JPH0652896A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH0652896A
JPH0652896A JP4201204A JP20120492A JPH0652896A JP H0652896 A JPH0652896 A JP H0652896A JP 4201204 A JP4201204 A JP 4201204A JP 20120492 A JP20120492 A JP 20120492A JP H0652896 A JPH0652896 A JP H0652896A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
lithium
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4201204A
Other languages
Japanese (ja)
Inventor
Takayuki Nakajima
孝之 中島
Kenji Arai
謙二 荒井
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4201204A priority Critical patent/JPH0652896A/en
Publication of JPH0652896A publication Critical patent/JPH0652896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a nonaqueous secondary battery of great current efficiency and a large capacity. CONSTITUTION:In a nonaqueous secondary battery comprising a positive electrode 7, an organic solvent electrolyte and a negative electrode 8, the negative electrode 8 uses as active material a carbonaceous material containing graphite whose carbon network face has a spacing d002 of less than 0.337nm. The organic solvent electrolyte 17 is composed chiefly of propylene carbonate, ethylene carbonate and/or cyclohexyl carbonate and gamma-butyrolactone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機溶媒を電解液とした
高容量の非水系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity non-aqueous secondary battery using an organic solvent as an electrolytic solution.

【0002】[0002]

【従来の技術】有機溶媒を電解液とした非水二次電池の
負極として金属リチウムを用いると高容量になることが
知られている。しかしながら、金属リチウム負極では、
充放電の繰り返しに伴って生成する樹枝状のリチウム
(リチウムデンドライト)による内部短絡や電流効率の
低下などが、高容量かつ長寿命な電池の実用化の大きな
障害となっている。また、金属リチウムを用いる電池で
は、短絡時の発熱などで電池が高温状態になると、金属
リチウムの高い反応性のため、発火や電池缶の破裂の危
険を含んでおり、安全性の点でも大きな問題を残してい
る。
2. Description of the Related Art It is known that high capacity is obtained by using metallic lithium as a negative electrode of a non-aqueous secondary battery using an organic solvent as an electrolytic solution. However, in the metallic lithium negative electrode,
Internal short circuit due to dendritic lithium (lithium dendrite) generated by repeated charging / discharging and reduction in current efficiency are major obstacles to commercialization of high-capacity and long-life batteries. Also, in the case of a battery using metallic lithium, when the battery becomes a high temperature state due to heat generation at the time of a short circuit, because of the high reactivity of metallic lithium, there is a risk of ignition and rupture of the battery can, which is also a great safety point. I have a problem.

【0003】このような欠点の改善を目的に、有機溶媒
を電解液とした非水二次電池に用いられる負極として、
炭素質材料が注目されている。負極に用いられる炭素質
材料はその電気化学的性質から大きく次の三つに分類さ
れる。第一のグループは黒鉛に代表される炭素網面の間
隔が狭く(d002 <0.337nm)、炭素網面及び網
面の積層方向に成長したものである。このような炭素材
料は陽イオン、陰イオンどちらもその炭素網面間にイン
ターカレーションし、層間化合物を形成することが知ら
れており、導電材料、有機合成反応触媒や電池としての
応用も考えられている。
For the purpose of improving such drawbacks, as a negative electrode used in a non-aqueous secondary battery using an organic solvent as an electrolytic solution,
Attention is paid to carbonaceous materials. The carbonaceous materials used for the negative electrode are roughly classified into the following three types according to their electrochemical properties. The first group is one in which the distance between carbon mesh planes represented by graphite is narrow (d 002 <0.337 nm) and the carbon mesh planes grow in the stacking direction of the carbon mesh planes. It is known that such a carbon material intercalates both cations and anions between the carbon network planes to form an intercalation compound, and is also considered to be used as a conductive material, an organic synthesis reaction catalyst, or a battery. Has been.

【0004】第二のグループは活性炭に代表されるきわ
めて表面積(SA >100m2/g)が大きく炭素網面の
間隔も広く(d002 >0.337nm)、結晶化の進ん
でいないものである。このタイプは表面吸着量が多いた
めに炭素当りのリチウム吸蔵量は大きいが電流効率が低
く、サイクル性も低い。第三のグループは炭素網面はあ
る程度成長しているが第一グループと比べて炭素網面の
間隔が広い(d002 >0.337nm)ものである。こ
のグループはその構造により種々の電気化学的特性を示
すが、第一グループと異なり、殆ど電解液と反応するこ
となくリチウムを吸蔵でき、従来より金属リチウム負極
やリチウム合金負極で使用される電解液を適用すること
ができる。しかしながらその利用率(炭素当りのリチウ
ム吸蔵量)は第一グループと比較すると小さい。
The second group has a very large surface area (S A > 100 m 2 / g) typified by activated carbon and a large spacing between carbon mesh planes (d 002 > 0.337 nm), and has not progressed crystallization. is there. Since this type has a large surface adsorption amount, the lithium storage amount per carbon is large, but the current efficiency is low and the cycleability is low. In the third group, the carbon net plane has grown to some extent, but the carbon net plane spacing is wider than that in the first group (d 002 > 0.337 nm). This group shows various electrochemical characteristics depending on its structure, but unlike the first group, it can occlude lithium with almost no reaction with the electrolytic solution, and is an electrolytic solution conventionally used in metal lithium negative electrodes and lithium alloy negative electrodes. Can be applied. However, the utilization rate (lithium storage amount per carbon) is smaller than that of the first group.

