JPH1040914A - Manufacture of nonaqueous secondary battery and negative pole active substance - Google Patents

Manufacture of nonaqueous secondary battery and negative pole active substance

Info

Publication number
JPH1040914A
JPH1040914A JP8268074A JP26807496A JPH1040914A JP H1040914 A JPH1040914 A JP H1040914A JP 8268074 A JP8268074 A JP 8268074A JP 26807496 A JP26807496 A JP 26807496A JP H1040914 A JPH1040914 A JP H1040914A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite particles
active material
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8268074A
Other languages
Japanese (ja)
Other versions
JP3304267B2 (en
Inventor
Naoto Nishimura
直人 西村
Kazuo Yamada
和夫 山田
Yoshihiro Tsukuda
至弘 佃
Takehito Mitachi
武仁 見立
Kazuaki Minato
和明 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26464346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1040914(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP26807496A priority Critical patent/JP3304267B2/en
Priority to CA002205767A priority patent/CA2205767C/en
Priority to DE69701202T priority patent/DE69701202T2/en
Priority to US08/862,677 priority patent/US5965296A/en
Priority to EP97303557A priority patent/EP0808798B1/en
Publication of JPH1040914A publication Critical patent/JPH1040914A/en
Application granted granted Critical
Publication of JP3304267B2 publication Critical patent/JP3304267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent a conductor from being decomposed due to a negative pole active substance and improve battery capacity, cycle characteristic, and voltage flatness by constituting which a specific negative pole and respective specific positive pole and conductor. SOLUTION: A battery is constituted with a negative pole, a positive pole, and a nonaqeous ion conductor. The negative pole is subjected to oxidizing process at temperatures of 200-700 degrees C in air for example, and made to have a negative pole active substance of graphite grains, as amorphous carbon is made to adhere to its surface by vapor-phase heat decomposition of propane for example. The positive pole has an active substance of a chalcogen compound (such as LiCoO2 ) containing Li. The nonaqueous ion conductor is for example a conductor comprising propylene carbonate and ethylene carbonate by a volume ratio of 9:1-1:9. That is, since graphite particles are oxidation-treated, amorphous carbon adheres securely to the graphite particles and the conductor is prevented from decomposing due to separation of a amorphous carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池及
び負極活物質の製造方法に関する。さらに詳しくは、本
発明は、リチウムの挿入―脱離可能な黒鉛粒子を負極に
用いた非水系二次電池と負極活物質の製造方法に関す
る。
The present invention relates to a non-aqueous secondary battery and a method for producing a negative electrode active material. More specifically, the present invention relates to a nonaqueous secondary battery using graphite particles capable of inserting and removing lithium for a negative electrode, and a method for producing a negative electrode active material.

【0002】[0002]

【従来の技術】電子機器等の軽薄短小化、小電力化に伴
い、リチウム等のアルカリ金属を利用した二次電池が注
目されている。負極に金属リチウムを単体で用いた場
合、充放電の繰り返し(金属リチウムの析出―溶解)に
より、金属表面上にデンドライト(樹枝状結晶)が生成
し、それが成長することによりセパレータを貫通し正極
と接し、電池内部の短絡を誘発する間題があった。金属
リチウムのかわりにリチウム合金を二次電池の負極に用
いると、単体の時に比べてデンドライトの発生が抑制さ
れ、充放電サイクルの特性が向上することが判明した。
しかし、合金を使用しても完全にデンドライトの生成が
抑制されたわけではなく、電池内部の短絡の可能性は少
なからず残されている。また、合金化した負極を用いる
ことによって重量が増加し、リチウムを用いた二次電池
の軽量であるという特徴を損ねうる。
2. Description of the Related Art Secondary batteries using alkali metals such as lithium have attracted attention as electronic devices and the like have become lighter, thinner and shorter, and have reduced power consumption. When metal lithium is used alone for the negative electrode, repetition of charge / discharge (precipitation-dissolution of metal lithium) generates dendrites (dendritic crystals) on the metal surface, which grows and penetrates through the separator to form a positive electrode. And cause a short circuit inside the battery. It has been found that when a lithium alloy is used for the negative electrode of the secondary battery instead of metallic lithium, the generation of dendrites is suppressed as compared with the case of a single battery, and the characteristics of the charge / discharge cycle are improved.
However, the use of the alloy does not completely suppress the generation of dendrites, and the possibility of short-circuiting inside the battery remains to some extent. In addition, the use of an alloyed negative electrode increases the weight, which may impair the light weight characteristic of a lithium secondary battery.

