JPH06302315A - Electrode for nonaqueous electrolytic secondary battery and its manufacture - Google Patents

Electrode for nonaqueous electrolytic secondary battery and its manufacture

Info

Publication number
JPH06302315A
JPH06302315A JP5332460A JP33246093A JPH06302315A JP H06302315 A JPH06302315 A JP H06302315A JP 5332460 A JP5332460 A JP 5332460A JP 33246093 A JP33246093 A JP 33246093A JP H06302315 A JPH06302315 A JP H06302315A
Authority
JP
Japan
Prior art keywords
whiskers
whisker
electrode
active material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5332460A
Other languages
Japanese (ja)
Other versions
JP2965450B2 (en
Inventor
Yasuhiko Mifuji
靖彦 美藤
Sukeyuki Murai
祐之 村井
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5332460A priority Critical patent/JP2965450B2/en
Publication of JPH06302315A publication Critical patent/JPH06302315A/en
Application granted granted Critical
Publication of JP2965450B2 publication Critical patent/JP2965450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide an electrode which can provide nonaqueous electrolytic secondary battery excellent in charge/discharge cycle by at least containing active substance powder, which has reversibility to charge and discharge, and chemically and electrochemically inert whiskers. CONSTITUTION:An electrode contains at least active substance powder, which has reversibility to charge and discharge, and chemically and electrochemically inert whiskers. It is to be desired that this electrode active substance should be an object in which lithium can be inserted or broken away reversibly Moreover, the mixture contains a binder and constitutes a solid structure. The whisker is at least one kind being selected from among the group consisting of a silicon carbide whisker, silicon nitride whisker, a potassium titanate whisker, and an aluminum oxide whisker. Furthermore, the surface of the whisker is covered with at least on kind being selected from among the group consisting of carbon, nickel, copper, and stainless steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池用
電極の改良に関するものである。さらに詳しくは、可逆
的にリチウムを挿入、脱離する電極材料の粉末を含む電
極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in electrodes for non-aqueous electrolyte secondary batteries. More specifically, it relates to an improvement of an electrode containing a powder of an electrode material capable of reversibly inserting and releasing lithium.

【0002】[0002]

【従来の技術】リチウムを負極とする非水電解質二次電
池は、起電力が高く、従来のニッケル−カドミウム蓄電
池や鉛蓄電池に比べ高エネルギー密度になると期待さ
れ、多くの研究がなされている。しかし、金属状のリチ
ウムを負極に用いると、充電時にデンドライトが発生
し、そのデンドライトのために短絡を起こしやすく、信
頼性の低い電池となる。この問題を解決するために、リ
チウムとアルミニウムや鉛との合金負極を用いることが
検討された。これらの合金負極を用いると、充電により
Liは負極合金中に吸蔵され、デンドライトの発生がな
く、信頼性の高い電池となる。しかし、合金負極の放電
電位は、金属Liに比べ約0.5V貴であるため、電池
の電圧も0.5V低く、これにより電池のエネルギー密
度も低下する。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode have high electromotive force and are expected to have higher energy density than conventional nickel-cadmium storage batteries and lead storage batteries, and many studies have been conducted. However, when metallic lithium is used for the negative electrode, a dendrite is generated during charging and a short circuit is likely to occur due to the dendrite, resulting in a battery with low reliability. In order to solve this problem, the use of an alloy negative electrode of lithium and aluminum or lead was studied. When these alloy negative electrodes are used, Li is occluded in the negative electrode alloy by charging, and dendrite is not generated, so that the battery has high reliability. However, since the discharge potential of the alloy negative electrode is about 0.5 V more noble than that of metallic Li, the voltage of the battery is also 0.5 V lower, which lowers the energy density of the battery.

【0003】一方、黒鉛などの炭素材料とLiの層間化
合物を負極活物質とする研究も活発になされている。こ
の化合物負極においても、充電によりLiは炭素の層間
に入るので、デンドライトは発生しない。放電電位は金
属Liに比べ約0.1V貴であるにすぎないから、電池
電圧の低下も小さい。これにより、より好ましい負極と
言える。通常、炭素質材料は有機物を不活性雰囲気中で
およそ400〜3000℃の加熱により分解し、炭素
化、さらには黒鉛化を行うことにより得られる。炭素質
材料の出発原料はほとんどの場合に有機物であり、炭素
化工程である1500℃付近までの加熱により、ほとん
ど炭素原子のみが残り、3000℃近い高温までの加熱
により黒鉛構造を発達させる。この有機物原料として
は、液相ではピッチ、コ−ルタ−ル、あるいはコ−クス
とピッチの混合物などが用いられ、固相では木質原料、
フラン樹脂、セルロ−ス、ポリアクリロニトリル、レ−
ヨンなどが用いられる。また、気相では、メタン、プロ
パンなどの炭化水素ガスが用いられる。
[0003] On the other hand, researches using an intercalation compound of a carbon material such as graphite and Li as a negative electrode active material have been actively conducted. Also in this compound negative electrode, dendrite does not occur because Li enters the carbon layer during charging. Since the discharge potential is no more than about 0.1 V as compared with metallic Li, the decrease in battery voltage is small. This can be said to be a more preferable negative electrode. Usually, a carbonaceous material is obtained by decomposing an organic substance by heating at about 400 to 3000 ° C. in an inert atmosphere, carbonizing, and further graphitizing. The starting material of the carbonaceous material is almost always an organic substance, and by heating up to around 1500 ° C., which is a carbonization step, almost only carbon atoms remain and heating up to a high temperature near 3000 ° C. develops a graphite structure. As the organic raw material, pitch in the liquid phase, cortal, or a mixture of coke and pitch is used, and in the solid phase, a wood raw material,
Furan resin, Cellulose, Polyacrylonitrile, Ray
Yeon is used. In the gas phase, hydrocarbon gas such as methane and propane is used.

【0004】これまでに、石油ピッチなどを出発原料と
し、一般的には2000℃以上の高温で焼成して得られ
る、発達したグラファイト構造を有する、いわゆる易黒
鉛化炭素材料や、フラン樹脂を始めとする熱硬化性樹脂
を出発原料として、2000℃以下の比較的低温で焼成
して得られる、乱層構造を有する、いわゆる難黒鉛化炭
素材料を、リチウムを吸蔵、放出させる非水電解質二次
電池用負極材料として用いる試みがなされている。
Up to now, so-called easily graphitizable carbon materials having a developed graphite structure obtained by firing petroleum pitch or the like as a starting material, generally at a high temperature of 2000 ° C. or higher, and furan resin, etc. A non-aqueous electrolyte secondary that absorbs and releases lithium from a so-called non-graphitizable carbon material having a turbostratic structure, which is obtained by firing a thermosetting resin as a starting material at a relatively low temperature of 2000 ° C. or less. Attempts have been made to use it as a negative electrode material for batteries.

【0005】一方、正極の活物質としては、MnO2
TiS2がよく検討されている。これらの正極活物質
は、Liに対する電位が3V程度であるが、さらに最近
では、LiMn24、LiNiO2、LiCoO2がLi
に対して4V付近で充放電電位を示す正極活物質として
注目され、研究開発が非常に盛んであり、その一部は実
用化されている。すなわち、電池の高エネルギー密度を
得る手段として容量の拡大とともに電池電圧を高める努
力がなされている。
On the other hand, MnO 2 and TiS 2 are often studied as the active material for the positive electrode. These positive electrode active materials have a potential with respect to Li of about 3 V, but more recently, LiMn 2 O 4 , LiNiO 2 , and LiCoO 2 are Li.
On the other hand, it has attracted attention as a positive electrode active material showing a charge / discharge potential near 4 V, and research and development have been very active, and some of them have been put into practical use. That is, efforts are being made to increase the battery voltage as well as the capacity as a means for obtaining a high energy density of the battery.

【0006】[0006]

【発明が解決しようとする課題】上記のように黒鉛など
の炭素材料とLiの層間化合物を負極活物質とした場合
にも大きい問題があった。すなわち、充放電の繰り返し
にともない、容量の低下が起こる。この対応策として、
負極に繊維状の黒鉛、あるいは炭素材料で被覆したガラ
ス繊維を混合することも行われている。これらの繊維状
物質は、一般に炭素前駆体やガラス材料を紡糸すること
により製造され、その繊維直径は最小6μm程度と比較
的大きく、かさ高いものとなる。したがって、これらの
繊維状物質を負極に混合する場合、極板の強度を高める
ために結着剤の増量が必要となり、初期容量の低下など
の問題を引き起こす。また、初期容量を維持するために
結着剤の増量を行わない場合には、極板強度が弱くな
り、その結果、サイクル特性が不十分なものとなる。
As described above, there is a serious problem even when a carbon material such as graphite and an intercalation compound of Li are used as a negative electrode active material. That is, the capacity decreases as the charging and discharging are repeated. As a countermeasure against this,
It is also practiced to mix glass fiber coated with fibrous graphite or a carbon material into the negative electrode. These fibrous substances are generally produced by spinning a carbon precursor or a glass material, and the fiber diameter is relatively large at a minimum of about 6 μm and becomes bulky. Therefore, when these fibrous substances are mixed in the negative electrode, it is necessary to increase the amount of the binder in order to increase the strength of the electrode plate, which causes a problem such as a decrease in initial capacity. Further, when the amount of the binder is not increased in order to maintain the initial capacity, the electrode plate strength becomes weak and, as a result, the cycle characteristics become insufficient.

【0007】正極についても同様の問題があった。すな
わち、正極について改善すべき課題の1つは、充放電に
ともなう容量の低下を防止することである。この課題を
解決するために、これまでに正極活物質材料の改良や電
解液の検討、セパレ−タの改善などの多くの努力がなさ
れている。充放電を繰り返した場合に、放電容量の低下
が起こる原因の1つは、上記の正極活物質などのリチウ
ムを挿入、脱離することのできる化合物においても、深
い充放電を繰り返すと活物質の微細化が起こることであ
る。充放電サイクル回数を重ねるにしたがって、活物質
が微細化する現象は顕著となり、その結果、微細化が最
も進んだ場合には電極が崩れてしまう。そこで、結着剤
についても多くの工夫がなされている。例えばフッ素樹
脂やゴム系樹脂、ポリオレフィンなどが好んで用いられ
ている。
The same problem was encountered with the positive electrode. That is, one of the problems to be solved for the positive electrode is to prevent the capacity from decreasing due to charge / discharge. In order to solve this problem, many efforts have been made so far such as improvement of the positive electrode active material, examination of the electrolytic solution, and improvement of the separator. One of the causes of a decrease in discharge capacity when charging and discharging are repeated is that even in a compound capable of inserting and releasing lithium, such as the positive electrode active material described above, when deep charging and discharging are repeated, the active material becomes This means that miniaturization will occur. As the number of charge and discharge cycles increases, the phenomenon that the active material is miniaturized becomes remarkable, and as a result, the electrode collapses when the miniaturization is most advanced. Therefore, many ideas have been made for the binder. For example, fluororesins, rubber-based resins and polyolefins are preferably used.

