JP3178730B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3178730B2
JP3178730B2 JP10917791A JP10917791A JP3178730B2 JP 3178730 B2 JP3178730 B2 JP 3178730B2 JP 10917791 A JP10917791 A JP 10917791A JP 10917791 A JP10917791 A JP 10917791A JP 3178730 B2 JP3178730 B2 JP 3178730B2
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
electrolyte
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10917791A
Other languages
Japanese (ja)
Other versions
JPH04337247A (en
Inventor
謙二 荒井
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14503612&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3178730(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP10917791A priority Critical patent/JP3178730B2/en
Publication of JPH04337247A publication Critical patent/JPH04337247A/en
Application granted granted Critical
Publication of JP3178730B2 publication Critical patent/JP3178730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機溶媒を電解液とした
高容量の非水系二次電池の負極及び電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-capacity non-aqueous secondary battery using an organic solvent as an electrolyte, and to an electrolyte.

【0002】[0002]

【従来の技術】有機溶媒を電解液とした非水二次電池の
負極として炭素質材料を用いることは公知である。電極
として用いられる炭素質材料はその電気化学的性質から
大きく次の三つに分類される。第一はグラファイトに代
表される炭素網面の間隔が狭く(d002 <0.337n
m)、炭素網面及び網面の積層方向に成長したものであ
る。このような炭素材料は陽イオン、陰イオンどちらも
その炭素網面間にドーピングし、層状化合物を形成する
ことが知られており、導電材料、有機合成反応触媒や電
池としての応用も考えられている。グラファイトを電池
の負極として用いることは特開昭57−208079号
公報、特開昭58−192266号公報、特開昭59−
143280号公報、特開昭60−54181号公報、
特開昭60−182670号公報、特開昭60−221
973号公報、特開昭61−7567号公報、特開平1
−311565号公報などに提案されている。これらの
特許には使用できる有機溶媒としてプロピレンカーボネ
イト(以下PCと略記す)、テトラヒドロフラン(以下
THFと略記す)、ガンマブチロラクトン(以下γ−B
Lと略記す)、1,2−ジメトキシエタン(以下DME
と略記す)、スルホランなどが記載されている。実施例
としてはLiClO4 あるいはLiBF4 を用い、代表
的溶媒としてPCあるいはTHFを用いている。混合溶
媒を用いても良いとの記載はあるが、混合溶媒を用いる
と特に性能が向上するとの記載はない。混合溶媒を用い
た例は特開昭57−208079号公報に開示されてい
るPC/DMEのみである。
2. Description of the Related Art It is known to use a carbonaceous material as a negative electrode of a non-aqueous secondary battery using an organic solvent as an electrolyte. Carbonaceous materials used as electrodes are broadly classified into the following three based on their electrochemical properties. The first is that the distance between carbon network planes represented by graphite is narrow (d 002 <0.337 n
m), grown in the direction of lamination of the carbon net surface and the net surface. Such a carbon material is known to form a layered compound by doping both cations and anions between the carbon network planes, and is also considered to be used as a conductive material, an organic synthesis reaction catalyst, and a battery. I have. The use of graphite as a negative electrode of a battery is disclosed in Japanese Patent Application Laid-Open Nos. 57-208079, 58-192266, and 59-192266.
No. 143280, JP-A-60-54181,
JP-A-60-182670, JP-A-60-221
No. 973, JP-A-61-7567, JP-A-1
No. 3,11,565. Organic solvents that can be used in these patents include propylene carbonate (hereinafter abbreviated as PC), tetrahydrofuran (hereinafter abbreviated as THF), and gamma-butyrolactone (hereinafter γ-B).
L), 1,2-dimethoxyethane (hereinafter DME)
), Sulfolane and the like. In the embodiment, LiClO 4 or LiBF 4 is used, and PC or THF is used as a representative solvent. Although there is a description that a mixed solvent may be used, there is no description that performance is particularly improved when a mixed solvent is used. An example using a mixed solvent is only PC / DME disclosed in JP-A-57-208079.

【0003】ところが電解質としてLiClO4 あるい
はLiBF4 、溶媒としてPCを用い、グラファイトで
充放電を試みてみると、殆ど充放電できなかった。また
LiBF4を電解質とし、混合溶媒であるPC/DME
を用いてグラファイトを電極として充放電を試みてみる
と、充放電は出来るが、電流効率が極めて低く実用的で
ないことが分かった。グラファイトは陽イオンとしてリ
チウムをドーピングする時、利用率(炭素当りのリチウ
ム吸蔵量)は16.7%と多いのであるが、電池の負極
として利用しようとしたときには前述のごとく電気化学
的に有効にリチウムを吸蔵・放出することが出来ない。
このことはジャーナル オブ エレクトロケミカルソサ
イエティ(J.Electrochem.Soc.)第
117巻、222ページ(1970年)や特開昭63−
2555号公報の比較例1に記載のごとく、グラファイ
トにリチウムイオンが吸蔵された層状化合物は有機溶媒
に対する反応性が高く、電極として働くよりも、電解液
との反応が優先しておき、電極としての利用価値は低い
ものである。
However, when charging and discharging were attempted with graphite using LiClO 4 or LiBF 4 as an electrolyte and PC as a solvent, charging and discharging were almost impossible. LiBF 4 is used as an electrolyte, and a mixed solvent of PC / DME is used.
When charging and discharging were attempted using graphite as an electrode, it was found that although charging and discharging were possible, the current efficiency was extremely low and was not practical. When doping lithium as a cation, graphite has a high utilization factor (lithium occlusion amount per carbon) of 16.7%, but when it is used as a negative electrode of a battery, it becomes electrochemically effective as described above. Cannot absorb and release lithium.
This is described in Journal of Electrochemical Society (J. Electrochem. Soc.) Vol. 117, p. 222 (1970), and
As described in Comparative Example 1 of Japanese Patent No. 2555, a layered compound in which lithium ions are occluded in graphite has a high reactivity to an organic solvent, and the reaction with an electrolytic solution is prioritized rather than acting as an electrode. The utility value is low.