【0003】近年になって、負極に金属リチウムやその
合金を利用するかわりに、リチウムイオンの吸蔵―放出
過程を利用した炭素材料や導電性高分子等のマトリック
ス材料が開発された。これにより、金属リチウムやその
合金を利用した場合に起こったデンドライトの生成が原
理上起こらなくなり、電池内部の短絡という問題が激減
するに至った。特に、炭素材料は他の材料よりもリチウ
ムの吸蔵―放出電位がリチウムの折出―溶解電位に近い
ことが知られている。中でも黒鉛材料は、理論的に炭素
原子6個に対してリチウム原子1個の割合でその結晶格
子中にリチウムを取り込むことができることから、単位
重量及び単位体積あたり高い容量を有する炭素材料であ
る。さらに、リチウムの挿入―脱離の電位が平坦であ
り、化学的に安定であり電池のサイクル安定性にも大き
く寄与するものである。
[0003] In recent years, instead of using metallic lithium or its alloys for the negative electrode, matrix materials such as carbon materials and conductive polymers utilizing the occlusion-release process of lithium ions have been developed. As a result, the generation of dendrite, which occurs when metal lithium or its alloy is used, does not occur in principle, and the problem of a short circuit inside the battery has been drastically reduced. In particular, it is known that the carbon material has a lithium absorption-release potential closer to the lithium extraction-dissolution potential than other materials. Above all, a graphite material is a carbon material having a high capacity per unit weight and unit volume, since lithium can theoretically be taken into the crystal lattice at a ratio of one lithium atom to six carbon atoms. Further, the potential for lithium insertion and desorption is flat, chemically stable, and greatly contributes to the cycle stability of the battery.

【0004】例えば、J.Electrochm.Soc.,Vol.13
7,2009(1990)、特開平4―115457号公報、特
開平4―115458号公報、特開平4―237971
号公報等に示される黒鉛系炭素材料を負極活物質に用い
るもの、また特開平4―368778号公報、特開平5
―28996号公報、特開平5―114421号公報等
に示される表面処理した黒鉛系炭素材料を負極活物賀に
用いるもの等がある。
[0004] For example, in J. Electrochm. Soc., Vol. 13
7, 2009 (1990), JP-A-4-115457, JP-A-4-115458, JP-A-4-237971.
Using graphite-based carbon material as a negative electrode active material disclosed in JP-A-4-368778, JP-A-4-368778,
Japanese Patent Application Laid-Open No. 28996/1993, Japanese Unexamined Patent Application Publication No. 5-114421 and the like use a surface-treated graphite-based carbon material for a negative electrode active material.

【0005】上記のように黒鉛系炭素材料は、エチレン
カーボーネート(EC)を主体とする有機電解液におい
てほぼ理論容量に近い放電容量が得られる。また、その
充放電の電位がリチウムの溶解―折出の電位よりわずか
に高く、かつ非常に平坦であるため、黒鉛系炭素材料を
負極活物質に用いて電池を作製した場合に、高容量かつ
電池電圧の平坦性が高い二次電池が実現できる。
[0005] As described above, the graphite-based carbon material has a discharge capacity close to the theoretical capacity in an organic electrolyte mainly composed of ethylene carbonate (EC). In addition, since the charge and discharge potential is slightly higher than the potential of lithium dissolution and deposition and is very flat, when a battery is manufactured using a graphite-based carbon material as the negative electrode active material, a high capacity and A secondary battery having high flatness of battery voltage can be realized.

【0006】[0006]

【発明が解決しようとする課題】前記のように高容量を
達成できる黒鉛系炭素材料であるが、その結晶性が高い
ため電解液(非水系イオン伝導体)の分解を引き起こす
という問題点も残されている。例えば、有機電解液用溶
媒であるプロピレンカーボネート(PC)はその電位窓
の広さ、凝固点の低さ(一70℃)又は化学的安定性の
高さから、リチウム電池用の電解液の溶媒として広く用
いられている。しかしながら、黒鉛系炭素材料を負極活
物質に用いた場合、PCの分解反応が顕著に起こり、1
0%のPCが電解液に存在するだけで黒鉛系炭素材料か
らなる負極は充放電ができないということが、J.Elect
rochm.Soc.,Vol.142,1746(1995)で報告されてい
る。
Although the graphite-based carbon material can achieve a high capacity as described above, it still has the problem of causing decomposition of the electrolyte (non-aqueous ionic conductor) due to its high crystallinity. Have been. For example, propylene carbonate (PC), which is a solvent for an organic electrolyte, has a wide potential window, a low freezing point (-170 ° C.), or a high chemical stability, and is therefore used as a solvent for an electrolyte for a lithium battery. Widely used. However, when a graphite-based carbon material is used as the negative electrode active material, the decomposition reaction of PC occurs remarkably,
The fact that a negative electrode made of a graphite-based carbon material cannot be charged / discharged because only 0% of PC is present in the electrolytic solution has been reported by J.-J. Elect
rochm. Soc., Vol. 142, 1746 (1995).

