JPH0620721A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH0620721A
JPH0620721A JP4175836A JP17583692A JPH0620721A JP H0620721 A JPH0620721 A JP H0620721A JP 4175836 A JP4175836 A JP 4175836A JP 17583692 A JP17583692 A JP 17583692A JP H0620721 A JPH0620721 A JP H0620721A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
volume
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4175836A
Other languages
Japanese (ja)
Inventor
Takayuki Nakajima
孝之 中島
Kenji Arai
謙二 荒井
Yoshio Suzuki
良雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4175836A priority Critical patent/JPH0620721A/en
Publication of JPH0620721A publication Critical patent/JPH0620721A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a negative electrode and organic solvent-based electrolyte for a nonaqueous secondary battery of a favorable current efficiency and having a large capacity. CONSTITUTION:In a nonaqueous secondary battery comprising a positive electrode, organic solvent-based electrolyte, and a negative electrode, the negative electrode uses carbon material including graphite of a surface interval d002 of a carbon net surface of less than 0.337nm for active material, and the organic solvent-based electrolyte comprising gamma-BL and ring carbonate, and including i-butyrolactone at a ratio of 20 volume% or more and less than 50 volume% is used for the electrolyte. By combination of the negative electrode, the electrolyte, and various types of the positive electrodes, a nonaqueous secondary battery of a large current efficiency, and a large capacity can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機溶媒を電解液とした
高容量の非水系二次電池の負極及び電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity non-aqueous secondary battery negative electrode and an electrolytic solution using an organic solvent as an electrolytic solution.

【0002】[0002]

【従来の技術】有機溶媒を電解液とした非水二次電池の
負極として炭素質材料を用いることは公知である。電極
として用いられる炭素質材料はその電気化学的性質から
大きく次の三つに分類される。第一はグラファイトに代
表される炭素網面の間隔が狭く(d002 <0.337n
m)、炭素網面及び網面の積層方向に成長したものであ
る。このような炭素材料は陽イオン、陰イオンどちらも
その炭素網面間にインターカレーションし、層間化合物
を形成することが知られており、導電材料、有機合成反
応触媒や電池としての応用も考えられている。グラファ
イトを電池の負極として用いることは特開昭57−20
8079号公報、特開昭58−192266号公報、特
開昭59−143280号公報、特開昭60−5418
1号公報、特開昭60−182670号公報、特開昭6
0−221973号公報、特開昭61−7567号公
報、特開平1−311565号公報などに提案されてい
る。これらの特許には使用できる有機溶媒としてプロピ
レンカーボネート(以下PCと略記する)、テトラヒド
ロフラン(以下THFと略記する)、γ−ブチロラクト
ン(以下γ−BLと略記する)、1,2−ジメトキシエ
タン(以下DMEと略記する)、スルホランなどが記載
されている。実施例としてはLiClO4 あるいはLi
BF4 を用い、代表的溶媒としてPCあるいはTHFを
用いている。混合溶媒を用いても良いとの記載はある
が、混合溶媒を用いると特に性能が向上するとの記載は
ない。混合溶媒を用いた例は特開昭57−208079
号公報に開示されているPC/DMEのみである。
It is known to use a carbonaceous material as a negative electrode of a non-aqueous secondary battery using an organic solvent as an electrolytic solution. The carbonaceous materials used as electrodes are roughly classified into the following three types based on their electrochemical properties. The first is the narrow spacing of carbon mesh planes represented by graphite (d 002 <0.337n
m), a carbon net surface and a carbon surface grown in the laminating direction of the net surface. It is known that such a carbon material intercalates both cations and anions between the carbon network planes to form an intercalation compound, and is considered to be applied as a conductive material, an organic synthesis reaction catalyst or a battery. Has been. The use of graphite as the negative electrode of batteries is disclosed in JP-A-57-20.
No. 8079, No. 58-192266, No. 59-143280, and No. 60-5418.
No. 1, JP-A-60-182670, JP-A-6
No. 0-221973, Japanese Patent Application Laid-Open No. 61-7567, Japanese Patent Application Laid-Open No. 1-311565. In these patents, propylene carbonate (hereinafter abbreviated as PC), tetrahydrofuran (hereinafter abbreviated as THF), γ-butyrolactone (hereinafter abbreviated as γ-BL), 1,2-dimethoxyethane (hereinafter abbreviated as organic solvents that can be used in these patents. (Abbreviated as DME), sulfolane and the like. Examples include LiClO 4 or Li
BF 4 is used, and PC or THF is used as a typical solvent. Although it is described that a mixed solvent may be used, there is no description that the performance is particularly improved when the mixed solvent is used. An example using a mixed solvent is disclosed in JP-A-57-208079.
Only the PC / DME disclosed in the publication.

【0003】ところが電解質としてLiClO4 あるい
はLiBF4 、溶媒としてPCを用い、グラファイトで
充放電を試みてみると、殆ど充放電できなかった。また
LiBF4 を電解質とし、混合溶媒であるPC/DME
を用いてグラファイトを電極として充放電を試みてみる
と、充放電は出来るが、電流効率が極めて低く実用的で
ないことが分かった。グラファイトは陽イオンとしてリ
チウムイオンをインターカレーションする時、利用率
(炭素当りのリチウム吸蔵量)は16.7%と多いので
あるが、電池の負極として利用しようとしたときには前
述のごとく電気化学的に有効にリチウムを吸蔵・放出す
ることが出来ない。このことはジャーナルオブ エレク
トロケミカルソサイエティ(J.Electroche
m.Soc.)第117巻、222ページ(1970
年)や特開昭63−2555号公報の比較例1に記載の
ごとく、グラファイトにリチウムイオンが吸蔵された層
間化合物は有機溶媒に対する反応性が高く、電極として
働くよりも、電解液との反応が優先しており、電極とし
ての利用価値は低いものである。
However, when LiClO 4 or LiBF 4 was used as the electrolyte and PC was used as the solvent, an attempt was made to charge and discharge with graphite, but almost no charge or discharge could be achieved. Also, using LiBF 4 as an electrolyte, PC / DME which is a mixed solvent
An attempt was made to charge and discharge graphite by using graphite as an electrode, but it was found that the current efficiency was extremely low and it was not practical. Graphite has a high utilization rate (lithium storage amount per carbon) of 16.7% when intercalating lithium ions as cations, but when it is intended to be used as a negative electrode of a battery, it is electrochemically charged as described above. Cannot effectively absorb and release lithium. This is what the Journal of Electrochemical Society (J. Electroche
m. Soc. ) Volume 117, page 222 (1970)
Year) and Comparative Example 1 of JP-A-63-2555, an intercalation compound in which lithium ions are occluded in graphite has a high reactivity with an organic solvent and reacts with an electrolytic solution rather than acting as an electrode. Has priority, and its utility value as an electrode is low.

