電解液の分解によるガ
ス発生が起こり、リチウムのインターカレーション反応
は進みにくいことが報告されている。しかしコークスの
高温焼成体等は、若干のガス発生は伴うものの比較的高
容量(200〜250mAh/g)を与えることが見出
されている。しかしながら充放電に伴い黒鉛のC軸方向
の膨張及び収縮が大きいために成形体が膨潤し、元の形
状を維持できなくなり、負極合剤粒子間の導電性の低下
等を引き起こし充放電サイクル特性の劣化をもたらす。
On the other hand, it has been reported that when a highly crystalline graphite material is used as the negative electrode material, gas is generated at the surface of the graphite electrode due to decomposition of the electrolytic solution during charging, and the intercalation reaction of lithium is difficult to proceed. . However, it has been found that a high temperature calcined product of coke, etc., gives a relatively high capacity (200 to 250 mAh / g), although some gas is generated. However, due to the large expansion and contraction of graphite in the C-axis direction with charge and discharge, the molded body swells, and the original shape can no longer be maintained, causing a decrease in conductivity between the negative electrode mixture particles and the like, which leads to deterioration of charge and discharge cycle characteristics Cause deterioration.

【0011】本発明は、上記のような従来の問題を解消
し、高電圧、高容量を有し、かつサイクル特性に優れた
非水電解液二次電池を提供することを目的としている。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery which solves the above-mentioned conventional problems, has a high voltage and a high capacity, and has excellent cycle characteristics.

【0012】[0012]

【課題を解決するための手段】これらの課題を解決する
ため本発明は、負極に光学的に異方性で単一の相を持っ
た球状粒子からなる黒鉛材料と、その平均粒径が前記球
状粒子より小さい他の異なる黒鉛微粉末とで構成された
複合炭素材を用いることによって、充放電に伴う成形体
の膨潤、崩れから生じる負極合剤粒子間の導電性の低下
を防いだものである。
In order to solve these problems, the present invention provides a graphite material comprising spherical particles having an optically anisotropic and single phase in the negative electrode, and the average particle size thereof is By using a composite carbon material composed of other different graphite fine particles smaller than spherical particles, it is possible to prevent the decrease in conductivity between negative electrode mixture particles caused by swelling and collapse of the molded body due to charge and discharge. is there.

【0013】一般に、化学的に黒鉛層間にインターカレ
ートされ得るリチウムの量は、炭素6原子に対しリチウ
ム1原子が挿入された第1ステージの黒鉛層間化合物C
6Liが上限であると報告されており、その場合活物質
は372mAh/gの容量を持つことになる。上述のよ
うな疑黒鉛材料を用いた場合、黒鉛の層状構造が未発達
であるためにインターカレートされ得るリチウム量は少
なく、また充放電反応は金属リチウムに対して貴な1.
0V付近の電位で進行するために負極材料として適する
ものではなかった。コークスの高温焼成体を負極に使用
した場合、コークスの種類によっては初期200〜25
0mAh/gの容量を有することを見出した。
Generally, the amount of lithium that can be chemically intercalated between graphite layers is such that the first stage graphite intercalation compound C in which one atom of lithium is inserted for every six atoms of carbon is used.
6 Li is reported to be the upper limit, in which case the active material will have a capacity of 372 mAh / g. When the pseudo graphite material as described above is used, the amount of lithium that can be intercalated is small because the layered structure of graphite is undeveloped, and the charge / discharge reaction is noble to metallic lithium.
Since it proceeds at a potential near 0 V, it was not suitable as a negative electrode material. When the high temperature calcined product of coke is used for the negative electrode, depending on the type of coke, the initial value is 200 to 25.
It was found to have a capacity of 0 mAh / g.

【0014】そこで、本発明者らは炭素材粒子の形状を
検討した結果、負極黒鉛材には球状粒子からなる黒鉛材
料が、特にピッチの炭素化過程で生じるメソフェーズ小
球体を原料としたメソカーボンマイクロビーズに熱処理
を施すことによって黒鉛化したものが使用できることが
わかった。これらはいずれもその黒鉛化度が重要な因子
であり、002面の面間隔(d002)が3.36Å以
上3.39Å以下であることが好ましい。おおむね3.
40Å以上の疑黒鉛質の状態では他の疑黒鉛材料の場合
と同様に容量が少なく、炭素極としての分極が大きくな
る。
Therefore, as a result of studying the shape of the carbonaceous material particles, the present inventors have found that a graphite material composed of spherical particles is used as a negative electrode graphite material, particularly mesocarbon made from mesophase spherules produced in the carbonization process of pitch. It was found that a graphitized product obtained by subjecting microbeads to a heat treatment can be used. The degree of graphitization is an important factor in all of these, and the interplanar spacing (d002) of the 002 planes is preferably 3.36Å or more and 3.39Å or less. Generally 3.
In the pseudographitic state of 40 Å or more, the capacity is small and the polarization as the carbon electrode is large as in the case of other pseudographite materials.