【0008】しかしながら、この場合においてもリチウ
ムの挿入、脱離にともなう正極活物質の膨張、収縮の結
果、活物質保持の不良や集電不良が生じ、十分なサイク
ル特性が得られないという欠点を有している。この対応
策として、負極と同様に繊維状の黒鉛、あるいは炭素材
料で被覆したガラス繊維を混合することも行われてい
る。先述したように、これらの繊維状物質は、一般にか
さ高いものとなる。負極の場合と同様に、極板の強度を
高めるために結着剤の増量が必要となり、初期容量の低
下などの問題を引き起こす。また、初期容量を維持する
ために結着剤の増量を行わない場合には、極板強度が弱
くなり、その結果、サイクル特性が不十分なものとな
る。本発明は、上記のような充放電にともなう放電容量
の低下、すなわち、サイクル特性が不十分であるという
問題を解決し、充放電サイクル特性に優れた非水電解質
二次電池を与える電極を提供することを目的とする。
However, even in this case, as a result of the expansion and contraction of the positive electrode active material due to the insertion and desorption of lithium, defective active material retention and poor current collection occur, and sufficient cycle characteristics cannot be obtained. Have As a countermeasure against this, it has been practiced to mix fibrous graphite or glass fiber coated with a carbon material as in the case of the negative electrode. As mentioned above, these fibrous materials are generally bulky. Similar to the case of the negative electrode, it is necessary to increase the amount of the binder to increase the strength of the electrode plate, which causes a problem such as a decrease in initial capacity. Further, when the amount of the binder is not increased in order to maintain the initial capacity, the electrode plate strength becomes weak and, as a result, the cycle characteristics become insufficient. The present invention solves the above-mentioned decrease in discharge capacity due to charge / discharge, that is, the problem of insufficient cycle characteristics, and provides an electrode that provides a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明の電極は、少なく
とも、充放電に対して可逆性を有する活物質粉末と、化
学的および電気化学的に不活性なウィスカ−を含むこと
を特徴とする。前記の電極活物質は、可逆的にリチウム
を挿入・脱離するものであることが好ましい。このよう
な負極活物質としては、炭素材料がある。一方、可逆的
にリチウムを挿入・脱離する正極活物質としては、Li
CoO2、LiMn24、LiNiO2、LiFeO2
γ型LiV25、MnO2、TiS2、MoS2、V
25、V613から選ばれるものが好ましい。
The electrode of the present invention is characterized by containing at least an active material powder having reversibility to charge and discharge and a whisker which is chemically and electrochemically inactive. . The electrode active material is preferably one that reversibly inserts and releases lithium. As such a negative electrode active material, there is a carbon material. On the other hand, as a positive electrode active material that reversibly inserts and releases lithium, Li is
CoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFeO 2 ,
γ-type LiV 2 O 5 , MnO 2 , TiS 2 , MoS 2 , V
Those selected from 2 O 5 and V 6 O 13 are preferable.

【0010】本発明の電極に用いられるウィスカ−とし
ては、炭化けい素ウィスカ−、窒化けい素ウィスカ−、
チタン酸カリウムウィスカ−およびほう酸アルミニウム
ウィスカ−よりなる群から選ばれる少なくとも1種が好
ましい。これらウィスカ−は、その表面に炭素を被覆し
たものであることがより好ましい。また、負極には、ニ
ッケル、銅またはステンレス鋼で被覆したものを、正極
には、チタン、アルミニウムまたはステンレス鋼で被覆
したものをそれぞれ用いることができる。これらのウィ
スカ−の混合割合は、電極活物質の0.5重量%〜20
重量%相当であることが望ましい。ウィスカ−のサイズ
は、平均直径が0.1〜3μm、平均長さが3〜50μ
mであることが好ましい。
The whiskers used in the electrode of the present invention include silicon carbide whiskers, silicon nitride whiskers,
At least one selected from the group consisting of potassium titanate whiskers and aluminum borate whiskers is preferable. More preferably, these whiskers have carbon coated on the surface thereof. The negative electrode may be coated with nickel, copper or stainless steel, and the positive electrode may be coated with titanium, aluminum or stainless steel. The mixing ratio of these whiskers is 0.5% by weight to 20% by weight of the electrode active material.
It is desirable to be equivalent to the weight%. The whisker has an average diameter of 0.1 to 3 μm and an average length of 3 to 50 μm.
It is preferably m.

【0011】本発明の電極の製造方法は、電極活物質の
原料に上記のウィスカ−を混合し、その混合物を加熱す
ることにより、ウィスカ−と密に混合された活物質を生
成させる工程を有することを特徴とする。
The method for producing an electrode of the present invention comprises a step of mixing the above-mentioned whiskers with a raw material of an electrode active material and heating the mixture to produce an active material intimately mixed with the whiskers. It is characterized by

【0012】[0012]

【作用】本発明によって、充放電サイクルにともなう容
量低下が極めて少ない電極を得ることができる。このよ
うな本発明による充放電サイクル特性の改善は、充放電
時の活物質の膨張、収縮にともなう集電不良をウィスカ
−が補う働きをすることによるものと考えられる。電池
構成時には活物質粒子が相互に接触をし、良好な電気的
接触状態を確保しているにもかかわらず、Liの挿入
(負極における充電、正極における放電)時の結晶の膨
張、Liの脱離(負極における放電、正極における充
電)時の収縮の繰り返しにより、粒子間が隔たり、その
結果として電気的接触が不十分な状態となることが推測
される。
According to the present invention, it is possible to obtain an electrode in which the capacity decrease with charge / discharge cycle is extremely small. It is considered that the improvement of the charge / discharge cycle characteristics according to the present invention is due to the whisker functioning to compensate the current collection failure due to the expansion and contraction of the active material during charge / discharge. Although the active material particles are in contact with each other during battery construction to ensure a good electrical contact state, crystal expansion and Li desorption during Li insertion (charge in negative electrode, discharge in positive electrode) are performed. It is speculated that the particles are separated due to repeated contraction during separation (discharge at the negative electrode, charge at the positive electrode), resulting in insufficient electrical contact.

【0013】活物質に混合されたウィスカ−は、活物質
の膨張、収縮の繰り返しによる活物質粒子間の隔たりを
抑制する、言い換えれば初期の電極内部の状態を保持す
る構造維持の役割を果たしていると考えられる。さら
に、ウィスカ−の表面に炭素またはステンレス鋼等の前
記金属を被覆したものを用いると、上記の構造維持作用
に加えて、集電作用も行うので、特に、急速充放電サイ
クル性能の向上に有効である。本発明の電極を使用する
ことにより、高エネルギー密度で、充放電サイクルにと
もなう容量低下の少ない非水電解質二次電池を得ること
が可能となる。
The whiskers mixed with the active material play a role of suppressing a gap between the active material particles due to repeated expansion and contraction of the active material, in other words, maintaining a structure in which the initial internal state of the electrode is maintained. it is conceivable that. Further, when the surface of the whisker is coated with the above metal such as carbon or stainless steel, in addition to the above structure-maintaining action, a current collecting action is also performed, which is particularly effective for improving rapid charge / discharge cycle performance. Is. By using the electrode of the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery having a high energy density and a decrease in capacity with charge / discharge cycles.

【0014】[0014]

【実施例】本発明による非水電解質二次電池用電極は、
好ましくは、可逆的にリチウムを挿入・脱離する電極活
物質粉末、ウィスカ−および結着剤、必要に応じて加え
た導電剤、の混合物と、導電性の支持体とから構成され
る。前記混合物は、加圧成型によりペレットとされる
か、導電性の支持体上に加圧成型されて支持体と一体の
ペレットとされる。他の態様においては、前記混合物
は、適当な媒体が加えられてペースト状とされ、導電性
の支持体に塗着され、乾燥後圧延されて支持体に一体に
結合される。
EXAMPLE An electrode for a non-aqueous electrolyte secondary battery according to the present invention is
Preferably, it is composed of a mixture of an electrode active material powder capable of reversibly inserting and releasing lithium, a whisker and a binder, and a conductive agent added as necessary, and a conductive support. The mixture is pelletized by pressure molding, or is pelletized by pressure molding on a conductive support to be integrated with the support. In another embodiment, the mixture is made into a paste by adding a suitable medium, applied to a conductive support, dried and rolled to be integrally bonded to the support.

【0015】上記のようにして固体の構造体として構成
される電極中において、ウィスカ−は、前述のように、
構造維持機能を発揮する。本発明者らは、電極に加える
繊維状補強材について種々検討した結果、前述のウィス
カ−が電極構造体の補強材として適当な強度とサイズを
有し、電極の充放電サイクルにともなう容量の低下を効
果的に抑制しうることを見出した。ウィスカ−が、前述
のように、炭素、あるいはステンレス鋼等の前記金属に
より被覆されたものであると、その被覆層の導電性のた
め、電極の急速充放電特性を向上することができる。
In the electrode constructed as a solid structure as described above, the whiskers are, as described above,
Demonstrate the structure maintenance function. As a result of various studies on the fibrous reinforcing material to be added to the electrode, the present inventors have found that the above-mentioned whiskers have appropriate strength and size as a reinforcing material for the electrode structure, and the capacity decreases with charge / discharge cycles of the electrode. It was found that the above can be effectively suppressed. If the whiskers are coated with the above-mentioned metal such as carbon or stainless steel as described above, the rapid charge / discharge characteristics of the electrode can be improved due to the conductivity of the coating layer.

【0016】ウィスカ−に、炭素やステンレス鋼等の金
属を被覆する方法としては、薄膜形成法として知られて
いるCVD法、スパッタ法などの気相法や溶液中におけ
る析出法などを用いることができる。また、活物質とウ
ィスカ−との緊密な混合物を得るために、活物質の原料
にウィスカ−を混合し、その混合物を加熱してウィスカ
−と密に接触する活物質を合成する方法をとるのが好ま
しい。負極活物質の炭素材料の原料としては、加熱によ
り炭化して炭素材料を与える有機物、好ましくは石油ピ
ッチ、コールタール、コークスあるいはこれらの混合物
が用いられる。
As a method for coating the whisker with a metal such as carbon or stainless steel, a vapor phase method such as a CVD method known as a thin film forming method, a sputtering method or a deposition method in a solution is used. it can. Further, in order to obtain an intimate mixture of the active material and the whisker, a method of mixing a whisker with a raw material of the active material and heating the mixture to synthesize an active material in intimate contact with the whisker is adopted. Is preferred. As a raw material of the carbon material of the negative electrode active material, an organic substance which carbonizes by heating to give a carbon material, preferably petroleum pitch, coal tar, coke or a mixture thereof is used.

【0017】本発明に用いられる正極活物質は、次の3
種に分類される。 (1)LiCoO2、LiMn24、LiNiO2、Li
FeO2、γ型LiV2O5などのリチウム含有複合酸化
物。 (2)MnO2、V25、V613などの金属酸化物。 (3)TiS2、MoS2などの硫化物。 上記(1)の複合酸化物の原料としては、リチウムの酸
化物、炭酸塩、水酸化物、硫酸塩、硝酸塩、塩化物など
のリチウムの酸化物、または加熱により同酸化物を与え
るリチウム塩と、リチウムとともに複合酸化物を構成す
る金属、例えばコバルトの酸化物、炭酸塩、水酸化物、
硫酸塩、硝酸塩、塩化物などのコバルトの酸化物、また
は加熱により同酸化物を与える塩との組み合わせが用い
られる。(2)の金属酸化物の原料としては、該当する
金属の低次酸化物、炭酸塩、水酸化物、硫酸塩、硝酸
塩、塩化物などが用いられる。また、(3)の硫化物
は、金属チタンまたはモリブデンと硫黄が用いられ、真
空中で加熱することにより硫化物が合成される。
The positive electrode active material used in the present invention includes the following 3
Classified into species. (1) LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , Li
A lithium-containing composite oxide such as FeO 2 or γ-type LiV 2 O 5. (2) Metal oxides such as MnO 2 , V 2 O 5 , and V 6 O 13 . (3) Sulfides such as TiS 2 and MoS 2 . Examples of the raw material of the composite oxide of (1) above include lithium oxides such as lithium oxides, carbonates, hydroxides, sulfates, nitrates, and chlorides, or lithium salts that give the same oxides by heating. , A metal forming a composite oxide together with lithium, for example, cobalt oxide, carbonate, hydroxide,
Cobalt oxides such as sulfates, nitrates and chlorides, or a combination with a salt that gives the same oxide by heating are used. As a raw material of the metal oxide of (2), a low order oxide, carbonate, hydroxide, sulfate, nitrate, chloride or the like of the corresponding metal is used. As the sulfide of (3), metallic titanium or molybdenum and sulfur are used, and the sulfide is synthesized by heating in vacuum.

【0018】[実施例1]本実施例では、負極材料とし
て黒鉛を用いた。これに混合するウィスカ−として、炭
化けい素ウィスカ−、窒化けい素ウィスカ−、チタン酸
カリウムウィスカ−、ほう酸アルミニウムウィスカ−を
それぞれ用いた。これらウィスカ−は、いずれも平均直
径1μm、平均長さ10μmである。黒鉛粉末100g
に対してウィスカ−を10g、結着剤のポリエチレン粉
末5gを混合して合剤とした。この合剤0.1gを直径
17.5mmの円板に加圧成型して本発明による電極と
する。
Example 1 In this example, graphite was used as the negative electrode material. As whiskers to be mixed therein, silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and aluminum borate whiskers were used. Each of these whiskers has an average diameter of 1 μm and an average length of 10 μm. Graphite powder 100g
On the other hand, 10 g of whiskers and 5 g of polyethylene powder as a binder were mixed to obtain a mixture. 0.1 g of this mixture is pressure-molded into a disk having a diameter of 17.5 mm to obtain an electrode according to the present invention.