【0007】また、ECと低粘度溶媒との混合溶媒系の
電解液を使用した場合にのみ、黒鉛系炭素材料をリチウ
ム二次電池用負極として使用できることは広く知られて
いる。しかしながら、EC主体の電解液は低温でのイオ
ン伝導度が低く、この電解液と黒鉛系炭素材料を負極に
用いた二次電池を作製した場合、その電池の温度特性又
は電流特性を電解液の選択によって改善することは、二
次電池に使用できる溶媒の選択肢が少ないので非常に困
難である。
It is widely known that a graphite-based carbon material can be used as a negative electrode for a lithium secondary battery only when an electrolytic solution of a mixed solvent system of EC and a low-viscosity solvent is used. However, the electrolyte mainly composed of EC has low ionic conductivity at a low temperature, and when a secondary battery using this electrolyte and a graphite-based carbon material as a negative electrode is manufactured, the temperature characteristics or current characteristics of the battery are reduced by the electrolyte. It is very difficult to improve by selection because there are few choices of solvents that can be used for the secondary battery.

【0008】このような間題を解決すべく特開平4―3
68778号公報又は特開平5―121066号公報に
見られるように、黒鉛粒子の表面を低結晶性炭素で被覆
した炭素材料を二次電池用負極活物質に用いることが提
案されている。これらは電解液の分解を抑え放電容量の
増加、サイクル特性の改善に対して有効な手段である。
しかしながら、PCを主体とする電解液を用いて二次電
池を作製した場合、その負極活物質の製造工程において
粒子径をそろえるための粉砕又は電極作製の際の混練、
集電板への塗工等によって、黒鉛粒子表面を被覆した低
結晶性炭素が制雛し、電解液の分解によるガス発生によ
り電極が破壊され、電池の容量の低下、サイクル特性の
劣化という問題が生じてきた。
To solve such a problem, Japanese Patent Laid-Open Publication No.
As disclosed in Japanese Patent No. 68778 or Japanese Patent Application Laid-Open No. 5-110666, it has been proposed to use a carbon material in which the surface of graphite particles is coated with low crystalline carbon as a negative electrode active material for a secondary battery. These are effective means for suppressing decomposition of the electrolytic solution, increasing discharge capacity, and improving cycle characteristics.
However, when a secondary battery is manufactured using an electrolyte mainly composed of PC, kneading at the time of pulverization or electrode manufacturing in order to uniform the particle diameter in the manufacturing process of the negative electrode active material,
Low-crystalline carbon coated on the graphite particle surface is reduced by coating on the current collector plate, etc., and the electrode is destroyed by gas generation due to decomposition of the electrolytic solution, resulting in a problem of reduced battery capacity and deterioration of cycle characteristics. Has arisen.

【0009】また、より低コスト化が期待される製造方
法として、特開平6―84516号公報に見られるよう
に、ピッチ等の炭素前駆体と黒鉛とを混合、焼成する方
法が挙げられるが、この製造方法の場合、液相工程をと
るため低結晶性炭素で被覆した黒鉛粒子同士が付着し、
負極製造工程における粉砕等によって、黒鉛の活性面が
再び現れ、PCの分解が起こるという問題があった。
Further, as a production method expected to reduce costs, there is a method of mixing and firing graphite and a carbon precursor such as pitch as disclosed in JP-A-6-84516. In the case of this production method, graphite particles coated with low crystalline carbon adhere to each other to take a liquid phase process,
There is a problem that the active surface of the graphite reappears due to pulverization or the like in the negative electrode manufacturing process, and PC is decomposed.

【0010】上記のように黒鉛粒子表面に低結晶性炭素
を被覆した場合、黒鉛粒子は低結晶性炭素との接着強度
が弱くすぐに制離し、電解液の分解を引き起こすという
問題点が明らかになった。そのためこの方法でも電池の
特性が劣化し、電池の製造において歩留まりが低下する
という問題を生じていた。
[0010] When the surface of the graphite particles is coated with low-crystalline carbon as described above, the problem that the graphite particles have a low adhesive strength to the low-crystalline carbon and are quickly separated, causing the decomposition of the electrolytic solution is apparent. became. Therefore, this method also causes a problem that the characteristics of the battery are deteriorated and the yield is reduced in the manufacture of the battery.