【0004】第二のグループは活性炭に代表されるきわ
めて表面積(SA >100m2 /g)大きく炭素網面の
間隔も広く(d002 >0.337nm)、結晶化の進ん
でいないものである。このタイプは表面吸着量が多いた
めに炭素当りのリチウム吸蔵量は大きいが電流効率が低
く、サイクル性も低い。第三のグループは炭素網面はあ
る程度成長しているが第一グループと比べて炭素網面の
間隔が広い(d002 >0.337nm)ものである。こ
のグループはその構造により種々の電気化学的特性を示
すが、第一グループと異なり、殆ど電解液と反応するこ
となくリチウムを吸蔵できる。しかしながらその利用率
(炭素当りのリチウム吸蔵量)は第一グループと比較す
ると小さい。
The second group is a group having a very large surface area (S A > 100 m 2 / g) typified by activated carbon, a large spacing between carbon mesh planes (d 002 > 0.337 nm), and crystallization is not advanced. . Since this type has a large surface adsorption amount, the lithium storage amount per carbon is large, but the current efficiency is low and the cycleability is low. In the third group, the carbon net plane has grown to some extent, but the carbon net plane spacing is wider than that in the first group (d 002 > 0.337 nm). This group shows various electrochemical characteristics depending on its structure, but unlike the first group, it can occlude lithium with almost no reaction with the electrolytic solution. However, the utilization rate (lithium storage amount per carbon) is smaller than that of the first group.

【0005】一方、グラファイトが負極として用いられ
ている例が米国特許4423125及びジャーナル オ
ブ エレクトロケミカル ソサイエティ(J.Elec
trochem.Soc.)第137巻、2009ペー
ジ(1990年)に記載されている。米国特許4423
125では電解液にジオキソランを用いている。ジオキ
ソランは化学的に不安定であり、又、電気化学的にも
3.5V以上では電解液の重合がおき正極に高い電圧の
活物質を用いることが出来ず不都合である。ジャーナル
オブ エレクトロケミカル ソサイエティ(J.El
ectrochem.Soc.)第137巻、2009
ページ(1990年)ではグラファイト及び石油コーク
スを電極とし、電解液にPCとエチレンカーボネート
(以下ECと略記する)との混合溶媒を用いた電気化学
的リチウムインターカレーションについて記述されてい
る。石油コークスでは初充電時に起こる副反応は表面積
に依存するのに対し、グラファイトでは初充電時に表面
積に依存する副反応のほかに表面積に依存しない副反応
が起こるために、初回の電流効率が低いと記載されてい
る。このような系で電池を組み立てた場合、初回の電流
効率が低いために多くの正極を必要とし、電池としての
正極の活物質当りの利用率を上げられないために高容量
化が困難である。このため高容量化のために正極、負極
ともに充電状態(負極カーボンにリチウムを吸蔵させ、
正極はリチウムを受け取るサイトが空となっている状
態)のものを組立るという方法がとられることがある
が、充電状態の電極は著しく反応性が高い為安全上の問
題が生じたり、不活性ガス下で電池を組み立てるなど煩
雑な工程をとる必要があったりで実用的でない。さらに
この報文の系では2サイクル以降も継続して副反応が起
こり電流効率は100%にならないことを記載してい
る。電流効率の高いことは電池のサイクル性に特に重要
である。負極の電流効率が低い場合で一定容量の放電を
行うためには、正極に常に放電容量以上の充電量が必要
となり、次第に正極に負担がかかり、ついには正極の過
充電状態となり、容量の低下をもたらす。又正極が過充
電にならないように正極に対して定容量充電を行えば、
電流効率が低いのでサイクルを繰り返すことにより容量
の低下をもたらす。
On the other hand, examples in which graphite is used as a negative electrode include US Pat. No. 4,423,125 and Journal of Electrochemical Society (J. Elec).
trochem. Soc. ) Volume 137, page 2009 (1990). US Patent 4423
In 125, dioxolane is used as the electrolytic solution. Dioxolane is chemically unstable, and also electrochemically at 3.5 V or higher, the electrolytic solution is polymerized and an active material having a high voltage cannot be used for the positive electrode, which is disadvantageous. Journal of Electrochemical Society (J. El
microchem. Soc. ) Volume 137, 2009
Page (1990) describes electrochemical lithium intercalation using graphite and petroleum coke as electrodes and a mixed solvent of PC and ethylene carbonate (hereinafter abbreviated as EC) as an electrolyte. In petroleum coke, the side reaction that occurs during the first charge depends on the surface area, whereas in graphite, a side reaction that does not depend on the surface area occurs in addition to the side reaction that depends on the surface area during the first charge. Have been described. When a battery is assembled in such a system, a large number of positive electrodes are required because the initial current efficiency is low, and it is difficult to increase the capacity because the utilization rate of the positive electrode as a battery per active material cannot be increased. . Therefore, in order to increase the capacity, both the positive electrode and the negative electrode are in a charged state (the negative electrode carbon absorbs lithium,
The positive electrode may be assembled with the lithium receiving site being empty), but the electrode in the charged state is extremely reactive and may cause a safety problem or may be inactive. It is not practical because it requires complicated steps such as assembling the battery under gas. Further, it is described that in the system of this report, a side reaction occurs continuously after 2 cycles and the current efficiency does not reach 100%. High current efficiency is especially important for battery cycleability. In order to discharge a certain capacity when the current efficiency of the negative electrode is low, the positive electrode always needs to have a charge amount equal to or larger than the discharge capacity. Bring Also, if the positive electrode is charged with a constant capacity so that the positive electrode does not become overcharged,
Since the current efficiency is low, repeating the cycle causes a decrease in capacity.