【0019】図1は、この電極を評価するのに用いた試
験セルの構成を示す。1は、上記の電極であり、ステン
レス鋼製のケース2の中央に配置される。3は微孔性ポ
リプロピレンフィルムからなるセパレータであり、電極
1上に配置される。非水電解液には、1モル/1の過塩
素酸リチウム(LiClO4)を溶解したエチレンカー
ボネートと1,2−ジメトキシエタンの体積比1:1の
混合溶液を用いる。この電解液を上記セパレータ上に注
液した後、内側に直径17.5mmの円板状金属リチウ
ム板4を張り付け、外周部にポリプロピレン製ガスケッ
ト5を付けたステンレス鋼製封口板6をケース2に組み
合わせて封口することにより、試験セルが構成される。
FIG. 1 shows the construction of the test cell used to evaluate this electrode. Reference numeral 1 denotes the above electrode, which is arranged at the center of a stainless steel case 2. A separator 3 made of a microporous polypropylene film is arranged on the electrode 1. As the non-aqueous electrolytic solution, a mixed solution of 1 mol / 1 lithium perchlorate (LiClO 4 ) dissolved in ethylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 is used. After injecting this electrolytic solution onto the separator, a disc-shaped metallic lithium plate 4 having a diameter of 17.5 mm is attached to the inside, and a stainless steel sealing plate 6 having a polypropylene gasket 5 on the outer peripheral portion is attached to the case 2. A test cell is constructed by combining and sealing.

【0020】また、比較例として、ウィスカ−を混合し
ない電極を用いたセル、ウィスカ−の代わりに同じ量の
繊維状黒鉛を混合した電極を用いたセル、およびウィス
カ−の代わりに炭素被覆ガラス繊維を混合した電極を用
いたセルを上記と同様にして作製した。なお、ここに用
いた繊維状黒鉛の平均直径は8μm、平均長さは20μ
mであり、炭素被覆ガラス繊維の平均直径は6μm、平
均長さは18μmである。これらの試験セルについて、
0.8mAの定電流で、電極1がリチウム対極4に対し
て0Vになるまでカソード分極(電極1を負極としてみ
る場合には充電に相当する)し、次に電極1が対極4に
対して1.0Vになるまでアノード分極(放電に相当す
る)した。このカソード分極、アノード分極を繰り返し
て電極特性を評価した。表1に各セルの1サイクル目の
電極活物質、すなわち黒鉛1g当りの放電容量と100
サイクル目の放電容量、および100サイクル目の容量
維持率を示した。
As a comparative example, a cell using an electrode not mixed with a whisker, a cell using an electrode mixed with the same amount of fibrous graphite instead of the whisker, and carbon-coated glass fiber instead of the whisker. A cell using electrodes mixed with was prepared in the same manner as above. The fibrous graphite used here had an average diameter of 8 μm and an average length of 20 μm.
m, the carbon-coated glass fiber has an average diameter of 6 μm and an average length of 18 μm. For these test cells,
At a constant current of 0.8 mA, the electrode 1 is cathode-polarized (corresponding to charging when the electrode 1 is regarded as a negative electrode) until the voltage becomes 0 V with respect to the lithium counter electrode 4, and then the electrode 1 is opposed to the counter electrode 4. Anodic polarization (corresponding to discharge) was performed until the voltage reached 1.0V. The electrode characteristics were evaluated by repeating this cathode polarization and anode polarization. Table 1 shows the discharge capacity per 100 g of the electrode active material of the first cycle of each cell, that is, 100 g of graphite.
The discharge capacity at the cycle and the capacity retention rate at the 100th cycle are shown.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、1サイクル目の
放電容量はほとんど同じである。しかし、100サイク
ル目の容量維持率の比較から明らかなように、ウィスカ
−を添加した電極を用いたセルは、充放電の繰り返しに
よる容量低下が比較例のセルに比べて非常に少ない。な
お、負極材料として、本実施例では黒鉛を用いたが、充
放電に対して可逆性を有する炭素材料あるいは黒鉛材料
であれば、同様の効果が得られることは言うまでもな
い。このように、活物質に混合したウィスカ−は、充放
電にともなう電極の膨張、収縮の繰り返しによる活物質
粒子間の隔たりを抑制する働き、言い換えれば初期の電
極内部の状態を保持する構造維持の役割を果たしている
と考えられる。しかも、ウィスカーの直径や長さが炭素
繊維やガラス繊維などのそれに比べて小さいものである
ため、電極内部で活物質粒子間の空間に効率的に分散さ
れやすいことから、電極密度の低下などの問題も発生し
ない。
As is clear from Table 1, the discharge capacities in the first cycle are almost the same. However, as is clear from the comparison of the capacity retention ratios at the 100th cycle, the cell using the electrode to which the whisker was added has a much smaller capacity decrease due to repeated charging and discharging than the cell of the comparative example. Although graphite was used as the negative electrode material in this embodiment, it is needless to say that the same effect can be obtained as long as it is a carbon material or a graphite material having reversibility with respect to charge and discharge. As described above, the whiskers mixed with the active material serve to suppress the separation between the active material particles due to repeated expansion and contraction of the electrodes due to charge and discharge, in other words, to maintain the initial internal state of the electrodes. It seems to play a role. Moreover, since the diameter and length of the whiskers are smaller than those of carbon fibers, glass fibers, etc., the whiskers are easily dispersed efficiently in the spaces between the active material particles inside the electrodes. No problem occurs.

【0023】[実施例2]次に、ウィスカ−の混合割合
について詳しく検討した。ここでは、負極材料として黒
鉛を用い、ウィスカ−として平均直径1μm、平均長さ
10μmのチタン酸カリウムウィスカ−を用いた。表2
に示すように、黒鉛100gおよび結着剤5gに対して
ウィスカ−を0gから30gまで添加した9種類の電極
を作製した。これらの電極を用いて実施例1と同様の構
成の試験セルを作製し、実施例1と同じ充放電条件で電
極を評価した。表2に1サイクル目の電極活物質1g当
りの放電容量と100サイクル目の放電容量、および1
00サイクル目の容量維持率を示した。
Example 2 Next, the mixing ratio of whiskers was examined in detail. Here, graphite was used as the negative electrode material, and potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm were used as the whiskers. Table 2
As shown in, nine kinds of electrodes were prepared by adding whiskers from 0 g to 30 g to 100 g of graphite and 5 g of a binder. A test cell having the same configuration as that of Example 1 was prepared using these electrodes, and the electrodes were evaluated under the same charge and discharge conditions as in Example 1. Table 2 shows the discharge capacity per 1 g of the electrode active material at the first cycle, the discharge capacity at the 100th cycle, and 1
The capacity retention rate at the 00th cycle was shown.

【0024】[0024]

【表2】 [Table 2]

【0025】黒鉛に対してウィスカ−を0.5重量%程
度混合しただけでも容量維持率を向上する効果があり、
混合割合の増加とともに容量維持率も増加する。しか
し、混合割合が10重量%を越えるあたりから、容量維
持率の増加は緩やかになり、20重量%以上ではほとん
ど変わらない。また、初期の放電容量は、ウィスカ−混
合割合の増加とともに減少する。これらの結果から、ウ
ィスカ−の混合割合は、黒鉛粉末に対して0.5重量%
〜20重量%が適当である。なお、ウィスカ−として、
炭化けい素ウィスカ−、窒化けい素ウィスカ−、ほう酸
アルミニウムウィスカ−を用いた場合にも、同様の結果
が得られた。
Mixing about 0.5% by weight of whiskers with graphite has the effect of improving the capacity retention rate.
The capacity retention rate increases as the mixing ratio increases. However, when the mixing ratio exceeds 10% by weight, the capacity retention rate gradually increases, and when the mixing ratio exceeds 20% by weight, it hardly changes. Also, the initial discharge capacity decreases with increasing whisker-mixing ratio. From these results, the mixing ratio of whiskers was 0.5% by weight based on the graphite powder.
-20% by weight is suitable. As a whisker,
Similar results were obtained when silicon carbide whiskers, silicon nitride whiskers and aluminum borate whiskers were used.

【0026】[実施例3]本実施例では、負極材料とし
て黒鉛を用い、これに混合するウィスカ−として、平均
直径1μm、平均長さ10μmの炭化けい素ウィスカ
−、窒化けい素ウィスカ−、チタン酸カリウムウィスカ
−、ほう酸アルミニウムウィスカ−の各ウィスカ−の表
面に炭素を被覆したものを用いた。なお、ウィスカ−へ
の炭素被覆は、CVD法によった。すなわち、ウィスカ
−を反応炉へ入れ、アルゴン気流中でベンゼンを約10
00℃まで加熱し、ウィスカ−表面に炭素を生成させ
た。実施例1と同様にして試験セルを作製し、各電極を
3mAの定電流でカソード分極、アノード分極を繰り返
し、特性を評価した。この充放電電流3mAは、実施例
1および実施例2の0.8mAに比べて大きく、本実施
例の充放電条件は急速充放電条件である。各セルの特性
を表3に示す。
[Embodiment 3] In this embodiment, graphite is used as a negative electrode material, and whiskers mixed with this are silicon carbide whiskers, silicon nitride whiskers and titanium nitride having an average diameter of 1 μm and an average length of 10 μm. The surface of each of the potassium acid whisker and the aluminum borate whisker coated with carbon was used. The carbon coating on the whiskers was performed by the CVD method. That is, the whiskers were put into a reaction furnace, and benzene was added to about 10 in an argon stream.
The mixture was heated to 00 ° C to generate carbon on the whisker surface. A test cell was prepared in the same manner as in Example 1, and each electrode was repeatedly subjected to cathodic polarization and anodic polarization at a constant current of 3 mA to evaluate the characteristics. This charging / discharging current of 3 mA is larger than 0.8 mA of Example 1 and Example 2, and the charging / discharging condition of this example is the rapid charging / discharging condition. Table 3 shows the characteristics of each cell.

【0027】[0027]

【表3】 [Table 3]

【0028】セルNo.3.1〜3.4は、充放電にと
もなう容量低下が比較例セル(No.3.5)に比べて
非常に少なく、サイクル特性に優れている。炭素被覆し
ないウィスカーを混合した電極を用いたセル(No.
3.6)は、比較例セル(No.3.5)と比較すると
容量維持率は高く、本実施例における急速充放電サイク
ル試験においても、炭素材料へのウィスカ−混合の効果
が認められる。しかし、No.3.1〜3.4には劣
り、電池への実用化の観点からは不十分である。このよ
うに、ウィスカ−の表面に炭素を被覆したものを用いる
ことにより、急速充放電サイクル性能を向上することが
できる。これは、ウィスカーによる構造維持作用に、集
電作用が加わったことによるものと考えられる。本実施
例では、ウィスカーへの炭素被覆法として、CVD法を
用いたが、他の炭素薄膜形成法、例えばスパッタ法など
の気相法や溶液中での析出法などを用いても同様の効果
が得られる。
Cell No. In Nos. 3.1 to 3.4, the capacity decrease due to charge and discharge was much smaller than that of the comparative cell (No. 3.5), and the cycle characteristics were excellent. A cell using an electrode mixed with whiskers not coated with carbon (No.
In No. 3.6), the capacity retention ratio is higher than that of the comparative cell (No. 3.5), and the effect of whisker mixing with the carbon material is recognized even in the rapid charge / discharge cycle test in this example. However, no. It is inferior to 3.1 to 3.4 and is insufficient from the viewpoint of practical application to batteries. As described above, by using the whiskers whose surface is coated with carbon, the rapid charge / discharge cycle performance can be improved. It is considered that this is because the action of collecting current was added to the structure maintaining action of the whiskers. In this example, the CVD method was used as the carbon coating method for the whiskers, but the same effect can be obtained by using another carbon thin film forming method, for example, a vapor phase method such as a sputtering method or a deposition method in a solution. Is obtained.