【0011】[0011]

【課題を解決するための手段】上記の問題を改善すべ
く、本発明の発明者等は鋭意研究を行った結果、黒鉛粒
子の表面に非晶質炭素を付着する前に、黒鉛粒子を酸化
することで、より強固に非晶質炭素を付着できることを
見出し、本発明に至った。さらには、黒鉛粒子を酸化す
ることにより、気相熱分解堆積法で非晶質炭素を黒鉛粒
子表面に付着させた場合に、非晶質炭素を速く堆積でき
ることをも見出した。
Means for Solving the Problems In order to solve the above problems, the inventors of the present invention have conducted intensive studies and as a result, oxidized the graphite particles before attaching the amorphous carbon to the surface of the graphite particles. By doing so, it was found that amorphous carbon can be more firmly attached, and the present invention has been achieved. Furthermore, it has been found that by oxidizing graphite particles, amorphous carbon can be deposited quickly when amorphous carbon is adhered to the surface of graphite particles by a vapor phase pyrolysis deposition method.

【0012】かくして本発明によれば、表面に非晶質炭
素を付着させた黒給粒子を負極活物質とする負極と、リ
チウムを含有するカルコゲン化物を正極活物質とする正
極と、非水系イオン伝導体とからなり、前記負極活物質
が黒鉛粒子を酸化処理した後、非晶質炭素を黒鉛粒子の
表面に付着させることにより形成されることを特徴とす
る非水系二次電池が提供される。
Thus, according to the present invention, there is provided a negative electrode using black supply particles having amorphous carbon adhered to the surface as a negative electrode active material, a positive electrode using lithium-containing chalcogenide as a positive electrode active material, a nonaqueous ion A non-aqueous secondary battery comprising a conductor, wherein the negative electrode active material is formed by oxidizing graphite particles and then attaching amorphous carbon to the surface of the graphite particles. .

【0013】更に、本発明によれば、黒鉛粒子を空気
中、酸化性ガス雰囲気下、酸化性溶液中、あるいはアル
カリと混合して熱処理することで酸化処理した後、非晶
質炭素を黒鉛粒子の表面に付着させて負極活物質を形成
することを特徴とする負極活物質の製造方法が提供され
る。
Further, according to the present invention, the graphite particles are oxidized by heat treatment in air, in an oxidizing gas atmosphere, in an oxidizing solution, or mixed with an alkali, and then the amorphous carbon is converted into graphite particles. A negative electrode active material is formed by attaching the negative electrode active material to a surface of the negative electrode active material.

【0014】[0014]

【発明の実施の形態】本発明で使用される黒鉛粒子は、
リチウムを挿入―脱離可能なものが好ましい。黒鉛粒子
としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等が
挙げられる。さらには、酸化処理前の黒鉛粒子のX線広
角回折法による(002)面の平均面間隔(d002)が
0.335〜0.340nm、(002)面方向の結晶
子厚み(Lc)が10nm以上、(110)面方向の結
晶子厚み(La)が10nm以上である黒鉛粒子及び/
又は酸化処理前の黒鉛粒子のアルゴンレーザーラマンに
よる1580cm-1に対するl360cm-1のピーク強
度比が0.4以下であり、非晶質炭素付着後の前記強度
比が0.4以上である黒鉛粒子が好ましい。
DETAILED DESCRIPTION OF THE INVENTION The graphite particles used in the present invention are:
Those capable of inserting and removing lithium are preferred. Examples of the graphite particles include natural graphite, artificial graphite, and expanded graphite. Furthermore, the average interplanar spacing (d 002 ) of the (002) plane of the graphite particles before the oxidation treatment by the X-ray wide angle diffraction method is 0.335 to 0.340 nm, and the crystallite thickness (Lc) in the (002) plane direction is Graphite particles having a crystallite thickness (La) of 10 nm or more and (110) plane direction of 10 nm or more and / or
Or peak intensity ratio of L360cm -1 for 1580 cm -1 by argon laser Raman of the graphite particles before the oxidation treatment is 0.4 or less, the graphite particles wherein the intensity ratio after the amorphous carbon deposition is 0.4 or more Is preferred.