【0004】第二のグループは活性炭に代表されるきわ
めて表面積(SA >100m2 / g)が大きく炭素網面
の間隔も広い(d002 >0.337nm)ものである。
このタイプは表面吸着量が多いために炭素当りのリチウ
ム吸蔵量は大きいが電流効率が低く、サイクル性も低
い。第三のグループは炭素網面はある程度成長している
が第一グループと比べて炭素網面の間隔が広い(d002
>0.337nm)ものである。このグループはその構
造により種々の電気化学的特性を示すが、第一グループ
と異なり、殆ど電解液と反応することなくリチウムを吸
蔵できる。しかしながらその利用率(炭素当りのリチウ
ム吸蔵量)は第一グループと比較すると小さい。
The second group has a very large surface area (S A > 100 m 2 / g) typified by activated carbon and a large spacing between carbon network planes (d 002 > 0.337 nm).
This type has a large amount of lithium absorbed per carbon due to a large amount of surface adsorption, but has low current efficiency and low cycleability. In the third group, the carbon nets are growing to some extent, but the distance between the carbon nets is wider than in the first group (d 002
> 0.337 nm). Although this group exhibits various electrochemical properties depending on its structure, unlike the first group, it can occlude lithium almost without reacting with the electrolyte. However, its utilization rate (the amount of lithium stored per carbon) is smaller than that of the first group.

【0005】一方、グラファイトが負極として用いられ
ている例が米国特許4423125及びジャーナル オ
ブ エレクトロケミカル ソサイエティ(J.Elec
trochem.Soc.)第137巻、2009ペー
ジ(1990年)に記載されており、米国特許4423
125では電解液にジオキソランを用いている。ジオキ
ソランは化学的に不安定であり、又、電気化学的にも
3.5V以上では電解液の重合がおき正極に高い電圧の
活物質を用いることが出来ず不都合である。ジャーナル
オブ エレクトロケミカル ソサイエティ(J.El
ectrochem.Soc.)第137巻、2009
ページ(1990年)ではグラファイト及び石油コーク
スを電極とし、電解液にPC/ECを用いた電気化学的
リチウムインターカレーションについて記述されてい
る。石油コークスでは初充電時に起こる副反応は表面積
に依存するのに対し、グラファイトでは初充電時に表面
積に依存する副反応のほかに表面積に依存しない副反応
が起こるために、初回の電流効率が低いと記載されてい
る。このような系で電池を組み立てた場合、初回の電流
効率が低いために多くの正極を必要とし、電池としての
正極の活物質当りの利用率を上げられないために高容量
化が困難である。このため高容量化のために正極、負極
ともに充電状態(負極カーボンにリチウムを吸蔵させ、
正極はリチウムを受け取るサイトが空となっている状
態)のものを組立るという方法がとられることがある
が、充電状態の電極は著しく反応性が高い為安全上の問
題が生じたり、不活性ガス下で電池を組み立てるなど煩
雑な工程をとる必要があったりで実用的でない。さらに
この報文の系では2サイクル以降も継続して副反応が起
こり電流効率は100%にならないことを記載してい
る。電流効率の高いことは電池のサイクル性に特に重要
である。負極の電流効率が低い場合で一定容量の放電を
行うためには、正極に常に放電容量以上の充電量が必要
となり、次第に正極に負担がかかり、ついには正極の過
充電状態となり、容量の低下をもたらす。又正極が過充
電にならないように正極に対して定容量充電を行えば、
電流効率が低いのでサイクルを繰り返すことにより容量
の低下をもたらす。
On the other hand, examples in which graphite is used as a negative electrode are disclosed in US Pat. No. 4,423,125 and Journal of Electrochemical Society (J. Elec.).
trochem. Soc. 137, 2009 (1990); U.S. Pat.
In 125, dioxolan is used as an electrolytic solution. Dioxolane is chemically unstable, and at 3.5V or more electrochemically, polymerization of the electrolytic solution occurs, so that a high-voltage active material cannot be used for the positive electrode, which is inconvenient. Journal of Electrochemical Society (J.El
electrochem. Soc. ) Volume 137, 2009
Page (1990) describes electrochemical lithium intercalation using graphite / petroleum coke as electrodes and PC / EC as electrolyte. In petroleum coke, the side reactions that occur at the time of the first charge depend on the surface area, whereas graphite has side reactions that do not depend on the surface area in addition to the side reactions that depend on the surface area during the first charge. Has been described. When a battery is assembled in such a system, a large number of positive electrodes are required because the initial current efficiency is low, and it is difficult to increase the capacity because the utilization rate of the positive electrode as a battery per active material cannot be increased. . For this reason, in order to increase the capacity, both the positive electrode and the negative electrode are charged (the lithium is occluded in the negative electrode carbon,
In some cases, the positive electrode is assembled in a state where the site for receiving lithium is empty), but the charged state of the electrode is extremely reactive and causes safety problems or inactivity. It is not practical because it is necessary to take complicated steps such as assembling the battery under gas. Furthermore, in this report system, it is described that a side reaction occurs continuously after the second cycle and the current efficiency does not become 100%. High current efficiency is especially important for battery cyclability. In order to discharge at a constant capacity when the current efficiency of the negative electrode is low, the positive electrode always needs a charge amount equal to or greater than the discharge capacity, gradually burdening the positive electrode, and eventually causing the positive electrode to become overcharged, resulting in a decrease in capacity. Bring. If the positive electrode is charged at a constant capacity so that the positive electrode is not overcharged,
Since the current efficiency is low, the capacity is reduced by repeating the cycle.

【0006】いずれにしても高容量でサイクル特性がよ
い二次電池を得るために、負極に要求されることは組立
時に電極が安定であり、電流効率が高く、利用率が大き
いことである。従来の電解液系においては炭素質材料の
第一グループは電解液と反応するため、第二グループは
電流効率が小さいため、利用価値が低く、第三グループ
は一部に電流効率がよいものもあるが、これも利用率
(炭素原子当りのリチウム吸蔵量)が10%程度であ
り、電池の高容量化のため、利用率が更に大きく、電流
効率のよい負極材料が望まれていた。
In any case, in order to obtain a secondary battery having high capacity and good cycle characteristics, what is required for the negative electrode is that the electrode is stable at the time of assembly, the current efficiency is high, and the utilization factor is high. In the conventional electrolyte system, the first group of carbonaceous materials reacts with the electrolyte, and the second group has a low current efficiency, so the utility value is low. However, this also has a utilization factor (the amount of lithium absorbed per carbon atom) of about 10%, and a negative electrode material having a higher utilization factor and a higher current efficiency has been desired in order to increase the capacity of the battery.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は二次電
池の高容量化のために利用率が大きく、電流効率のよい
特定の有機溶媒電解液と組み合わされた負極を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a negative electrode combined with a specific organic solvent electrolyte having a high utilization factor and a high current efficiency for increasing the capacity of a secondary battery. It is assumed that.