【0015】しかしながら上述の球状粒子からなる黒鉛
材料を負極に用いた場合、初期は200〜250mAh
/gの高容量を有するが、充放電に伴い成形体の膨潤、
崩れが見られ、サイクルに伴う容量劣化が大きくなる。
However, when the above graphite material composed of spherical particles is used for the negative electrode, the initial value is 200 to 250 mAh.
/ G has a high capacity, but the swelling of the molded body with charge and discharge,
Collapse is seen, and the capacity deterioration with the cycle increases.

【0016】そこで本発明者らは上記球状粒子からなる
黒鉛材料に、それよりも平均粒径が小さな他の黒鉛微粉
末を添加混合し複合炭素材とすることによって、充放電
サイクルを繰り返した時の成形体の膨潤、崩れによる合
剤粒子間の導電性の低下を防ぐことにより、上述の問題
点を解決した。
Therefore, the present inventors have prepared a composite carbon material by adding and mixing other graphite fine powder having an average particle size smaller than that of the graphite material composed of the above-mentioned spherical particles. The above-mentioned problems were solved by preventing a decrease in conductivity between the mixture particles due to swelling and collapse of the molded article.

【0017】球状粒子からなる黒鉛材の粒子間間隙を充
填し、導電性を向上する目的から、添加する他の異なる
黒鉛微粉末の平均粒径は、母材である球状粒子からなる
黒鉛材料の平均粒径より小さくなければいけないことは
明らかである。
For the purpose of filling the intergranular spaces of the graphite material composed of spherical particles and improving the conductivity, the average particle diameter of other different graphite fine powders added is different from that of the graphite material composed of spherical particles as the base material. Obviously, it must be smaller than the average particle size.

【0018】本発明で用いる黒鉛微粉末としては、一般
的に市販されている石油または石炭を原料とした人造黒
鉛、あるいは天然黒鉛等の微粉砕品を用いることができ
る。
As the fine graphite powder used in the present invention, generally commercially available artificial graphite made from petroleum or coal, or finely pulverized products such as natural graphite can be used.

【0019】黒鉛微粉末の代わりにコークスのような疑
黒鉛材料の微粉末を用いた場合は、導電性の改善が充分
でないため大幅な効果がなく、さらには上述した理由に
より若干の電池容量の低下を招く。また、アセチレンブ
ラック等のカーボンブラックを添加した場合は、複合炭
素材として比表面積の増大が電池充電時のガス発生の増
加をもたらすことになる。
When fine powder of pseudo-graphite material such as coke is used in place of the fine graphite powder, the improvement of the conductivity is not sufficient, so that there is no significant effect. Cause decline. When carbon black such as acetylene black is added, an increase in specific surface area of the composite carbon material leads to an increase in gas generation during battery charging.

【0020】また本発明においては、球状粒子からなる
黒鉛材料と黒鉛微粉末との混合比が重要であり、上記複
合炭素材における黒鉛微粉末の添加量は、球状粒子から
なる黒鉛材料に対して、20重量%以下が良く、さらに
好ましくは3重量%以上15重量%以下である。3重量
%未満では黒鉛微粉末の効果を充分に活かすことができ
ず、サイクル特性が悪くなる。また15重量%、特に2
0重量%を越えた場合は球状粒子からなる黒鉛材料の充
填密度が減少して電池としての容量が低下する。
Further, in the present invention, the mixing ratio of the graphite material composed of spherical particles and the fine graphite powder is important, and the addition amount of the fine graphite powder in the above composite carbon material is relative to the graphite material composed of spherical particles. 20 wt% or less is preferable, and more preferably 3 wt% or more and 15 wt% or less. If it is less than 3% by weight, the effect of the graphite fine powder cannot be fully utilized and the cycle characteristics are deteriorated. 15% by weight, especially 2
If the amount exceeds 0% by weight, the packing density of the graphite material composed of spherical particles decreases and the capacity of the battery decreases.