【0015】ここで、酸化処理前の黒鉛粒子のd002
0.340nmより大きく、Lc及びLaが10nmよ
り小さく、アルゴンレーザーラマンによる、1580c
-1に対する1360cm-1のピーク強度比が0.4よ
り大きくなると、結晶性が低くなり、負極活物質として
高容量が達成できなくなるので好ましくない。酸化処理
前の黒鉛粒子のBET法による比表面積は5〜150m
2/g、平均粒径は0.7〜80μmであることが好ま
しい。黒鉛粒子の比表面積が5m2/gより小さくなる
と、非水系イオン伝導体との接触面積が小さくなり電極
の電流特性が低下し、150m2/gより大きくなる
と、非水系イオン伝導体との接触面積が大きくなりすぎ
自己放電が大きくなるので好ましくない。また、黒鉛粒
子の平均粒径が0.7μmより小さくなると、黒鉛粒子
が電池のセパレーターの空孔を通過して内部短絡を引き
起こす可能性が高く、80μmより大きくなると、電極
を作製する工程上での取扱性が悪くなるため好ましくな
い。
Here, d 002 of the graphite particles before the oxidation treatment is larger than 0.340 nm, Lc and La are smaller than 10 nm, and 1580 c by argon laser Raman.
When the peak intensity ratio of 1360 cm -1 to m -1 is more than 0.4, the crystallinity is lowered and a high capacity as a negative electrode active material cannot be achieved, which is not preferable. BET specific surface area of graphite particles before oxidation treatment is 5 to 150 m
2 / g and an average particle size of 0.7 to 80 μm are preferred. When the specific surface area of the graphite particles is smaller than 5 m 2 / g, the contact area with the non-aqueous ionic conductor is reduced and the current characteristics of the electrode are reduced. When the specific surface area is larger than 150 m 2 / g, the contact with the non-aqueous ionic conductor is reduced. It is not preferable because the area becomes too large and self-discharge increases. Further, when the average particle size of the graphite particles is smaller than 0.7 μm, there is a high possibility that the graphite particles will pass through the pores of the battery separator and cause an internal short circuit. This is not preferred because the handleability of the product becomes poor.

【0016】次に、本発明では、黒鉛粒子表面に非晶質
炭素を付着する前に、黒鉛粒子に酸化処理が付される。
黒鉛粒子を酸化処理することにより表面上に酸素を含む
官能基が生成し、その官能基を介して非晶質炭素が化学
的に結合するため、黒鉛粒子と非晶質炭素がより強固に
付着するものと考えられる。また、黒鉛粒子を酸化する
ことで粒子表面が物理的に荒らされるので、表面に付着
する非晶質炭素の接着強度が向上するものと考えられ
る。
Next, in the present invention, the graphite particles are oxidized before the amorphous carbon is attached to the surface of the graphite particles.
Oxidation of graphite particles generates oxygen-containing functional groups on the surface, and amorphous carbon is chemically bonded through the functional groups, so graphite particles and amorphous carbon adhere more firmly. It is thought to be. In addition, it is considered that the surface of the particles is physically roughened by oxidizing the graphite particles, so that the bonding strength of the amorphous carbon adhered to the surface is improved.

【0017】前記酸化処理としては、空気中又は酸素、
二酸化炭素、水蒸気等の酸化性ガス雰囲気下で黒鉛粒子
を酸化する方法、硝酸、硫酸、塩酸、フッ酸等の無機酸
類、蟻酸、酢酸、プロピオン酸、フェノール等の有機酸
類、過マンガン酸カリウム溶液、過酸化水素水等の酸化
剤溶液中で黒鉛粒子を酸化する方法、あるいは、水酸化
カリウム、水酸化ナトリウム、水酸化リチウム等のアル
カリ溶液またはアルカリ溶融塩と混合して熱処理する酸
化方法が挙げられるがこれに限定されるものではない。
The oxidation treatment may be performed in air or oxygen,
A method of oxidizing graphite particles in an atmosphere of oxidizing gas such as carbon dioxide and water vapor, inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid and hydrofluoric acid, organic acids such as formic acid, acetic acid, propionic acid and phenol, and potassium permanganate solution A method of oxidizing graphite particles in an oxidizing agent solution such as aqueous hydrogen peroxide, or an oxidation method of heat-treating by mixing with an alkali solution or an alkali molten salt such as potassium hydroxide, sodium hydroxide or lithium hydroxide. However, the present invention is not limited to this.