【0008】[0008]

【課題を解決するための手段】本発明者等は前記課題を
解決するために、負極に用いる炭素質材料と有機溶媒電
解液との組合せを鋭意検討したところ、化学的には多量
のリチウムイオンをドーピングできるが、電池の負極と
して用いると電解液との反応が優先して有効に充放電で
きないとされてきた黒鉛がγ−BLを主体とする電解液
を併用することで意外にも充放電でき、しかも充放電で
きる容量が大きく、かつ電流効率も高いことを見いだ
し,本発明を完成するに至った。すなわち、本発明は (1)充放電可能な正極と有機溶媒系電解液と炭素質材
料を主として活物質とする負極からなる非水系二次電池
において、該負極活物質の炭素質材料は炭素網面の面間
隔d002が0.337nm未満の黒鉛質(ただし、ピッ
チから得られ、(002)面間隔が3.45Å以下で、
かつc軸方向の結晶子の厚みが300Å以上の炭素化メ
ソフェーズ小球体を除く)を含有しかつ有機溶媒系電解
液がγ−ブチロラクトンを50容積%以上含有すること
を特徴とする非水系二次電池 (2)前記負極が、有機重合体の水性あるいは油性分散
体に前記負極活物質を分散した後に塗工乾燥する方法で
作成された負極であることを特徴とする(1)項記載の
非水系二次電池 (3)正極としてリチウムを含有する遷移金属カルコゲ
ン化合物を用いる(1)項または(2)項記載の非水系
二次電池 (4)電池組立時に正極、負極ともに放電状態である
(1)項または(2)項または(3)項記載の非水系二
次電池 (5)該電解液がγ−ブチロラクトンを50容積%以上
含有する混合有機溶媒で、第二成分としてエチレンカー
ボネイト、プロピレンカーボネイト、ジメトキシエタン
の群から選ばれる少なくとも一種を含有する(1)項ま
たは(2)項または(3)項または(4)項記載の非水
系二次電池 (6)該有機溶媒系電解液がγ−ブチロラクトンを95
〜50容積%を含有する(1)項または(2)項または
(3)項または(4)項または(5)項記載の非水系二
次電池を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present inventors have intensively studied a combination of a carbonaceous material used for a negative electrode and an organic solvent electrolyte. Can be doped, but if it is used as a negative electrode of a battery, the reaction with the electrolytic solution has priority and cannot be charged and discharged effectively. Graphite is unexpectedly charged and discharged by using an electrolytic solution mainly composed of γ-BL. The inventors have found that the capacity of the battery can be charged and discharged, and that the current efficiency is high. Thus, the present invention has been completed. That is, the present invention provides (1) a non-aqueous secondary battery comprising a chargeable / dischargeable positive electrode, an organic solvent-based electrolyte, and a negative electrode mainly containing a carbonaceous material as an active material.
In, the carbonaceous material is graphite less than 0.337nm is plane spacing d 002 of the carbon net plane of the negative electrode active material (however, beep
And (002) plane spacing is 3.45 ° or less,
And the thickness of the crystallite in the c-axis direction is 300 mm or more.
Sofezu spherules contain excluded) to and non-aqueous secondary battery of organic electrolyte solution γ- butyrolactone, characterized in that it contains more than 50 volume% (2) the negative electrode, aqueous or oily organic polymer dispersion
The method of coating and drying after dispersing the negative electrode active material in the body
(1) The negative electrode is a prepared negative electrode.
Non-aqueous secondary battery (3) Non-aqueous secondary battery according to (1) or (2), wherein a transition metal chalcogen compound containing lithium is used as a positive electrode (4) Both the positive electrode and the negative electrode are in a discharged state during battery assembly (1) The non-aqueous secondary battery according to the above (1) or (2) or (3). (5) The electrolyte is a mixed organic solvent containing 50% by volume or more of γ-butyrolactone, and ethylene carbonate is used as a second component. Non-aqueous secondary battery according to (1), (2), (3) or (4), containing at least one selected from the group consisting of propylene carbonate and dimethoxyethane (6) The organic solvent-based electrolyte Has 95-butyrolactone.
An object of the present invention is to provide a non-aqueous secondary battery according to the above item (1), (2), (3), (4) or (5), which contains 50 to 50% by volume.

【0009】以下、本発明を詳細に説明する。本発明で
いう炭素網面の面間隔d002 が0.337nm未満の黒
鉛質とはたとえばグラファイトのごとく炭素網面の積層
が規則正しく積層された炭素質材料のことをいう。炭素
質材料はその出発原料及びその処理(製造)方法により
種々の構造を取るが、いずれの材料も高温処理によりそ
の炭素網面の面間隔d002は小さくなり、炭素網面の積
層厚みLcは大きくなる傾向にあり、グラファイトは最
も小さい面間隔d002 =0.3354nmを持つ。この
002 の減少及びLcの増加は炭素質材料により大きく
異なり、高温処理(〜3000℃)で容易にグラファイ
ト化する易黒鉛化炭素とグラファイト化が進行しにくい
(d002が小さくなりにくい)難黒鉛化炭素に分類され
る。この炭素質材料のグラファイト化の際、前出のd
002 、Lcの他に密度、表面積、電気抵抗等も大きく変
化するが、層間化合物の形成には特に面間隔が重要であ
る。
Hereinafter, the present invention will be described in detail. Graphite having a carbon mesh plane spacing d 002 of less than 0.337 nm as referred to in the present invention refers to a carbonaceous material in which laminations of carbon mesh planes are regularly laminated like graphite, for example. The carbonaceous material has various structures depending on its starting material and its processing (manufacturing) method, but in each case, the high-temperature treatment reduces the plane distance d 002 between its carbon mesh planes and the lamination thickness Lc of the carbon mesh plane becomes Graphite tends to be large, with graphite having the smallest interplanar spacing d 002 = 0.3354 nm. The decrease in d 002 and the increase in Lc differ greatly depending on the carbonaceous material, and the graphitizable carbon which is easily graphitized by high-temperature treatment (up to 3000 ° C.) and the graphitization hardly progress (d 002 is hardly reduced) are difficult. Classified as graphitized carbon. When the carbonaceous material is graphitized, d
In addition to Lc, the density, surface area, electric resistance, etc., also vary greatly, but interplanar spacing is particularly important for the formation of an interlayer compound.