【0005】第一のグループに属する黒鉛を電池の負極
として用いることは特開昭57−208079号公報、
特開昭58−192266号公報、特開昭59−143
280号公報、特開昭60−54181号公報、特開昭
60−182670号公報、特開昭60−221973
号公報、特開昭61−7567号公報、特開平1−31
1565号公報、特開平4−171677号公報などに
提案されている。これらの公報には使用できる有機溶媒
としてプロピレンカーボネート(以下PCと略記す
る)、テトラヒドロフラン(以下THFと略記する)、
γ−ブチロラクトン(以下γ−BLと略記する)、1,
2−ジメトキシエタン(以下DMEと略記する)、スル
ホラン、エチレンカーボネート(以下ECと略記する)
など、従来のリチウム電池で用いることの出来る電解液
系が記載されている。実施例としてはLiClO4 ある
いはLiBF4 を電解質に用い、代表的溶媒としてPC
あるいはTHFを用いている。混合溶媒を用いた例は特
開昭57−208079号公報、および、特開平4−1
71677号公報においてそれぞれPC/DME、およ
びPC/ECが開示されている。
The use of graphite belonging to the first group as the negative electrode of a battery is disclosed in JP-A-57-208079.
JP-A-58-192266, JP-A-59-143
280, JP-A-60-54181, JP-A-60-182670, and JP-A-60-221973.
Japanese Patent Laid-Open No. 61-7567, Japanese Patent Laid-Open No. 1-31
It is proposed in Japanese Patent No. 1565, Japanese Patent Laid-Open No. 4-171677, and the like. In these publications, as organic solvents that can be used, propylene carbonate (hereinafter abbreviated as PC), tetrahydrofuran (hereinafter abbreviated as THF),
γ-butyrolactone (hereinafter abbreviated as γ-BL), 1,
2-dimethoxyethane (hereinafter abbreviated as DME), sulfolane, ethylene carbonate (hereinafter abbreviated as EC)
Etc., an electrolyte system that can be used in conventional lithium batteries is described. As an example, LiClO 4 or LiBF 4 is used as an electrolyte, and PC is used as a typical solvent.
Alternatively, THF is used. Examples using a mixed solvent are JP-A-57-208079 and JP-A-4-1-1.
Japanese Patent No. 71677 discloses PC / DME and PC / EC, respectively.

【0006】ところが電解質としてLiClO4 あるい
はLiBF4 、溶媒としてPCを用い、黒鉛で充電(電
気化学的リチウムインターカレーション)を試みてみる
と、PC分解によるガス発生を伴い、黒鉛自体が膨張
し、全く充電できなかった。PC系電解液は金属リチウ
ム負極において一般的に用いられる電解液であるが、黒
鉛を負極とした場合には、金属リチウム負極の場合とは
全く異なり、使用することができない。
However, when LiClO 4 or LiBF 4 was used as the electrolyte and PC was used as the solvent, an attempt was made to charge with graphite (electrochemical lithium intercalation), and the graphite itself expanded due to gas generation due to PC decomposition, I couldn't charge it at all. The PC-based electrolytic solution is an electrolytic solution generally used in a metallic lithium negative electrode, but cannot be used when graphite is used as a negative electrode, which is completely different from the case of a metallic lithium negative electrode.

【0007】また、LiBF4 を電解質とし、混合溶媒
であるPC/DME、PC/ECを用いて黒鉛を電極と
して充放電を試みてみると、充放電は出来るが、充放電
サイクル初期の電流効率が極めて低く実用的でないこと
が分かった。黒鉛は陽イオンとしてリチウムイオンをイ
ンターカレーションする時、利用率(炭素当りのリチウ
ム吸蔵量)は16.7%と多いのであるが、電池の負極
として利用しようとしたときには前述のごとく電気化学
的に有効にリチウムを吸蔵・放出することが出来ない。
このことはJ.Electrochem.Soc.,1
17 P.222(1970)や特開昭63−2555
号公報の比較例1に記載のごとく、黒鉛にリチウムイオ
ンが吸蔵された層間化合物は有機溶媒に対する反応性が
高く、電極として働くよりも、電解液との反応が優先し
ており、電極としての利用価値は低いものである。
Further, when LiBF 4 was used as an electrolyte and a charge / discharge was attempted using a mixed solvent of PC / DME and PC / EC with graphite as an electrode, charge / discharge was possible, but the current efficiency at the beginning of the charge / discharge cycle was increased. Was found to be extremely low and not practical. When intercalating lithium ions as cations, graphite has a high utilization rate (lithium storage amount per carbon) of 16.7%, but when it is intended to be used as the negative electrode of a battery, it is electrochemically charged as described above. Cannot effectively absorb and release lithium.
This is because J. Electrochem. Soc. , 1
17 P. 222 (1970) and JP-A-63-2555.
As described in Comparative Example 1 of the publication, the intercalation compound in which lithium ions are occluded in graphite has high reactivity with an organic solvent, and the reaction with the electrolytic solution has priority over the function as an electrode. The utility value is low.

【0008】また、黒鉛が負極として用いられている例
が米国特許第4423125号明細書およびJ.Ele
ctrochem.Soc.,137 P.2009
(1990)に記載されている。米国特許第44231
25号明細書では電解液にジオキソランを用いている。
ジオキソランは化学的に不安定であり、また電気化学的
にも3.5V以上では電解液の重合がおき正極に高い電
圧の活物質を用いることが出来ず不都合である。J.E
lectrochem.Soc.,137 P.200
9(1990)では黒鉛または石油コークスを電極と
し、電解液にPCとECとの混合溶媒を用いた電気化学
的リチウムインターカレーションについて記述されてい
る。石油コークスでは初充電時に起こる副反応は表面積
に依存するのに対し、黒鉛では初充電時に表面積に依存
する副反応のほかに表面積に依存しない副反応が起こる
ために、初回の電流効率が低いと記載されている。この
ような系で電池を組み立てた場合、初回の電流効率が低
いために多くの正極を必要とし、電池としての正極の活
物質当りの利用率を上げられず、高容量化が困難であ
る。このため高容量化のために正極、負極ともに充電状
態(負極カーボンにリチウムを吸蔵させ、正極はリチウ
ムを受け取るサイトが空となっている状態)のものを組
み立てるという方法がとられることがあるが、充電状態
の電極は著しく反応性が高い為安全上の問題が生じた
り、不活性ガス下で電池を組み立てるなど煩雑な工程を
とる必要があったりで実用的でない。さらにこの系では
2サイクル以降も継続して副反応が起こり電流効率は1
00%にならないことを記載している。電流効率の高い
ことは電池のサイクル性に特に重要である。負極の電流
効率が低い場合で一定容量の放電を行うためには、正極
に常に放電容量以上の充電量が必要となり、次第に正極
に負担がかかり、ついには正極の過充電状態となり、容
量の低下をもたらす。又正極が過充電にならないように
正極に対して定容量充電を行えば、電流効率が低いので
サイクルを繰り返すことにより容量の低下をもたらす。
An example in which graphite is used as a negative electrode is disclosed in US Pat. No. 4,423,125 and J. Ele
ctrochem. Soc. , 137 P.I. 2009
(1990). US Patent No. 44231
In the specification of No. 25, dioxolane is used as the electrolytic solution.
Dioxolane is chemically unstable, and also electrochemically at 3.5 V or more, the electrolytic solution is polymerized and an active material having a high voltage cannot be used for the positive electrode, which is disadvantageous. J. E
retrochem. Soc. , 137 P.I. 200
9 (1990) describes electrochemical lithium intercalation using graphite or petroleum coke as an electrode and a mixed solvent of PC and EC as an electrolytic solution. In petroleum coke, the side reaction that occurs during the initial charge depends on the surface area, whereas in graphite, a side reaction that does not depend on the surface area occurs in addition to the side reaction that depends on the surface area during the initial charge, so that the initial current efficiency is low. Have been described. When a battery is assembled in such a system, a large number of positive electrodes are required because the initial current efficiency is low, the utilization rate of the positive electrode as a battery per active material cannot be increased, and it is difficult to increase the capacity. For this reason, in order to increase the capacity, a method of assembling both the positive electrode and the negative electrode in a charged state (a state in which negative electrode carbon occludes lithium and the positive electrode has an empty site for receiving lithium) may be used. However, since the charged electrode has extremely high reactivity, it poses a safety problem and requires complicated steps such as assembling the battery under an inert gas, which is not practical. In addition, in this system, side reactions continue after 2 cycles and the current efficiency is 1
It states that it will not be 00%. High current efficiency is especially important for battery cycleability. In order to discharge a certain capacity when the current efficiency of the negative electrode is low, the positive electrode always needs to have a charge amount equal to or greater than the discharge capacity, and the positive electrode is gradually overloaded. Bring If the positive electrode is charged with a constant capacity so that the positive electrode does not become overcharged, the current efficiency is low, and the capacity is lowered by repeating the cycle.