【0018】この内、空気酸化による場合、酸化温度は
200〜700℃が好ましい。酸化温度が200℃より
低くなると酸化時間が長くなり製造コストが高くなり、
また、700℃以上になると黒鉛が燃焼してしまうため
好ましくない。
Of these, in the case of air oxidation, the oxidation temperature is preferably from 200 to 700 ° C. If the oxidation temperature is lower than 200 ° C., the oxidation time becomes longer and the production cost becomes higher,
On the other hand, if the temperature exceeds 700 ° C., graphite burns, which is not preferable.

【0019】また、硝酸酸化を行う場合、硝酸酸化温度
は20℃から130℃以下が好ましい。20℃より低温
では、黒鉛粒子が酸化されないため好ましくない。13
0℃より高温では、硝酸の沸点を超えるため安全性が低
下し好ましくない。硝酸濃度は5重量%以上99%重量
%以下が好ましい。5重量%より低濃度では酸化時間が
長く、製造コストが高くなるため好ましくない。発煙硝
酸が99重量%であり、これより高濃度の硝酸は入手が
困難であるため好ましくない。酸化時間は、20時間以
下が好ましいがこれに限定されるものではない。
When performing nitric acid oxidation, the nitric acid oxidation temperature is preferably from 20 ° C. to 130 ° C. or lower. If the temperature is lower than 20 ° C., the graphite particles are not oxidized, which is not preferable. 13
If the temperature is higher than 0 ° C., it exceeds the boiling point of nitric acid, so that safety is undesirably lowered. The nitric acid concentration is preferably from 5% by weight to 99% by weight. If the concentration is lower than 5% by weight, the oxidation time is long, and the production cost is undesirably high. Fuming nitric acid is 99% by weight, and nitric acid having a higher concentration is not preferable because it is difficult to obtain. The oxidation time is preferably, but not limited to, 20 hours or less.

【0020】アルカリを用いて酸化を行う場合、固体の
アルカリと黒鉛粉末を混合し熱処理するか、あるいは、
アルカリの溶液中に黒鉛粉末を分散させ乾燥した後熱処
理するのが好ましいがこれに限定されるものではない。
熱処理温度はアルカリの融点近傍が好ましく、300〜
700℃が好ましい。300℃より低温ではアルカリが
融解しないので好ましくなく、700℃より高温では熱
処理のチャンバーが著しく腐食されるので好ましくな
い。
When the oxidation is carried out using an alkali, a solid alkali and graphite powder are mixed and heat-treated, or
It is preferable to disperse the graphite powder in an alkali solution, dry the graphite powder, and then heat-treat the graphite powder, but the invention is not limited thereto.
The heat treatment temperature is preferably near the melting point of the alkali,
700 ° C. is preferred. If the temperature is lower than 300 ° C., the alkali does not melt, which is not preferable. If the temperature is higher than 700 ° C., the heat treatment chamber is significantly corroded, which is not preferable.

【0021】次いで、酸化処理をした黒鉛粒子表面に非
晶質炭素を付着することにより、負極活物質が得られ
る。酸化処理をした黒鉛粒子表面に非晶質炭素を付着す
るための方法としては、炭化水素類の気相熱分解堆積法
による非晶質炭素の付着方法、又は、液相中での炭素前
駆体と黒鉛粒子とを混合した後焼成する方法が好ましい
が、これに限定されるものではない。付着した非晶質炭
素の厚さは、0.001〜1μmが好ましい。0.00
1μmより薄いと、黒鉛粒子の電解液を分解する部分が
失活しないため好ましくない。また、1μmより厚い
と、核となる黒鉛粒子の比率が低下し、負極としての容
量が低下するため好ましくない。なお、本発明における
非晶質炭素とは、黒鉛粒子に比べて結晶子の六角網面が
不規則に積層し、粉末X線回折による平均面間隔が黒鉛
粒子に比べて大きいことを満たすものをいう。
Next, by attaching amorphous carbon to the surface of the oxidized graphite particles, a negative electrode active material is obtained. As a method for attaching amorphous carbon to the surface of oxidized graphite particles, a method for attaching amorphous carbon by vapor phase pyrolysis deposition of hydrocarbons, or a method for depositing a carbon precursor in a liquid phase And a method of baking after mixing with graphite particles is preferred, but not limited thereto. The thickness of the attached amorphous carbon is preferably 0.001 to 1 μm. 0.00
If the thickness is less than 1 μm, the portion of the graphite particles that decomposes the electrolyte is not deactivated, which is not preferable. On the other hand, when the thickness is more than 1 μm, the ratio of graphite particles serving as nuclei decreases, and the capacity as a negative electrode decreases, which is not preferable. Incidentally, the amorphous carbon in the present invention is defined as one that satisfies that hexagonal mesh planes of crystallites are irregularly stacked as compared with graphite particles and that the average interplanar spacing by powder X-ray diffraction is larger than that of graphite particles. Say.

【0022】負極は、上記に示した黒鉛粒子表面に非晶
質炭素が付着した負極活物質と結着材とを混合すること
により形成される。結着材としては、ポリフッ化ビニリ
デン、ポリテトラフルオロエチレン等のフッ素系ポリマ
ー、ポリエチレン、ポリプロピレン等のポリオレフィン
系ポリマー、合成ゴム類等を用いることができるがこれ
に限定されるものではない。
The negative electrode is formed by mixing the above-described negative electrode active material having amorphous carbon adhered to the surface of the graphite particles with a binder. As the binder, a fluorine-based polymer such as polyvinylidene fluoride and polytetrafluoroethylene, a polyolefin-based polymer such as polyethylene and polypropylene, and synthetic rubbers can be used, but are not limited thereto.

【0023】炭素材料と結着材との混合比(重量比)
は、99:1〜70:30とすることが好ましい。結着
材の重量比が70:30より多くなると、電極の内部抵
抗又は分極等が大きくなり、放電容量が低くなるため実
用的なリチウム二次電池が作製できないので好ましくな
い。また、結着材の重量比が99:1より少なくなると
負極活物質自身又は負極活物質と集電体との結着能力が
十分でなくなり、負極活物質の脱落や機械的強度の低下
により電池が作製困難になるため好ましくない。負極作
製において、結着性を向上させるため及び結着材の溶剤
を除去するために、溶剤の沸点以上でかつ結着材の融点
前後の温度で真空中、不活性ガス中又は空気中で熱処理
を行うのが好ましい。
Mixing ratio (weight ratio) of carbon material and binder
Is preferably from 99: 1 to 70:30. When the weight ratio of the binder is more than 70:30, the internal resistance or polarization of the electrode becomes large, and the discharge capacity becomes low, so that a practical lithium secondary battery cannot be produced, which is not preferable. On the other hand, if the weight ratio of the binder is less than 99: 1, the binding capacity of the negative electrode active material itself or the negative electrode active material and the current collector becomes insufficient, and the negative electrode active material falls off or the mechanical strength decreases, resulting in a decrease in the battery strength. Is not preferable because it makes the production difficult. In the preparation of the negative electrode, in order to improve the binding property and remove the solvent of the binder, heat treatment in a vacuum, an inert gas, or air at a temperature above the boiling point of the solvent and around the melting point of the binder. Is preferably performed.

【0024】また、本発明で使用される非水系イオン伝
導体は、例えば、有機電解液、高分子固体電解質、無機
固体電解質、溶融塩等を用いることができる。この中で
も、有機電解液を好適に用いることができる。
The non-aqueous ion conductor used in the present invention may be, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like. Among them, an organic electrolyte can be suitably used.

【0025】ここで非水系イオン伝導体の溶媒は、少な
くともPC:EC=9:1〜1:9(体積比)の混合溶
媒を合み、任意に他の溶媒とを組み合わせた溶媒である
ことが好ましい。さらに好ましくは、PC:EC=9:
1〜5:5(体積比)の混合溶媒と任意に他の溶媒とを
組み合わせた溶媒である。ここで、他の溶媒は低粘度溶
媒が好ましく、前記の混合溶媒と低粘度溶媒との混合比
は限定されない。PC:EC=9:1よりもPCが多く
なると、溶媒の分解が優先的に起こり実際の二次電池に
は使用できないので好ましくない。またPC:EC=
1:9よりPCが少なくなると、−40℃以下での非水
系イオン伝導体特性が劣化するため、低湿で二次電池が
作動しないので好ましくない。
Here, the solvent of the non-aqueous ionic conductor is a solvent obtained by combining at least a mixed solvent of PC: EC = 9: 1 to 1: 9 (volume ratio) and optionally combining another solvent. Is preferred. More preferably, PC: EC = 9:
It is a solvent obtained by combining a mixed solvent of 1 to 5: 5 (volume ratio) and optionally another solvent. Here, the other solvent is preferably a low-viscosity solvent, and the mixing ratio of the mixed solvent and the low-viscosity solvent is not limited. If PC: EC is greater than 9: 1, the solvent is preferentially decomposed and cannot be used for an actual secondary battery, which is not preferable. PC: EC =
If the PC is less than 1: 9, the non-aqueous ionic conductor characteristics at -40 ° C or lower deteriorate, and the secondary battery does not operate at low humidity, which is not preferable.