【0010】本発明の炭素質材料はd002 が0.337
nm未満のものが特に有効であり、d002 が0.337
nm以上であると電流効率が低くなったり、炭素当りの
リチウム吸蔵量(利用率)が低くなったりするので好ま
しくない。又、電流効率の幾分かの低下を伴うこともあ
るが、本発明の負極は該黒鉛と他の炭素質材料とを併用
して作成することもでき、例えばこのような炭素質材料
としてコークス、アセチレンブラック、活性炭、ニード
ルコークス等が挙げられる。
The carbonaceous material of the present invention has d 002 of 0.337.
Those having a diameter of less than nm are particularly effective, and d 002 is 0.337.
If it is not less than nm, the current efficiency becomes low and the amount of lithium stored per carbon (utilization rate) becomes low, which is not preferable. Although the current efficiency may be slightly reduced, the negative electrode of the present invention can also be prepared by using the graphite in combination with another carbonaceous material. , Acetylene black, activated carbon, needle coke and the like.

【0011】本発明に用いられるd002 が0.337n
m未満の黒鉛は、出発材料を特に限定しないが、石油ピ
ッチ、コールタールピッチ、熱分解炭素、ニードルコー
クス、縮合多環炭化水素などを一般に2500℃以上よ
り好ましくは3000℃以上で熱処理することで得られ
る。又天然に産する黒鉛も本発明に用いることが出来
る。 本発明で用いる黒鉛の炭素網面の積層厚みLcは
特に限定するものではないがグラファイト化に関してL
cも重要なパラメータであり、好ましくは30nm以
上、更に好ましくは50nm以上がよい。30nm未満
では利用率が低くなりやすい。またその表面積も特に限
定するものではないが、表面積が大きいと副反応が多く
起こりやすくなるため、このましくは50m2 /g以下
がよい。
The d 002 used in the present invention is 0.337 n
The graphite having a particle size of less than m is not particularly limited as a starting material, but is generally obtained by heat-treating petroleum pitch, coal tar pitch, pyrolytic carbon, needle coke, condensed polycyclic hydrocarbon and the like at 2500 ° C. or higher, more preferably 3000 ° C. or higher. can get. Naturally occurring graphite can also be used in the present invention. The lamination thickness Lc of the carbon netting surface of the graphite used in the present invention is not particularly limited.
c is also an important parameter, preferably 30 nm or more, more preferably 50 nm or more. If it is less than 30 nm, the utilization tends to be low. The surface area is not particularly limited, but if the surface area is large, many side reactions are likely to occur. Therefore, the surface area is preferably 50 m 2 / g or less.

【0012】本発明に用いる黒鉛の形状は粉状、繊維状
等があり、特に限定するものではないが、粉状では充填
密度を大きくしやすいので好ましく用いられる。粒子径
が0.1〜50ミクロン、好ましくは1〜50ミクロン
の粉状が好適に用いられる。本発明の電解液としてはγ
−BLを50%以上含有することが必須であり、50%
未満では電流効率が低くなるので好ましくない。これは
他の溶媒を用いた場合と同様、γ−BL以外の溶媒が主
体となるため、リチウムを含んだ黒鉛と溶媒との反応が
起こるようになり、電流効率の低下及び利用率の低下を
生じるものと考えられる。これに対し、γ−BLを主体
とする本発明の電解液では前記黒鉛との反応が抑えら
れ、電流効率、利用率ともに高くなると考えられる。
The graphite used in the present invention may be in the form of powder, fiber, or the like, and is not particularly limited. However, powder is preferably used because the packing density is easily increased. A powder having a particle size of 0.1 to 50 microns, preferably 1 to 50 microns is suitably used. As the electrolyte of the present invention, γ
-It is essential to contain 50% or more of BL, and 50%
If it is less than 1, the current efficiency becomes low, which is not preferable. This is similar to the case where another solvent is used, since a solvent other than γ-BL is mainly used, a reaction between the graphite containing lithium and the solvent occurs, and a reduction in current efficiency and a reduction in the utilization factor occur. It is thought to occur. On the other hand, in the electrolytic solution of the present invention mainly composed of γ-BL, it is considered that the reaction with the graphite is suppressed, and both the current efficiency and the utilization factor are increased.

【0013】本発明の黒鉛を電極とし、電解質を含むγ
−BLで単極評価すると高い電流効率を示すのに対し、
リチウムを含む遷移金属カルコゲン化合物、たとえばL
iCoO2 の正極と組み合わせた電池とした場合、前記
のγ−BLを用いると電流効率が低下し、サイクル性が
悪くなった。これに対し、詳細な理由は不明であるが、
γ−BL以外の第二成分、例えば単独では充放電が殆ど
出来ないPCを少量添加すると、高い電流効率と大きな
利用率が得られるのである。同様の効果を示す第二成分
としてはPC、EC、DMEあるいはこれらの混合物等
が挙げられる。
The graphite of the present invention is used as an electrode, and γ containing an electrolyte is used.
-BL shows high current efficiency when evaluated unipolarly,
Transition metal chalcogen compounds containing lithium, such as L
In the case of a battery combined with a positive electrode of iCoO 2, the use of the above-mentioned γ-BL resulted in a decrease in current efficiency and poor cyclability. The exact reason for this is unknown, but
By adding a small amount of a second component other than γ-BL, for example, PC which can hardly charge and discharge by itself, high current efficiency and a high utilization factor can be obtained. Examples of the second component having the same effect include PC, EC, DME, and a mixture thereof.