【0029】[実施例4]本実施例ではウィスカ−の表
面にニッケル、銅、ステンレス鋼、炭素をそれぞれ被覆
したものについて検討した。ここでは、負極材料として
黒鉛を用い、ウィスカーとして平均直径1μm、平均長
さ10μmのチタン酸カリウムウィスカ−を用いた。な
お、ウィスカーへのニッケル、銅、ステンレス鋼の被覆
法は真空蒸着法によった。すなわち、ウィスカーを反応
炉に入れ、前記被覆材の金属を電子ビーム加熱すること
によりウィスカーを被覆させた。また、炭素の被覆法は
実施例3と同じである。実施例1と同様にして試験セル
を作製し、実施例3と同じ条件で充放電をした。表4に
1サイクル目の電極活物質1g当りの放電容量と100
サイクル目の放電容量および容量維持率を示した。
[Embodiment 4] In this embodiment, a whisker whose surface is coated with nickel, copper, stainless steel, or carbon was examined. Here, graphite was used as the negative electrode material, and potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm were used as the whiskers. The whiskers were coated with nickel, copper, and stainless steel by vacuum deposition. That is, the whiskers were placed in a reaction furnace, and the whiskers were coated by heating the metal of the coating material with an electron beam. The carbon coating method is the same as in Example 3. A test cell was prepared in the same manner as in Example 1 and charged and discharged under the same conditions as in Example 3. Table 4 shows the discharge capacity per 1 g of electrode active material in the first cycle and 100
The discharge capacity and capacity retention rate at the cycle are shown.

【0030】[0030]

【表4】 [Table 4]

【0031】セルNo.4.1〜4.4は、いずれも1
サイクル目の放電容量と100サイクル目の容量維持率
が比較例のセルNo.4.5に比べて高い値を示してい
る。ウィスカ−表面に被覆する材料として、ニッケル、
銅、ステンレス鋼、炭素がいずれも好ましいが、なかで
も炭素が最も好ましい。ここでは、チタン酸カリウムウ
ィスカ−について説明したが、炭化けい素ウィスカ−、
窒化けい素ウィスカ−、ほう酸アルミニウムウィスカ−
についても上記と同様の結果が得られた。また、ニッケ
ル等をウィスカーに被覆する方法として、他の薄膜形成
法、例えばスパッタ法などの気相法や溶液中での析出法
などを用いても同様の結果が得られることはいうまでも
ない。
Cell No. 4.1 to 4.4 are all 1
The discharge capacity at the first cycle and the capacity retention rate at the 100th cycle were the cell numbers of the comparative examples. The value is higher than that of 4.5. As a material for coating the whisker surface, nickel,
Copper, stainless steel and carbon are all preferred, with carbon being most preferred. Although the potassium titanate whisker has been described here, the silicon carbide whisker,
Silicon nitride whiskers, aluminum borate whiskers
The same result as above was obtained. Needless to say, the same result can be obtained by using another thin film forming method such as a vapor phase method such as a sputtering method or a precipitation method in a solution as a method of coating the whiskers with nickel or the like. .

【0032】[実施例5]ウィスカ−の混合割合につい
て詳しく検討した。ここでは、負極材料として黒鉛を用
い、ウィスカーとして表面に炭素材料を被覆した平均直
径1μm、平均長さ10μmの炭化けい素ウィスカ−を
用いた。表5に示すように、黒鉛100gおよび結着剤
5gに対してウィスカ−を0gから30gまで加えた9
種類の電極を作製した。これらの電極を用いて試験セル
を作製し、実施例3と同じ条件で充放電試験をした。表
5に1サイクル目の電極活物質1g当りの放電容量と1
00サイクル目の放電容量および容量維持率を示した。
[Example 5] The mixing ratio of whiskers was examined in detail. Here, graphite was used as the negative electrode material, and a silicon carbide whisker having an average diameter of 1 μm and an average length of 10 μm whose surface was coated with a carbon material was used as the whisker. As shown in Table 5, whiskers were added from 0 g to 30 g with respect to 100 g of graphite and 5 g of a binder.
Different types of electrodes were made. A test cell was prepared using these electrodes, and a charge / discharge test was performed under the same conditions as in Example 3. Table 5 shows the discharge capacity per 1 g of electrode active material in the first cycle and 1
The discharge capacity and capacity retention rate at the 00th cycle are shown.

【0033】[0033]

【表5】 [Table 5]

【0034】黒鉛に対してウィスカーを0.1重量%程
度混合しただけでも容量維持率を向上する効果があり、
混合割合の増加とともに容量維持率も増加する。しか
し、混合割合が10重量%を越えるあたりから、容量維
持率の増加は緩やかになり、20重量%以上ではほとん
ど変わらない。また、初期の放電容量は、ウィスカ−混
合割合の増加とともに減少する。これらの結果から、ウ
ィスカーの混合割合は、黒鉛粉末に対して0.5重量%
〜20重量%が適当である。なお、ウィスカ−として、
炭化けい素ウィスカーの代わりにチタン酸カリウムウィ
スカ−、窒化けい素ウィスカ−、ほう酸アルミニウムウ
ィスカ−を用いた場合にも、上記と同様の結果が得られ
た。
Mixing about 0.1% by weight of whiskers with graphite has the effect of improving the capacity retention rate.
The capacity retention rate increases as the mixing ratio increases. However, when the mixing ratio exceeds 10% by weight, the capacity retention rate gradually increases, and when the mixing ratio exceeds 20% by weight, it hardly changes. Also, the initial discharge capacity decreases with increasing whisker-mixing ratio. From these results, the mixing ratio of whiskers was 0.5% by weight based on the graphite powder.
-20% by weight is suitable. As a whisker,
Similar results were obtained when potassium titanate whiskers, silicon nitride whiskers and aluminum borate whiskers were used instead of the silicon carbide whiskers.

【0035】[実施例6]ウィスカ−の直径と長さにつ
いて検討した。ここでは、負極材料として黒鉛を用い、
その100gに炭素被覆したチタン酸カリウムウィスカ
−10gと結着剤5gを混合して電極を作製した。な
お、チタン酸カリウムウィスカ−は、表6、表7に示す
ように、各種の平均直径と平均長さをもつものを用い
た。これらの電極を用いて実施例1と同様の試験セルを
作製し、実施例3と同じ条件で充放電をした。表6、表
7に1サイクル目の電極活物質1g当りの放電容量と1
00サイクル目の放電容量および容量維持率を示した。
Example 6 The diameter and length of whiskers were examined. Here, graphite is used as the negative electrode material,
An electrode was prepared by mixing 100 g of this with 10 g of potassium titanate whisker coated with carbon and 5 g of a binder. As the potassium titanate whiskers, those having various average diameters and average lengths as shown in Tables 6 and 7 were used. A test cell similar to that of Example 1 was prepared using these electrodes, and charged and discharged under the same conditions as in Example 3. Tables 6 and 7 show the discharge capacities and 1
The discharge capacity and capacity retention rate at the 00th cycle are shown.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】平均直径0.1〜3μm、平均長さ3〜5
0μmのウィスカーを用いた場合に初期容量が大きく、
かつ100サイクル目の容量維持率が高くなることがわ
かる。なお、チタン酸カリウムウィスカ−の代わりに、
炭化けい素ウィスカ−、窒化けい素ウィスカ−、ほう酸
アルミニウムウィスカ−を用いた場合にも、上記と同様
に、平均直径0.1〜3μm、平均長さ3〜50μmの
ウィスカ−が適当であることが確認された。
Average diameter 0.1 to 3 μm, average length 3 to 5
The initial capacity is large when 0 μm whiskers are used,
Moreover, it can be seen that the capacity retention rate at the 100th cycle is high. In addition, instead of potassium titanate whiskers,
When silicon carbide whiskers, silicon nitride whiskers, and aluminum borate whiskers are used, whiskers having an average diameter of 0.1 to 3 μm and an average length of 3 to 50 μm are suitable as described above. Was confirmed.

【0039】[実施例7]本実施例では、負極活物質の
炭素材料の原料となる有機物にウィスカーを混合し、こ
の混合物を加熱することにより、前記有機物を炭化し
て、ウィスカーの混合された活物質を得る例を説明す
る。ここでは、活物質原料の有機物として、石油ピッチ
を用い、ウィスカ−として、平均直径1μm、平均長さ
10μmのチタン酸カリウムウィスカ−を用いた。ま
ず、前記有機物に対して、2重量%相当のチタン酸カリ
ウムウィスカ−を添加し、十分に混合し、この混合物を
表8に示したとおり、300℃〜1600℃の範囲でそ
れぞれ加熱した。上記で得られた、ウィスカーの混合さ
れた炭素材料100gに結着剤5gを混合し、加圧成型
して電極を得た。これらの電極を用いて実施例1と同様
の試験セルを作製し、実施例3と同様の条件で充放電試
験をした。表8に1サイクル目の電極活物質1g当りの
放電容量と100サイクル目の放電容量および容量維持
率を示した。
[Embodiment 7] In this embodiment, whiskers are mixed with an organic material which is a raw material of a carbon material of a negative electrode active material, and the mixture is heated to carbonize the organic material to mix the whiskers. An example of obtaining the active material will be described. Here, petroleum pitch was used as the organic substance of the active material raw material, and potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm were used as whiskers. First, 2% by weight of potassium titanate whisker was added to the organic substance and mixed well, and the mixture was heated in the range of 300 ° C to 1600 ° C as shown in Table 8. An electrode was obtained by mixing 5 g of the binder with 100 g of the carbon material in which the whiskers were mixed as obtained above and press molding. A test cell similar to that of Example 1 was prepared using these electrodes, and a charge / discharge test was performed under the same conditions as in Example 3. Table 8 shows the discharge capacity per 1 g of the electrode active material in the first cycle, the discharge capacity in the 100th cycle, and the capacity retention rate.

【0040】[0040]

【表8】 [Table 8]

【0041】この結果から、加熱温度は、初期容量が大
きく、100サイクル後の容量維持率の高い値を示す4
00℃〜1400℃が望ましいことがわかる。ウィスカ
ー無添加の比較例(No.7.9)は、初期容量は大き
いがサイクル容量維持率が著しく小さい。また、出来上
がりの活物質にウィスカーを添加した比較例(No.
7.10)は、初期容量とサイクル容量維持率のいずれ
も高い値を示したが、No.7.2〜7.7のセルの方
が特にサイクル性に一層優れたものであることがわか
る。なお、加熱温度が400℃より低い場合は、有機物
の炭素化が不十分で容量が小さい。一方、1400℃よ
り高い場合は、ウィスカーの熱分解が著しく進行するた
めに、ウィスカー本来の構造維持機能を発揮できなくな
り、容量維持率は悪い。
From these results, the heating temperature shows a large initial capacity and a high capacity retention rate after 100 cycles.
It can be seen that 00 ° C to 1400 ° C is desirable. In the comparative example (No. 7.9) in which no whiskers were added, the initial capacity was large, but the cycle capacity retention rate was extremely small. In addition, a comparative example (No.
7.10) showed high values for both the initial capacity and the cycle capacity retention rate, but No. It can be seen that the cells of 7.2 to 7.7 are more excellent in cycle performance. If the heating temperature is lower than 400 ° C, the carbonization of the organic matter is insufficient and the capacity is small. On the other hand, when the temperature is higher than 1400 ° C., the thermal decomposition of the whiskers remarkably progresses, so that the original function of maintaining the structure of the whiskers cannot be exhibited, and the capacity retention ratio is poor.

【0042】上記実施例では、活物質原料の有機物とし
て石油ピッチを用いたが、この他にコールタール、コー
クスの場合についても同様な検討をした。また、チタン
酸カリウムウィスカ−の代わりに、炭化けい素ウィスカ
−、窒化けい素ウィスカ−、ほう酸アルミニウムウィス
カ−を用いた場合についても、同様の検討をした。その
結果、いずれの場合も加熱温度は400℃〜1400℃
が望ましいことが確認された。また、ウィスカ−表面に
ニッケル、銅、ステンレス鋼、炭素を被覆したものを用
いても同様に好ましい容量維持率が得られる。
In the above examples, petroleum pitch was used as the organic substance of the active material raw material, but the same examination was made in the case of coal tar and coke. Further, the same examination was conducted when silicon carbide whiskers, silicon nitride whiskers, and aluminum borate whiskers were used instead of potassium titanate whiskers. As a result, in any case, the heating temperature is 400 ° C to 1400 ° C.
Was confirmed to be desirable. Further, even when the whiskers whose surface is coated with nickel, copper, stainless steel, or carbon are used, the same preferable capacity retention rate can be obtained.