【0006】いずれにしても高容量でサイクル特性がよ
い二次電池を得るために、負極に要求されることは組立
時に電極が安定であり、電流効率が高く、利用率が大き
いことである。従来の電解液系においては炭素質材料の
第一グループは電解液と反応するため、第二グループは
電流効率が小さいため、利用価値が低く、第三グループ
は一部に電流効率がよいものもあるが、これも利用率
(炭素原子当りのリチウム吸蔵量)が10%程度であ
り、電池の高容量化のため、利用率が更に大きく、電流
効率のよい負極材料が望まれていた。
In any case, in order to obtain a secondary battery having a high capacity and good cycle characteristics, what is required for the negative electrode is that the electrode is stable during assembly, the current efficiency is high, and the utilization rate is high. In the conventional electrolyte system, the first group of carbonaceous materials reacts with the electrolyte, so the second group has low current efficiency, so the utility value is low, and the third group has some current efficiency. However, in this case as well, the utilization factor (the amount of stored lithium per carbon atom) is about 10%, and in order to increase the capacity of the battery, a negative electrode material having a higher utilization factor and good current efficiency has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は二次電
池の高容量化のために利用率が大きく、電流効率が高
く、かつ、サイクル性に優れる特定の有機溶媒電解液と
組み合わされた負極を提供することである。
The object of the present invention is to combine a specific organic solvent electrolyte having a high utilization factor, a high current efficiency and an excellent cycle property for the purpose of increasing the capacity of a secondary battery. It is to provide a negative electrode.

【0008】[0008]

【課題を解決するための手段】本発明者等は前記課題を
解決するために、負極に用いる炭素質材料と有機溶媒電
解液との組合せを鋭意検討したところ、化学的には多量
のリチウムイオンをインターカレーションすることがで
きるが、電池の負極として用いると電解液との反応が優
先して有効に充放電できないとされていた黒鉛がγ−B
Lと環状カーボネート類からなり、該γ−BL含率が2
0容積%以上50容積%未満である電解液を用いると意
外にも充放電でき、しかも充放電できる容量が大きく、
かつ電流効率も高いことを見いだし、本発明を完成する
に至った。すなわち、本発明は (1)充放電可能な正極と有機溶媒系電解液と炭素質材
料を主として活物質とする負極からなる非水系二次電池
に関し、該負極活物質の炭素質材料は炭素網面の面間隔
002 が0.337nm未満の黒鉛質を含有しかつ有機
溶媒系電解液が主としてγ−BLと環状カーボネートか
らなり、該γ−ブチロラクトン含率が20容積%以上5
0容積%未満であることを特徴とする非水系二次電池 (2)正極としてリチウムを含有する遷移金属カルコゲ
ン化合物を用いる上記の非水系二次電池 (3)電池組立時に正極、負極ともに放電状態である上
記の非水系二次電池を提供するものである。
In order to solve the above-mentioned problems, the inventors of the present invention have diligently studied a combination of a carbonaceous material used for a negative electrode and an organic solvent electrolyte solution, and found that a large amount of lithium ion However, when it is used as a negative electrode of a battery, graphite which is said to be unable to be effectively charged and discharged due to the reaction with an electrolytic solution is γ-B.
L and cyclic carbonates, and the γ-BL content is 2
Unexpectedly, when an electrolyte solution of 0% by volume or more and less than 50% by volume is used, the capacity for charging and discharging is large,
Moreover, they have found that the current efficiency is also high, and have completed the present invention. That is, the present invention relates to (1) a non-aqueous secondary battery comprising a chargeable / dischargeable positive electrode, an organic solvent-based electrolytic solution, and a negative electrode whose main active material is a carbonaceous material, and the carbonaceous material of the negative electrode active material is a carbon mesh. Containing graphite having a surface spacing d 002 of less than 0.337 nm and an organic solvent-based electrolyte mainly composed of γ-BL and a cyclic carbonate, and the γ-butyrolactone content is 20% by volume or more and 5% or more.
Non-aqueous secondary battery characterized by less than 0% by volume (2) The above non-aqueous secondary battery using a transition metal chalcogen compound containing lithium as a positive electrode (3) Both the positive electrode and the negative electrode are in a discharged state during battery assembly The above non-aqueous secondary battery is provided.

【0009】以下、本発明を詳細に説明する。本発明で
いう炭素網面の面間隔d002 が0.337nm未満の黒
鉛質とはたとえばグラファイトのごとく炭素網面の積層
が規則正しく積層された炭素質材料のことをいう。炭素
質材料はその出発原料及びその処理(製造)方法により
種々の構造を取るが、いずれの材料も高温処理によりそ
の炭素網面の面間隔d002 は小さくなり、炭素網面の積
層厚みLcは大きくなる傾向にあり、グラファイトは最
も小さい面間隔d002 =0.3354nmを持つ。この
002 の減少及びLcの増加は炭素質材料により大きく
異なり、高温処理(〜3000℃)で容易にグラファイ
ト化する易黒鉛化炭素とグラファイト化が進行しにくい
(d002 が小さくなりにくい)難黒鉛化炭素に分類され
る。この炭素質材料のグラファイト化の際、前出のd
002 、Lcの他に密度、表面積、電気抵抗等も大きく変
化するが、層間化合物の形成には特に面間隔が重要であ
る。
The present invention will be described in detail below. The graphite having a carbon mesh plane spacing d 002 of less than 0.337 nm as used in the present invention means a carbonaceous material in which carbon mesh planes are regularly laminated, such as graphite. The carbonaceous material has various structures depending on its starting material and its treatment (manufacturing) method. However, in any material, the interplanar spacing d 002 of the carbon mesh plane becomes small due to the high temperature treatment, and the laminated thickness Lc of the carbon mesh plane is Graphite tends to be large, and graphite has the smallest facet spacing d 002 = 0.3354 nm. The decrease of d 002 and the increase of Lc greatly differ depending on the carbonaceous material, and easily graphitized carbon easily graphitized by high temperature treatment (up to 3000 ° C.) and difficult graphitization to progress (d 002 does not easily become small). Classified as graphitized carbon. When graphitizing this carbonaceous material, d
In addition to 002 and Lc, the density, surface area, electric resistance, etc. also change greatly, but the interplanar spacing is particularly important for the formation of the intercalation compound.