【0014】本発明の負極と組み合わされる正極として
は特に限定される物ではないが、MnO2 、MoO3
2 5 、V6 13、Fe2 3 、Fe3 4 、リチウ
ム含有遷移金属カルコゲン化合物、Li(1-X) Co
2 、Li(1-X) ・NiO2 、TiS2 、MoS3 、F
eS2 、CuF2 、NiF2 等の無機化合物、フッ化カ
ーボン、グラファイト、気相成長炭素繊維及び/または
その粉砕物、ピッチ系炭素繊維及び/またはその粉砕物
等の炭素材料、ポリアセチレン、ポリ−p−フェニレン
等の導電性高分子等があげられる。リチウムを含まない
正極に対しては本発明の負極にリチウムを吸蔵させて用
いる、あるいは本発明の負極に必要量の金属リチウムを
接合して用いるなどして電池をくむことが出来る。しか
し、このような電池は組立時に不活性ガス下で組み立て
ることが必要になるなど、組立工程が煩雑となる。リチ
ウムを含有する遷移金属カルコゲン化合物を用いた場
合、正極、負極共に空気中で安定な放電状態で電池を組
み立てることができ、加工、組立の制約が少なく、更に
電池の短絡等による発熱、爆発等の危険性がなく、安全
上からも好ましい。このようなリチウム含有遷移金属カ
ルコゲン化合物としては、たとえばLi(1-X) Co
2 、Li(1-x) NiO2 、Li(1-x) Co(1-y) Ni
y 2 LiMn2 4 、Li(1-X) Co(1-Y) Y 2
(MはCo、Ni以外の遷移金属、Al、In、Sn等
を表す)が挙げられる。
As a positive electrode combined with the negative electrode of the present invention,
Is not particularly limited, but MnOTwo, MoOThree,
VTwoOFive, V6O13, FeTwoOThree, FeThreeOFour, Lichiu
Transition metal chalcogen compound, Li(1-X)Co
OTwo, Li(1-X)・ NiOTwo, TiSTwo, MoSThree, F
eSTwo, CuFTwo, NiFTwoInorganic compounds such as
Carbon, graphite, vapor grown carbon fiber and / or
The crushed material, pitch-based carbon fiber and / or the crushed material
And other carbon materials, polyacetylene, poly-p-phenylene
And the like. Contains no lithium
For the positive electrode, use the negative electrode of the present invention by absorbing lithium.
Or the required amount of metallic lithium for the negative electrode of the present invention.
A battery can be obtained by using it by bonding. Only
However, such batteries are assembled under inert gas during assembly.
And the assembling process becomes complicated. Lichi
Field using transition metal chalcogen compounds containing
When the battery is assembled in a stable discharge state in air for both the positive and negative electrodes
Can be set up, there are few restrictions on processing and assembly, and
There is no danger of overheating or explosion due to short-circuiting of the battery, etc.
Also preferred from above. Such lithium-containing transition metal
As the lucogen compound, for example, Li(1-X)Co
OTwo, Li(1-x)NiOTwo, Li(1-x)Co(1-y)Ni
yOTwoLiMnTwoOFour, Li(1-X)Co(1-Y)MYOTwo
(M is a transition metal other than Co and Ni, Al, In, Sn, etc.
Represents).

【0015】本発明に用いられる電解質は特に限定する
ものではないが、LiBF4 、LiAsF6 、LiPF
6 、LiClO4 、CF3 SO3 Li、LiI、LiA
lCl4 、NaClO4 、NaBF4 、NaI、(n−
Bu)4 NClO4 、(n−Bu)4 NBF4 、KPF
6 等が用いられ、これらのうちでも電池性能及び取扱上
の安全性や毒性などの観点からLiBF4 が好ましい。
Although the electrolyte used in the present invention is not particularly limited, LiBF 4 , LiAsF 6 , LiPF
6 , LiClO 4 , CF 3 SO 3 Li, LiI, LiA
lCl 4 , NaClO 4 , NaBF 4 , NaI, (n-
(Bu) 4 NCLO 4 , (n-Bu) 4 NBF 4 , KPF
6 and the like, among which LiBF 4 is preferable from the viewpoints of battery performance, safety in handling and toxicity.

【0016】更に本発明の黒鉛を用いて電極を構成する
際、集電体、合材等を用いることがあるが、集電体とし
てはCu、Ni等が用いられ、合剤としてはテフロン、
ポリエチレン、ニトリルゴム、ポリブタジエン、ブチル
ゴム、ポリスチレン、スチレン/ブタジエンゴム、多硫
化ゴム、ニトロセルロース、シアノエチルセルロース及
びアクリロニトリル、フッ化ビニル、フッ化ビニリデ
ン、クロロプレン等の重合体などが用いられる。またこ
の電極を形成する方法として電極活物質と有機重合体を
混合し、圧縮成型する方法、有機重合体の溶剤溶液に電
極活物質を分散したのち、塗工乾燥する方法、有機重合
体の水性あるいは油性分散体に電極活物質を分散した
後、塗工乾燥する方法等が知られているが、特に限定す
るものではないが、バインダーの分布が不均一になると
好ましくないので、好ましくは有機重合体の水性あるい
は油性分散体に電極活物質を分散した後、塗工乾燥する
方法、更に好ましくは有機重合体に0.5ミクロン以下
の粒子を含む非フッ素系有機重合体を用いるのがよい。
Further, when an electrode is formed using the graphite of the present invention, a current collector, a mixture, or the like may be used. Cu, Ni, or the like is used as the current collector, and Teflon, a mixture, or the like is used as the mixture.
Polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, and polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, and chloroprene are used. Further, as a method of forming the electrode, a method of mixing an electrode active material and an organic polymer, compression molding, a method of dispersing the electrode active material in a solvent solution of the organic polymer, a method of coating and drying, a method of forming an aqueous solution of the organic polymer, Alternatively, a method of dispersing the electrode active material in an oily dispersion, followed by coating and drying is known, but is not particularly limited, but it is not preferable if the distribution of the binder becomes non-uniform. A method in which the electrode active material is dispersed in the combined aqueous or oily dispersion, followed by coating and drying, more preferably a non-fluorinated organic polymer containing 0.5 μm or less particles in the organic polymer.

【0017】又、電池の構成要素として、要すればセパ
レーター、端子、絶縁板等の部品が用いられる。
If necessary, components such as a separator, a terminal and an insulating plate are used as components of the battery.

【0018】[0018]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するがこれに限定されるものではない。又実施例
1から実施例10及び比較例1から比較例8までは負極
単独の性能を見るため対極にリチウム金属を用いた。こ
の場合、慣用的には炭素質負極は正極となるが放電時に
リチウムイオンを受け取り還元されるためここでは負極
と呼び、還元方向を充電と呼ぶことにした尚、表1〜表
4で電流効率は放電電気量/充電電気量、利用率は放電
電気量/負極活物質重量当りの電気量(12gを964
85クーロンとする)、数字はサイクル数、容量は放電
電気量/正極と負極の合計重量を示す。サイクル10、
サイクル100はそれぞれ10サイクル、100サイク
ル目の1サイクル目の放電容量に対する放電容量の比率
を表す。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but it should not be construed that the invention is limited thereto. In Examples 1 to 10 and Comparative Examples 1 to 8, lithium metal was used as a counter electrode in order to observe the performance of the negative electrode alone. In this case, the carbonaceous negative electrode is conventionally used as a positive electrode. However, the negative electrode is referred to as a negative electrode here, and the reduction direction is referred to as charging. Is the amount of discharged electricity / the amount of charged electricity, and the utilization factor is the amount of discharged electricity / the amount of electricity per negative electrode active material weight (12 g is 964).
The number is the number of cycles, and the capacity is the amount of discharged electricity / total weight of the positive electrode and the negative electrode. Cycle 10,
Cycle 100 represents the ratio of the discharge capacity to the discharge capacity in the first cycle of the 10th cycle and the 100th cycle, respectively.