【0021】一方、正極にはリチウムイオンを含む化合
物であるLiCoO2やLiMn2 4、さらには両者の
CoあるいはMnの一部を他の元素、例えばCo、M
n、Fe、Ni等で置換した複合酸化物が使用できる。
上記複合酸化物は、例えばリチウムやコバルトの炭酸塩
あるいは酸化物を原料として、目的組成に応じてこれら
を混合、焼成することによって容易に得ることができ
る。勿論他の原料を用いた場合においても同様に合成で
きる。通常その焼成温度は650℃〜1200℃の間で
設定される。
On the other hand, the positive electrode is a compound containing lithium ions.
LiCoO that is a product2And LiMn2O Four, And even both
Part of Co or Mn may be replaced with other elements such as Co, M
A composite oxide substituted with n, Fe, Ni or the like can be used.
The composite oxide is, for example, a carbonate of lithium or cobalt.
Alternatively, using an oxide as a raw material, depending on the target composition, these
Can be easily obtained by mixing and baking
It Of course, when other raw materials are used
Wear. Usually the firing temperature is between 650 ° C and 1200 ° C.
Is set.

【0022】電解液、セパレータについては特に限定さ
れるものではなく、従来より公知のものが何れも使用で
きる。
The electrolytic solution and the separator are not particularly limited, and any conventionally known one can be used.

【0023】[0023]

【作用】本発明による球状粒子からなる黒鉛材料は、そ
の形状が球状であることがリチウムのインターカレーシ
ョン/デインターカレーション反応に適しており、他の
黒鉛材料に比べて電解液の分解等の副反応が比較的起こ
りにくい。しかしながら充放電サイクルに伴い負極成形
体の膨潤が見られ、粒子間の接触が悪くなり、導電性の
低下が生じるために容量劣化が顕著となる。
The graphite material composed of spherical particles according to the present invention is suitable for the intercalation / deintercalation reaction of lithium because the graphite material has a spherical shape. Side reactions are less likely to occur. However, swelling of the negative electrode molded body is observed with charge / discharge cycles, contact between particles is deteriorated, and conductivity is lowered, resulting in significant capacity deterioration.

【0024】そこで上述の球状粒子からなる黒鉛材料
に、それよりも平均粒径の小さな他の黒鉛微粉末を混
合、分散させることによって合剤粒子間の接触を良好に
保ち、球状粒子間の導電性の低下を防ぐことによってサ
イクルに伴う容量劣化を防ぐことができた。
Therefore, by mixing and dispersing other graphite fine powder having an average particle size smaller than that into the graphite material composed of the above-mentioned spherical particles, good contact between the mixture particles can be maintained, and conductivity between the spherical particles can be maintained. It was possible to prevent the capacity deterioration due to the cycle by preventing the deterioration of the performance.

【0025】従って、この負極をリチウム含有複合酸化
物からなる正極と組み合わせることによって高電圧、高
容量を有し、かつサイクル特性にも優れた二次電池を得
ることが可能となる。
Therefore, by combining this negative electrode with a positive electrode made of a lithium-containing composite oxide, it becomes possible to obtain a secondary battery having a high voltage and a high capacity and excellent in cycle characteristics.

【0026】[0026]

【実施例】以下実施例により本発明を詳しく述べる。図
1に本実施例で用いた円筒形電池の縦断面図を示す。図
において、1は耐有機電解液性のステンレス鋼板を加工
した電池ケース、2は安全弁を設けた封口板、3は絶縁
パッキングを示す。4は極板群であり、正極及び負極が
セパレータを介して複数回渦巻状に巻回されてケース1
内に収納されている。そして上記正極からは正極リード
5が引き出されて封口板2に接続され、負極からは負極
リード6が引き出されて電池ケース1の底部に接続され
ている。7は絶縁リングで極板群4の上下部に夫々設け
られている。
The present invention will be described in detail with reference to the following examples. FIG. 1 shows a vertical cross-sectional view of the cylindrical battery used in this example. In the figure, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with a separator interposed between them.
It is stored inside. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided above and below the electrode plate group 4, respectively.