【0010】本発明の炭素質材料はd002 が0.337
nm未満のものが特に有効であり、d002 が0.337
nm以上であると電流効率が低くなったり、炭素当りの
リチウム吸蔵量(利用率)が低くなったりするので好ま
しくない。又、電流効率の幾分かの低下を伴うこともあ
るが、本発明の負極は該黒鉛と他の炭素質材料とを併用
して作成することもでき、例えばこのような炭素質材料
としてコークス、アセチレンブラック、活性炭、メソフ
ェーズマイクロビーズ、ニードルコークス等が挙げられ
る。
The carbonaceous material of the present invention has a d 002 of 0.337.
Those of less than nm are particularly effective, and d 002 is 0.337.
If the thickness is more than nm, the current efficiency becomes low and the amount of lithium stored per carbon (utilization rate) becomes low, which is not preferable. In addition, although the current efficiency may be somewhat lowered, the negative electrode of the present invention can be produced by using the graphite in combination with another carbonaceous material. For example, coke as such a carbonaceous material is used. , Acetylene black, activated carbon, mesophase microbeads, needle coke and the like.

【0011】本発明に用いられるd002 が0.337n
m未満の黒鉛は、出発材料を特に限定しないが、石油ピ
ッチ、コールタールピッチ、熱分解炭素、ニードルコー
クス、縮合多環炭化水素などを一般に2500℃以上よ
り好ましくは3000℃以上で熱処理することで得られ
る。又天然に産する黒鉛も本発明に用いることが出来
る。
D 002 used in the present invention is 0.337n
The graphite having a size of less than m is not particularly limited as a starting material, but it is generally obtained by heat-treating petroleum pitch, coal tar pitch, pyrolytic carbon, needle coke, condensed polycyclic hydrocarbon, etc. at 2500 ° C. or higher, more preferably 3000 ° C. or higher. can get. Also, naturally occurring graphite can be used in the present invention.

【0012】本発明で用いる黒鉛の炭素網面の積層厚み
Lcは特に限定するものではないがグラファイト化に関
してLcも重要なパラメータであり、好ましくは30n
m以上、更に好ましくは50nm以上がよい。30nm
未満では利用率が低くなりやすい。またその表面積も特
に限定するものではないが、表面積が大きいと副反応が
多く起こりやすくなるため、好ましくは50m2 /g以
下がよく、さらに好ましくは20m2 /g以下がよい。
The lamination thickness Lc of the carbon network surface of graphite used in the present invention is not particularly limited, but Lc is also an important parameter for graphitization, and preferably 30n.
m or more, and more preferably 50 nm or more. 30 nm
If it is less than, the utilization rate tends to be low. The surface area is also not particularly limited, but if the surface area is large, many side reactions are likely to occur, so it is preferably 50 m 2 / g or less, more preferably 20 m 2 / g or less.

【0013】本発明に用いる黒鉛の形状は粉状、繊維状
等があり、特に限定するものではないが、粉状では充填
密度を大きくしやすいので好ましく用いられる。粒子径
が0.1〜50ミクロン、好ましくは1〜50ミクロン
の粉状が好適に用いられる。本発明の電解液としてはγ
−BLを20容積%以上50容積%未満含有することが
必須であり、20容積%未満では電流効率が低く、ま
た、50容積%以上では長期の充放電サイクル後の出力
特性が劣り好ましくない。20容積%未満ではリチウム
を含んだ黒鉛と第2成分の溶媒との反応がリチウムイン
ターカレーション(充電反応)に優先し、電流効率が低
くなり、利用率も低下するものと考えられる。また、5
0容積%以上では、電流効率は良いが充放電を繰り返す
とγ−BL自体の反応がわずかながら起こり電解液劣化
のためか、長期充放電サイクル後の出力特性が悪くな
る。これに対し、γ−BLを20容積%以上50容積%
未満含有する本発明の電解液では前記黒鉛との反応が抑
えられ、電流効率、利用率ともに高くなり、長期充放電
サイクル後の出力特性に優れる。
The shape of the graphite used in the present invention may be powdery or fibrous, and is not particularly limited, but powdery is preferably used because the packing density is easily increased. A powder having a particle diameter of 0.1 to 50 μm, preferably 1 to 50 μm is suitably used. The electrolytic solution of the present invention is γ
It is essential to contain -BL in an amount of 20% by volume or more and less than 50% by volume. If it is less than 20% by volume, the current efficiency is low, and if it is 50% by volume or more, the output characteristics after a long-term charge / discharge cycle are inferior. When the content is less than 20% by volume, the reaction between the lithium-containing graphite and the solvent of the second component has priority over lithium intercalation (charging reaction), the current efficiency is low, and the utilization rate is also low. Also, 5
At 0% by volume or more, the current efficiency is good, but when charging and discharging are repeated, a slight reaction of γ-BL itself occurs and the output characteristics after a long-term charging / discharging cycle deteriorate, probably due to electrolyte deterioration. On the other hand, γ-BL is 20% by volume or more and 50% by volume
In the case of the electrolytic solution of the present invention containing less than the above, the reaction with the graphite is suppressed, the current efficiency and the utilization rate are increased, and the output characteristics after a long-term charge / discharge cycle are excellent.