【0019】[0019]

【実施例1】グラファイト(Lonza製 KS6、d
002=0.3355nm、Lc>100nm)100重
量部に対し、スチレン/ブタジエンラテックス(旭化成
(株)製 L1571)(固形分48重量%)4.17
重量部、増粘剤としてカルボキシメチルセルロース(第
一工業製薬社製 BSH12)水溶液(固形分1重量
%)130重量部、水30重量部を加え混合し、塗工液
とした。10μmCu箔を基材としてこの塗工液を塗布
乾燥し、厚さ100μm、93g/m2の負極電極を得
た。 上記負極を1cmX1cmの部分を残し剥離し、
第一図に示す作用極とした。 一方、対極としてはSU
SネットにLi金属を圧着したものを用い、参照極はリ
チウム金属を用いた。以上の電極をArガス雰囲気下で
電解液に1MLiBF4を溶解したγ−BLを用い第一
図の電池を組み立てた。この電池を1mAで10mVま
で定電圧充電し、1mAで1Vまで定電流で放電するサ
イクルを繰り返した。この電池の充放電サイクルに於け
る電流効率は表1の通りである。
Example 1 Graphite (KS6, d manufactured by Lonza)
Styrene / butadiene latex (L1571 manufactured by Asahi Kasei Corporation) (solid content 48% by weight) 4.17 with respect to 100 parts by weight of 002 = 0.3355 nm, Lc> 100 nm).
Parts by weight, aqueous solution of carboxymethylcellulose (BSH12 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
%) 130 parts by weight of water and 30 parts by weight of water were added and mixed to obtain a coating liquid. This coating solution was applied and dried using a 10 μm Cu foil as a base material to obtain a negative electrode having a thickness of 100 μm and 93 g / m 2 . The negative electrode is peeled off leaving a 1 cm × 1 cm portion,
The working electrode shown in FIG. On the other hand, the counter electrode is SU
An S net with Li metal pressed was used, and a reference electrode was made of lithium metal. The battery shown in FIG. 1 was assembled by using γ-BL obtained by dissolving 1 M LiBF 4 in an electrolytic solution for the above electrodes in an Ar gas atmosphere. This battery was repeatedly charged at a constant voltage of 1 mA to 10 mV and discharged at a constant current of 1 mA to 1 V. The current efficiency in the charge / discharge cycle of this battery is as shown in Table 1.

【0020】[0020]

【実施例2】電解液としてγ−BLの代わりにEC+γ
−BL(容積比1:9)を用いたほかは実施例1と同様
に行った。結果を表1に示す。
Example 2 EC + γ instead of γ-BL as electrolyte
The same operation as in Example 1 was performed except that -BL (volume ratio 1: 9) was used. Table 1 shows the results.

【0021】[0021]

【実施例3】電解液としてEC+γ−BL(容積比1:
3)を用いたほかは実施例1と同様に行った。結果を表
1に示す。
Example 3 EC + γ-BL (volume ratio 1:
The procedure was performed in the same manner as in Example 1 except that 3) was used. Table 1 shows the results.

【0022】[0022]

【実施例4】電解液としてPC+γ−BL(容積比2
7.5:72.5)を用いたほかは実施例1と同様に行
った。結果を表1に示す。
Embodiment 4 PC + γ-BL (volume ratio 2)
7.5: 72.5), except that Example 1 was used. Table 1 shows the results.

【0023】[0023]

【比較例1】電解液としてPCを用いたほかは実施例1
と同様に行った。結果を表1に示す。
Comparative Example 1 Example 1 was repeated except that PC was used as the electrolytic solution.
The same was done. Table 1 shows the results.

【0024】[0024]

【比較例2】電解液としてEC+PC(容積比28:7
2)を用いたほかは実施例1と同様に行った。結果を表
1に示す。
Comparative Example 2 EC + PC (volume ratio: 28: 7) as electrolyte
The procedure was performed in the same manner as in Example 1 except that 2) was used. Table 1 shows the results.

【0025】[0025]

【比較例3】電解液としてEC+PC(容積比50:5
0)を用いたほかは実施例1と同様に行った。結果を表
1に示す。
Comparative Example 3 EC + PC (volume ratio 50: 5) as electrolyte
0) was performed in the same manner as in Example 1. Table 1 shows the results.

【0026】[0026]

【比較例4】電解液としてPC+γ−BL(容積比7
1:29)を用いたほかは実施例1と同様に行った。結
果を表1に示す。
Comparative Example 4 PC + γ-BL (volume ratio 7
1:29) was performed in the same manner as in Example 1. Table 1 shows the results.

【0027】[0027]

【実施例5】黒鉛化負極炭素質材料としてVGCF(気
相成長炭素繊維 d002 =0.351nm、Lc=4.
5nm)を2700℃で熱処理を行ない、d002 =0.
336nm、Lc=26nmの試料を得た。この10m
gをSUS製ネットで挟み、これを負極電極とした以外
は実施例1と同様に行った。結果を表2に示す。
Embodiment 5 As a graphitized negative electrode carbonaceous material, VGCF (vapor-grown carbon fiber d 002 = 0.351 nm, Lc = 4.
5 nm) at 2700 ° C., and d 002 = 0.
A sample with 336 nm and Lc = 26 nm was obtained. This 10m
g was sandwiched between SUS nets and used as a negative electrode, in the same manner as in Example 1. Table 2 shows the results.

【0028】[0028]

【比較例5】電解液にPCを用いたほかは実施例5と同
様に行った。結果を表2に示す。
Comparative Example 5 The same operation as in Example 5 was carried out except that PC was used as the electrolytic solution. Table 2 shows the results.

【0029】[0029]

【実施例6】負極炭素質材料としてニードルコークス
(d002=0.344nm、Lc=5.2nm)を平均
粒径10μmに粉砕したものを50重量部、グラファイ
ト(KS6)50重量部を用い、電解質に1MLiCl
4を用いたほかは実施例1と同様に行った。結果を表
2に示す。
Example 6 As a negative electrode carbonaceous material, 50 parts by weight of needle coke (d 002 = 0.344 nm, Lc = 5.2 nm) pulverized to an average particle size of 10 μm and 50 parts by weight of graphite (KS6) were used. 1M LiCl for electrolyte
The procedure was performed in the same manner as in Example 1 except that O 4 was used. Table 2 shows the results.