【0009】いずれにしても高容量でサイクル特性がよ
い二次電池を得るために、負極に要求されることは組立
時に電極が安定であり、電流効率が高く、利用率が大き
いことである。金属リチウムあるいはリチウム合金を負
極とするリチウム電池において用いられる従来の電解液
系では、第一グループの炭素質材料は電解液と反応する
ため、未だ実用化に至っていない。第二グループのもの
は電流効率が小さく、負極としての利用価値の低いもの
であり、また、第三グループのものは一部に電流効率が
よいものもあるが、これも利用率(炭素原子当りのリチ
ウム吸蔵量)が10%程度であり、電池の高容量化のた
め、利用率がさらに大きく、電流効率のよい負極材料が
望まれていた。
In any case, in order to obtain a secondary battery having a high capacity and good cycle characteristics, what is required for the negative electrode is that the electrode is stable during assembly, the current efficiency is high, and the utilization rate is high. In a conventional electrolytic solution system used in a lithium battery having metallic lithium or a lithium alloy as a negative electrode, the carbonaceous materials of the first group react with the electrolytic solution, and thus have not yet been put into practical use. The second group has low current efficiency and low utility value as a negative electrode, and the third group has some good current efficiency, but this is also the utilization rate (per carbon atom). The lithium storage capacity) is about 10%, and a negative electrode material having a higher utilization factor and a higher current efficiency has been desired in order to increase the capacity of the battery.

【0010】[0010]

【発明が解決しようとする課題】本発明は高容量化のた
めに利用率が大きく、かつ、電流効率が高い非水二次電
池を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous secondary battery which has a high utilization factor for high capacity and high current efficiency.

【0011】[0011]

【課題を解決するための手段】本発明者等は前記課題を
解決するために、負極に用いる炭素質材料と有機溶媒電
解液との組合せを鋭意検討したところ、化学的には多量
のリチウムイオンをインターカレーションすることがで
きるが、電池の負極として用いると電解液との反応が優
先して有効に充放電できないとされていた黒鉛が、主と
してPC、ECおよび/またはシクロヘキシルカーボネ
ート(以下CHCと略記する)、および、γ−BLから
なる電解液を用いると意外にも充放電でき、しかも充放
電できる容量が大きく、かつ電流効率も高いことを見い
だし、本発明を完成するに至った。
In order to solve the above-mentioned problems, the inventors of the present invention have diligently studied a combination of a carbonaceous material used for a negative electrode and an organic solvent electrolyte solution, and found that a large amount of lithium ion However, when it is used as a negative electrode of a battery, graphite, which is said to be unable to effectively charge and discharge due to its reaction with an electrolytic solution, is mainly composed of PC, EC and / or cyclohexyl carbonate (hereinafter referred to as CHC). It has been found that the use of an electrolytic solution composed of γ-BL) and γ-BL allows unexpected charging / discharging, has a large capacity for charging / discharging, and has high current efficiency, and has completed the present invention.

【0012】すなわち、本発明は充放電可能な正極、炭
素質負極、および有機溶媒系電解液からなる非水二次電
池において、上記炭素質負極の活物質が主として炭素網
面の面間隔d002 が0.337nm未満の黒鉛質からな
り、かつ上記有機溶媒系電解液が主としてプロピレンカ
ーボネート、エチレンカーボネートおよび/またはシク
ロヘキシルカーボネート、並びにγ−ブチロラクトンか
らなることを特徴とする非水系二次電池を提供するもの
である。
That is, according to the present invention, in a non-aqueous secondary battery comprising a chargeable / dischargeable positive electrode, a carbonaceous negative electrode, and an organic solvent-based electrolytic solution, the carbonaceous negative electrode active material is mainly a carbon mesh plane spacing d 002. Is less than 0.337 nm, and the organic solvent-based electrolyte is mainly propylene carbonate, ethylene carbonate and / or cyclohexyl carbonate, and γ-butyrolactone. It is a thing.