【0043】[実施例8]本実施例では、図2に示した
構造の円筒型電池を作製して特性を調べた。電池を以下
の手順により作製した。正極活物質であるLiMn1.8
Co0.24は、Li2CO3とMn34とCoCO3とを
所定のモル比で混合し、900℃で加熱することによっ
て合成した。これを100メッシュ以下に分級したもの
100gに対して、導電剤の炭素粉末を10g、結着剤
のポリ四弗化エチレンの水性ディスパージョンを樹脂分
で8g、および純水を加え、ペースト状にし、チタンシ
ートの芯材に塗布し、乾燥、圧延して正極を得た。一
方、負極活物質である黒鉛粉末100gに対して、炭素
を被覆した平均直径1μm,平均長さ10μmのチタン
酸カリウムウィスカー5gとポリ弗化ビニリデン粉末7
gを加え、ジメチルホルムアミドを用いてペースト状に
し、これをニッケルシートの芯材に塗布、乾燥し、圧延
して負極を得た。
[Embodiment 8] In this embodiment, a cylindrical battery having the structure shown in FIG. 2 was produced and its characteristics were examined. A battery was manufactured by the following procedure. LiMn 1.8 which is a positive electrode active material
Co 0.2 O 4 was synthesized by mixing Li 2 CO 3 , Mn 3 O 4, and CoCO 3 in a predetermined molar ratio and heating at 900 ° C. To 100 g of this that was classified to 100 mesh or less, 10 g of carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder in resin content, and pure water were added to form a paste. It was applied to the core material of a titanium sheet, dried and rolled to obtain a positive electrode. On the other hand, 5 g of potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm coated with carbon per 100 g of graphite powder as a negative electrode active material and polyvinylidene fluoride powder 7
g was added, and a paste was formed using dimethylformamide. This was applied to a nickel sheet core material, dried, and rolled to obtain a negative electrode.

【0044】芯材と同材質の正極リード14をスポット
溶接にて取り付けた正極板11と、芯材と同材質の負極
リード15をスポット溶接にて取り付けた負極板12と
の間に、両極板より幅の広い帯状の多孔性ポリプロピレ
ンフィルムからなるセパレータ13を介在させ、これら
全体を渦巻状に捲回して電極群を構成する。この電極群
の上下それぞれにポリプロピレン製の絶縁板16、17
を配して金属ケース18に挿入し、ケース18の上部に
段部を形成させた後、1モル/lの過塩素酸リチウムを
溶解したエチレンカーボネートと1,2−ジメトキシエ
タンの等体積混合溶液からなる電解液を注入し、正極端
子20を設けたポリプロピレン製封口板19で密閉す
る。このようにして作製した電池をAとする。一方、黒
鉛粉末100gにポリ弗化ビニリデン10gを加え、ジ
メチルホルムアミドを用いてペースト状にし、これをニ
ッケルの芯材に塗布、乾燥し、圧延して、ウィスカーを
混合しない負極を得た。この負極と上記の正極を用い
て、上記と同様の方法で作製した電池をBとする。ま
た、黒鉛粉末100gに対して繊維状黒鉛5gとポリ弗
化ビニリデン10gを加え、ジメチルホルムアミドを用
いてペースト状にし、これをニッケルの芯材に塗布、乾
燥し、圧延して負極を得た。この負極と上記の正極を用
いて、上記と同様にして作製した電池をCとする。
Between the positive electrode plate 11 to which the positive electrode lead 14 of the same material as the core material is attached by spot welding and the negative electrode plate 12 to which the negative electrode lead 15 of the same material as the core material is attached by spot welding, the bipolar plate An electrode group is formed by interposing a separator 13 made of a wider band-shaped porous polypropylene film and spirally winding the whole. Insulating plates 16 and 17 made of polypropylene are respectively provided above and below this electrode group.
Is placed in the metal case 18 to form a step on the upper part of the case 18, and then an equal volume mixed solution of ethylene carbonate and 1,2-dimethoxyethane in which 1 mol / l of lithium perchlorate is dissolved. Is injected and the container is sealed with a polypropylene sealing plate 19 provided with a positive electrode terminal 20. The battery thus manufactured is designated as A. On the other hand, 10 g of polyvinylidene fluoride was added to 100 g of graphite powder and made into a paste using dimethylformamide. This was applied to a nickel core material, dried, and rolled to obtain a negative electrode containing no whiskers. A battery manufactured by the same method as above using this negative electrode and the above positive electrode is designated as B. Further, 5 g of fibrous graphite and 10 g of polyvinylidene fluoride were added to 100 g of graphite powder and made into a paste using dimethylformamide, which was applied to a nickel core material, dried and rolled to obtain a negative electrode. A battery manufactured in the same manner as above using this negative electrode and the above positive electrode is designated as C.

【0045】これらの電池について、充放電電流0.5
mA/cm2、充放電電圧範囲4.3V〜3.0Vで充
放電サイクル試験をした。その結果を図3に示す。電池
Bは、充放電サイクルによる容量低下が激しく、50サ
イクル程度で初期容量の半分以下の値となった。この電
池を分解すると、負極表面全体にリチウムの析出が観察
された。また電池Cのサイクル性については、電池Bほ
どの容量低下はないものの、他の2つの電池に比べ電池
容量が小さい。電池Cを100サイクル終了後、分解す
ると、電池Bほど広い面積ではないが、負極表面にリチ
ウムの析出が認められた。これに対して、本発明の電池
Aは、電池Bに比べ多少電池容量が小さいものの、サイ
クル性は非常に良好で、100サイクル後の容量は初期
容量の95%を維持している。この電池Aを100サイ
クル終了後、分解したところ、電池Bや電池Cに見られ
た負極表面のリチウム析出は認められなかった。この結
果から本発明による負極を用いた電池が極めて優れたサ
イクル特性を有していることがわかる。
For these batteries, the charge / discharge current was 0.5.
A charge / discharge cycle test was performed at mA / cm 2 and a charge / discharge voltage range of 4.3V to 3.0V. The result is shown in FIG. The capacity of the battery B was drastically decreased due to charge / discharge cycles, and was about half or less of the initial capacity after about 50 cycles. When this battery was disassembled, precipitation of lithium was observed on the entire surface of the negative electrode. Regarding the cycle performance of the battery C, the battery capacity is not lower than that of the battery B, but the battery capacity is smaller than that of the other two batteries. When Battery C was disassembled after 100 cycles, lithium was deposited on the surface of the negative electrode, although not as large as Battery B. On the other hand, the battery A of the present invention has a slightly smaller battery capacity than the battery B, but the cycle performance is very good, and the capacity after 100 cycles maintains 95% of the initial capacity. When this battery A was disassembled after 100 cycles, the lithium deposition on the negative electrode surface, which was found in the batteries B and C, was not observed. From these results, it can be seen that the battery using the negative electrode according to the present invention has extremely excellent cycle characteristics.

【0046】このように、本発明は、高い放電電圧、高
容量、優れたサイクル特性を兼ね備えた電池を与えるも
のである。なお、実施例では、正極活物質として、Li
Mn1.8Co0.24を用いたが、本発明の負極は、この
他に、LiCoO2、LiNiO2、LiFeO2、γ型
LiV25などをはじめとする充放電に対して可逆性を
有する正極と組み合わせた場合にも同様の効果があるこ
とは言うまでもない。また、実施例では円筒型電池につ
いて説明したが、本発明による容量増加などの技術思想
は同一のものであることから、この構造に限定されるも
のでないことは言うまでもない。
As described above, the present invention provides a battery having high discharge voltage, high capacity and excellent cycle characteristics. In the examples, as the positive electrode active material, Li
Was used Mn 1.8 Co 0.2 O 4, the negative electrode of the present invention, in addition, has a reversible relative LiCoO 2, LiNiO 2, LiFeO 2 , γ -type LiV 2 O 5, etc. beginning with charging and discharging the It goes without saying that the same effect can be obtained when combined with the positive electrode. Further, although the cylindrical battery has been described in the embodiment, it is needless to say that the present invention is not limited to this structure because the technical ideas such as capacity increase according to the present invention are the same.

【0047】[実施例9]本実施例では、活物質として
LiCoO2を用いた正極について検討した。これに混
合するウィスカ−として、炭化けい素ウィスカ−、窒化
けい素ウィスカ−、チタン酸カリウムウィスカ−、ほう
酸アルミニウムウィスカ−をそれぞれ用いた。これらの
ウィスカーは、いずれも平均直径1μm、平均長さ10
μmである。正極活物質のLiCoO2100gに導電
剤の黒鉛2.0gを混合し、これに上記ウィスカ−を
2.0g加え、さらに、結着剤のポリ四弗化エチレン樹
脂粉末3.0gを混合して正極合剤とした。正極合剤
0.1gを1トン/cm2の圧力で直径17.5mmの
円板にプレス成型して、正極とした。
Example 9 In this example, a positive electrode using LiCoO 2 as an active material was examined. As whiskers to be mixed therein, silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and aluminum borate whiskers were used. Each of these whiskers has an average diameter of 1 μm and an average length of 10
μm. 100 g of LiCoO 2 as the positive electrode active material was mixed with 2.0 g of graphite as a conductive agent, 2.0 g of the above whiskers was added thereto, and further 3.0 g of polytetrafluoroethylene resin powder as a binder was mixed. It was used as a positive electrode mixture. 0.1 g of the positive electrode mixture was press-molded at a pressure of 1 ton / cm 2 into a disk having a diameter of 17.5 mm to obtain a positive electrode.

【0048】得られた電池の構造は、図1に示す試験セ
ルと同様のものである。ただし、電極1には上記の正極
が、また電極4には直径17.5mm、厚さ0.3mm
のリチウム板からなる負極をそれぞれ用いた。また、電
解液として、プロピレンカ−ボネ−トと1,2−ジメト
キシエタンの等体積混合溶媒に1モル/lの過塩素酸リ
チウムを溶解した溶液を用いた。また、比較例として、
ウィスカ−を混合しない正極を用いた電池、およびウィ
スカーの代わりに繊維状の黒鉛または炭素被覆ガラス繊
維を混合した正極を用いた電池も上記と同様の方法で作
製した。
The structure of the obtained battery is similar to that of the test cell shown in FIG. However, the above positive electrode is used for the electrode 1, and the electrode 4 has a diameter of 17.5 mm and a thickness of 0.3 mm.
Each of the negative electrodes made of the lithium plate was used. Further, as the electrolytic solution, a solution prepared by dissolving 1 mol / l of lithium perchlorate in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used. Also, as a comparative example,
A battery using a positive electrode not mixed with whiskers and a battery using a positive electrode mixed with fibrous graphite or carbon-coated glass fibers instead of whiskers were also produced by the same method as described above.

【0049】以上のように作製したコイン型電池につい
て、充放電電流0.5mA、電圧範囲4.2Vから3.
0Vの間で定電流充放電することにより充放電サイクル
試験をした。表9に初期放電容量および100サイクル
目の放電容量と容量維持率を示す。サンプル数nはそれ
ぞれ50個とした。なお、放電容量は、正極活物質1g
当りの値を示した。
With respect to the coin type battery manufactured as described above, the charging / discharging current was 0.5 mA, and the voltage range was from 4.2V to 3.V.
A charging / discharging cycle test was performed by performing constant current charging / discharging between 0V. Table 9 shows the initial discharge capacity, the discharge capacity at the 100th cycle, and the capacity retention rate. The number of samples n was 50 for each. The discharge capacity is 1 g of the positive electrode active material.
The value per hit is shown.