【0030】[0030]

【比較例6】負極炭素質材料としてニードルコークスを
平均粒径10μmに粉砕したものを用い、電解質に1M
LiClO4を用いたほかは実施例1と同様に行った。
結果を表2に示す。
Comparative Example 6 Needle coke pulverized to an average particle diameter of 10 μm was used as a negative electrode carbonaceous material, and 1 M was used as an electrolyte.
The operation was performed in the same manner as in Example 1 except that LiClO 4 was used.
Table 2 shows the results.

【0031】[0031]

【比較例7】電解液に1MLiClO4 を溶解したPC
を用いた他は実施例6と同様に行った。結果を表2に示
す。
Comparative Example 7 PC in which 1 M LiClO 4 was dissolved in an electrolytic solution
Was performed in the same manner as in Example 6 except for using. Table 2 shows the results.

【0032】[0032]

【実施例7】負極炭素質材料に粒径15μm(15μm
以下95%)のグラファイト(Lonza製 KS1
5、d002=0.3355nm、Lc>100nm)を
用いたほかは実施例1と同様に行った。結果を表2に示
す。
Example 7 A particle size of 15 μm (15 μm
95% of graphite (KS1 manufactured by Lonza)
5, d 002 = 0.3355 nm, Lc> 100 nm). Table 2 shows the results.

【0033】[0033]

【実施例8】負極炭素質材料に粒径75μm(75μm
以下95%)のグラファイト(Lonza製 KS7
5、d002=0.3355nm、Lc>100nm)を
用いたほかは実施例1と同様に行った。結果を表2に示
す。実施例9〜実施例14及び比較例8〜比較例11で
は正極としてリチウム含有カルコゲン化合物を組み合わ
せた電池の例について示す。
Embodiment 8 A negative carbonaceous material having a particle size of 75 μm (75 μm
95% of graphite (KS7 manufactured by Lonza)
5, d 002 = 0.3355 nm, Lc> 100 nm). Table 2 shows the results. Examples 9 to 14 and Comparative Examples 8 to 11 show examples of batteries in which a lithium-containing chalcogen compound is combined as a positive electrode.

【0034】[0034]

【実施例9】粒径3μmのLiCoO2100重量部に
対し、導電フィラーとしてグラファイト(KS6)20
重量部、バインダーとしてポリフッ化ビニリデン5%溶
液100重量部を加え混合し、塗工液とした。15μm
Al箔を基材としてこの塗工液を塗布乾燥し、厚さ12
0μm、370g/m2の正極電極を得た。上記正極と
実施例1で得た負極(93g/m2)を1cmX1cm
に切り出し、図2に示す電池を組み立てた。電解液には
γ−BL(電解質1MLiBF4)を用いた。この電池
を5mAで4.2Vまで定電圧充電し、5mAで2.7
Vまで定電流で放電するサイクルを繰り返した。この電
池の充放電サイクルにおける電流効率は表3の通りであ
る。
Example 9 100 parts by weight of LiCoO 2 having a particle size of 3 μm were mixed with graphite (KS6) 20 as a conductive filler.
100 parts by weight of a 5% polyvinylidene fluoride solution as a binder were added and mixed to obtain a coating liquid. 15 μm
This coating liquid is applied and dried using an Al foil as a base material to a thickness of 12
A positive electrode of 0 μm and 370 g / m 2 was obtained. The above positive electrode and the negative electrode (93 g / m 2 ) obtained in Example 1 were 1 cm × 1 cm
The battery shown in FIG. 2 was assembled. Γ-BL (electrolyte 1M LiBF 4 ) was used as the electrolyte. This battery was charged at a constant voltage to 4.2 V at 5 mA, and 2.7 at 5 mA.
The cycle of discharging at a constant current to V was repeated. Table 3 shows the current efficiency in the charge / discharge cycle of this battery.

【0035】[0035]

【実施例10】電解液にEC+γ−BL(容積比1:9
9)を用いたほかは実施例9と同様に行った。結果を表
3に示す。
Example 10 EC + γ-BL (volume ratio 1: 9)
The procedure was performed in the same manner as in Example 9 except that 9) was used. Table 3 shows the results.

【0036】[0036]

【実施例11】電解液にEC+γ−BL(容積比1:
9)を用いたほかは実施例9と同様に行った。結果を表
3に示す。
Embodiment 11 EC + γ-BL (volume ratio 1:
The procedure was performed in the same manner as in Example 9 except that 9) was used. Table 3 shows the results.

【0037】[0037]

【実施例12】電解液にEC+γ−BL(容積比1:
3)を用いたほかは実施例9と同様に行った。結果を表
3に示す。
Example 12 EC + γ-BL (volume ratio 1:
The procedure was performed in the same manner as in Example 9 except that 3) was used. Table 3 shows the results.

【0038】[0038]

【比較例8】電解液にEC+γ−BL(容積比3:1)
を用いたほかは実施例11と同様に行った。結果を表3
に示す。
Comparative Example 8 EC + γ-BL (volume ratio 3: 1) was used as the electrolyte.
Was performed in the same manner as in Example 11 except that Table 3 shows the results
Shown in

【0039】[0039]

【比較例9】電解液にPCを用いたほかは実施例9と同
様に行った。結果を表3に示す。表3からγ−BL単独
では電流効率は低いが添加成分の効果によりγ−BLが
主体の系では電流効率が高いのが明かである。次に負極
の容量、サイクル性を比較するため、電流効率に応じて
正極、負極の目付け比を変えて比較した。
Comparative Example 9 The same operation as in Example 9 was carried out except that PC was used as the electrolytic solution. Table 3 shows the results. From Table 3, it is clear that the current efficiency is low when γ-BL alone is used, but the current efficiency is high in a system mainly composed of γ-BL due to the effect of the added component. Next, in order to compare the capacity and cycleability of the negative electrode, the comparison was performed by changing the basis weight ratio of the positive electrode and the negative electrode according to the current efficiency.

【0040】[0040]

【実施例13】正極400g/m2 、負極93g/m2
を用いた他は実施例10と同様に行った。結果を表4に
示す。
Embodiment 13 Positive electrode 400 g / m 2 , negative electrode 93 g / m 2
Was performed in the same manner as in Example 10 except for using. Table 4 shows the results.

【0041】[0041]

【実施例14】正極360g/m2 、負極93g/m2
を用いた他は実施例11と同様に行った。結果を表4に
示す。
Example 14 Positive electrode: 360 g / m 2 , Negative electrode: 93 g / m 2
The procedure was performed in the same manner as in Example 11 except for using. Table 4 shows the results.