【0027】以下、正、負極板、電解液等について詳し
く説明する。正極はLi2Co3とCoCO3とを混合
し、900℃で10時間焼成して合成したLiCoO2
の粉末100重量部に、アセチレンブラック3重量部、
グラファイト4重量部、フッ素樹脂系結着剤7重量部を
混合し、カルボキシメチルセルロース水溶液に懸濁させ
てペースト状にした。このペーストを厚さ0.03mm
のアルミ箔の両面に塗着し、乾燥後圧延して厚さ0.1
8mm、幅40mm、長さ260mmの極板とした。
The positive and negative electrode plates, electrolytic solution and the like will be described in detail below. The positive electrode was LiCoO 2 synthesized by mixing Li 2 Co 3 and CoCO 3 and firing at 900 ° C. for 10 hours.
3 parts by weight of acetylene black,
4 parts by weight of graphite and 7 parts by weight of a fluororesin binder were mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. This paste has a thickness of 0.03 mm
Applied to both sides of the aluminum foil, dried and rolled to a thickness of 0.1
The electrode plate was 8 mm, 40 mm wide, and 260 mm long.

【0028】負極は2800℃での熱処理を施したメソ
カーボンマイクロビーズ(d002=3.37Å;平均
粒径6μm)(以下、MCMBと略称する。)と人造黒
鉛微粉末(SEC製人造黒鉛SGP−3;d002=
3.37Å;平均粒径3μm)を表1に示すような混合
比で混合し、この炭素材100重量部に、フッ素樹脂系
結着剤100重量部を混合し、カルボキシメチルセルロ
ース水溶液に懸濁させてペースト状にした。そしてこの
ペーストを厚さ0.02mmの銅箔の両面に塗着し、乾
燥後圧延して厚さ0.19mm、幅40mm、長さ28
0mmの極板とした。 そして正、負極板夫々にリード
を取り付け、厚さ0.025mm、幅46mm、長さ7
00mmのポリプロピレン製のセパレータを介して渦巻
状に巻回し、直径13.8mm、高さ50mmの電池ケ
ース内に収納した。電解液には炭酸プロピレンと炭酸エ
チレンの等容積混合溶媒に、過塩素酸リチウムを1モル
/リットルの割合で溶解したものを用いた。この電解液
を減圧注液後封口し、試験電池とした。そしてこれらの
試験電池を充放電電流100mAh、充電終止電圧4.
1V、放電終止電圧3.0Vの条件下で定電流充放電試
験を行った。そのサイクル特性の比較を図2に示した。
The negative electrode was mesocarbon microbeads (d002 = 3.37Å; average particle size 6 μm) heat-treated at 2800 ° C. (hereinafter, abbreviated as MCMB) and artificial graphite fine powder (manufactured by SEC, artificial graphite SGP-). 3; d002 =
3.37Å; average particle size 3 μm) in a mixing ratio as shown in Table 1, 100 parts by weight of this carbon material and 100 parts by weight of a fluororesin-based binder, and suspended in a carboxymethylcellulose aqueous solution. Made into a paste. Then, this paste is applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled to a thickness of 0.19 mm, a width of 40 mm, and a length of 28.
The electrode plate was 0 mm. Then, a lead was attached to each of the positive and negative plates, and the thickness was 0.025 mm, the width was 46 mm, and the length was 7 mm.
It was spirally wound through a separator made of polypropylene of 00 mm and was housed in a battery case having a diameter of 13.8 mm and a height of 50 mm. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in a mixed solvent of equal volume of propylene carbonate and ethylene carbonate at a rate of 1 mol / liter was used. This electrolytic solution was injected under reduced pressure and sealed to obtain a test battery. Then, these test batteries were charged / discharged at a current of 100 mAh and cut off at a voltage of 4.
A constant current charge / discharge test was conducted under the conditions of 1 V and a discharge end voltage of 3.0 V. The comparison of the cycle characteristics is shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】黒鉛微粉末を含まない電池1ではサイクル
に伴う容量劣化が著しい。一方、黒鉛微粉末を3〜15
重量%混合した複合材料を用いた電池2〜5では高容量
を維持したままサイクルに伴う容量劣化が極めて少ない
ことがわかる。黒鉛微粉末を25重量%含んだ電池6に
おいてはサイクル特性は比較的良好であるものの、容量
が極端に小さくなってしまう。これは黒鉛微粉末が支配
的になったために、合剤の充填量が減少したことによる
ものである。平均放電電圧は何れの場合も約3.7Vで
あった。
In the battery 1 containing no graphite fine powder, the capacity was significantly deteriorated with the cycle. On the other hand, 3 to 15
It can be seen that in batteries 2 to 5 using the composite material mixed by weight%, the capacity deterioration accompanying the cycle is extremely small while maintaining the high capacity. The battery 6 containing 25% by weight of graphite fine powder has relatively good cycle characteristics, but the capacity becomes extremely small. This is because the graphite fine powder became dominant and the filling amount of the mixture was reduced. The average discharge voltage was about 3.7 V in each case.

【0031】(比較例1)実施例における、黒鉛微粉末
の代わりに市販の疑人造黒鉛(d002=3.42Å)
を5重量%添加した複合炭素材を負極に用いた以外は全
く実施例と同一条件で構成を行い、比較例1の電池とし
た。
Comparative Example 1 In place of the fine graphite powder used in Example, commercially available artificial graphite (d002 = 3.42Å)
A battery of Comparative Example 1 was prepared under the same conditions as in Example 1 except that the composite carbon material containing 5% by weight of was used for the negative electrode.

【0032】(比較例2)実施例における、黒鉛微粉末
の代わりに市販のアセチレンブラックを5重量%混合し
た複合炭素材を負極に用いた以外は全く実施例と同一条
件で構成を行い、比較例2の電池とした。
(Comparative Example 2) A composite carbon material was used under the same conditions as in the Example, except that a composite carbon material prepared by mixing 5% by weight of commercially available acetylene black was used instead of the fine graphite powder in the Example. The battery of Example 2 was used.

【0033】比較例1及び2の電池を実施例と同一条件
で充放電試験を行い、そのサイクル特性を図3に示し
た。
The batteries of Comparative Examples 1 and 2 were subjected to a charge / discharge test under the same conditions as in Examples, and their cycle characteristics are shown in FIG.

【0034】比較例1の電池では、実施例の電池3に比
べ初期容量が小さく、又サイクルに伴う容量劣化も大き
いことがわかる。これは添加したコークス微粉末のリチ
ウム吸蔵量が黒鉛微粉末より小さいこと、さらには球状
粒子からなる黒鉛母材粒子間の導電性を向上する効果が
黒鉛微粉末に比して劣っていることが原因であると考え
られる。
It can be seen that the battery of Comparative Example 1 has a smaller initial capacity than that of the battery 3 of Example, and has a large capacity deterioration due to cycling. This is because the added coke fine powder has a smaller lithium storage capacity than the graphite fine powder, and further, the effect of improving the conductivity between the graphite base material particles composed of spherical particles is inferior to the graphite fine powder. Probably the cause.

【0035】比較例2の電池では、初期容量の大幅な低
下が見られた。これは比表面積の大きなアセチレンブラ
ックの添加が負極合剤表面での電解液の分解を促進し、
リチウムのインターカレーション反応を阻害したためと
考えられる。
In the battery of Comparative Example 2, the initial capacity was remarkably reduced. This is because the addition of acetylene black with a large specific surface area promotes the decomposition of the electrolytic solution on the surface of the negative electrode mixture,
This is probably because the lithium intercalation reaction was inhibited.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
によれば負極に球状粒子からなる黒鉛質材料と、その平
均粒径が前記球状粒子より小さい他の異なる黒鉛微粉末
とで構成された複合炭素材を用いることで、高電圧、高
容量を有し、サイクル特性にも優れた二次電池を提供す
ることができる。
As is apparent from the above description, according to the present invention, the negative electrode is composed of a graphite material composed of spherical particles and another fine graphite powder having an average particle size smaller than the spherical particles. By using such a composite carbon material, it is possible to provide a secondary battery having high voltage and high capacity and excellent in cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例のサイクル特性の比較を示す図FIG. 2 is a diagram showing a comparison of cycle characteristics of examples.