【0050】[0050]

【表9】 [Table 9]

【0051】表9のように、1サイクル目の放電容量
は、比較例1(No.9.5)の電池が最も大きく、比
較例2、3(No.9.6〜9.7)の電池が最も小さ
い。一方、容量維持率については、電池No.9.1〜
9.4は、比較例電池に比べて、非常に高い値を示して
いる。このように、ウィスカ−を添加した電極は、わず
かな初期容量の低下はあるが、その後の充放電サイクル
にともなう容量低下は非常に小さいことがわかった。な
お、実施例では正極活物質としてLiCoO2用いた
が、充放電に対して可逆性を有する材料であれば、同様
の効果が得られることは言うまでもない。上に示したよ
うに、ウィスカ−は、膨張、収縮の繰り返しによる活物
質粒子間の隔たりを抑制する働き、言い換えれば初期の
電極内部の状態を保持する構造維持の役割を果たしてい
ると考えられる。
As shown in Table 9, the discharge capacity at the first cycle is the largest in the battery of Comparative Example 1 (No. 9.5), and that of Comparative Examples 2 and 3 (No. 9.6 to 9.7). The battery is the smallest. On the other hand, regarding the capacity maintenance ratio, the battery No. 9.1-
9.4 shows a much higher value than the comparative battery. As described above, it was found that the electrode to which the whiskers were added had a slight decrease in initial capacity, but the decrease in capacity with the subsequent charge / discharge cycle was very small. Although LiCoO 2 was used as the positive electrode active material in the examples, it goes without saying that the same effect can be obtained as long as it is a material having reversibility with respect to charge and discharge. As shown above, it is considered that the whiskers act to suppress the separation between the active material particles due to repeated expansion and contraction, in other words, to play a role of maintaining the structure in which the initial state inside the electrode is maintained.

【0052】[実施例10]ウィスカ−の混合割合につ
いて検討した。ここでは、正極活物質としてTiS2
用い、ウィスカーとして平均直径1μm、平均長さ10
μmのチタン酸カリウムウィスカ−を用いた。表10に
示すように、TiS2100g、黒鉛2.0gおよび結
着剤3.0gに対してウィスカ−を0gから30gまで
加えた9種類の電極を作製した。試験電池の作製方法は
実施例9と同様である。本実施例における充放電サイク
ル試験の条件は、充放電電流0.5mA、電圧範囲2.
5Vから1.5Vの間とした。表10に1サイクル目の
電極活物質1g当りの放電容量と100サイクル目の放
電容量および容量維持率を示した。
[Example 10] The mixing ratio of whiskers was examined. Here, TiS 2 is used as the positive electrode active material, and the whiskers have an average diameter of 1 μm and an average length of 10 μm.
A μm potassium titanate whisker was used. As shown in Table 10, 9 types of electrodes were prepared by adding whiskers from 0 g to 30 g to 100 g of TiS 2 , 2.0 g of graphite and 3.0 g of a binder. The method for producing the test battery is the same as in Example 9. The conditions of the charge / discharge cycle test in this example are as follows: charge / discharge current 0.5 mA, voltage range 2.
It was set between 5V and 1.5V. Table 10 shows the discharge capacity per 1 g of the electrode active material at the first cycle, the discharge capacity at the 100th cycle, and the capacity retention rate.

【0053】[0053]

【表10】 [Table 10]

【0054】正極活物質に対してウィスカーを0.5重
量%程度混合しただけでも容量維持率を向上する効果が
あり、混合割合の増加とともに容量維持率も増加する。
しかし、混合割合が10重量%を越えるあたりから、容
量維持率の増加は緩やかになり、20重量%以上ではほ
とんど変わらない。また、初期容量は、ウィスカ−混合
割合の増加とともに減少する。これらの結果から、ウィ
スカーの混合割合は、正極活物質に対して0.5重量%
〜20重量%が適当である。なお、ウィスカ−として、
炭化けい素ウィスカ−、窒化けい素ウィスカ−、ほう酸
アルミニウムウィスカ−を用いた場合にも、正極活物質
に対する混合割合は0.5重量%〜20重量%が適当で
あることが確認された。
Mixing about 0.5% by weight of whiskers with respect to the positive electrode active material has the effect of improving the capacity retention rate, and the capacity retention rate increases as the mixing rate increases.
However, when the mixing ratio exceeds 10% by weight, the capacity retention rate gradually increases, and when the mixing ratio exceeds 20% by weight, it hardly changes. Also, the initial capacity decreases with increasing whisker-mix ratio. From these results, the mixing ratio of whiskers was 0.5% by weight with respect to the positive electrode active material.
-20% by weight is suitable. As a whisker,
It was also confirmed that when using silicon carbide whiskers, silicon nitride whiskers, or aluminum borate whiskers, the mixing ratio with respect to the positive electrode active material is appropriately 0.5% by weight to 20% by weight.

【0055】[実施例11]本実施例では、正極活物質
としてLiMn24を用い、これに混合するウィスカ−
として、平均直径1μm、平均長さ10μmの炭化けい
素ウィスカ−、窒化けい素ウィスカ−、チタン酸カリウ
ムウィスカ−、ほう酸アルミニウムウィスカ−の各ウィ
スカ−表面に炭素を被覆したものについて検討した。ま
た、比較例として、ウィスカ−を混合しないもの、およ
び表面に炭素を被覆していないチタン酸カリウムウィス
カ−を混合したものを用いた。これらの各正極の特性を
検討するため、実施例9と同様にして試験電池を作製
し、3mAの定電流で電圧範囲4.3Vから3.0Vの
間で充放電する試験をした。本実施例における充放電条
件は、電流を実施例9および実施例10の0.5mAよ
り大きくした急速充放電条件である。充放電試験の結果
を表11に示す。
[Embodiment 11] In this embodiment, LiMn 2 O 4 is used as a positive electrode active material, and a whisker mixed with this is used.
As a result, a silicon carbide whisker having an average diameter of 1 μm and an average length of 10 μm, a silicon nitride whisker, a potassium titanate whisker, and an aluminum borate whisker each having a surface coated with carbon was examined. In addition, as comparative examples, those not mixed with whiskers and those mixed with potassium titanate whiskers whose surface was not coated with carbon were used. In order to study the characteristics of each of these positive electrodes, a test battery was prepared in the same manner as in Example 9, and a test was performed in which the battery was charged and discharged at a constant current of 3 mA in a voltage range of 4.3 V to 3.0 V. The charging / discharging condition in this example is a rapid charging / discharging condition in which the current is larger than 0.5 mA in Examples 9 and 10. Table 11 shows the result of the charge / discharge test.

【0056】[0056]

【表11】 [Table 11]

【0057】電池No.11.1〜11.4は、充放電
による容量低下が比較例電池に比べて非常に少なく、サ
イクル特性に優れている。比較例電池No.11.6
は、No.11.5と比較すると容量維持率は高く、上
記のような急速充放電サイクル試験においても、正極へ
のウィスカ−混合の効果が認められる。しかし、No.
11.1〜11.4には劣り、電池への実用化の観点か
らは不十分である。このように、ウィスカ−表面に炭素
を被覆したものを用いることにより、急速充放電サイク
ル性能を向上することができる。これは、ウィスカーに
よる構造維持作用に、集電作用が加わったことによるも
のと考えられる。
Battery No. 11.1 to 11.4 have much less capacity decrease due to charge and discharge than the comparative battery, and have excellent cycle characteristics. Comparative Example Battery No. 11.6
No. The capacity retention rate is higher than that of 11.5, and the effect of whisker mixing with the positive electrode is recognized even in the above rapid charge / discharge cycle test. However, no.
It is inferior to 11.1 to 11.4 and is insufficient from the viewpoint of practical application to batteries. As described above, by using the whiskers whose surface is coated with carbon, the rapid charge / discharge cycle performance can be improved. It is considered that this is because the action of collecting current was added to the structure maintaining action of the whiskers.

【0058】[実施例12]本実施例ではウィスカ−の
表面にチタン、アルミニウム、ステンレス鋼、炭素をそ
れぞれ被覆したものについて検討した。ここでは、正極
活物質としてLiCoO2を用い、ウィスカーとして平
均直径1μm、平均長さ10μmのチタン酸カリウムウ
ィスカ−を用いた。なお、ウィスカーへのチタン、アル
ミニウム、ステンレス鋼の被覆法は、実施例4と同様の
真空蒸着法によった。また、炭素の被覆法は実施例3と
同じである。実施例9と同様にして試験電池を作製し、
実施例11と同じ条件で充放電をした。表12に1サイ
クル目の電極活物質1g当りの放電容量と100サイク
ル目の放電容量および容量維持率を示した。
[Embodiment 12] In this embodiment, a whisker whose surface was coated with titanium, aluminum, stainless steel, or carbon was examined. Here, LiCoO 2 was used as the positive electrode active material, and potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm were used as whiskers. The whisker was coated with titanium, aluminum, and stainless steel by the same vacuum deposition method as in Example 4. The carbon coating method is the same as in Example 3. A test battery was prepared in the same manner as in Example 9,
Charging and discharging were performed under the same conditions as in Example 11. Table 12 shows the discharge capacity per 1 g of the electrode active material at the first cycle, the discharge capacity at the 100th cycle, and the capacity retention rate.

【0059】[0059]

【表12】 [Table 12]

【0060】電池No.12.1〜12.4は、いずれ
も1サイクル目の放電容量と100サイクル目の容量維
持率が比較例の電池No.12.5に比べて高い値を示
している。以上の結果から、ウィスカ−表面に被覆する
材料としては、チタン、アルミニウム、ステンレス鋼、
炭素いずれも好ましいが、なかでも炭素が最も好まし
い。ここでは、チタン酸カリウムウィスカ−について説
明したが、炭化けい素ウィスカ−、窒化けい素ウィスカ
−、ほう酸アルミニウムウィスカ−についても上記と同
様の結果が得られた。
Battery No. In all of Nos. 12.1 to 12.4, the discharge capacity at the first cycle and the capacity retention rate at the 100th cycle were battery Nos. The value is higher than that of 12.5. From the above results, as the material for coating the whisker surface, titanium, aluminum, stainless steel,
Carbon is preferable, but carbon is most preferable. Although the potassium titanate whiskers have been described here, the same results as above can be obtained for silicon carbide whiskers, silicon nitride whiskers, and aluminum borate whiskers.

【0061】[実施例13]ウィスカ−の混合割合につ
いて詳しく検討した。ここでは、正極活物質としてLi
NiO2を用い、ウィスカーとして表面に炭素材料を被
覆した平均直径1μm、平均長さ10μmの炭化けい素
ウィスカ−を用いた。表13に示すように、正極活物質
のLiNiO2100g、黒鉛2.0gおよび結着剤
3.0gに対してウィスカ−を0gから30gまで加え
た9種類の電極を作製した。これらの電極を用いて試験
電池を作製し、実施例11と同じ条件で充放電をした。
表13に1サイクル目の電極活物質1g当りの放電容量
と100サイクル目の放電容量および容量維持率を示し
た。
[Example 13] The mixing ratio of whiskers was examined in detail. Here, as the positive electrode active material, Li
Using NiO 2 , a silicon carbide whisker having an average diameter of 1 μm and an average length of 10 μm, the surface of which was covered with a carbon material, was used as a whisker. As shown in Table 13, nine kinds of electrodes were produced by adding whiskers from 0 g to 30 g to 100 g of LiNiO 2 as a positive electrode active material, 2.0 g of graphite and 3.0 g of a binder. A test battery was produced using these electrodes and charged and discharged under the same conditions as in Example 11.
Table 13 shows the discharge capacity per 1 g of the electrode active material in the first cycle, the discharge capacity in the 100th cycle, and the capacity retention rate.

【0062】[0062]

【表13】 [Table 13]

【0063】正極活物質に対してウィスカーを0.1重
量%程度混合しただけでも容量維持率を向上する効果が
あり、混合割合の増加とともに容量維持率も増加する。
しかし、混合割合が10重量%を越えるあたりから、容
量維持率の増加は緩やかになり、20重量%以上ではほ
とんど変わらない。また、初期容量は、ウィスカ−混合
割合の増加とともに減少する。これらの結果から、ウィ
スカーの混合割合は、正極活物質に対して0.5重量%
〜20重量%が適当である。なお、ウィスカ−として、
炭化けい素ウィスカーの代わりにチタン酸カリウムウィ
スカ−、窒化けい素ウィスカ−、ほう酸アルミニウムウ
ィスカ−を用いた場合にも、上記と同様の結果が得られ
た。
Mixing about 0.1% by weight of whiskers with respect to the positive electrode active material has the effect of improving the capacity retention rate, and the capacity retention rate increases as the mixing rate increases.
However, when the mixing ratio exceeds 10% by weight, the capacity retention rate gradually increases, and when the mixing ratio exceeds 20% by weight, it hardly changes. Also, the initial capacity decreases with increasing whisker-mix ratio. From these results, the mixing ratio of whiskers was 0.5% by weight with respect to the positive electrode active material.
-20% by weight is suitable. As a whisker,
Similar results were obtained when potassium titanate whiskers, silicon nitride whiskers and aluminum borate whiskers were used instead of the silicon carbide whiskers.