【0042】[0042]

【実施例15】正極350g/m2 、負極93g/m2
を用いた他は実施例12と同様に行った。結果を表4に
示す。
Embodiment 15 Positive electrode 350 g / m 2 , negative electrode 93 g / m 2
Was performed in the same manner as in Example 12 except for using. Table 4 shows the results.

【0043】[0043]

【比較例10】正極700g/m2 、負極93g/m2
を用いた他は比較例8と同様に行った。結果を表4に示
す。
Comparative Example 10 Positive electrode 700 g / m 2 , Negative electrode 93 g / m 2
Was performed in the same manner as in Comparative Example 8 except that was used. Table 4 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【発明の効果】本発明の負極(炭素網面の面間隔d002
が0.337nm未満の黒鉛質を含有する炭素質材料)
とγ−ブチロラクトンを50容積%以上含有する電解液
及び各種の正極との組合せにより、電流効率が大きく、
かつ容量の大きい非水系二次電池が得られる。
According to the present invention, the negative electrode of the present invention (the spacing d002 between carbon net faces)
Is a carbonaceous material containing less than 0.337 nm of graphite
And a combination of an electrolyte containing 50% by volume or more of γ-butyrolactone and various kinds of positive electrodes have high current efficiency,
In addition, a non-aqueous secondary battery having a large capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明の電池の構成例の断面図であ
る。
FIG. 1 is a cross-sectional view of a configuration example of a battery of the present invention.

【図2】第2図は本発明の電池の構成例の断面図であ
る。
FIG. 2 is a cross-sectional view of a configuration example of the battery of the present invention.

【符号の説明】[Explanation of symbols]

1 作用極(炭素質負極) 2 対極(リチウム金属) 3 参照極(リチウム金属) 4 電解液 5 ガラス容器 6 Arガス 7 正極 8 負極 9 集電棒 10 集電棒 11 SUSネット 12 SUSネット 13 外部電極端子 14 外部電極端子 15 電池ケース 16 セパレーター DESCRIPTION OF SYMBOLS 1 Working electrode (carbon negative electrode) 2 Counter electrode (lithium metal) 3 Reference electrode (lithium metal) 4 Electrolyte 5 Glass container 6 Ar gas 7 Positive electrode 8 Negative electrode 9 Current collecting rod 10 Current collecting rod 11 SUS net 12 SUS net 13 External electrode terminal 14 External electrode terminal 15 Battery case 16 Separator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 - 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/58 H01M 4/02-4/04 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充放電可能な正極と有機溶媒系電解液と
炭素質材料を主として活物質とする負極からなる非水系
二次電池において、該負極活物質の炭素質材料は炭素網
面の面間隔d002が0.337nm未満の黒鉛質(ただ
し、ピッチから得られ、(002)面間隔が3.45Å
以下で、かつc軸方向の結晶子の厚みが300Å以上の
炭素化メソフェーズ小球体を除く)を含有しかつ有機溶
媒系電解液がγ−ブチロラクトンを50容積%以上含有
することを特徴とする非水系二次電池。
1. A rechargeable positive electrode and organic solvent-based non-aqueous secondary battery comprising the electrolyte and a carbonaceous material from the negative electrode mainly the active material, the carbonaceous material of the negative electrode active material surface of the carbon net plane Graphite with a spacing d 002 of less than 0.337 nm ( but
And (002) plane spacing is 3.45 °
Or less, and the thickness of the crystallite in the c-axis direction is 300 ° or more.
A non-aqueous secondary battery characterized in that the organic solvent-based electrolyte contains 50% by volume or more of γ-butyrolactone ( excluding carbonized mesophase spheres) .
【請求項2】 前記負極が、有機重合体の水性あるいは
油性分散体に前記負極活物質を分散した後に塗工乾燥す
る方法で作成された負極であることを特徴とする請求項
1記載の非水系二次電池。
2. The method according to claim 1, wherein the negative electrode is an aqueous solution of an organic polymer.
After the negative electrode active material is dispersed in the oily dispersion, coating and drying are performed.
The negative electrode produced by a method according to claim
2. The non-aqueous secondary battery according to 1.
JP10917791A 1991-05-14 1991-05-14 Non-aqueous secondary battery Expired - Lifetime JP3178730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10917791A JP3178730B2 (en) 1991-05-14 1991-05-14 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10917791A JP3178730B2 (en) 1991-05-14 1991-05-14 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH04337247A JPH04337247A (en) 1992-11-25
JP3178730B2 true JP3178730B2 (en) 2001-06-25

Family

ID=14503612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10917791A Expired - Lifetime JP3178730B2 (en) 1991-05-14 1991-05-14 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3178730B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557240B2 (en) * 1993-04-28 2004-08-25 ソニー株式会社 Non-aqueous electrolyte secondary battery
TW431004B (en) 1998-10-29 2001-04-21 Toshiba Corp Nonaqueous electrolyte secondary battery
TW439309B (en) * 1999-01-22 2001-06-07 Toshiba Corp Nonaquous electrolyte secondary battery
JP3351765B2 (en) * 1999-07-29 2002-12-03 株式会社東芝 Non-aqueous electrolyte secondary battery
JP4517440B2 (en) 2000-03-10 2010-08-04 ソニー株式会社 Lithium ion solid electrolyte secondary battery
JP2002110250A (en) * 2000-09-27 2002-04-12 At Battery:Kk Non-aqueous electrolyte secondary battery
JP2020087584A (en) * 2018-11-20 2020-06-04 日本電信電話株式会社 Lithium secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPH04337247A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
US5352548A (en) Secondary battery
US5612155A (en) Lithium ion secondary battery
JP2940172B2 (en) Non-aqueous electrolyte secondary battery
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JPH05121066A (en) Negative electrode for nonaqueous battery
JP3046055B2 (en) Non-aqueous secondary battery
WO1997001191A2 (en) Nonaqueous battery with cathode active material mixture
JP3236400B2 (en) Non-aqueous secondary battery
JP3178730B2 (en) Non-aqueous secondary battery
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JP2943287B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0636760A (en) Nonaqueous electrolyte secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
JP3140880B2 (en) Lithium secondary battery
JPH11288718A (en) Nonaqueous solvent secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH0620721A (en) Nonaqueous secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JP3232128B2 (en) Non-aqueous electrolyte secondary battery
JPH0652897A (en) Nonaqueous carbonaceous secondary battery
JPH06150931A (en) Negative electrode for secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH06267590A (en) High performance nonaqueous secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11