【0013】以下、本発明を詳細に説明する。本発明で
いう炭素網面の面間隔d002 が0.337nm未満の黒
鉛質とはたとえば黒鉛のごとく炭素網面の積層が規則正
しく積層された炭素質材料のことをいう。炭素質材料は
その出発原料及びその処理(製造)方法により種々の構
造を取るが、いずれの材料も高温処理によりその炭素網
面の面間隔d002 は小さくなり、炭素網面の積層厚みL
cは大きくなる傾向にあり、黒鉛は最も小さい面間隔d
002 =0.3354nmを持つ。このd002 の減少及び
Lcの増加は炭素質材料により大きく異なり、高温処理
(〜3000℃)で容易にグラファイト化する易黒鉛化
炭素とグラファイト化が進行しにくい(d002 が小さく
なりにくい)難黒鉛化炭素に分類される。この炭素質材
料のグラファイト化の際、前出のd002 、Lcの他に密
度、表面積、電気抵抗等も大きく変化するが、層間化合
物の形成には特に面間隔が重要である。
The present invention will be described in detail below. In the present invention
The spacing d of the carbon mesh surface002Is less than 0.337 nm
Lead is an ordered stack of carbon nets, such as graphite.
It refers to a carbonaceous material that is properly laminated. Carbonaceous material
Depending on the starting material and its treatment (manufacturing) method, various structures may be used.
However, the carbon mesh of all materials is processed by high temperature.
Face spacing d002Becomes smaller, and the layer thickness L of the carbon mesh surface is
c tends to be large, and graphite has the smallest interplanar spacing d.
002= 0.3354 nm. This d002Decrease and
The increase in Lc varies greatly depending on the carbonaceous material, and high temperature treatment
Easy graphitization at (~ 3000 ℃)
Carbon and graphitization are difficult to proceed (d002Is small
It is classified as non-graphitizable carbon. This carbonaceous material
When graphitizing the material, d002, Lc and dense
Degree, surface area, electric resistance, etc. vary greatly, but
The surface spacing is particularly important for the formation of an object.

【0014】本発明の炭素質材料はd002 が0.337
nm未満であることが必要である。d002 が0.337
nm以上であると電流効率が低くなったり、炭素当りの
リチウム吸蔵量(利用率)が低くなったりするので好ま
しくない。また、電流効率の幾分かの低下を伴うことも
あるが、本発明の負極は該黒鉛質と他の炭素質材料とを
併用して作成することもでき、例えばこのような炭素質
材料としてコークス、アセチレンブラック、活性炭、メ
ソフェーズマイクロビーズの炭化物(メソフェーズマイ
クロカーボン)、ニードルコークス等が挙げられる。
The carbonaceous material of the present invention has a d 002 of 0.337.
It must be less than nm. d 002 is 0.337
If the thickness is more than nm, the current efficiency becomes low and the amount of lithium stored per carbon (utilization rate) becomes low, which is not preferable. In addition, although the current efficiency may be somewhat lowered, the negative electrode of the present invention can also be prepared by using the graphite and another carbonaceous material in combination. Examples thereof include coke, acetylene black, activated carbon, carbide of mesophase microbeads (mesophase microcarbon), needle coke and the like.

【0015】本発明に用いられるd002 が0.337n
m未満の黒鉛質は、人造黒鉛、天然に産する黒鉛(天然
黒鉛)いずれのものであってもよく、また、両者を混合
したものであってもよい。人造黒鉛は特に限定されるも
のではないが、石油ピッチ、コールタールピッチ、熱分
解炭素、メソフェーズマイクロビーズあるいはメソフェ
ーズマイクロカーボン、ニードルコークス、縮合多環炭
化水素などを出発原料として、一般に2500℃以上、
より好ましくは3000℃以上で熱処理することで得ら
れる。
D 002 used in the present invention is 0.337n
The graphite of less than m may be either artificial graphite or naturally occurring graphite (natural graphite), or may be a mixture of both. Although the artificial graphite is not particularly limited, it is generally 2500 ° C. or higher, using petroleum pitch, coal tar pitch, pyrolytic carbon, mesophase microbeads or mesophase microcarbon, needle coke, condensed polycyclic hydrocarbon, etc. as a starting material.
More preferably, it is obtained by heat treatment at 3000 ° C. or higher.

【0016】本発明で用いる黒鉛質の炭素網面の積層厚
みLcは特に限定するものではないがグラファイト化に
関してLcも重要なパラメータであり、好ましくは30
nm以上、さらに好ましくは50nm以上がよい。30
nm未満では利用率が低くなりやすい。またその表面積
も特に限定するものではないが、表面積が大きいと副反
応が多く起こりやすくなるため、好ましくは50m2
g以下がよく、さらに好ましくは20m2 /g以下がよ
い。
The lamination thickness Lc of the graphitic carbon mesh surface used in the present invention is not particularly limited, but Lc is also an important parameter for graphitization, and preferably 30
nm or more, more preferably 50 nm or more. Thirty
If it is less than nm, the utilization rate tends to be low. The surface area is also not particularly limited, but when the surface area is large, many side reactions are likely to occur, so it is preferably 50 m 2 /
It is preferably g or less, more preferably 20 m 2 / g or less.

【0017】本発明に用いる黒鉛質の形状は粉状、繊維
状等があり、特に限定するものではないが、充填密度を
大きくしやすいことから粉状のものが好ましく用いられ
る。粒子径は0.1〜100μm、好ましくは1〜50
μmの粉状のものが好適に用いられる。本発明の電解液
としてはPC、ECおよび/またはCHC、並びにγ−
BLを含有することが必須である。本発明に用いられる
の黒鉛を負極の活物質とし、電解質を含むPC単独溶媒
系電解液を用いた非水二次電池では、PCの分解ととも
に黒鉛の膨張および電極からの脱落が起こり、充電する
ことができない。また、γ−BL単独溶媒系電解液で
は、電流効率は良いが充放電を繰り返すとγ−BL自体
の反応がわずかながら起こり電解液劣化のためか、長期
充放電サイクル後の出力特性が悪くなる。また、EC単
独またはCHC単独溶媒系電解液は、凝固する温度が高
く、室温近辺で固体となり、低温では用いることができ
ない。
The shape of the graphite used in the present invention may be powdery or fibrous, and is not particularly limited, but powdery one is preferably used because the packing density is easily increased. The particle size is 0.1 to 100 μm, preferably 1 to 50
A powder having a particle size of μm is preferably used. The electrolytic solution of the present invention includes PC, EC and / or CHC, and γ-
It is essential to contain BL. In a non-aqueous secondary battery in which the graphite used in the present invention is used as the negative electrode active material and a PC single solvent electrolyte containing an electrolyte is used, the PC is decomposed and the graphite expands and falls off from the electrode to charge. I can't. Further, in the γ-BL single solvent type electrolyte solution, although the current efficiency is good, a slight reaction of γ-BL itself occurs when charging and discharging are repeated, and the output characteristics after the long-term charge / discharge cycle deteriorates due to electrolyte solution deterioration. . Further, the EC-only or CHC-only solvent-based electrolytic solution has a high solidifying temperature, becomes solid at around room temperature, and cannot be used at low temperatures.

【0018】ところが、主としてPC、ECおよび/ま
たはCHC、並びにγ−BLからなる電解液を用いる
と、PCの分解、黒鉛質の膨張、および、電解液の劣化
が抑制され、黒鉛質負極の充放電が可能になる。PC、
ECおよび/またはCHC、並びにγ−BLの混合比は
次の(A)、(B)、(C)の条件を満たす範囲内で好
適に用いられる。
However, when an electrolytic solution mainly containing PC, EC and / or CHC, and γ-BL is used, decomposition of PC, expansion of graphite, and deterioration of electrolytic solution are suppressed, and the graphite negative electrode is charged. Discharge becomes possible. PC,
The mixing ratio of EC and / or CHC and γ-BL is preferably used within a range satisfying the following conditions (A), (B) and (C).

【0019】(A) 0体積%<PC<80体積% (B) 0体積%<ECおよび/またはCHC<90体
積% (C) 10体積%≦γ−BL<95体積% PCが80体積%以上になると、PCの分解反応のた
め、電流効率が低下する。ECまたはCHC90体積%
以上では前述のごとく低温における電池特性が劣化す
る。また、γ−BL95体積%以上では長期充放電サイ
クル後の出力特性が悪くなる。γ−BL10体積%未満
では、PCの分解反応を抑制することがむずかしく、電
流効率が低くなる。PC、ECおよび/またはCHC、
並びにγ−BLの混合比が次の(A′)、(B′)、
(C′)の条件を満たす範囲内でさらに好適に用いられ
る。
(A) 0% by volume <PC <80% by volume (B) 0% by volume <EC and / or CHC <90% by volume (C) 10% by volume ≦ γ-BL <95% by volume PC is 80% by volume In the above case, the current efficiency decreases due to the decomposition reaction of PC. EC or CHC 90% by volume
As described above, the battery characteristics at low temperatures deteriorate as described above. Further, when the content of γ-BL is 95% by volume or more, the output characteristics after a long-term charge / discharge cycle deteriorate. When the content of γ-BL is less than 10% by volume, it is difficult to suppress the decomposition reaction of PC, and the current efficiency becomes low. PC, EC and / or CHC,
In addition, the mixing ratio of γ-BL is (A ′), (B ′),
It is more preferably used within the range of satisfying the condition (C ').

【0020】(A′) 0体積%<PC<60体積% (B′) 0体積%<ECおよび/またはCHC<80
体積% (C′) 20体積%≦γ−BL<90体積% 本発明に用いられる黒鉛質を負極の活物質とし、電解質
を含むPC単独溶媒系電解液を用いる非水系二次電池で
は、PCの分解とともに黒鉛質の膨張および電極からの
脱落が起こり、充電することができない。このPC系に
ECおよび/またはCHC、並びにγ−BLを加えると
PCの分解および黒鉛質の膨張劣化が抑制され、充放電
可能になり、しかも、電流効率の高く、サイクル性に優
れた二次電池になる。
(A ') 0% by volume <PC <60% by volume (B') 0% by volume <EC and / or CHC <80
% (C ′) 20% by volume ≦ γ-BL <90% by volume In a non-aqueous secondary battery in which a graphite-based material used in the present invention is used as a negative electrode active material and a PC single solvent electrolyte containing an electrolyte is used, As the graphite decomposes and the graphite expands and falls off from the electrode, it cannot be charged. When EC and / or CHC and γ-BL are added to this PC system, decomposition of PC and expansion deterioration of graphite are suppressed, charge and discharge become possible, and secondary current with high current efficiency and excellent cycleability is provided. It becomes a battery.

【0021】PC、EC、CHC、γ−BL以外の有機
溶媒、例えば、エーテル類、ケトン類、カーボネート
類、ニトリル類、アミド類、スルホン系化合物、エステ
ル類、芳香族炭化水素類などを少量添加してもよい。ま
た、これらを組み合わせて添加して用いることもでき
る。これらのうちでもエーテル類、ケトン類、ニトリル
類、エステル類などが好ましい。
Organic solvents other than PC, EC, CHC, γ-BL, such as ethers, ketones, carbonates, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons, etc. are added in small amounts. You may. Further, these may be used in combination. Among these, ethers, ketones, nitriles, esters and the like are preferable.

【0022】具体例としては、ジメトキシエタン(DM
E)、テトラヒドロフラン(THF)、2−メチル−テ
トラヒドロフラン、アニソール、1,4−ジオキサン、
4−メチル−2−ペンタノン、シクロヘキサン、アセト
ニトリル、プロピオニトリル、ブチロニトリル、ブチレ
ンカーボネート、ジエチルカーボネート(以下DECと
略記する)ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルホキシド、スルホラン、蟻酸メチル、
蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、
プロピオン酸エチルなどを挙げることができる。
As a specific example, dimethoxyethane (DM
E), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran, anisole, 1,4-dioxane,
4-methyl-2-pentanone, cyclohexane, acetonitrile, propionitrile, butyronitrile, butylene carbonate, diethyl carbonate (hereinafter abbreviated as DEC) dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, methyl formate,
Ethyl formate, methyl acetate, ethyl acetate, propyl acetate,
Examples thereof include ethyl propionate.

【0023】本発明の負極と組み合わされる正極として
は特に限定される物ではないが、MnO2 、MoO3
2 5 、V6 13、Fe2 3 、Fe3 4 、リチウ
ム含有遷移金属カルコゲン化合物(Li(1-X) Co
2 、Li(1-X) NiO2 )、TiS2 、MoS3 、F
eS2 、CuF2 、NiF2 等の無機化合物、フッ化カ
ーボン、グラファイト、気相成長炭素繊維及び/または
その粉砕物、ピッチ系炭素繊維及び/またはその粉砕物
等の炭素材料、ポリアセチレン、ポリ−p−フェニレン
等の導電性高分子等があげられる。リチウムを含まない
正極に対しては本発明の負極にリチウムを吸蔵させて用
いる、あるいは本発明の負極に必要量の金属リチウムを
接合して用いるなどして電池をくむことが出来る。
The positive electrode to be combined with the negative electrode of the present invention is not particularly limited, but MnO 2 , MoO 3 ,
V 2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4 , lithium-containing transition metal chalcogen compound (Li (1-X) Co
O 2 , Li (1-X) NiO 2 ), TiS 2 , MoS 3 , F
eS 2 , CuF 2 , NiF 2 and other inorganic compounds, fluorinated carbon, graphite, vapor grown carbon fiber and / or pulverized product thereof, carbon material such as pitch-based carbon fiber and / or pulverized product thereof, polyacetylene, poly- Examples thereof include conductive polymers such as p-phenylene. For a positive electrode not containing lithium, the negative electrode of the present invention can be used by occluding lithium, or the negative electrode of the present invention can be used by bonding a required amount of metallic lithium to form a battery.