【0064】[実施例14]ウィスカ−の直径と長さに
ついて検討した。ここでは、正極活物質としてLiCo
2を用い、その100gに、黒鉛2.0g、炭素被覆
したチタン酸カリウムウィスカー2.0gおよび結着剤
3.0gを混合して正極を作製した。なお、チタン酸カ
リウムウィスカ−は、表14、表15に示すように、各
種の平均直径と平均長さをもつものを用いた。これらの
正極を用いて実施例9と同様の試験電池を作製し、実施
例9と同じ条件で充放電をした。表14、表15に1サ
イクル目の電極活物質1g当りの放電容量と100サイ
クル目の放電容量および容量維持率を示した。
Example 14 The diameter and length of whiskers were examined. Here, LiCo is used as the positive electrode active material.
O 2 was used, and 100 g thereof was mixed with 2.0 g of graphite, 2.0 g of carbon-coated potassium titanate whiskers and 3.0 g of a binder to prepare a positive electrode. As the potassium titanate whiskers, those having various average diameters and average lengths were used as shown in Tables 14 and 15. A test battery similar to that of Example 9 was produced using these positive electrodes, and charged and discharged under the same conditions as in Example 9. Tables 14 and 15 show the discharge capacity per 1 g of the electrode active material in the first cycle, the discharge capacity in the 100th cycle, and the capacity retention rate.

【0065】[0065]

【表14】 [Table 14]

【0066】[0066]

【表15】 [Table 15]

【0067】これらの結果から、初期容量が大きく、1
00サイクル後の容量維持率の高い値を示すのは、平均
直径0.1〜3μm、平均長さ3〜50μmのウィスカ
−を用いた場合であることがわかる。なお、チタン酸カ
リウムウィスカ−の代わりに、炭化けい素ウィスカ−、
窒化けい素ウィスカ−、ほう酸アルミニウムウィスカ−
を用いた場合にも、上記と同様に、直径0.1〜3μ
m、長さ3〜50μmのウィスカ−が適当であることが
確認された。
From these results, the initial capacity is large and 1
It can be seen that the high value of the capacity retention ratio after 00 cycles is obtained when the whiskers having an average diameter of 0.1 to 3 μm and an average length of 3 to 50 μm are used. Instead of potassium titanate whiskers, silicon carbide whiskers,
Silicon nitride whiskers, aluminum borate whiskers
When using, the diameter is 0.1 to 3μ as in the above.
It was confirmed that a whisker having a length of m and a length of 3 to 50 μm is suitable.

【0068】[実施例15]本実施例では、図2に示す
構造の円筒型電池を作製して特性を調べた。正極活物質
のLiCoO2100gに、導電剤のアセチレンブラッ
クを2.0g、炭素を被覆した平均直径1μm、平均長
さ10μmの炭化けい素ウィスカ−を2.0g、結着剤
のポリ四弗化エチレンの水性ディスパージョンを樹脂分
で4.0g、および純水を加え、ペースト状にし、チタ
ンシートの芯材に塗布し、乾燥、圧延して正極を得た。
一方、負極は、金属リチウムをニッケルシートの芯材に
圧着して得た。上記の正極と負極を用いた他は実施例8
と同様にして図2に示すような円筒型電池を得た。この
電池をaとする。比較例として、ウィスカーを混合しな
い正極を用いた電池をb、ウィスカーの代わりに繊維状
黒鉛を混合した正極を用いた電池をcとする。
[Embodiment 15] In this embodiment, a cylindrical battery having the structure shown in FIG. 2 was produced and its characteristics were examined. 100 g of LiCoO 2 as a positive electrode active material, 2.0 g of acetylene black as a conductive agent, 2.0 g of carbon-coated whisker having an average diameter of 1 μm and an average length of 10 μm, and polytetrafluoride as a binder. 4.0 g of an aqueous dispersion of ethylene as a resin component and pure water were added to form a paste, which was applied to a core material of a titanium sheet, dried and rolled to obtain a positive electrode.
On the other hand, the negative electrode was obtained by pressure-bonding metallic lithium onto a nickel sheet core material. Example 8 except that the above positive electrode and negative electrode were used
A cylindrical battery as shown in FIG. 2 was obtained in the same manner as in. Let this battery be a. As a comparative example, a battery using a positive electrode in which whiskers are not mixed is designated as b, and a battery using a positive electrode in which fibrous graphite is mixed instead of whiskers is designated as c.

【0069】これらの電池について、充放電電流0.5
mA/cm2、充放電電圧範囲4.2V〜3.0Vで充
放電サイクル試験を行った。その結果を図4に示す。電
池bは充放電サイクルによる容量低下が激しく、50サ
イクル程度で初期容量の半分以下の値となった。また、
電池cのサイクル性については、電池bほどの容量低下
はないものの、他の2つの電池に比べ電池容量が小さ
い。これに対して、本発明による正極を用いた電池a
は、電池bに比べ多少電池容量が小さいものの、サイク
ル性は非常に良好で、100サイクル後の容量は初期容
量の98%を維持している。このように、本発明は、高
い放電電圧、高容量、優れたサイクル特性を兼ね備えた
電池を与えるものである。なお、実施例では正極活物質
としてLiCoO2を用いたが、本発明は、充放電に対
して可逆性を有する他の正極活物質を用いる場合に適用
しても同様の効果が得られることは言うまでもない。
For these batteries, the charge / discharge current was 0.5.
A charge / discharge cycle test was performed at mA / cm 2 and a charge / discharge voltage range of 4.2V to 3.0V. The result is shown in FIG. The capacity of the battery b was drastically reduced due to charge / discharge cycles, and was about half or less of the initial capacity after about 50 cycles. Also,
Regarding the cycle performance of the battery c, the battery capacity is smaller than that of the other two batteries, although the capacity is not reduced as much as that of the battery b. On the other hand, the battery a using the positive electrode according to the present invention
Although the battery capacity is slightly smaller than that of the battery b, the cycle performance is very good, and the capacity after 100 cycles maintains 98% of the initial capacity. As described above, the present invention provides a battery having high discharge voltage, high capacity, and excellent cycle characteristics. Although LiCoO 2 was used as the positive electrode active material in the examples, the same effect can be obtained even when the present invention is applied when another positive electrode active material having reversibility for charge and discharge is used. Needless to say.

【0070】[実施例16]本実施例では、正極活物質
の合成時にあらかじめ、その原料にウィスカ−を混合
し、その混合物を加熱することにより、ウィスカーの混
合された活物質を得る例を説明する。ここでは、正極活
物質としてLiMn24を選んだ。また、ウィスカ−は
平均直径1μm、平均長さ10μmのチタン酸カリウム
ウィスカ−を用いた。正極活物質LiMn24の原料の
Li2CO3とMnO2を所定の量論比率で十分に混合
し、その混合物に対して5重量%相当のチタン酸カリウ
ムウィスカ−を添加し、十分に混合した。これを表16
に示す各温度条件で加熱した。さらに、これを100メ
ッシュ以下に分級した。上記のウィスカーをあらかじめ
混合された正極活物質100gに黒鉛2.0gおよびポ
リ四弗化エチレン粉末3.0gを混合して正極合剤とす
る。この正極合剤を1トン/cm2の圧力で直径17.
5mmの円板にプレス成型して正極を得た。これらの正
極を用いて実施例9と同様の試験電池を作製し、実施例
9と同じ条件で充放電試験をした。表16に1サイクル
目の電極活物質1g当りの放電容量と100サイクル目
の放電容量および容量維持率を示した。
[Embodiment 16] In this embodiment, an example of obtaining a whisker-mixed active material by mixing whiskers with the starting material in advance during the synthesis of the positive electrode active material and heating the mixture is described. To do. Here, LiMn 2 O 4 was selected as the positive electrode active material. As the whiskers, potassium titanate whiskers having an average diameter of 1 μm and an average length of 10 μm were used. Li 2 CO 3 and MnO 2 which are raw materials of the positive electrode active material LiMn 2 O 4 were sufficiently mixed in a predetermined stoichiometric ratio, and 5 wt% of potassium titanate whiskers was added to the mixture, and the mixture was sufficiently mixed. Mixed. Table 16
It heated on each temperature condition shown in. Further, this was classified into 100 mesh or less. The above whiskers were mixed in advance with 100 g of the positive electrode active material, and 2.0 g of graphite and 3.0 g of polytetrafluoroethylene powder were mixed to obtain a positive electrode mixture. The diameter 17 of the cathode mixture at a pressure 1 ton / cm 2.
A 5 mm disc was press-molded to obtain a positive electrode. A test battery similar to that of Example 9 was produced using these positive electrodes, and a charge / discharge test was performed under the same conditions as in Example 9. Table 16 shows the discharge capacity per 1 g of the electrode active material in the first cycle, the discharge capacity in the 100th cycle, and the capacity retention rate.

【0071】[0071]

【表16】 [Table 16]

【0072】この結果から、加熱温度は、初期容量が大
きく、100サイクル後の容量維持率の高い値を示す4
00℃〜1400℃が望ましいことがわかる。ウィスカ
ー無添加の比較例(No.16.9)は、初期容量は大
きいが100サイクル目の容量維持率が著しく小さい。
また、出来上がりの活物質にウィスカーを添加した比較
例(No.16.10)は、初期容量とサイクル容量維
持率のいずれも高い値を示したが、本実施例の電池、例
えばNo.16.2〜16.7の方が特にサイクル性に
一層優れたものであることがわかる。なお、加熱温度が
400℃より低い場合は、正極活物質の結晶構造の発達
が不十分で容量が小さい。一方、1400℃より高い場
合は、ウィスカー材の熱分解が著しく進行するためにウ
ィスカー本来の構造維持機能を発揮できなくなり、容量
維持率は悪い。
From this result, the heating temperature shows a large initial capacity and a high capacity retention ratio after 100 cycles.
It can be seen that 00 ° C to 1400 ° C is desirable. The comparative example (No. 16.9) in which no whiskers were added had a large initial capacity, but the capacity retention rate at the 100th cycle was extremely small.
Further, the comparative example (No. 16.10) in which whiskers were added to the finished active material showed high values for both the initial capacity and the cycle capacity retention rate, but the battery of this example, for example, No. 16. It can be seen that 16.2 to 16.7 are more excellent in cycleability. When the heating temperature is lower than 400 ° C, the crystal structure of the positive electrode active material is insufficiently developed and the capacity is small. On the other hand, when the temperature is higher than 1400 ° C., the thermal decomposition of the whisker material remarkably progresses, and the original function of maintaining the structure of the whisker cannot be exhibited, resulting in a poor capacity retention rate.

【0073】なお、ウィスカ−として、炭化けい素ウィ
スカ−、窒化けい素ウィスカ−、ほう酸アルミニウムウ
ィスカ−を用いた場合についても、同様な検討をした。
その結果、いずれの場合も加熱温度は400℃〜140
0℃が望ましいことが確認された。また、ウィスカ−表
面にチタン、アルミニウム、ステンレス鋼、炭素を被覆
したものを用いても同様に好ましい容量維持率が得られ
る。以上の実施例9〜16では、組み合わせる負極とし
て金属リチウムを用いたが、可逆的に充放電できる負極
であれば、全く同様の効果があることは言うまでもな
い。例えば、このような負極の活物質としては、炭素材
料、黒鉛材料、金属酸化物などをあげることができる。
Similar investigations were carried out when silicon carbide whiskers, silicon nitride whiskers and aluminum borate whiskers were used as whiskers.
As a result, in any case, the heating temperature is 400 ° C to 140 ° C.
It was confirmed that 0 ° C. is desirable. Further, even if the whiskers whose surface is coated with titanium, aluminum, stainless steel or carbon are used, the same preferable capacity retention rate can be obtained. In Examples 9 to 16 above, metallic lithium was used as the negative electrode to be combined, but it goes without saying that the same effect can be obtained as long as the negative electrode can be reversibly charged and discharged. For example, as the active material of such a negative electrode, a carbon material, a graphite material, a metal oxide and the like can be mentioned.