【0014】本発明の黒鉛を負極とし、電解質を含むP
C単独溶媒系電解液では、PCの分解とともに黒鉛の膨
張・電極からの脱落が起こり、充電することができな
い。このPC系にγ−BLを加えるとPCの分解および
黒鉛の膨張が抑制され、充電可能になる。γ−BLと組
み合わせる有機溶媒の環状カーボネート類には、EC、
PCなどがあげられる。また、これらを混合して用いて
もよい。
The graphite of the present invention is used as a negative electrode, and P containing an electrolyte is used.
In the C-only solvent-based electrolyte, graphite cannot be charged because the graphite expands and falls off from the electrode as PC decomposes. When γ-BL is added to this PC system, decomposition of PC and expansion of graphite are suppressed and charging becomes possible. The organic solvent cyclic carbonates combined with γ-BL include EC,
Examples include PCs. Further, these may be mixed and used.

【0015】γ−BL、環状カーボネート類以外の有機
溶媒、例えば、エーテル類、ケトン類、カーボネート
類、ニトリル類、アミド類、スルホン系化合物、エステ
ル類、芳香族炭化水素類などを少量添加してもよい。ま
た、これらを組み合わせて添加して用いることもでき
る。これらのうちでもエーテル類、ケトン類、ニトリル
類、エステル類などが好ましい。
Organic solvents other than γ-BL and cyclic carbonates, for example, ethers, ketones, carbonates, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons and the like are added in small amounts. Good. Further, these may be used in combination. Among these, ethers, ketones, nitriles, esters and the like are preferable.

【0016】具体例としては、ジメトキシエタン(DM
E)、テトラヒドロフラン(THF)、2−メチル−テ
トラヒドロフラン、アニソール、1,4−ジオキサン、
4−メチル−2−ペンタノン、シクロヘキサン、アセト
ニトリル、プロピオニトリル、ブチロニトリル、ブチレ
ンカーボネート、ジエチルカーボネート(以下DECと
略記する)ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルホキシド、スルホラン、蟻酸メチル、
蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、
プロピオン酸エチルなどを挙げることができる。
As a specific example, dimethoxyethane (DM
E), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran, anisole, 1,4-dioxane,
4-methyl-2-pentanone, cyclohexane, acetonitrile, propionitrile, butyronitrile, butylene carbonate, diethyl carbonate (hereinafter abbreviated as DEC) dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, methyl formate,
Ethyl formate, methyl acetate, ethyl acetate, propyl acetate,
Examples thereof include ethyl propionate.

【0017】本発明の負極と組み合わされる正極として
は特に限定される物ではないが、MnO2 、MoO3
2 5 、V6 13、Fe2 3 、Fe3 4 、リチウ
ム含有遷移金属カルコゲン化合物、Li(1-X) Co
2 、Li(1-X) ・NiO2 、TiS2 、MoS3 、F
eS2 、CuF2 、NiF2 等の無機化合物、フッ化カ
ーボン、グラファイト、気相成長炭素繊維及び/または
その粉砕物、ピッチ系炭素繊維及び/またはその粉砕物
等の炭素材料、ポリアセチレン、ポリ−p−フェニレン
等の導電性高分子等があげられる。リチウムを含まない
正極に対しては本発明の負極にリチウムを吸蔵させて用
いる、あるいは本発明の負極に必要量の金属リチウムを
接合して用いるなどして電池をくむことが出来る。しか
し、このような電池は組立時に不活性ガス下で組み立て
ることが必要になるなど、組立工程が煩雑となる。リチ
ウムを含有する遷移金属カルコゲン化合物を用いた場
合、正極、負極共に空気中で安定な放電状態で電池を組
み立てることができ、加工、組立の制約が少なく、更に
電池の短絡等による発熱、爆発等の危険性がなく、安全
上からも好ましい。このようなリチウム含有遷移金属カ
ルコゲン化合物としては、たとえばLi(1-X) Co
2 、Li(1-x) NiO2 、Li(1-x) Co(1-y) Ni
y 2 LiMn2 4 、Li(1-X) Co(1-Y) Y 2
(MはCo、Ni以外の遷移金属、Al、In、Sn等
を表す)、Li(1-X) Z Co(1-Y) Y 2 (AはL
i以外のアルカリ金属)が挙げられる。
As a positive electrode combined with the negative electrode of the present invention
Is not particularly limited, but MnO2, MoO3,
V2OFive, V6O13, Fe2O3, Fe3OFour, Richiu
Mum-containing transition metal chalcogen compound, Li(1-X)Co
O2, Li(1-X)・ NiO2, TiS2, MoS3, F
eS2, CuF2, NiF2Inorganic compounds such as
Carbon, graphite, vapor grown carbon fiber and / or
Pulverized carbon fiber and / or pulverized product thereof
Carbon materials such as polyacetylene, poly-p-phenylene
Conductive polymers such as Does not contain lithium
For the positive electrode, use the negative electrode of the present invention to occlude lithium.
Or the required amount of metallic lithium is added to the negative electrode of the present invention.
The battery can be contained by joining and using it. Only
However, such batteries should be assembled under inert gas during assembly.
As a result, the assembly process becomes complicated. Richi
When using transition metal chalcogen compounds containing um
Battery, both the positive and negative electrodes are assembled in a stable discharge state in air.
It can stand up, and there are few restrictions on processing and assembly.
Safe, with no risk of heat generation or explosion due to battery short circuit, etc.
It is also preferable from the above. Such a lithium-containing transition metal catalyst
Examples of the rucogen compound include Li(1-X)Co
O2, Li(1-x)NiO2, Li(1-x)Co(1-y)Ni
yO2LiMn2OFour, Li(1-X)Co(1-Y)MYO2
(M is a transition metal other than Co and Ni, Al, In, Sn, etc.
), Li(1-X)AZCo(1-Y)MYO2(A is L
Alkali metals other than i).

【0018】本発明に用いられる電解質は特に限定する
ものではないが、LiBF4 、LiAsF6 、LiPF
6 、LiClO4 、CF3 SO3 Li、LiI、LiA
lCl4 、NaClO4 、NaBF4 、NaI、(n−
Bu)4 NClO4 、(n−Bu)4 NBF4 、KPF
6 等が用いられ、これらのうちでも電池性能及び取扱上
の安全性や毒性などの観点からLiBF4 、LiPF6
が好ましい。
The electrolyte used in the present invention is not particularly limited, but LiBF 4 , LiAsF 6 and LiPF 4 are used.
6 , LiClO 4 , CF 3 SO 3 Li, LiI, LiA
lCl 4, NaClO 4, NaBF 4 , NaI, (n-
Bu) 4 NClO 4 , (n-Bu) 4 NBF 4 , KPF
6 and the like are used. Among them, LiBF 4 , LiPF 6 are used from the viewpoint of battery performance, handling safety and toxicity.
Is preferred.

【0019】更に本発明の黒鉛を用いて電極を構成する
際、集電体、合材等を用いることがあるが、集電体とし
てはCu、Ni等が用いられ、合剤としてはテフロン、
ポリエチレン、ニトリルゴム、ポリブタジエン、ブチル
ゴム、ポリスチレン、スチレン/ブタジエンゴム、多硫
化ゴム、ニトロセルロース、シアノエチルセルロース及
びアクリロニトリル、フッ化ビニル、フッ化ビニリデ
ン、クロロプレン等の重合体などが用いられる。またこ
の電極を形成する方法として電極活物質と有機重合体を
混合し、圧縮成型する方法、有機重合体の溶剤溶液に電
極活物質を分散したのち、塗工乾燥する方法、有機重合
体の水性あるいは油性分散体に電極活物質を分散した
後、塗工乾燥する方法等が知られているが、特に限定す
るものではないが、バインダーの分布が不均一になると
好ましくないので、好ましくは有機重合体の水性あるい
は油性分散体に電極活物質を分散した後、塗工乾燥する
方法、更に好ましくは有機重合体に0.5ミクロン以下
の粒子を含む非フッ素系有機重合体を用いるのがよい。
Further, when an electrode is formed using the graphite of the present invention, a current collector, a mixture or the like may be used. Cu, Ni or the like is used as the current collector, and Teflon is used as the mixture.
Polymers such as polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose and acrylonitrile, vinyl fluoride, vinylidene fluoride and chloroprene are used. Further, as a method for forming this electrode, a method of mixing an electrode active material and an organic polymer, compression molding, a method of dispersing the electrode active material in a solvent solution of the organic polymer, followed by coating and drying, an aqueous solution of the organic polymer. Alternatively, a method of coating and drying after dispersing the electrode active material in the oily dispersion is known, but it is not particularly limited. A method of dispersing the electrode active material in the combined aqueous or oily dispersion and then coating and drying, more preferably, a non-fluorine-containing organic polymer containing particles of 0.5 μm or less in the organic polymer is preferably used.

【0020】又、電池の構成要素として、要すればセパ
レーター、端子、絶縁板等の部品が用いられる。
If necessary, components such as a separator, a terminal and an insulating plate are used as the constituent elements of the battery.

【0021】[0021]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するがこれに限定されるものではない。又実施例
1から実施例4及び比較例1から比較例2までは負極単
独の性能を見るため対極に金属リチウムを用いた。この
場合、慣用的には炭素質負極は正極となるが放電時にリ
チウムイオンを受け取り還元されるためここでは負極と
呼び、還元方向を充電と呼ぶことにした 尚、表1で電流効率は放電電気量/充電電気量、利用率
は放電電気量/負極活物質重量当りの電気量(12gを
96485クーロンとする)、数字はサイクル数を示
す。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the invention is not limited thereto. Further, in Examples 1 to 4 and Comparative Examples 1 to 2, metallic lithium was used as the counter electrode in order to see the performance of the negative electrode alone. In this case, the carbonaceous negative electrode conventionally becomes the positive electrode, but since it receives lithium ions during discharge and is reduced, it is referred to as the negative electrode and the reduction direction is referred to as charging. The quantity / charged quantity of electricity, the utilization rate is the quantity of discharged electricity / the quantity of electricity per weight of the negative electrode active material (12 g is 96485 coulomb), and the numbers indicate the number of cycles.

【0022】[0022]

【実施例1】グラファイト(日本黒鉛社製 SP10、
002 =0.3355nm、Lc>100nm、N2
着によるBET表面積=13m2 /g)100重量部に
対し、スチレン/ブタジエンラテックス(旭化成(株)
製 L1571)(固形分48重量%)4.17重量
部、増粘剤としてカルボキシメチルセルロース(第一工
業製薬社製 BSH12)水溶液(固形分1重量%)1
30重量部、水30重量部を加え混合し、塗工液とし
た。10μCu箔を基材としてこの塗工液を塗布乾燥
し、厚さ100μ、95g/m2 の負極電極を得た。
上記負極を1cmX1cmの部分を残し剥離し、第一図
に示す作用極とした。 一方、対極としてはSUSネッ
トに金属リチウムを圧着したものを用い、参照極は金属
リチウムを用いた。以上の電極をArガス雰囲気下で電
解液に1MLiBF4 をγ−BL+PC(容積比25:
75)混合溶媒に溶解した電解液を用い第一図の電池を
組み立てた。この電池を1mAで10mVまで定電圧充
電し、1mAで1Vまで定電流で放電するサイクルを繰
り返した。この電池の充放電サイクルに於ける電流効率
および利用率は表1の通りである。
Example 1 Graphite (SP10 manufactured by Nippon Graphite Co., Ltd.,
d 002 = 0.3355 nm, Lc> 100 nm, BET surface area by adsorption of N 2 = 13 m 2 / g) 100 parts by weight of styrene / butadiene latex (Asahi Kasei Corporation)
Manufactured by L1571 (solid content 48% by weight) 4.17 parts by weight, carboxymethylcellulose (manufactured by Daiichi Kogyo Seiyaku Co., Ltd. BSH12) aqueous solution (solid content 1% by weight) 1 as a thickener 1
30 parts by weight and 30 parts by weight of water were added and mixed to obtain a coating liquid. This coating liquid was applied and dried using a 10 μCu foil as a base material to obtain a negative electrode having a thickness of 100 μ and 95 g / m 2 .
The negative electrode was peeled off leaving a portion of 1 cm × 1 cm to obtain a working electrode shown in FIG. On the other hand, as the counter electrode, a metal lithium-bonded SUS net was used, and as the reference electrode, metal lithium was used. 1 M LiBF 4 was added to the electrolytic solution of the above electrodes in an Ar gas atmosphere with γ-BL + PC (volume ratio 25:
75) The battery shown in FIG. 1 was assembled using the electrolytic solution dissolved in the mixed solvent. This battery was repeatedly charged with a constant voltage of 1 mA to 10 mV and discharged with a constant current of 1 mA to 1 V. Table 1 shows the current efficiency and utilization rate in the charge / discharge cycle of this battery.

【0023】[0023]

【実施例2】電解液の溶媒としてγ−BL+PC(容積
比25:75)混合溶媒の代わりにγ−BL+EC(容
積比45:55)、1MLiBF4 の代わりに1MLi
PF 6 を用いたほかは実施例1と同様に行った。結果を
表1に示す。
[Example 2] γ-BL + PC (volume:
(Ratio 25:75) γ-BL + EC (volume
Product ratio 45:55), 1M LiBFFourInstead of 1MLi
PF 6Was performed in the same manner as in Example 1 except that was used. The result
It shows in Table 1.

【0024】[0024]

【実施例3】電解液の溶媒としてγ−BL+PC(容積
比25:75)混合溶媒の代わりにγ−BL+PC+E
C(容積比30:35:35)を用いたほかは実施例1
と同様に行った。結果を表1に示す。
Example 3 Instead of a mixed solvent of γ-BL + PC (volume ratio 25:75) as a solvent of an electrolytic solution, γ-BL + PC + E
Example 1 except that C (volume ratio 30:35:35) was used
I went the same way. The results are shown in Table 1.

【0025】[0025]

【実施例4】電解液の溶媒としてγ−BL+PC(容積
比25:75)混合溶媒の代わりにγ−BL+EC+D
ME(容積比45:45:10)を用いたほかは実施例
1と同様に行った。結果を表1に示す。
Example 4 γ-BL + EC + D instead of γ-BL + PC (volume ratio 25:75) mixed solvent as the solvent for the electrolytic solution
Example 1 was repeated except that ME (volume ratio 45:45:10) was used. The results are shown in Table 1.

【0026】[0026]

【比較例1】電解液の溶媒としてγ−BL+PC(容積
比25:75)混合溶媒の代わりにPCを用いたほかは
実施例1と同様に行った。通電を開始するとPCの分解
による気泡の発生をともない、黒鉛は膨張してCu箔か
ら脱落し充電することができなかった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that PC was used instead of the γ-BL + PC (volume ratio 25:75) mixed solvent as the solvent for the electrolytic solution. When energization was started, graphite was expanded and dropped from the Cu foil with the generation of bubbles due to decomposition of PC, and charging could not be performed.

【0027】[0027]

【比較例2】電解液としての溶媒としてγ−BL+PC
(容積比25:75)混合溶媒の代わりにγ−BL+P
C(容積比10:90)を用いたほかは実施例1と同様
に行った。結果を表1に示す。実施例4では正極として
リチウム含有カルコゲン化合物を組み合わせた電池の例
に付いて示す。
Comparative Example 2 γ-BL + PC as a solvent as an electrolyte
(Volume ratio 25:75) γ-BL + P instead of mixed solvent
Example 1 was repeated except that C (volume ratio 10:90) was used. The results are shown in Table 1. Example 4 shows an example of a battery in which a lithium-containing chalcogen compound is combined as the positive electrode.

【0028】[0028]

【実施例5】粒径3μのLiCoSn0.022 100重
量部に対し、導電フィラーとしてグラファイト(Lon
tz社製 商品名KS6)20重量部、バインダーとし
てポリフッカビニリデン5%ジメチルホルムアミド溶液
100重量部を加え混合し、塗工液とした。15μAl
箔を基材としてこの塗工液を塗布乾燥し、厚さ120
μ、290g/m2 の正極電極を得た。上記正極と実施
例1で得た負極(95g/m2 )を1cmX1cmに切
り出し、図2に示す電池を組み立てた。電解液には1M
LiBF4 をγ−BL+PC+EC(容積比30:3
5:35)を用いた。この電池を5mAで4.2Vまで
定電圧充電し、5mAで2.7Vまで定電流で放電する
サイクルを繰り返した。この電池の1サイクルめの充放
電における電流効率および利用率はそれぞれ85.0
%、15.8%であった。また、10サイクルめの充放
電における電流効率および利用率はそれぞれ99.6
%、15.6%であった。100サイクルめの放電容量
は1サイクルめの放電容量の90%を保持していた。
Example 5 100 parts by weight of LiCoSn 0.02 O 2 having a particle size of 3 μ was used as a conductive filler for graphite (Lon.
20 parts by weight of KS6 (trade name: KS6) and 100 parts by weight of a 5% dimethylformamide solution of poly (fuccavinylidene) as a binder were added and mixed to obtain a coating solution. 15 μAl
This coating liquid is applied to a foil as a base material and dried to give a thickness of 120.
A positive electrode with μ, 290 g / m 2 was obtained. The above positive electrode and the negative electrode (95 g / m 2 ) obtained in Example 1 were cut into 1 cm × 1 cm, and the battery shown in FIG. 2 was assembled. 1M for electrolyte
LiBF 4 was added to γ-BL + PC + EC (volume ratio 30: 3
5:35) was used. This battery was repeatedly charged at a constant voltage of 5 mA to 4.2 V and discharged at a constant current of 5 mA to 2.7 V. The current efficiency and utilization rate during the first cycle charging / discharging of this battery were 85.0 each.
% And 15.8%. Further, the current efficiency and the utilization rate in the 10th cycle of charging and discharging are 99.6 respectively.
% And 15.6%. The discharge capacity at the 100th cycle retained 90% of the discharge capacity at the 1st cycle.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の負極(炭素網面の面間隔d002
が0.337nm未満の黒鉛質を含有する炭素質材料)
と主としてγ−BLと環状カーボネート類からなり、該
γ−ブチロラクトン含率が20容積%以上50容積%未
満である電解液及び各種の正極との組合せにより、電流
効率が大きく、かつ容量の大きい非水系二次電池が得ら
れる。
EFFECT OF THE INVENTION Negative electrode of the present invention (spacing of carbon mesh surface d 002
A carbonaceous material containing a graphite of less than 0.337 nm)
A combination of an electrolytic solution mainly composed of γ-BL and cyclic carbonates and having a γ-butyrolactone content of 20% by volume or more and less than 50% by volume and various positive electrodes, the current efficiency is large and the capacity is large. An aqueous secondary battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の電池の構成例の断面図である。FIG. 1 is a cross-sectional view of a configuration example of a battery of the present invention.

【図2】図2は本発明の電池の構成例の断面図である。FIG. 2 is a cross-sectional view of a configuration example of the battery of the present invention.

【符号の説明】[Explanation of symbols]

1 作用極(炭素質負極) 2 対極(金属リチウム) 3 参照極(金属リチウム) 4 電解液 5 ガラス容器 6 Arガス 7 正極 8 負極 9 集電棒 10 集電棒 11 SUSネット 12 SUSネット 13 外部電極端子 14 外部電極端子 15 電池ケース 16 セパレーター 17 電解液 1 Working electrode (carbonaceous negative electrode) 2 Counter electrode (metallic lithium) 3 Reference electrode (metallic lithium) 4 Electrolyte solution 5 Glass container 6 Ar gas 7 Positive electrode 8 Negative electrode 9 Current collecting rod 10 Current collecting rod 11 SUS net 12 SUS net 13 External electrode terminal 14 external electrode terminal 15 battery case 16 separator 17 electrolyte

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極と有機溶媒系電解液と
炭素質材料を主として活物質とする負極からなる非水系
二次電池に関し、該負極活物質の炭素質材料は炭素網面
の面間隔d002 が0.337nm未満の黒鉛質を含有し
かつ該有機溶媒系電解液が主としてγ−ブチロラクトン
と環状カーボネート類からなり、該γ−ブチロラクトン
含率が20容積%以上50容積%未満であることを特徴
とする非水系二次電池
1. A non-aqueous secondary battery comprising a chargeable / dischargeable positive electrode, an organic solvent-based electrolytic solution, and a negative electrode mainly containing a carbonaceous material as an active material, wherein the carbonaceous material of the negative electrode active material is a carbon mesh surface. The spacing d 002 contains a graphite having a size of less than 0.337 nm, the organic solvent-based electrolyte is mainly composed of γ-butyrolactone and cyclic carbonates, and the γ-butyrolactone content is 20% by volume or more and less than 50% by volume. Non-aqueous secondary battery characterized in that
JP4175836A 1992-07-03 1992-07-03 Nonaqueous secondary battery Withdrawn JPH0620721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175836A JPH0620721A (en) 1992-07-03 1992-07-03 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175836A JPH0620721A (en) 1992-07-03 1992-07-03 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH0620721A true JPH0620721A (en) 1994-01-28

Family

ID=16003070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175836A Withdrawn JPH0620721A (en) 1992-07-03 1992-07-03 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0620721A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440932B1 (en) * 2002-02-04 2004-07-21 삼성에스디아이 주식회사 Electrolytes for lithium rechargeable battery
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8673506B2 (en) 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440932B1 (en) * 2002-02-04 2004-07-21 삼성에스디아이 주식회사 Electrolytes for lithium rechargeable battery
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7078132B2 (en) 2003-10-29 2006-07-18 Samsung Sdi Co., Ltd. Lithium battery having effective performance
EP1528617A3 (en) * 2003-10-29 2006-10-04 Samsung SDI Co., Ltd. Lithium battery having effective performance
JP2009117382A (en) * 2004-06-30 2009-05-28 Samsung Sdi Co Ltd Lithium secondary cell
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US8673506B2 (en) 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery

Similar Documents

Publication Publication Date Title
KR102492832B1 (en) Lithium secondary battery
US5352548A (en) Secondary battery
JP2940172B2 (en) Non-aqueous electrolyte secondary battery
EP0688057B1 (en) Lithium ion secondary battery
US20060078792A1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
JP2005100770A (en) Nonaqueous electrolytic solution battery
JPH05121066A (en) Negative electrode for nonaqueous battery
KR20150032014A (en) Silicon based anode active material and lithium secondary battery comprising the same
KR20130129819A (en) Lithium ion secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
US5922494A (en) Stabilized electrolyte for electrochemical cells and batteries
JPH04162357A (en) Nonaqueous secondary battery
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JP3178730B2 (en) Non-aqueous secondary battery
JPH11288718A (en) Nonaqueous solvent secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
JPH0620721A (en) Nonaqueous secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JP3236317B2 (en) Non-aqueous battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
TW202209738A (en) Improved electrolyte for electrochemical cell
JP3232128B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005