【0024】しかし、このような電池は組立時に不活性
ガス下で組み立てることが必要になるなど、組立工程が
煩雑となる。リチウムを含有する遷移金属カルコゲン化
合物を用いた場合、正極、負極共に空気中で安定な放電
状態で電池を組み立てることができ、加工、組立の制約
が少なく、さらに電池の短絡等による発熱、爆発等の危
険性がなく、安全上からも好ましい。このようなリチウ
ム含有遷移金属カルコゲン化合物としては、たとえばL
(1-X) CoO2 、Li(1-x) NiO2 、Li (1-x)
(1-y) Niy 2 、LiMn2 4 、Li(1-X) Co
(1-Y) Y 2(MはCo、Ni以外の遷移金属、A
l、In、Sn等を表す)、Li(1-X) Z Co(1-Y)
Y 2 (AはLi以外のアルカリ金属)が挙げられ
る。
However, such a battery is inactive during assembly.
Assembling process such as assembly under gas is required
It becomes complicated. Transition metal chalcogenides containing lithium
When the compound is used, both the positive electrode and the negative electrode have stable discharge in air.
It is possible to assemble the battery in the state, restrictions on processing and assembly
There is little danger of heat generation and explosion due to battery short circuit.
It is not rugged and is preferable for safety. Richiu like this
Examples of the transition metal chalcogen compound containing rum include L
i(1-X)CoO2, Li(1-x)NiO2, Li (1-x)C
o(1-y)NiyO2, LiMn2OFour, Li(1-X)Co
(1-Y)MYO2(M is a transition metal other than Co and Ni, A
l, In, Sn, etc.), Li(1-X)A ZCo(1-Y)
MYO2(A is an alkali metal other than Li)
It

【0025】本発明に用いられる電解質は特に限定する
ものではないが、LiBF4 、LiAsF6 、LiPF
6 、LiClO4 、CF3 SO3 Li、LiI、LiA
lCl4 、NaClO4 、NaBF4 、NaI、(n−
Bu)4 NClO4 、(n−Bu)4 NBF4 、KPF
6 等が用いられる。また、これらの電解質を混合して用
いてもよい。電池性能及び取扱上の安全性や毒性などの
観点からLiBF4 が好ましい。
The electrolyte used in the present invention is not particularly limited, but LiBF 4 , LiAsF 6 , LiPF 4 are used.
6 , LiClO 4 , CF 3 SO 3 Li, LiI, LiA
lCl 4, NaClO 4, NaBF 4 , NaI, (n-
Bu) 4 NClO 4 , (n-Bu) 4 NBF 4 , KPF
6 grade is used. Moreover, you may mix and use these electrolytes. LiBF 4 is preferable from the viewpoint of battery performance, safety in handling, toxicity and the like.

【0026】さらに本発明における黒鉛を用いて電極を
構成する際、集電体、合剤等を用いることがあるが、集
電体としてはCu、Ni等が用いられ、合剤としてはテ
フロン、ポリエチレン、ニトリルゴム、ポリブタジエ
ン、ブチルゴム、ポリスチレン、スチレン/ブタジエン
ゴム、多硫化ゴム、ニトロセルロース、シアノエチルセ
ルロース及びアクリロニトリル、フッ化ビニル、フッ化
ビニリデン、クロロプレン等の重合体などが用いられ
る。
Further, when an electrode is formed by using the graphite of the present invention, a current collector, a mixture or the like may be used. Cu, Ni or the like is used as the current collector, and Teflon or the like is used as the mixture. Polymers such as polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose and acrylonitrile, vinyl fluoride, vinylidene fluoride and chloroprene are used.

【0027】またこの電極を形成する方法として電極活
物質と有機重合体を混合し、圧縮成形する方法、有機重
合体の溶剤溶液に電極活物質を分散したのち、塗工乾燥
する方法、有機重合体の水性あるいは油性分散体に電極
活物質を分散した後、塗工乾燥する方法等が知られてい
るが、特に限定するものではないが、バインダーの分布
が不均一になると好ましくないので、好ましくは有機重
合体の水性あるいは油性分散体に電極活物質を分散した
後、塗工乾燥する方法、更に好ましくは有機重合体に
0.5μm以下の粒子を含む非フッ素系有機重合体を用
いるのがよい。
As a method for forming this electrode, a method of mixing an electrode active material and an organic polymer and compression molding, a method of dispersing the electrode active material in a solvent solution of the organic polymer, followed by coating and drying, an organic polymer After the electrode active material is dispersed in the combined aqueous or oily dispersion, a method of coating and drying is known, but it is not particularly limited, but it is not preferable if the distribution of the binder becomes nonuniform, and thus it is preferable. Is a method of dispersing an electrode active material in an aqueous or oily dispersion of an organic polymer and then coating and drying, more preferably using a non-fluorine-containing organic polymer containing particles of 0.5 μm or less in the organic polymer. Good.

【0028】又、電池の構成要素として、必要とすれば
セパレーター、端子、絶縁板等の部品が用いられる。
If necessary, components such as a separator, a terminal and an insulating plate are used as the constituent elements of the battery.

【0029】[0029]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するがこれに限定されるものではない。又実施例
1から実施例4及び比較例1から比較例2までは負極単
独の性能を見るため対極に金属リチウムを用いた。この
場合、慣用的には炭素質負極は正極となるが放電時にリ
チウムイオンを受け取り還元されるためここでは負極と
呼び、還元方向を充電と呼ぶことにした。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the invention is not limited thereto. Further, in Examples 1 to 4 and Comparative Examples 1 to 2, metallic lithium was used as the counter electrode in order to see the performance of the negative electrode alone. In this case, the carbonaceous negative electrode is conventionally the positive electrode, but since it receives lithium ions during the discharge and is reduced, it is called the negative electrode here, and the reduction direction is called charging.

【0030】尚、表1、表2で電流効率は放電電気量/
充電電気量、利用率は放電電気量/負極活物質重量当り
の電気量(12gを96485クーロンとする)、過電
圧は放電開始直後の電圧降下の値、数字はサイクル数を
示す。
In Tables 1 and 2, the current efficiency is the discharge electricity quantity /
The amount of electricity charged is the amount of electricity discharged / the amount of electricity per weight of the negative electrode active material (12 g is 96485 coulomb), the overvoltage is the value of the voltage drop immediately after the start of discharge, and the number is the number of cycles.

【0031】[0031]

【実施例1】黒鉛〔日本黒鉛(株)製 SP10、d
002 =0.3355nm、Lc>100nm、N2 吸着
によるBET表面積=13m2 /g〕100重量部に対
し、スチレン/ブタジエンラテックス〔旭化成(株)製
L1571〕(固形分48重量%)4.17重量部、
増粘剤としてカルボキシメチルセルロース〔第一工業製
薬(株)製 BSH12)水溶液(固形分1重量%)1
30重量部、水30重量部を加え混合し、塗工液とし
た。10μmCu箔を基材としてこの塗工液を塗布乾燥
し、厚さ100μm、95g/m2 の負極電極を得た。
この負極を1cm×1cmの部分を残し剥離し、図1に
示す作用極とした。
Example 1 Graphite [SP10, d manufactured by Nippon Graphite Co., Ltd.]
002 = 0.3355 nm, Lc> 100 nm, BET surface area due to N 2 adsorption = 13 m 2 / g] 100 parts by weight, styrene / butadiene latex [L1571 manufactured by Asahi Kasei Corporation] (solid content 48% by weight) 4.17 Parts by weight,
Carboxymethylcellulose (BSH12 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) aqueous solution (solid content 1% by weight) as a thickener 1
30 parts by weight and 30 parts by weight of water were added and mixed to obtain a coating liquid. This coating liquid was applied and dried using a 10 μm Cu foil as a base material to obtain a negative electrode having a thickness of 100 μm and 95 g / m 2 .
The negative electrode was peeled off leaving a portion of 1 cm × 1 cm to obtain a working electrode shown in FIG.

【0032】一方、対極としてはSUSネットに金属リ
チウムを圧着したものを用い、参照極は金属リチウムを
用いた。以上の電極をArガス雰囲気下で電解液に1M
LiBF4 をPC+EC+γ−BL(容積比20:2
0:60)混合溶媒に溶解した電解液を用い図1の電池
を組み立てた。この電池を1mAで10mVまで定電圧
充電し、1mAで1Vまで定電流で放電するサイクルを
繰り返した。この電池の充放電サイクルに於ける電流効
率および利用率は表1の通りである。
On the other hand, as the counter electrode, a SUS net pressure-bonded with metallic lithium was used, and as the reference electrode, metallic lithium was used. The above electrodes are immersed in an electrolyte solution in an atmosphere of Ar gas at 1M
LiBF 4 was added to PC + EC + γ-BL (volume ratio 20: 2
0:60) The battery of FIG. 1 was assembled using the electrolytic solution dissolved in the mixed solvent. This battery was repeatedly charged with a constant voltage of 1 mA to 10 mV and discharged with a constant current of 1 mA to 1 V. Table 1 shows the current efficiency and utilization rate in the charge / discharge cycle of this battery.

【0033】[0033]

【実施例2】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりに、PC
+EC+γ−BL(容積比10:80:10)を用いた
ほかは実施例1と同様に行った。結果を表1に示す。
Example 2 PC + EC + γ-BL as the solvent of the electrolytic solution
(Volume ratio 20:20:60) PC instead of mixed solvent
The same procedure as in Example 1 was performed except that + EC + γ-BL (volume ratio 10:80:10) was used. The results are shown in Table 1.

【0034】[0034]

【実施例3】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりにPC+
CHC+γ−BL(容積比13:13:74)を用いた
ほかは実施例1と同様に行った。結果を表1に示す。
Example 3 PC + EC + γ-BL as the solvent of the electrolytic solution
(Volume ratio 20:20:60) PC + instead of mixed solvent
The same procedure as in Example 1 was carried out except that CHC + γ-BL (volume ratio 13:13:74) was used. The results are shown in Table 1.

【0035】[0035]

【比較例1】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりにPCを
用いたほかは実施例1と同様に行った。通電を開始する
とPCの分解による気泡の発生をともない、黒鉛は膨張
してCu箔から脱落し充電することができなかった。
[Comparative Example 1] PC + EC + γ-BL as a solvent for the electrolytic solution
(Volume ratio 20:20:60) The same procedure as in Example 1 was repeated except that PC was used instead of the mixed solvent. When energization was started, graphite was expanded and dropped from the Cu foil with the generation of bubbles due to decomposition of PC, and charging could not be performed.

【0036】[0036]

【比較例2】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりにPC+
EC(容積比50:50)を用いたほかは実施例1と同
様に行った。結果を表1に示す。
[Comparative Example 2] PC + EC + γ-BL as a solvent for the electrolytic solution
(Volume ratio 20:20:60) PC + instead of mixed solvent
The same procedure as in Example 1 was carried out except that EC (volume ratio 50:50) was used. The results are shown in Table 1.

【0037】[0037]

【実施例4】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりにPC+
EC+γ−BL(容積比85:5:10)を用いたほか
は実施例1と同様に行った。結果を表1に示す。実施例
5では正極としてリチウム含有カルコゲン化合物を組み
合わせた電池の例に付いて示す。
Example 4 PC + EC + γ-BL as the solvent of the electrolytic solution
(Volume ratio 20:20:60) PC + instead of mixed solvent
The same procedure as in Example 1 was carried out except that EC + γ-BL (volume ratio 85: 5: 10) was used. The results are shown in Table 1. Example 5 shows an example of a battery in which a lithium-containing chalcogen compound is combined as the positive electrode.