【0074】以上の実施例では、本発明を一方の電極に
適用して、負極または正極としての性能を調べたが、本
発明による負極と正極とを組み合わせて電池を構成する
のが好ましいことは言うまでもない。また、以上の実施
例では、特定の電解液を用いたが、溶質として過塩素酸
リチウム、六弗化燐酸リチウム、トリフロロメタンスル
フォン酸リチウム、ホウ弗化リチウムなど、溶媒として
プロピレンカーボネート、エチレンカーボネートなどの
カーボネート類、ガンマーブチロラクトン、酢酸メチル
などのエステル類、ジメトキシエタンやテトラヒドロフ
ランなどのエーテル類を用いた電解液など、この分野で
よく知られたリチウム塩を含有する非水電解液を用いる
ことができる。
In the above examples, the present invention was applied to one electrode and the performance as a negative electrode or a positive electrode was examined. However, it is preferable that the negative electrode and the positive electrode according to the present invention are combined to form a battery. Needless to say. Further, in the above examples, a specific electrolytic solution was used, but as a solute, lithium perchlorate, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium borofluoride, etc., as a solvent, propylene carbonate, ethylene carbonate. It is possible to use a non-aqueous electrolytic solution containing a lithium salt that is well known in this field, such as carbonates, gamma-butyrolactone, esters such as methyl acetate, and electrolytes using ethers such as dimethoxyethane and tetrahydrofuran. it can.

【0075】[0075]

【発明の効果】以上のように本発明の電極は、構造維持
機能を発揮するウィスカ−を含むことから、充放電にと
もなう容量の低下が少なく、高エネルギー密度で、サイ
クル特性に優れた非水電解質二次電池を与える。また、
ウィスカーが炭素あるいはステンレス鋼等により被覆し
たものであるとき、電極の急速充放電特性を向上するこ
とができる。
As described above, the electrode of the present invention contains a whisker that exerts a structure-maintaining function. Therefore, the capacity is less likely to decrease with charge and discharge, has a high energy density, and has excellent cycle characteristics. Provide an electrolyte secondary battery. Also,
When the whiskers are coated with carbon, stainless steel, or the like, the rapid charge / discharge characteristics of the electrodes can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた試験セルの縦断面略図
である。
FIG. 1 is a schematic vertical sectional view of a test cell used in an example of the present invention.

【図2】本発明の実施例の非水電解質二次電池の縦断面
図である。
FIG. 2 is a vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to an example of the present invention.

【図3】本発明の実施例の電池と比較例の電池のサイク
ル特性を示した図である。
FIG. 3 is a diagram showing cycle characteristics of a battery of an example of the present invention and a battery of a comparative example.

【図4】本発明の実施例の電池と比較例の電池のサイク
ル特性を示した図である。
FIG. 4 is a diagram showing cycle characteristics of a battery of an example of the present invention and a battery of a comparative example.

【符号の説明】[Explanation of symbols]

1 試験電極または正極 2 ケース 3 セパレータ 4 金属Liまたは負極 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード板 15 負極リード板 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 1 Test electrode or positive electrode 2 Case 3 Separator 4 Metal Li or negative electrode 5 Gasket 6 Sealing plate 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead plate 15 Negative electrode lead plate 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Toyokuchi ▲ Yoshi ▼ 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In the company

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも充放電に対して可逆性を有す
る活物質粉末と、化学的および電気化学的に不活性なウ
ィスカ−とを含む混合物からなることを特徴とする非水
電解質二次電池用電極。
1. A non-aqueous electrolyte secondary battery comprising a mixture containing at least active material powder having reversibility for charge and discharge and a chemically and electrochemically inactive whisker. electrode.
【請求項2】 前記活物質が、可逆的にリチウムを挿入
・脱離する物質である請求項1記載の非水電解質二次電
池用電極。
2. The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the active material is a material that reversibly inserts and releases lithium.
【請求項3】 前記混合物が結着剤を含み、固体の構造
体を構成している請求項2記載の非水電解質二次電池用
電極。
3. The electrode for a non-aqueous electrolyte secondary battery according to claim 2, wherein the mixture contains a binder to form a solid structure.
【請求項4】 前記ウィスカ−が、炭化けい素ウィスカ
−、窒化けい素ウィスカ−、チタン酸カリウムウィスカ
−、およびほう酸アルミニウムウィスカ−よりなる群か
ら選ばれる少なくとも1種である請求項3記載の非水電
解質二次電池用電極。
4. The whisker is at least one selected from the group consisting of silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and aluminum borate whiskers. Electrode for water electrolyte secondary battery.
【請求項5】 前記ウィスカ−が、炭化けい素ウィスカ
−、窒化けい素ウィスカ−、チタン酸カリウムウィスカ
−、およびほう酸アルミニウムウィスカ−よりなる群か
ら選ばれる少なくとも1種であり、かつそのウィスカ−
の表面が炭素、ニッケル、銅およびステンレス鋼よりな
る群から選ばれる少なくとも1種で被覆されている請求
項3記載の非水電解質二次電池用負極。
5. The whisker is at least one selected from the group consisting of silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and aluminum borate whiskers, and the whiskers.
The negative electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the surface of the negative electrode is coated with at least one selected from the group consisting of carbon, nickel, copper and stainless steel.
【請求項6】 前記ウィスカ−が、炭化けい素ウィスカ
−、窒化けい素ウィスカ−、チタン酸カリウムウィスカ
−、およびほう酸アルミニウムウィスカ−よりなる群か
ら選ばれる少なくとも1種であり、かつその表面が炭
素、チタン、アルミニウムおよびステンレス鋼よりなる
群から選ばれる少なくとも1種で被覆されている請求項
3記載の非水電解質二次電池用負極。
6. The whisker is at least one selected from the group consisting of silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers, and aluminum borate whiskers, and the surface thereof is carbon. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 3, which is coated with at least one selected from the group consisting of titanium, aluminum, and stainless steel.
【請求項7】 加熱により炭化する有機物に化学的およ
び電気化学的に不活性なウィスカ−を混合し、その混合
物を加熱して前記有機物を炭素化もしくは黒鉛化する工
程を有する非水電解質二次電池用負極の製造法。
7. A non-aqueous electrolyte secondary having a step of mixing a chemically and electrochemically inactive whisker with an organic substance carbonized by heating and heating the mixture to carbonize or graphitize the organic substance. Manufacturing method of negative electrode for battery.
【請求項8】 正極活物質合成時にあらかじめ、化学的
および電気化学的に不活性なウィスカ−を混合し、その
混合物を加熱することにより活物質を合成する工程を有
する非水電解質二次電池用正極の製造法。
8. A non-aqueous electrolyte secondary battery having a step of synthesizing an active material by previously mixing chemically and electrochemically inactive whiskers at the time of synthesizing a positive electrode active material and heating the mixture. Positive electrode manufacturing method.
JP5332460A 1993-01-14 1993-12-27 Electrodes for non-aqueous electrolyte secondary batteries Expired - Fee Related JP2965450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332460A JP2965450B2 (en) 1993-01-14 1993-12-27 Electrodes for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP493093 1993-01-14
JP5-4930 1993-02-16
JP5-51460 1993-02-16
JP5146093 1993-02-16
JP5332460A JP2965450B2 (en) 1993-01-14 1993-12-27 Electrodes for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JPH06302315A true JPH06302315A (en) 1994-10-28
JP2965450B2 JP2965450B2 (en) 1999-10-18

Family

ID=27276522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332460A Expired - Fee Related JP2965450B2 (en) 1993-01-14 1993-12-27 Electrodes for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP2965450B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888671A (en) * 1996-05-27 1999-03-30 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2002289481A (en) * 2001-03-28 2002-10-04 Kyocera Corp Activated carbonaceous structure and electric double layer capacitor using the same
WO2005020355A1 (en) * 2003-08-26 2005-03-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery
KR100881637B1 (en) * 2006-05-01 2009-02-04 주식회사 엘지화학 Lithium Secondary Battery of Improved Low-Temperature Power Property
WO2010050484A1 (en) * 2008-10-27 2010-05-06 日産自動車株式会社 Composite electrode for electricity storage device, method for producing same and electricity storage device
JP2010267568A (en) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd Composite electrode for power storage device, its manufacturing method, and power storage device
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9123952B2 (en) 2012-12-10 2015-09-01 Samsung Sdi Co., Ltd. Negative electrode active material, method of preparing the same, negative electrode and lithium secondary battery employing the electrode including the negative electrode active material
US10074855B2 (en) 2013-07-05 2018-09-11 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2020087612A (en) * 2018-11-20 2020-06-04 株式会社豊田自動織機 Positive electrode material containing metal oxide having aluminum-containing coating formed on surface and aluminum-containing needle-like substance, and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297133B2 (en) 2006-05-15 2009-07-15 ソニー株式会社 Lithium ion battery
US10892488B2 (en) 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888671A (en) * 1996-05-27 1999-03-30 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2002289481A (en) * 2001-03-28 2002-10-04 Kyocera Corp Activated carbonaceous structure and electric double layer capacitor using the same
WO2005020355A1 (en) * 2003-08-26 2005-03-03 Sanyo Electric Co., Ltd. Nonaqueous electrolyte battery
KR100881637B1 (en) * 2006-05-01 2009-02-04 주식회사 엘지화학 Lithium Secondary Battery of Improved Low-Temperature Power Property
US7985504B2 (en) 2006-05-01 2011-07-26 Lg Chem, Ltd Lithium secondary battery of improved low-temperature power property
US8110308B2 (en) 2006-05-01 2012-02-07 Lg Chem, Ltd. Lithium secondary battery of improved low-temperature power property
US8426067B2 (en) 2008-10-27 2013-04-23 Nissan Motor Co., Ltd. Composite electrode for electricity storage device, method for producing the same and electricity storage device
WO2010050484A1 (en) * 2008-10-27 2010-05-06 日産自動車株式会社 Composite electrode for electricity storage device, method for producing same and electricity storage device
JP2010267568A (en) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd Composite electrode for power storage device, its manufacturing method, and power storage device
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8685570B2 (en) 2011-08-29 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
CN103765641A (en) * 2011-08-29 2014-04-30 株式会社半导体能源研究所 Method of manufacturing positive electrode active material for lithium ion battery
US9711292B2 (en) 2011-08-29 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9123952B2 (en) 2012-12-10 2015-09-01 Samsung Sdi Co., Ltd. Negative electrode active material, method of preparing the same, negative electrode and lithium secondary battery employing the electrode including the negative electrode active material
US10074855B2 (en) 2013-07-05 2018-09-11 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2020087612A (en) * 2018-11-20 2020-06-04 株式会社豊田自動織機 Positive electrode material containing metal oxide having aluminum-containing coating formed on surface and aluminum-containing needle-like substance, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2965450B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
US5474861A (en) Electrode for non-aqueous electrolyte secondary battery
EP0434776A1 (en) Carbonaceous electrodes for lithium cells
JPH103920A (en) Lithium secondary battery, and manufacture of the same
WO2004001880A1 (en) Electrode and cell comprising the same
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH09213335A (en) Lithium secondary cell
JP2007048717A (en) Battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JPH0785888A (en) Lithium secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2003077534A (en) Nonaqueous secondary battery
JP3061337B2 (en) Non-aqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
US5922494A (en) Stabilized electrolyte for electrochemical cells and batteries
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
EP4239720A1 (en) Anode active material comprising silicon composite, preparation method therefor, and lithium secondary battery comprising same
WO2002073731A1 (en) Battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JPH0773868A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode thereof
JPH0589879A (en) Lithium secondary battery
JP3406843B2 (en) Lithium secondary battery
JP3720959B2 (en) Secondary battery electrode material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees