JPH05121066A - Negative electrode for nonaqueous battery - Google Patents
Negative electrode for nonaqueous batteryInfo
- Publication number
- JPH05121066A JPH05121066A JP3308239A JP30823991A JPH05121066A JP H05121066 A JPH05121066 A JP H05121066A JP 3308239 A JP3308239 A JP 3308239A JP 30823991 A JP30823991 A JP 30823991A JP H05121066 A JPH05121066 A JP H05121066A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- graphite
- carbonaceous material
- battery
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電解液として有機溶媒を
含む高容量の非水電池、特に非水二次電池負極に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity non-aqueous battery containing an organic solvent as an electrolytic solution, and more particularly to a non-aqueous secondary battery negative electrode.
【0002】[0002]
【従来の技術】有機溶媒を電解液とした非水二次電池の
負極として炭素質材料を用いることは公知である。電極
として用いられる炭素質材料はその電気化学的性質から
大きく次の三つに分類される。2. Description of the Related Art It is known to use a carbonaceous material as a negative electrode of a non-aqueous secondary battery using an organic solvent as an electrolytic solution. The carbonaceous materials used as electrodes are roughly classified into the following three types based on their electrochemical properties.
【0003】第一はグラファイトに代表される炭素網面
の間隔が狭く(d002 <0.337nm)、結晶子が炭
素網面及び網面の積層方向に成長したものである。この
ような炭素材料は陽イオン、陰イオンどちらもその炭素
網面間にドーピングし、層状化合物を形成することが知
られており、導電材料、有機合成反応触媒や電池として
の応用も考えられている。The first is that the distance between carbon mesh planes represented by graphite is narrow (d 002 <0.337 nm), and crystallites grow in the stacking direction of the carbon mesh planes and mesh planes. It is known that such a carbon material is doped with both cations and anions between the carbon network planes to form a layered compound, and is considered to be applied as a conductive material, an organic synthesis reaction catalyst or a battery. There is.
【0004】グラファイトを電池の負極として用いるこ
とは特開昭57−208079号公報、特開昭58−1
92266号公報、特開昭59−143280号公報、
特開昭60−54181号公報、特開昭60−1826
70号公報、特開昭60−221973号公報、特開昭
61−7567号公報、特開平1−311565号公報
などに提案されている。The use of graphite as the negative electrode of a battery is disclosed in JP-A-57-208079 and JP-A-58-1.
92266, JP-A-59-143280,
JP-A-60-54181, JP-A-60-1826
70, JP 60-221973 A, JP 61-7567 A, JP 1-311565 A, and the like.
【0005】これらの特許には、使用できる有機溶媒と
してプロピレンカーボネイト(以下PCと略記す)、テ
トラヒドロフラン(以下THFと略記す)、ガンマブチ
ロラクトン(以下γ−BLと略記す)、1,2−ジメト
キシエタン(以下DMEと略記す)、スルホランなどが
記載されている。実施例としては、LiClO4 あるい
はLiBF4 を用い、代表的溶媒としてPCあるいはT
HFを用いている。混合溶媒を用いた例としては特開昭
57−208079号公報にPC/DMEが開示されて
いる。In these patents, propylene carbonate (hereinafter abbreviated as PC), tetrahydrofuran (hereinafter abbreviated as THF), gammabutyrolactone (hereinafter abbreviated as γ-BL), 1,2-dimethoxy as organic solvents that can be used. Ethane (hereinafter abbreviated as DME), sulfolane and the like are described. As an example, LiClO 4 or LiBF 4 is used, and PC or T is used as a typical solvent.
HF is used. As an example using a mixed solvent, PC / DME is disclosed in JP-A-57-208079.
【0006】ところが、電解質としてLiClO4 ある
いはLiBF4 、溶媒としてPCを用い、グラファイト
で充放電を試みてみると、PCが反応しつづけ、充放電
することがなかった。また、LiBF4 を電解質とし、
混合溶媒であるPC/DEMを用い、グラファイトを電
極として充放電を試みてみると、充放電は出来るが、電
流効率が極めて低く実用的でないことが分かった。However, when LiClO 4 or LiBF 4 was used as the electrolyte and PC was used as the solvent, an attempt was made to charge and discharge with graphite, but the PC continued to react and was not charged or discharged. Also, using LiBF 4 as an electrolyte,
When using PC / DEM as a mixed solvent and attempting charge / discharge using graphite as an electrode, it was found that charge / discharge is possible, but the current efficiency is extremely low and not practical.
【0007】グラファイトは陽イオンとしてリチウムを
ドーピングする時、ドープ量(炭素当たりのリチウム吸
蔵量)は16.7%と多いのであるが、電池の負極とし
て利用しようとしたときには前述のごとく電気化学的に
有効にリチウムを吸蔵・放出することが出来ない。この
ことはジャーナル・オブ・エレクトロケミカル・ソサイ
エティ(J.Electrochem.Soc.)第1
17巻、222頁(1970年)や特開昭63−255
5号公報の比較例1に記載のごとく、グラファイトにリ
チウムイオンが吸蔵された層状化合物は有機溶媒に対す
る反応性が高く、電極として働くよりも電解液との反応
が優先して起き、電極としての利用価値は低いものであ
る。When graphite is doped with lithium as a cation, the doping amount (lithium storage amount per carbon) is as large as 16.7%, but when it is intended to be used as a negative electrode of a battery, it is electrochemically charged as described above. It cannot effectively absorb and release lithium. This is the first issue of the Journal of Electrochemical Society (J. Electrochem. Soc.).
Volume 17, page 222 (1970) and JP-A-63-255.
As described in Comparative Example 1 of Japanese Patent Laid-Open No. 5 publication, the layered compound in which lithium ions are occluded in graphite has a high reactivity with an organic solvent, and the reaction with the electrolytic solution takes precedence over the function as the electrode, and the layered compound as the electrode The utility value is low.
【0008】第二のグループは、活性炭に代表されるき
わめて表面積(SA>100m2 /g)が大きく炭素網
面の間隔も広い(d002 >0.337nm)ものであ
る。このタイプは表面吸着量が多いために、ドープ量は
大きいが電流効率が低く、サイクル性も低い。The second group is a group having a very large surface area (S A > 100 m 2 / g) represented by activated carbon and a large spacing between carbon mesh planes (d 002 > 0.337 nm). Since this type has a large surface adsorption amount, the doping amount is large, but the current efficiency is low and the cycleability is low.
【0009】第三のグループは、炭素網面はある程度成
長しているが第一グループと比べて炭素網面の間隔が広
い(d002 >0.337nm)ものである。このグルー
プはその構造により種々の電気化学的特性を示すが、第
一グループと異なり、殆ど電解液と反応することなくリ
チウムを吸蔵できる。しかしながら、そのドープ量(炭
素当たりのリチウム吸蔵量)は第一グループと比較する
と小さい。In the third group, the carbon network planes have grown to some extent, but the spacing between the carbon network planes is wider (d 002 > 0.337 nm) than in the first group. This group shows various electrochemical characteristics depending on its structure, but unlike the first group, it can occlude lithium with almost no reaction with the electrolytic solution. However, the doping amount (lithium storage amount per carbon) is smaller than that of the first group.
【0010】一方、グラファイトが負極として用いられ
ている例が米国特許第4,423,125号明細書、及
びジャーナル・オブ・エレクトロケミカル・ソサイエテ
ィ(J.Electrochem.Soc.)第137
巻、2009頁(1990年)に記載されており、該米
国特許第4,423,125号明細書では、電解液にジ
オキソランを用いている。ジオキソランは化学的に不安
定であり、また電気化学的にも3.5V以上では電解液
の重合が起き、正極に高い電圧の活物質を用いることが
出来ず不都合である。On the other hand, examples in which graphite is used as a negative electrode are US Pat. No. 4,423,125 and Journal of Electrochemical Society (J. Electrochem. Soc.) 137.
Vol. 2009 (1990), U.S. Pat. No. 4,423,125 uses dioxolane as an electrolyte. Dioxolane is chemically unstable, and also electrochemically at 3.5 V or higher, polymerization of the electrolytic solution occurs, and it is not possible to use a high-voltage active material for the positive electrode, which is disadvantageous.
【0011】ジャーナル・オブ・エレクトロケミカル・
ソサイエティ(J.Electrochem.So
c.)第137巻、2009頁(1990年)では、グ
ラファイトあるいは石油コークスを電極とし、電解液に
PC/EC(エチレンカーボネート)を用いた電気化学
的リチウムインターカレーションについて記述されてい
る。Journal of Electrochemicals
Society (J. Electrochem. So
c. ) Vol. 137, 2009 (1990) describes electrochemical lithium intercalation using graphite or petroleum coke as an electrode and PC / EC (ethylene carbonate) as an electrolyte.
【0012】石油コークスでは初充電時に起こる副反応
は表面積に依存するのに対し、グラファイトでは初充電
時に表面積に依存する副反応のほかに表面積に依存しな
い副反応が起こるために、初回の電流効率が低いと記載
されている。このような系で電池を組み立てた場合、初
回の電流効率が低いために、多くの正極を必要とし、電
池としての正極の活物質当たりの利用率を上げられない
ために、高容量化が困難である。In petroleum coke, the side reaction that occurs during the initial charge depends on the surface area, whereas in graphite, the side reaction that does not depend on the surface area occurs in addition to the side reaction that depends on the surface area during the initial charge. Is stated to be low. When a battery is assembled in such a system, a large number of positive electrodes are needed because the initial current efficiency is low, and it is difficult to increase the capacity because the utilization rate of the positive electrode as an active material per battery cannot be increased. Is.
【0013】このため、高容量化のために正極、負極と
もに充電状態(負極カーボンにリチウムを吸蔵させ、正
極はリチウムを受け取るサイトが空となっいてる状態)
のものを組み立てるという方法が採られることがある
が、充電状態の電極は著しく反応性が高いために安全上
の問題が生じたり、不活性ガス下で電池を組み立てるな
ど煩雑な工程をとる必要があったりで実用的でない。Therefore, in order to increase the capacity, both the positive electrode and the negative electrode are in a charged state (a state in which the negative electrode carbon absorbs lithium and the positive electrode has an empty site for receiving lithium).
However, it is necessary to take complicated steps such as assembling a battery under an inert gas because a charged electrode has extremely high reactivity and a safety problem occurs. It's out of the ordinary and not practical.
【0014】さらに、この論文に記載の系では2サイク
ル以降も継続して副反応が起こり、電流効率は100%
にならないことを記載している。電流効率の高いことは
電池のサイクル性に特に重要である。負極の電流効率が
低い場合に一定容量の放電を行うためには、正極に常に
放電容量以上の充電量が必要となり、次第に正極に負担
がかかり、ついには正極の過充電状態となり、容量の低
下をもたらす。また、正極が過充電にならないように正
極に対して定容量充電を行えば、電流効率が低いのでサ
イクルを繰り返すことにより容量の低下をもたらす。Furthermore, in the system described in this paper, side reactions continue to occur even after 2 cycles, and the current efficiency is 100%.
It states that it does not become. High current efficiency is especially important for battery cycleability. In order to discharge a certain capacity when the current efficiency of the negative electrode is low, the positive electrode always needs to have a charge amount equal to or greater than the discharge capacity, and the positive electrode is gradually overloaded, and eventually the positive electrode becomes overcharged and the capacity decreases. Bring Further, if constant-capacity charging is performed on the positive electrode so that the positive electrode does not become overcharged, the current efficiency is low, so that the capacity is reduced by repeating the cycle.
【0015】第三グループに属する2種の炭素質を混合
して負極とする方法も特開平1−311565号公報で
開示されている。d002 が0.3354〜0.3400
nmの炭素質とd002 が0.343〜0.355nmの
炭素質との混合物を負極として用いることを提案してい
る。実施例でみると、これらの炭素質は気相熱分解方法
で合成されたものであり、d002が0.339nmと
0.356nmの混合物であり、その容量はd002 が
0.337nm未満である人工黒鉛のリチウムドープ量
から得られる容量より小さい。A method of mixing two kinds of carbonaceous substances belonging to the third group to form a negative electrode is also disclosed in Japanese Patent Laid-Open No. 1-311565. d 002 is 0.3354 to 0.3400
carbonaceous and d 002 of nm has proposed using a mixture of carbonaceous 0.343~0.355nm as the negative electrode. As seen in the examples, these carbonaceous materials were synthesized by a gas phase pyrolysis method, and had a mixture of d 002 of 0.339 nm and 0.356 nm, and had a capacity of d 002 of less than 0.337 nm. It is smaller than the capacity obtained from the lithium doping amount of certain artificial graphite.
【0016】一方、特開平1−311565号公報で用
いられるのと同じ電解液中でd002 が0.3355nm
の人工黒鉛とd002 が0.345nmのニードルコーク
スを混合して負極とした電池で充放電実験を試してみる
と、初回に溶媒の反応が起こりつづけ、ほとんど充放電
できなかった。On the other hand, d 002 is 0.3355 nm in the same electrolyte as used in JP-A 1-311565.
When a charge / discharge experiment was tried with a battery in which the artificial graphite and the needle coke having a d 002 of 0.345 nm were mixed and used as a negative electrode, the reaction of the solvent continued to occur for the first time, and almost no charge / discharge was possible.
【0017】特開昭3−129664号公報ではd002
のピークの半値幅が1°以下の微細繊維状黒鉛あるいは
該微細繊維状黒鉛と炭素材料を含有する負極が開示され
ており、これらの微細繊維状黒鉛のd002 は実施例から
0.339nm、0.340nmなどであり、d002 が
0.337nm未満の人工黒鉛にくらべると容量が少な
い。また、人工黒鉛を負極として用いた場合には初回に
ほとんど充放電できないことが記載されている。In Japanese Patent Laid-Open No. 3-129664, d 002 is used.
Is disclosed a fine fibrous graphite having a half-value width of the peak of 1 ° or less or a negative electrode containing the fine fibrous graphite and a carbon material. The d 002 of these fine fibrous graphites is 0.339 nm from the examples. For example, the capacity is 0.340 nm, and the capacity is smaller than that of artificial graphite having d 002 of less than 0.337 nm. It is also described that when artificial graphite is used as the negative electrode, almost no charge / discharge can be performed at the first time.
【0018】いずれにしても高容量でサイクル特性がよ
い二次電池を得るために、負極に要求されることは組立
時に電極が安定であり、電流効率が高く、ドープ量が大
きいことである。従来の電解液系においては炭素質材料
の第一グループは電解液と反応するため、第二グループ
は電流効率が小さいために、利用価値が低く、第三グル
ープは一部に電流効率がよいものもあるが、これも利用
率(炭素原子当たりのリチウム吸蔵量)が10%程度で
あり、電池の高容量化のために、ドープ量が更に大き
く、電流効率のよい負極材料が望まれていた。In any case, in order to obtain a secondary battery having a high capacity and good cycle characteristics, what is required for the negative electrode is that the electrode is stable during assembly, the current efficiency is high, and the doping amount is large. In the conventional electrolyte system, the first group of carbonaceous materials reacts with the electrolyte solution, the second group has low current efficiency, so the utility value is low, and the third group has partially good current efficiency. However, this also has a utilization rate (amount of lithium absorbed per carbon atom) of about 10%, and in order to increase the capacity of the battery, a negative electrode material having a larger doping amount and good current efficiency has been desired. ..
【0019】[0019]
【発明が解決しようとする課題】本発明の課題は、非水
電池、特に非水系二次電池の高容量化のためにドープ量
が大きく、電流効率のよい特定の炭素質材料を用いた負
極を提供することを目的とするものである。DISCLOSURE OF THE INVENTION An object of the present invention is to provide a negative electrode using a specific carbonaceous material having a large doping amount and a high current efficiency in order to increase the capacity of a non-aqueous battery, particularly a non-aqueous secondary battery. It is intended to provide.
【0020】[0020]
【課題を解決するための手段】本発明者等は前記課題を
解決するために、負極に用いる炭素質材料と有機溶媒電
解液との組み合わせを鋭意検討したところ、化学的には
多量のリチウムイオンをドーピングできるが、電池の負
極として用いると電解液との反応が優先して有効に充放
電できないとされていた黒鉛を炭素網面の面間隔d002
が黒鉛のd002 より大きい炭素質で被覆すると、PCの
ような電解液でも充放電でき、しかも充放電できる容量
が大きく、かつ電流効率も高いことを見い出し、本発明
を完成するに至った。In order to solve the above problems, the inventors of the present invention have diligently studied a combination of a carbonaceous material used for a negative electrode and an organic solvent electrolyte solution, and found that a large amount of lithium ion Although it doping spacing of use as a negative electrode and graphite hexagonal carbon the reaction has been considered not be effectively charged and discharged with priority with the electrolyte of the battery d 002
It was found that, when graphite is coated with a carbonaceous material having a size larger than d 002 , it can be charged / discharged even with an electrolytic solution such as PC, and has a large chargeable / dischargeable capacity and high current efficiency, and has completed the present invention.
【0021】すなわち、本発明は、電解液として有機溶
媒を含む非水電池の負極であって、負極中の活物質は、
炭素網面の面間隔d002 が0.337nm未満の黒鉛状
炭素質を炭素網面の面間隔d002 が0.337nm以上
の炭素質で被覆してなる複合炭素質であることを特徴と
する、非水電池負極を提供するものである。特に、本発
明は、充放電可能な正極と電解質を含有する有機溶媒系
電解液及び炭素質材料を主として活物質とする負極から
なる非水電池において、該非水電池を構成する負極を、
上記特定の新規な複合炭素質材料とすることを特徴とす
る、非水電池、好ましくは非水二次電池をも提供するも
のである。That is, the present invention is a negative electrode of a non-aqueous battery containing an organic solvent as an electrolytic solution, wherein the active material in the negative electrode is
It is a composite carbonaceous material obtained by coating a graphite-like carbonaceous material having a carbon mesh surface spacing d 002 of less than 0.337 nm with a carbonaceous material having a carbon mesh surface spacing d 002 of 0.337 nm or more. , A non-aqueous battery negative electrode is provided. In particular, the present invention is a non-aqueous battery comprising a chargeable / dischargeable positive electrode, an organic solvent-based electrolytic solution containing an electrolyte, and a negative electrode mainly containing a carbonaceous material as an active material, and a negative electrode constituting the non-aqueous battery,
The present invention also provides a non-aqueous battery, preferably a non-aqueous secondary battery, which is characterized by using the above specific novel composite carbonaceous material.
【0022】以下、本発明を詳細に説明する。本発明で
いう炭素網面の面間隔d002 が0.337nm未満の黒
鉛質とは、例えばグラファイトのごとく炭素網面の積層
が規則正しく積層された炭素質材料のことをいう。炭素
質材料はその出発原料及びその処理(製造)方法により
種々の構造を採るが、いずれの材料も高温処理によりそ
の炭素網面の面間隔d002 は小さくなり、炭素網面の積
層厚みLcは大きくなる傾向にあり、グラファイトは最
も小さい面間隔d002 =0.3354nmを持つ。The present invention will be described in detail below. In the present invention, the graphite having a carbon network plane spacing d 002 of less than 0.337 nm refers to a carbonaceous material in which carbon network planes are regularly laminated, such as graphite. The carbonaceous material has various structures depending on its starting material and its treatment (manufacturing) method. However, in any material, the interplanar spacing d 002 of the carbon mesh plane becomes small due to the high temperature treatment, and the laminated thickness Lc of the carbon mesh plane Graphite tends to be large, and graphite has the smallest interplanar spacing d 002 = 0.3354 nm.
【0023】このd002 の減少及びLcの増加は炭素質
材料により大きく異なり、高温処理(〜3,000℃)
で容易にグラファイト化する易黒鉛化炭素とグラファイ
ト化が進行しにくい(d002 が小さくなり難い)難黒鉛
化炭素に分類される。この炭素質材料のグラファイト化
の際、前出のd002 、Lcの他に密度、表面積、電気抵
抗等も大きく変化するが、層間化合物の形成には特に面
間隔が重要である。The decrease of d 002 and the increase of Lc greatly differ depending on the carbonaceous material, and high temperature treatment (up to 3,000 ° C.)
It is classified into easily graphitized carbon that is easily graphitized by the method and difficultly graphitized carbon (d 002 does not easily become small). During graphitization of this carbonaceous material, the density, surface area, electric resistance, and the like, in addition to the above-mentioned d 002 and Lc, change greatly, but the interplanar spacing is particularly important for the formation of the intercalation compound.
【0024】本発明に用いられるd002 が0.337n
m未満の黒鉛は、出発材料を特に限定しないが、石油ピ
ッチ、コールタールピッチ、熱分解炭素、ニードルコー
クス、縮合多環炭化水素などを一般に2,500℃以
上、より好ましくは3,000℃以上で熱処理すること
で得られる。また、天然に産する黒鉛も本発明に用いる
ことが出来る。D 002 used in the present invention is 0.337n
The starting material of the graphite having a size of less than m is not particularly limited, but petroleum pitch, coal tar pitch, pyrolytic carbon, needle coke, condensed polycyclic hydrocarbon and the like are generally 2,500 ° C. or higher, more preferably 3,000 ° C. or higher. It is obtained by heat treatment in. Also, naturally occurring graphite can be used in the present invention.
【0025】本発明で用いる黒鉛質の炭素網面の積層厚
みLcは特に限定するものではないが、グラファイト化
に関してLcも重要なバラメータであり、好ましくは3
0nm以上、更に好ましくは50nm以上がよい。30
nm未満では利用率が低くなり易い。また、その表面積
も特に限定するものではないが、表面積が大きいと副反
応が多く起こり易くなるため、好ましくは50m2 /g
以下がよい。The lamination thickness Lc of the graphitic carbon mesh surface used in the present invention is not particularly limited, but Lc is also an important parameter for graphitization, and preferably 3
The thickness is preferably 0 nm or more, more preferably 50 nm or more. Thirty
When it is less than nm, the utilization factor tends to be low. The surface area is also not particularly limited, but if the surface area is large, side reactions are likely to occur more often, so it is preferably 50 m 2 / g.
The following is good.
【0026】本発明の炭素網面の面間隔d002 が0.3
37nm以上の炭素質は出発材料を特に限定しないが、
石油ピッチ、コールタールピッチ、縮合多環炭化水素な
どを800〜2,400℃、より好ましくは1,000
〜2,000℃で焼成することによって得られる。The spacing d 002 of the carbon mesh surface of the present invention is 0.3.
Carbonaceous material of 37 nm or more does not particularly limit the starting material,
Petroleum pitch, coal tar pitch, condensed polycyclic hydrocarbons and the like are 800 to 2,400 ° C., more preferably 1,000.
Obtained by firing at ˜2,000 ° C.
【0027】本発明では、前記黒鉛質をかかる炭素質で
被覆した複合炭素質を用いており、複合化することで黒
鉛質の容量の大きさを生かし、黒鉛質の表層に形成され
たd002 が0.337nm以上の炭素質が黒鉛質と電解
液との反応を防止し、PCのような代表的な電解液でも
充放電でき、電流効率も高くなるものである。高い電流
効率を得るために、該被覆層に用いる炭素質のd002 は
0.339nm以上とするのがより好ましい。In the present invention, the composite carbonaceous material obtained by coating the above-mentioned graphite with such a carbonaceous material is used, and by making it composite, the volume of the graphiteaceous material is utilized, and d 002 formed on the surface layer of the graphite is used. The carbonaceous material having a particle size of 0.337 nm or more prevents the reaction between the graphite material and the electrolytic solution, can be charged and discharged even with a typical electrolytic solution such as PC, and has a high current efficiency. In order to obtain a high current efficiency, it is more preferable that the carbonaceous material used for the coating layer has d 002 of 0.339 nm or more.
【0028】黒鉛質に被覆層を形成させるには特に限定
はないが、1方法としては加熱して液状とした石油ピッ
チ、コールタールピッチ、縮合多環炭化水素などと黒鉛
質を混合し、300〜700℃で予備焼成し、次いで
2,800℃以下、好ましくは1,000〜2,500
℃で焼成して得られる。また、別の方法では芳香族炭化
水素、キノリン、ピリジンなど含窒素芳香族化合物など
の有機溶媒に石油ピッチ、コールタールピッチ、縮合多
環炭化水素などを溶解し、これに黒鉛質を混合し、次い
で有機溶媒を蒸発させて除去した後、予備焼成、焼成を
行う方法もとれる。There is no particular limitation on the formation of the coating layer on the graphite, but one method is to mix the graphite with a petroleum pitch, coal tar pitch, condensed polycyclic hydrocarbon, etc., which has been heated to a liquid state, to form 300 Pre-fired at ~ 700 ° C, then 2,800 ° C or less, preferably 1,000-2,500
It is obtained by firing at ℃. In another method, petroleum pitch, coal tar pitch, condensed polycyclic hydrocarbon, etc. are dissolved in an organic solvent such as aromatic hydrocarbon, quinoline, nitrogen-containing aromatic compound such as pyridine, and graphite is mixed with this. Then, after removing the organic solvent by evaporation, pre-baking and baking can be performed.
【0029】本発明の複合炭素質を構成する黒鉛質と被
覆層の炭素質との割合は容量の大きさと電流効率の大き
さから1:3〜1:0.2が好ましく、より好ましくは
1:2〜1:0.5である。The ratio of the graphite constituting the composite carbonaceous material of the present invention to the carbonaceous material of the coating layer is preferably 1: 3 to 1: 0.2, more preferably 1 in view of the capacity and the current efficiency. : 2 to 1: 0.5.
【0030】本発明に用いられる電解液の有機溶媒とし
ては、例えばエーテル類、ケトン類、ラクトン類、ニト
リル類、アミン類、アミド類、スルホン系化合物、カー
ボネート類、エステル類などを用いることができ、これ
らのうちでもエーテル類、ケトン類、ラクトン類、エス
テル類、カーボネート類などが好ましい。これらの代表
例としては、テトラヒドロフラン、2−メチル−テトラ
ヒドロフラン、1,4−ジオキサン、4−メチル−2−
ペンタノン、シクロヘキサノン、γ−ブチロラクトン、
アセトニトリル、プロピオニトリル、ブチロニトリル、
ジメトキシエタン、プロピレンカーボネート、エチレン
カーボネート、ジメチルホルムアミド、ジメチルスルオ
キシド、アニソール、スルホラン、3−メチル−スルホ
ラン、酢酸エチル、プロピオン酸エチルなど、あるいは
これらの混合溶媒を挙げることができるが、必ずしもこ
れらに限定されるものではない。As the organic solvent of the electrolytic solution used in the present invention, for example, ethers, ketones, lactones, nitriles, amines, amides, sulfone compounds, carbonates, esters and the like can be used. Of these, ethers, ketones, lactones, esters, carbonates and the like are preferable. As typical examples of these, tetrahydrofuran, 2-methyl-tetrahydrofuran, 1,4-dioxane, 4-methyl-2-
Pentanone, cyclohexanone, γ-butyrolactone,
Acetonitrile, propionitrile, butyronitrile,
Examples thereof include dimethoxyethane, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylsulfoxide, anisole, sulfolane, 3-methyl-sulfolane, ethyl acetate, ethyl propionate, and mixed solvents thereof, but not necessarily limited to these. It is not something that will be done.
【0031】本発明に用いられる電解質は特に限定する
ものではないが、LiBF4 、LiAsF6 、LiPF
6 、LiClO4 、CF3 SO3 Li、LiI、LiA
lCl4 、NaClO4 、NaBF4 、NaI、(n−
Bu)4 NClO4 、(n−Bu)4 NBF4 、KPF
6 等が用いられ、これらのうちでも電池性能及び取扱上
の安全性や毒性などの観点からLiBF4 が好ましい。The electrolyte used in the present invention is not particularly limited, but LiBF 4 , LiAsF 6 and LiPF 4 are used.
6 , LiClO 4 , CF 3 SO 3 Li, LiI, LiA
lCl 4, NaClO 4, NaBF 4 , NaI, (n-
Bu) 4 NClO 4 , (n-Bu) 4 NBF 4 , KPF
6 or the like is used, LiBF from the viewpoint of safety and toxicity on cell performance and handling Among these 4 are preferred.
【0032】本発明の負極と組み合わされる正極として
は特に限定されるものではないが、MnO2 、M
o O3 、V2 O6 、V6 O13、Fe2 O3、Fe3 O4
リチウム含有遷移金属カルコゲン化合物、Li(1-x) C
oO2 、Li(1-x) ・NiO2 、TiS2 、MoS3 、
FeS2、CuF2 、NiF2 等の無機化合物、フッ化
カーボン、グラファイト、気相成長炭素繊維及び/また
はその粉砕物、ピッチ系炭素繊維及び/またはその粉砕
物等の炭素材料、ポリアセチレン、ポリ−p−フェニレ
ン等の導電性高分子等が挙げられる。The positive electrode to be combined with the negative electrode of the present invention is not particularly limited, but MnO 2 , M
o O 3 , V 2 O 6 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4
Lithium-containing transition metal chalcogen compound, Li (1-x) C
oO 2, Li (1-x ) · NiO 2, TiS 2, MoS 3,
Inorganic compounds such as FeS 2 , CuF 2 , and NiF 2 , carbon fluoride, graphite, vapor grown carbon fibers and / or pulverized products thereof, carbon materials such as pitch-based carbon fibers and / or pulverized products thereof, polyacetylene, poly- Examples thereof include conductive polymers such as p-phenylene.
【0033】リチウムを含まない正極に対しては、本発
明の負極にリチウムを吸蔵させて用いるかあるいは本発
明の負極に必要量の金属リチウムを複合して用いるなど
して電池を組むことが出来る。しかし、このような電池
は組立時に不活性ガス下で組み立てることが必要になる
など、組立工程が煩雑となる。For a positive electrode not containing lithium, a battery can be assembled by using the negative electrode of the present invention by occluding lithium, or by using the negative electrode of the present invention in combination with a required amount of metallic lithium. .. However, such a battery complicates the assembling process such that it is necessary to assemble under an inert gas at the time of assembling.
【0034】リチウムを含有する遷移金属カルコゲン化
合物を用いた場合、正極、負極共に空気中で安定な放電
状態で電池を組み立てることができ、加工、組立の制約
が少なく、更に電池の短絡等による発熱、爆発等の危険
性がなく、安全上からも好ましい。このようなリチウム
含有遷移金属カルコゲン化合物としては、例えば Li(1-x) CoO2 、Li(1-X) NiO2 、Li(1-X)
Co(1-y) Niy O2 、LiMn2 O4 、Li(1-X) C
o(1-y) My O2 (MはCo、Ni以外の遷移金属、A
l、In、Sn等を表す)が挙げられる。When a transition metal chalcogen compound containing lithium is used, a battery can be assembled in a stable discharge state in the positive electrode and negative electrode in the air, there are few restrictions on processing and assembly, and heat generation due to short circuit of the battery is caused. There is no danger of explosion, etc., which is preferable from the viewpoint of safety. Examples of such lithium-containing transition metal chalcogen compounds include Li (1-x) CoO 2 , Li (1-X) NiO 2 , Li (1-X)
Co (1-y) Ni y O 2 , LiMn 2 O 4 , Li (1-X) C
o (1-y) M y O 2 (M is Co, transition metal other than Ni, A
l, In, Sn and the like).
【0035】更に本発明の複合炭素質を用いて電極を構
成する際、集電体、合材(バインダー)等を用いること
がある。集電体としては特に制限されないが、Cu、N
i、ステンレススチールなどの50〜1μm程度の厚み
の金属製箔又は網(ネット)等を用いる。Further, when forming an electrode using the composite carbonaceous material of the present invention, a current collector, a mixture (binder), etc. may be used. The current collector is not particularly limited, but Cu, N
i, a metal foil or net having a thickness of about 50 to 1 μm such as stainless steel is used.
【0036】集電体に電極材料を添着するのに用いる合
材としては特に制限されないが、例えばポリテトラフル
オロエチレン、ポリエチレン、ニトリルゴム、ポリブタ
ジエン、ブチルゴム、ポリスチレン、スチレン/ブタジ
エンゴム、多硫化ゴム、ニトロセルロース、シアノエチ
ルセルロース及びアクリロニトリル、フッ化ビニル、フ
ッ化ビニリデン、クロロブレン等の重合体などが用いら
れる。合材量は特に制限はされないが、活物質100重
量部に対し、0.1〜20重量部、好ましくは0.5〜
10重量部である。The mixture used to attach the electrode material to the current collector is not particularly limited, and examples thereof include polytetrafluoroethylene, polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, Polymers such as nitrocellulose, cyanoethyl cellulose, acrylonitrile, vinyl fluoride, vinylidene fluoride, and chlorobrene are used. The amount of the mixture is not particularly limited, but is 0.1 to 20 parts by weight, preferably 0.5 to 100 parts by weight with respect to 100 parts by weight of the active material.
10 parts by weight.
【0037】また、この電極を形成する方法として、電
極活物質と有機重合体を混合し、圧縮成形する方法;有
機重合体の溶剤溶液に電極活物質を分散した後、塗工乾
燥する方法;有機重合体の水性あるいは油性分散体に電
極活物質を分散した後、塗工乾燥する方法等が知られて
いる。特に限定するものではないが、バインダーの分布
が不均一になると好ましくないので、好ましくは有機重
合体の水性あるいは油性分散体に電極活物質を分散した
後、塗工乾燥する方法;更に好ましくは有機重合体とし
て0.5μm以下の粒子を含む非フッ素系有機重合体を
用いるのがよい。As a method of forming this electrode, a method of mixing an electrode active material and an organic polymer and compression-molding; a method of dispersing the electrode active material in a solvent solution of the organic polymer, followed by coating and drying; A method is known in which an electrode active material is dispersed in an aqueous or oily dispersion of an organic polymer, and then the coating is dried. Although it is not particularly limited, it is not preferable if the distribution of the binder becomes non-uniform. Therefore, a method of dispersing the electrode active material in an aqueous or oily dispersion of an organic polymer and then coating and drying it; more preferably organic It is preferable to use a non-fluorine-containing organic polymer containing particles of 0.5 μm or less as the polymer.
【0038】また、電池の構成要素として、要すればセ
パレーター、端子、絶縁板等の部品が用いられる。該セ
パレーターとしては特に制限されないが、例えばポリエ
チレン、ポリプロピレン等のポリオレフィンの単独の微
多孔膜或いはそれらの貼り合わせ膜やポリオレフィン、
ポリエステル、ポリアミド、セルロース等の不織布も単
独で、或いは上記微多孔膜との貼り合わせ膜で使用でき
る。If necessary, components such as a separator, a terminal and an insulating plate are used as the constituent elements of the battery. The separator is not particularly limited, but for example, a single microporous film of polyolefin such as polyethylene or polypropylene, or a laminated film or polyolefin thereof,
Nonwoven fabrics such as polyester, polyamide, and cellulose can be used alone or in a laminated film with the microporous film.
【0039】本発明を図2に示すような電池缶として用
いる場合には、材質としてステンレススチール、ニッケ
ル鍍金スチールを用い、その形状としては円筒型又は長
円型とするのが一般的である。When the present invention is used as a battery can as shown in FIG. 2, stainless steel or nickel-plated steel is used as the material, and its shape is generally cylindrical or oval.
【0040】[0040]
【実施例】以下実施例、比較例により本発明を更に詳し
く説明するが、本発明の範囲はこれに限定されるもので
はない。また、実施例1〜4及び比較例1〜3までは負
極単独の性能を見るために、対極に金属リチウムを用い
た。この場合、慣用的には炭素質負極は正極となるが、
放電時にリチウムイオンを受け取り還元されるため、こ
こでは負極と呼び、還元方向を充電と呼ぶことにした。The present invention will be described in more detail with reference to the following examples and comparative examples, but the scope of the present invention is not limited thereto. In addition, in Examples 1 to 4 and Comparative Examples 1 to 3, in order to see the performance of the negative electrode alone, metallic lithium was used as the counter electrode. In this case, the carbonaceous negative electrode is conventionally the positive electrode,
Since lithium ions are received and reduced at the time of discharging, the term “negative electrode” is used here, and the direction of reduction is called charging.
【0041】なお、電流効率は放電電気量/充電電気量
を表す。利用率は負極の容量を表し、放電電気量/(負
極活物質72kgを96485クーロンとした時の負極
活物質重量当たりの電気量)で表されるものを本実施例
では利用率と定義する。利用率は負極の容量を表してい
る。容量は放電電気量/(正極と負極の合計重量)であ
る。容量保持率は1回目の放電容量に対する或るサイク
ルの放電容量比の百分率である。なお、X線回折は「日
本学術振興会法」に準じて行った。The current efficiency represents discharge electricity quantity / charge electricity quantity. The utilization factor represents the capacity of the negative electrode, and the utilization factor is defined as the discharge electricity amount / (the electricity amount per negative electrode active material weight when 72 kg of the negative electrode active material is 96485 coulomb). The utilization rate represents the capacity of the negative electrode. The capacity is the discharge electricity quantity / (total weight of positive electrode and negative electrode). The capacity retention rate is a percentage of the discharge capacity ratio of a certain cycle with respect to the first discharge capacity. The X-ray diffraction was performed according to the "Japan Society for the Promotion of Science".
【0042】[0042]
【複合炭素質A】バインダーピッチ(三菱化成(株)
製)3重量部をキノリン15重量部に溶かし、これにグ
ラファイト(Lonza製、KS−6、平均粒径3μ、
d002 =0.3355nm、Lc>100nm)1重量
部を浸漬し、次いで減圧下、大部分のキノリンを蒸発し
た後、N2 ガス中で400℃、3時間焼成した。さら
に、アルゴン気流中、1,200℃で1時間焼成した
後、冷却、粉砕して2.5重量部の複合炭素質を得た。
X線回折ピークから、炭素質Aはグラファイトに基づく
d002 =0.336nmのシャープな回折ピークとd
002 =0.355nm付近にブロードな回折ピークも有
するものであった。[Composite carbonaceous material A] Binder pitch (Mitsubishi Kasei Co., Ltd.)
3 parts by weight was dissolved in 15 parts by weight of quinoline, and graphite (made by Lonza, KS-6, average particle size 3 μ,
(d 002 = 0.3355 nm, Lc> 100 nm) 1 part by weight was immersed, and most of the quinoline was evaporated under reduced pressure, followed by firing in N 2 gas at 400 ° C. for 3 hours. Further, after firing for 1 hour at 1,200 ° C. in an argon stream, it was cooled and pulverized to obtain 2.5 parts by weight of composite carbonaceous material.
From the X-ray diffraction peak, the carbonaceous material A is a sharp diffraction peak at d 002 = 0.336 nm and d
It also had a broad diffraction peak near 002 = 0.355 nm.
【0043】[0043]
【複合炭素質B】前記のバインダーピッチ2重量部とグ
ラファイト1重量部を混合し、N2 ガス気流下で400
℃、3時間仮焼成し、次いでアルゴン気流中、1,50
0℃で1時間焼成した後、冷却、粉砕して2.0重量部
の複合炭素質を得た。このものはd002 が0.336n
mと0.347nmを示した。[Composite carbonaceous B] were mixed binder pitch 2 parts by weight of graphite, 1 part by weight of the 400 under N 2 gas stream
℃ calcination for 3 hours, then in argon flow 1,50
After firing at 0 ° C. for 1 hour, it was cooled and pulverized to obtain 2.0 parts by weight of composite carbonaceous material. This product has d 002 of 0.336n
m and 0.347 nm.
【0044】[0044]
【複合炭素質C】複合炭素質Aの製造例で、バインダー
ピッチを1重量部、アルゴン気流下で焼成するときの温
度を1,700℃とした。これ以外は複合炭素質Aの方
法と同様にして、d002 が0.336nm及び0.34
5nmの複合炭素質を1.5重量部得た。[Composite carbonaceous material C] In the production example of the composite carbonaceous material A, 1 part by weight of the binder pitch was used and the temperature when firing in an argon stream was set to 1,700 ° C. Otherwise in the same manner as the method for the composite carbonaceous material A, d 002 was 0.336 nm and 0.34 nm.
1.5 parts by weight of 5 nm complex carbonaceous material was obtained.
【0045】[0045]
【実施例1】複合炭素質A 100重量部に対し、スチ
レン/ブタジエンラテックス(旭化成(株)製、L15
71)(固形分48重量%)4.17重量部、増粘剤と
してカルボキシメチルセルロース(第一工業製薬社製
BSH12)水溶液(固形分1重量%)130重量部、
水30重量部を加え、混合し、塗工液とした。10μ厚
のCu箔を基材としてこの塗工液を塗布乾燥し、厚さ1
00μ、93g/m2 の電極を得た。上記電極を1cm
幅に切り取り、1cm×1cmの塗膜を残し、剥離し、
図1に示す作用極とした。Example 1 A styrene / butadiene latex (L15, manufactured by Asahi Kasei Corporation) was added to 100 parts by weight of the composite carbonaceous material A.
71) (48% by weight of solid content) 4.17 parts by weight, carboxymethyl cellulose as a thickener (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
BSH12) aqueous solution (solid content 1% by weight) 130 parts by weight,
30 parts by weight of water was added and mixed to obtain a coating liquid. This coating liquid is applied and dried using a Cu foil with a thickness of 10 μm as a base material to obtain a thickness of 1
An electrode of 00 μ, 93 g / m 2 was obtained. 1 cm above the electrode
Cut to width and leave a 1 cm x 1 cm coating, peel off,
The working electrode shown in FIG. 1 was used.
【0046】一方、対極としてはSUSネットにし、金
属リチウムを圧着したものを用い、参照極は金属リチウ
ムを用いた。以上の電極をアルゴンガス雰囲気下で電解
液に1MのLiClO4 を溶解したPCを用い、図1の
電池を組み立てた。この電池を1mAで10mVまで定
電流充電し、1mAで1Vまで定電流で放電を繰り返し
たところ、初回の電流効率は70%で、利用率は67.
8%、2サイクル目から電流効率は98%になり、10
サイクル目でほぼ100%になった。また、30サイク
ル後の容量保持率はほぼ100%であった。On the other hand, a SUS net was used as the counter electrode and metallic lithium was pressure bonded thereto, and metallic lithium was used as the reference electrode. A battery of FIG. 1 was assembled by using a PC in which 1 M of LiClO 4 was dissolved in an electrolyte of the above electrodes under an argon gas atmosphere. When this battery was charged with a constant current of 1 mA to 10 mV and repeatedly discharged with a constant current of 1 mA to 1 V, the initial current efficiency was 70% and the utilization rate was 67.
8%, current efficiency becomes 98% from the second cycle, 10
It became almost 100% at the cycle. The capacity retention rate after 30 cycles was almost 100%.
【0047】[0047]
【実施例2】実施例1と同様にして炭素質Bの電極を作
成し、実施例1と同様の条件で充放電を繰り返したとこ
ろ、初回の電流効率68%、利用率75%、30サイク
ル後の容量保持率はほぼ100%であった。Example 2 A carbonaceous B electrode was prepared in the same manner as in Example 1, and charging and discharging were repeated under the same conditions as in Example 1. The initial current efficiency was 68%, the utilization rate was 75%, and the cycle was 30 cycles. The subsequent capacity retention was almost 100%.
【0048】[0048]
【実施例3】実施例1と同様にして炭素質Cの電極を作
成し、実施例1と同様の条件で充放電を繰り返した。初
回の電流効率は66%、利用率80.4%、30サイク
ル後の容量保持率はほぼ100%であった。Example 3 A carbonaceous C electrode was prepared in the same manner as in Example 1, and charging / discharging was repeated under the same conditions as in Example 1. The initial current efficiency was 66%, the utilization rate was 80.4%, and the capacity retention rate after 30 cycles was almost 100%.
【0049】[0049]
【比較例1】グラファイト(Lonza製、KS−6)
を炭素質Aの代わりに用いて、実施例1と同様にして電
極を作成し、実施例1と同様の条件で充電した。約0.
8Vのところで電圧が一定となり、充電はできるが、放
電することが出来なかった。Comparative Example 1 Graphite (KS-6, manufactured by Lonza)
Was used in place of the carbonaceous material A, an electrode was prepared in the same manner as in Example 1, and charged under the same conditions as in Example 1. About 0.
The voltage became constant at 8 V, and charging was possible, but discharging was not possible.
【0050】[0050]
【比較例2】ニードルコークス(d002 =0.344n
m、平均粒径10μ)とグラファイト(KS−6)を
9:1で混合した炭素質を用いて、比較例1と同様にし
て実験したところ、比較例1と同様に充電はできるが、
放電することは出来なかった。[Comparative Example 2] Needle coke (d 002 = 0.344n)
m, average particle diameter 10 μ) and graphite (KS-6) were mixed at a ratio of 9: 1, and an experiment was conducted in the same manner as in Comparative Example 1, but the same charging as in Comparative Example 1 was possible.
It couldn't be discharged.
【0051】[0051]
【比較例3】比較例2のニードルコークスを炭素質Aの
代わりに用いて、実施例1と同様にして電極を作成し、
実施例1と同様の条件で充放電した。初回の電流効率は
75%、利用率は60%、30サイクル後の容量保持率
は96%であった。Comparative Example 3 An electrode was prepared in the same manner as in Example 1 except that the needle coke of Comparative Example 2 was used instead of the carbonaceous material A.
Charge and discharge were performed under the same conditions as in Example 1. The initial current efficiency was 75%, the utilization rate was 60%, and the capacity retention rate after 30 cycles was 96%.
【0052】[0052]
【実施例4】実施例1のLiClO4 をLiBF4 に、
PCをγ−BLに変更した以外は、実施例1と同様にし
て充放電を繰り返した。初回の電流効率は84%、利用
率は67%、30サイクル後の容量保持率は92%であ
った。Example 4 The LiClO 4 of Example 1 was replaced with LiBF 4 ,
Charge and discharge were repeated in the same manner as in Example 1 except that PC was changed to γ-BL. The initial current efficiency was 84%, the utilization rate was 67%, and the capacity retention rate after 30 cycles was 92%.
【0053】[0053]
【実施例5】平均粒径5μmのLiCo0.95Sn0.05O
2 100重量部に対し、導電フィラーとしてグラファイ
ト(KS−6)20重量部、バインダーとしてポリフッ
化ビニリデン5%溶液100重量部を加え混合し、塗工
液とした。15μ厚のAl箔を基材としてこの塗工液を
塗布乾燥し、厚さ120μ、270g/m2 の正極電極
を得た。Example 5 LiCo 0.95 Sn 0.05 O having an average particle size of 5 μm
2 To 100 parts by weight, 20 parts by weight of graphite (KS-6) as a conductive filler and 100 parts by weight of a polyvinylidene fluoride 5% solution as a binder were added and mixed to obtain a coating liquid. This coating solution was applied and dried using a 15 μ thick Al foil as a base material to obtain a positive electrode having a thickness of 120 μ and 270 g / m 2 .
【0054】上記正極と実施例1で得た負極を1cm×
5cmに切り出し、図2に示す電池を組み立てた。電解
液は1MのLiClO4 /PCを用いた。この電池を1
0mAで4.2Vまで定電流充電し、10mAで2.7
Vまで定電流で放電するサイクルを繰り返した。この電
池の初回の電流効率は73%、容量66AH/kg(2
30WH/kg)、30サイクル後の容量保持率は96
%であった。The above positive electrode and the negative electrode obtained in Example 1 were 1 cm ×
It cut into 5 cm and assembled the battery shown in FIG. The electrolyte used was 1M LiClO 4 / PC. This battery 1
Constant current charge up to 4.2V at 0mA, 2.7mA at 10mA.
The cycle of discharging with a constant current to V was repeated. The initial current efficiency of this battery is 73%, and the capacity is 66 AH / kg (2
30 WH / kg), capacity retention after 30 cycles is 96
%Met.
【0055】[0055]
【実施例6】電解液をγ−BLとエチレンカーボネート
3:1の混合液、電解質をLiBF4 とし、正極の塗工
量を245g/m2 とする以外は、実施例5と同様にし
て充放電を繰り返した。初回の電流効率は80%、容量
72AH/kg(252WH/kg)であった。また、
2回目の電流効率は98%で、10回目の電流効率はほ
ぼ100%であり、100サイクル後の容量保持率は8
5%であった。Example 6 The charging was carried out in the same manner as in Example 5 except that the electrolytic solution was a mixture of γ-BL and ethylene carbonate 3: 1, the electrolyte was LiBF 4, and the coating amount of the positive electrode was 245 g / m 2. The discharge was repeated. The initial current efficiency was 80% and the capacity was 72 AH / kg (252 WH / kg). Also,
The current efficiency of the second time is 98%, the current efficiency of the tenth time is almost 100%, and the capacity retention ratio after 100 cycles is 8%.
It was 5%.
【0056】[0056]
【発明の効果】炭素網面の面間隔d002 が0.337n
m未満の黒鉛状炭素質をd002 が0.337nm以上の
炭素質で被覆した複合炭素質を負極とすると、電流効率
が高く、かつ容量の大きな非水電池、とくに非水系二次
電池が得られる。[Effects of the Invention] The carbon mesh surface spacing d 002 is 0.337n.
When a composite carbonaceous material obtained by coating a graphite-like carbonaceous material having a m of less than m with a carbonaceous material having a d 002 of 0.337 nm or more is used as a negative electrode, a nonaqueous battery having high current efficiency and a large capacity, particularly a nonaqueous secondary battery can be obtained. Be done.
【図1】本発明の電池の構造例の断面図である。FIG. 1 is a cross-sectional view of a structural example of a battery of the present invention.
【図2】本発明の電池の構造例の断面図である。FIG. 2 is a cross-sectional view of a structural example of a battery of the present invention.
1 作用極(炭素質負極) 2 対極(金属リチウム) 3 参照極(金属リチウム) 4 電解液 5 ガラス容器 6 不活性(アルゴン)ガス 7 正極 8 負極 9、10 集電棒 11、12 SUSネット 13、14 外部電極端子 15 電池ケース 16 セパレーター 17 電解液 1 Working Electrode (Carbon Negative Electrode) 2 Counter Electrode (Metallic Lithium) 3 Reference Electrode (Metallic Lithium) 4 Electrolyte 5 Glass Container 6 Inert (Argon) Gas 7 Positive Electrode 8 Negative Electrode 9, 10 Current Collector 11, 12 SUS Net 13, 14 External Electrode Terminal 15 Battery Case 16 Separator 17 Electrolyte
Claims (1)
負極であって、負極中の活物質は、炭素網面の面間隔d
002 が0.337nm未満の黒鉛状炭素質を炭素網面の
面間隔d002 が0.337nm以上の炭素質で被覆して
なる複合炭素質であることを特徴とする、非水電池負
極。1. A negative electrode of a non-aqueous battery containing an organic solvent as an electrolytic solution, wherein the active material in the negative electrode has a carbon mesh plane spacing d.