【0038】[0038]

【実施例5】粒径3μのLiCoSn0.022 100重
量部に対し、導電フィラーとしてグラファイト(Lon
tz社製 商品名KS6)20重量部、バインダーとし
てポリフッ化ビニリデン5体積%ジメチルホルムアミド
溶液100重量部を加え混合し、塗工液とした。15μ
mAl箔を基材としてこの塗工液を塗布乾燥し、厚さ1
20μm、290g/m2 の正極電極を得た。上記正極
と実施例1で得た負極(95g/m2 )を1cm×1c
mに切り出し、図2に示す電池を組み立てた。電解液に
は実施例1と同様1MLiBF4 をPC+EC+γ−B
L(容積比20:20:60)混合溶媒に溶解した電解
液用いた。この電池を1mAで4.2Vまで定電圧充電
し、1mAで2.7Vまで定電流で放電するサイクルを
繰り返した。結果を表2に示す。
Example 5 100 parts by weight of LiCoSn 0.02 O 2 having a particle size of 3 μ was used as a conductive filler for graphite (Lon.
20 parts by weight of TZ6 (trade name: KS6) and 100 parts by weight of polyvinylidene fluoride 5% by volume dimethylformamide solution as a binder were added and mixed to obtain a coating liquid. 15μ
Using mAl foil as a base material, applying and drying this coating solution to a thickness of 1
A positive electrode of 20 μm and 290 g / m 2 was obtained. 1 cm × 1 c of the positive electrode and the negative electrode (95 g / m 2 ) obtained in Example 1
It cut out to m and assembled the battery shown in FIG. As the electrolytic solution, 1 M LiBF 4 was used as PC + EC + γ-B as in Example 1.
An electrolytic solution dissolved in a mixed solvent of L (volume ratio 20:20:60) was used. This battery was repeatedly charged with a constant voltage of 1 mA to 4.2 V and discharged with a constant current of 1 mA to 2.7 V. The results are shown in Table 2.

【0039】[0039]

【比較例3】電解液の溶媒としてPC+EC+γ−BL
(容積比20:20:60)混合溶媒の代わりにγ−B
L単独溶媒を用いたほかは実施例5と同様に行った。結
果を表2に示す。
[Comparative Example 3] PC + EC + γ-BL as a solvent for the electrolytic solution
(Volume ratio 20:20:60) γ-B instead of mixed solvent
The same procedure as in Example 5 was carried out except that L single solvent was used. The results are shown in Table 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明の非水系二次電池は、電流効率が
大きく、かつ利用率が大きいので高容量化することがで
き有用である。
INDUSTRIAL APPLICABILITY The non-aqueous secondary battery of the present invention has a large current efficiency and a large utilization rate, and is useful because it can have a high capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電池の構成例を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a battery of the present invention.

【図2】本発明の電池の構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1.作用極(炭素質負極) 2.対極(金属リチウム) 3.参照極(金属リチウム) 4.電解液 5.ガラス容器 6.Arガス 7.正極 8.負極 9.集電棒 10.集電棒 11.SUSネット 12.SUSネット 13 外部電極端子 14 外部電極端子 15 電池ケース 16 セパレーター 17 電解液 1. Working electrode (carbonaceous negative electrode) 2. Counter electrode (lithium metal) 3. Reference electrode (lithium metal) 4. Electrolyte solution 5. Glass container 6. Ar gas 7. Positive electrode 8. Negative electrode 9. Current collector 10. Current collector 11. SUS Net 12. SUS net 13 External electrode terminal 14 External electrode terminal 15 Battery case 16 Separator 17 Electrolyte

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、炭素質負極、および
有機溶媒系電解液からなる非水二次電池において、上記
炭素質負極の活物質が主として炭素網面の面間隔d002
が0.337nm未満の黒鉛質からなり、かつ上記有機
溶媒系電解液が主としてプロピレンカーボネート、エチ
レンカーボネートおよび/またはシクロヘキシルカーボ
ネート、並びにγ−ブチロラクトンからなることを特徴
とする非水系二次電池。
1. In a non-aqueous secondary battery comprising a chargeable / dischargeable positive electrode, a carbonaceous negative electrode, and an organic solvent-based electrolytic solution, the active material of the carbonaceous negative electrode is mainly a carbon mesh plane spacing d 002.
Is less than 0.337 nm, and the organic solvent electrolyte is mainly propylene carbonate, ethylene carbonate and / or cyclohexyl carbonate, and γ-butyrolactone.
JP4201204A 1992-07-28 1992-07-28 Nonaqueous secondary battery Pending JPH0652896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201204A JPH0652896A (en) 1992-07-28 1992-07-28 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201204A JPH0652896A (en) 1992-07-28 1992-07-28 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH0652896A true JPH0652896A (en) 1994-02-25

Family

ID=16437078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201204A Pending JPH0652896A (en) 1992-07-28 1992-07-28 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0652896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997960A2 (en) 1998-10-29 2000-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2006127933A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997960A2 (en) 1998-10-29 2000-05-03 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
EP0997960A3 (en) * 1998-10-29 2001-09-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US6503657B1 (en) 1998-10-29 2003-01-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7727676B2 (en) 1998-10-29 2010-06-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US8383275B2 (en) 1998-10-29 2013-02-26 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US9029008B2 (en) 1998-10-29 2015-05-12 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2006127933A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
EP1916734A1 (en) * 2005-08-18 2008-04-30 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
EP1916734A4 (en) * 2005-08-18 2011-01-12 Ube Industries Nonaqueous electrolyte solution and lithium secondary battery using same
US8568932B2 (en) 2005-08-18 2013-10-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same

Similar Documents

Publication Publication Date Title
US5352548A (en) Secondary battery
JP5420614B2 (en) 4.35V or higher lithium secondary battery
JP4837614B2 (en) Lithium secondary battery
JP2002117895A (en) Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JPH05121066A (en) Negative electrode for nonaqueous battery
KR20150032014A (en) Silicon based anode active material and lithium secondary battery comprising the same
KR20130129819A (en) Lithium ion secondary battery
CN113994512B (en) Lithium secondary battery and method for manufacturing the same
JP4014151B2 (en) Lithium secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
US5922494A (en) Stabilized electrolyte for electrochemical cells and batteries
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JPH11288718A (en) Nonaqueous solvent secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
JP3178730B2 (en) Non-aqueous secondary battery
JPH0620721A (en) Nonaqueous secondary battery
JP2012253032A (en) Nonaqueous electrolyte solution and lithium secondary battery using the same
JPH0652896A (en) Nonaqueous secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3720959B2 (en) Secondary battery electrode material
JP3232128B2 (en) Non-aqueous electrolyte secondary battery
JP3596225B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JPH0652897A (en) Nonaqueous carbonaceous secondary battery
JPH06267589A (en) Electrolyte for organic solvent battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106