【図3】実施例と比較例のサイクル特性の比較を示す図FIG. 3 is a diagram showing a comparison of cycle characteristics between an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板 5 正極リード 6 負極リード 7 絶縁リング 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate 5 Positive electrode lead 6 Negative electrode lead 7 Insulating ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高井 徹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Takai 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物からなる正極
と、非水電解液と、再充電可能な負極とを備えた非水電
解液二次電池において、前記負極は光学的に異方性で単
一の相を持った球状粒子からなる黒鉛材料と、それより
平均粒径の小さな他の異なる黒鉛微粉末とで構成された
複合炭素材であることを特徴とする非水電解液二次電
池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode made of a lithium-containing composite oxide, a non-aqueous electrolyte, and a rechargeable negative electrode, wherein the negative electrode is optically anisotropic and unitary. A non-aqueous electrolyte secondary battery, which is a composite carbon material composed of a graphite material composed of spherical particles having one phase and another different graphite fine powder having a smaller average particle diameter.
【請求項2】 上記球状粒子からなる黒鉛材料は、ピッ
チの炭素化過程で生じるメソフェーズ小球体を原料とし
たメソカーボンマイクロビーズに熱処理を施すことによ
って黒鉛化したものである請求項1記載の非水電解液二
次電池。
2. The graphite material comprising spherical particles is graphitized by subjecting mesocarbon microbeads made of mesophase microspheres, which are generated in the carbonization process of pitch, as a raw material to heat treatment. Water electrolyte secondary battery.
【請求項3】 上記球状粒子からなる黒鉛材料は、その
球状粒子がラメラ構造を有し、X線広角回折法による0
02面の面間隔(d002)が3.36Å以上3.39
Å以下である請求項1または2記載の非水電解液二次電
池。
3. The graphite material composed of the spherical particles has a lamellar structure, and the graphite material has a lamella structure of 0.
The surface spacing (d002) of 02 surfaces is 3.36 Å or more 3.39
The non-aqueous electrolyte secondary battery according to claim 1 or 2, which is Å or less.
【請求項4】 上記複合炭素材における黒鉛微粉末の混
合比は、球状材料に対して重量比で20重量%以下であ
る請求項1乃至3の何れかに記載の非水電解液二次電
池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the mixing ratio of the graphite fine powder in the composite carbon material is 20% by weight or less with respect to the spherical material. .
【請求項5】 上記複合炭素材における黒鉛微粉末の混
合比は、球状材料に対して重量比で3〜15重量%であ
る請求項4記載の非水電解液二次電池。
5. The nonaqueous electrolyte secondary battery according to claim 4, wherein the mixing ratio of the fine graphite powder in the composite carbon material is 3 to 15% by weight with respect to the spherical material.
【請求項6】 上記複合炭素材における黒鉛微粉末は石
油または石炭ピッチを原料とする人造黒鉛、もしくは天
然黒鉛の何れかである請求項1乃至5の何れかに記載の
非水電解液二次電池。
6. The non-aqueous electrolyte secondary according to claim 1, wherein the fine graphite powder in the composite carbon material is either artificial graphite made from petroleum or coal pitch or natural graphite. battery.
JP5181141A 1993-07-22 1993-07-22 Nonaqueous electrolyte secondary battery Pending JPH0737618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5181141A JPH0737618A (en) 1993-07-22 1993-07-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5181141A JPH0737618A (en) 1993-07-22 1993-07-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0737618A true JPH0737618A (en) 1995-02-07

Family

ID=16095611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181141A Pending JPH0737618A (en) 1993-07-22 1993-07-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0737618A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326447B1 (en) * 2000-01-03 2002-02-28 김순택 Negative active material for lithium secondary battery and lithium secondary battery using same
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
WO2006018288A1 (en) * 2004-08-19 2006-02-23 Varta Microbattery Gmbh Galvanic element
KR100749416B1 (en) * 1999-12-08 2007-08-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
US10177380B2 (en) 2013-12-20 2019-01-08 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749416B1 (en) * 1999-12-08 2007-08-14 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100326447B1 (en) * 2000-01-03 2002-02-28 김순택 Negative active material for lithium secondary battery and lithium secondary battery using same
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
US7749659B2 (en) 2002-02-26 2010-07-06 Sony Corporation Nonaqueous electrolyte battery
CN1316651C (en) * 2002-02-26 2007-05-16 索尼公司 Nonaqueous electrolyte battery
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
WO2006018288A1 (en) * 2004-08-19 2006-02-23 Varta Microbattery Gmbh Galvanic element
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP4513822B2 (en) * 2007-03-30 2010-07-28 Tdk株式会社 Electrode and electrochemical device
KR20140121445A (en) 2012-03-02 2014-10-15 제이에프이 케미칼 가부시키가이샤 Nagative electrode material for lithium ion secondary batteries, nagative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
US10177380B2 (en) 2013-12-20 2019-01-08 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
US10964946B2 (en) 2013-12-20 2021-03-30 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP2940172B2 (en) Non-aqueous electrolyte secondary battery
EP0713256A1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
JP3532016B2 (en) Organic electrolyte secondary battery
JPH06318459A (en) Lithium secondary battery
JPH07226204A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
JPH0785888A (en) Lithium secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH04126374A (en) Secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3236400B2 (en) Non-aqueous secondary battery
JPH0869819A (en) Nonaqueous electrolytic secondary battery
JPH0589879A (en) Lithium secondary battery
JPH07326343A (en) Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture
JP3406843B2 (en) Lithium secondary battery
JP3178730B2 (en) Non-aqueous secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH05314977A (en) Nonaqueous electrolytic secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH06231766A (en) Negative electrode for non-aqueous secondary battery