A non-aqueous battery negative electrode, which is a composite carbonaceous material in which 002 is less than 0.337 nm and graphitic carbonaceous material is covered with carbonaceous material having a carbon mesh surface spacing d 002 of 0.337 nm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3308239A JPH05121066A (en) | 1991-10-29 | 1991-10-29 | Negative electrode for nonaqueous battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3308239A JPH05121066A (en) | 1991-10-29 | 1991-10-29 | Negative electrode for nonaqueous battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05121066A true JPH05121066A (en) | 1993-05-18 |
Family
ID=17978613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3308239A Withdrawn JPH05121066A (en) | 1991-10-29 | 1991-10-29 | Negative electrode for nonaqueous battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05121066A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996004688A1 (en) * | 1994-08-04 | 1996-02-15 | Mitsubishi Chemical Corp. | Electrode material for nonaqueous solvent secondary cell and method of manufacturing the same |
JPH1040914A (en) * | 1996-05-23 | 1998-02-13 | Sharp Corp | Manufacture of nonaqueous secondary battery and negative pole active substance |
JPH11246209A (en) * | 1998-03-05 | 1999-09-14 | Osaka Gas Co Ltd | Negative electrode carbon material for lithium secondary cell and lithium secondary cell |
US5965296A (en) * | 1996-05-23 | 1999-10-12 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery and a method of manufacturing a negative electrode active material |
US6027833A (en) * | 1996-11-27 | 2000-02-22 | Denso Corporation | Nonaqueous electrolyte secondary cell |
US6432583B1 (en) | 1998-07-31 | 2002-08-13 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
EP1265301A2 (en) * | 2001-06-08 | 2002-12-11 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
WO2003049216A1 (en) * | 2001-12-06 | 2003-06-12 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary cell |
WO2005043653A1 (en) | 2003-10-31 | 2005-05-12 | Showa Denko K.K. | Carbon material for battery electrode and production method and use thereof |
KR100490464B1 (en) * | 1998-11-27 | 2005-05-17 | 미쓰비시 가가꾸 가부시키가이샤 | Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material |
JP2005285633A (en) * | 2004-03-30 | 2005-10-13 | Osaka Gas Co Ltd | Non-aqueous system secondary battery and its charging method |
US7273681B2 (en) | 1995-04-10 | 2007-09-25 | Hitachi, Ltd. | Non-aqueous secondary battery having negative electrode including graphite powder |
JP2008059903A (en) * | 2006-08-31 | 2008-03-13 | Toyo Tanso Kk | Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery |
JP2009123473A (en) * | 2007-11-14 | 2009-06-04 | Sony Corp | Nonaqueous electrolyte battery |
US7635542B2 (en) | 2006-10-03 | 2009-12-22 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP2010192230A (en) * | 2009-02-18 | 2010-09-02 | Murata Mfg Co Ltd | Nonaqueous electrolyte secondary battery |
JP2013016353A (en) * | 2011-07-04 | 2013-01-24 | Gs Yuasa Corp | Nonaqueous electrolyte secondary battery |
JP2013191302A (en) * | 2012-03-12 | 2013-09-26 | Toyota Motor Corp | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2019046925A (en) * | 2017-08-31 | 2019-03-22 | 日本カーボン株式会社 | Negative electrode active material for lithium ion capacitor |
JP2019206454A (en) * | 2018-05-29 | 2019-12-05 | 明智セラミックス株式会社 | Carbon material and carbon material surface treatment method |
-
1991
- 1991-10-29 JP JP3308239A patent/JPH05121066A/en not_active Withdrawn
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996004688A1 (en) * | 1994-08-04 | 1996-02-15 | Mitsubishi Chemical Corp. | Electrode material for nonaqueous solvent secondary cell and method of manufacturing the same |
KR100392899B1 (en) * | 1994-08-04 | 2003-11-28 | 미쓰비시 가가꾸 가부시키가이샤 | Non-aqueous solvent secondary battery electrode material and manufacturing method thereof |
US7273681B2 (en) | 1995-04-10 | 2007-09-25 | Hitachi, Ltd. | Non-aqueous secondary battery having negative electrode including graphite powder |
US5965296A (en) * | 1996-05-23 | 1999-10-12 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery and a method of manufacturing a negative electrode active material |
JPH1040914A (en) * | 1996-05-23 | 1998-02-13 | Sharp Corp | Manufacture of nonaqueous secondary battery and negative pole active substance |
US6027833A (en) * | 1996-11-27 | 2000-02-22 | Denso Corporation | Nonaqueous electrolyte secondary cell |
JPH11246209A (en) * | 1998-03-05 | 1999-09-14 | Osaka Gas Co Ltd | Negative electrode carbon material for lithium secondary cell and lithium secondary cell |
US6432583B1 (en) | 1998-07-31 | 2002-08-13 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
KR100490464B1 (en) * | 1998-11-27 | 2005-05-17 | 미쓰비시 가가꾸 가부시키가이샤 | Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material |
EP1265301A2 (en) * | 2001-06-08 | 2002-12-11 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
US6884545B2 (en) * | 2001-06-08 | 2005-04-26 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
EP1265301A3 (en) * | 2001-06-08 | 2007-01-03 | Mitsui Mining Co., Ltd. | Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery |
US7179565B2 (en) | 2001-12-06 | 2007-02-20 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary cell |
WO2003049216A1 (en) * | 2001-12-06 | 2003-06-12 | Matsushita Electric Industrial Co., Ltd. | Lithium ion secondary cell |
WO2005043653A1 (en) | 2003-10-31 | 2005-05-12 | Showa Denko K.K. | Carbon material for battery electrode and production method and use thereof |
EP1683219B1 (en) * | 2003-10-31 | 2015-12-23 | Showa Denko K.K. | Carbon material for battery electrode and production method and use thereof |
JP2005285633A (en) * | 2004-03-30 | 2005-10-13 | Osaka Gas Co Ltd | Non-aqueous system secondary battery and its charging method |
JP2008059903A (en) * | 2006-08-31 | 2008-03-13 | Toyo Tanso Kk | Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery |
US7635542B2 (en) | 2006-10-03 | 2009-12-22 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP2009123473A (en) * | 2007-11-14 | 2009-06-04 | Sony Corp | Nonaqueous electrolyte battery |
JP2010192230A (en) * | 2009-02-18 | 2010-09-02 | Murata Mfg Co Ltd | Nonaqueous electrolyte secondary battery |
JP2013016353A (en) * | 2011-07-04 | 2013-01-24 | Gs Yuasa Corp | Nonaqueous electrolyte secondary battery |
JP2013191302A (en) * | 2012-03-12 | 2013-09-26 | Toyota Motor Corp | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2019046925A (en) * | 2017-08-31 | 2019-03-22 | 日本カーボン株式会社 | Negative electrode active material for lithium ion capacitor |
JP2019206454A (en) * | 2018-05-29 | 2019-12-05 | 明智セラミックス株式会社 | Carbon material and carbon material surface treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5612155A (en) | Lithium ion secondary battery | |
US5576121A (en) | Llithium secondary battery and process for preparing negative-electrode active material for use in the same | |
US5352548A (en) | Secondary battery | |
US6156457A (en) | Lithium secondary battery and method for manufacturing a negative electrode | |
JPH05121066A (en) | Negative electrode for nonaqueous battery | |
KR20090066021A (en) | Cathode and lithium battery using the same | |
US9673446B2 (en) | Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements | |
JP4747482B2 (en) | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery | |
JP3236400B2 (en) | Non-aqueous secondary battery | |
US5922494A (en) | Stabilized electrolyte for electrochemical cells and batteries | |
JP3840087B2 (en) | Lithium secondary battery and negative electrode material | |
JP3499739B2 (en) | Lithium secondary battery and method of manufacturing lithium secondary battery | |
JP3309719B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09245830A (en) | Nonaqueous electrolyte secondary battery | |
JP3178730B2 (en) | Non-aqueous secondary battery | |
JP3444616B2 (en) | Negative electrode for non-aqueous secondary batteries | |
JP3480764B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0620721A (en) | Nonaqueous secondary battery | |
JP3720959B2 (en) | Secondary battery electrode material | |
JP3568247B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06267590A (en) | High performance nonaqueous secondary battery | |
JPH0652896A (en) | Nonaqueous secondary battery | |
JPH0652897A (en) | Nonaqueous carbonaceous secondary battery | |
JP3517117B2 (en) | Lithium secondary battery | |
JPH0613107A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990107 |