【0026】非水系イオン伝導体に含まれる他の溶媒と
しては、ブチレンカーボネート等の環状カーボネート類
と、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネート、ジプロピルカーボネート等の
鎖状カーボネート類、γ−ブチロラクトン、γ−バレロ
ラクトン等のラクトン類、テトラヒドロフラン、2−メ
チルテトラヒドロフラン等のフラン類、ジエチルエーテ
ル、1,2−ジメトキシエタン、1、2―ジエトキシエ
タン、エトキシメトキシエタン、ジオキサン等のエーテ
ル類、ジメチルスルホキシド、スルホラン、メチルスル
ホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が
挙げられる。
Other solvents contained in the non-aqueous ion conductor include cyclic carbonates such as butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and dipropyl carbonate, γ-butyrolactone, lactones such as γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, ethers such as 1,2-diethoxyethane, ethoxymethoxyethane and dioxane, and dimethyl sulfoxide , Sulfolane, methylsulfolane, acetonitrile, methyl formate, methyl acetate and the like.

【0027】また非水系イオン伝導体の電解質塩として
は、過塩素酸リチウム、ホウフッ化リチウム、六フッ化
リン酸リチウム、六フッ化砒酸リチウム、トリフルオロ
メタンスルホン酸リチウム、ハロゲン化リチウム、塩化
アルミン酸リチウム等のリチウム塩が挙げられる。これ
らは1種又は2種以上を混合して使用することができ
る。
The electrolyte salt of the non-aqueous ion conductor includes lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium trifluoromethanesulfonate, lithium halide, lithium chloride and aluminate chloride. And lithium salts such as lithium. These can be used alone or in combination of two or more.

【0028】非水系イオン伝導体は、上記溶媒に電解質
塩を溶解することによって調製される。非水系イオン伝
導体を調製する際に使用する溶媒、電解質塩は、上記に
挙げたものに限定されない。本発明の非水系二次電池の
正極は、正極活物質、導電材、結着材及び場合によつて
は固体電解質等からなる。
The non-aqueous ion conductor is prepared by dissolving an electrolyte salt in the above-mentioned solvent. The solvent and the electrolyte salt used when preparing the non-aqueous ion conductor are not limited to those described above. The positive electrode of the non-aqueous secondary battery of the present invention comprises a positive electrode active material, a conductive material, a binder, and in some cases, a solid electrolyte.

【0029】正極活物質としては、リチウムを含有した
カルコゲン化物を用いることが好ましい。例えば、Li
x1-yy2(ここでMはFe、Co、Niのいずれか
であり、Nは遷移金属、好ましくは4B族又は5B族の
金属であり、xは0≦x≦1、yは0≦y≦1を表す)
で表されるカルコゲン化物を使用することができる。具
体的には、LiCoO2、LiNiO2、LiFeO2
LiMnO2等が挙げられる。更に、例えば、LiMn
2-xy4(ここでNは遷移金属、好ましくは4B族又
は5B族の金属であり、zは0≦z≦2を表す)で表さ
れるカルコゲン化物も使用できる。具体的には、LiM
24等が挙げられる。
As the positive electrode active material, it is preferable to use a chalcogenide containing lithium. For example, Li
x M 1-y N y O 2 (where M is any of Fe, Co, Ni, N is a transition metal, preferably a Group 4B or 5B metal, x is 0 ≦ x ≦ 1, y represents 0 ≦ y ≦ 1)
The chalcogenide represented by can be used. Specifically, LiCoO 2 , LiNiO 2 , LiFeO 2 ,
LiMnO 2 and the like. Further, for example, LiMn
Chalcogenides represented by 2-x N y O 4 (where N is a transition metal, preferably a Group 4B or 5B metal, and z represents 0 ≦ z ≦ 2) can also be used. Specifically, LiM
n 2 O 4 and the like.

【0030】導電材には、カーボンブラック(アセチレ
ンブラック、サーマルブラック、チャンネルブラック
等)等の炭素類や、グラファイト粉夫、金属粉末等を用
いることができるがこれに限定されるものではない。結
着材には、ポリテトラフルオロエチレン、ポリフッ化ビ
ニリデン等のフッ素系ポリマー、ポリエチレン、ポリプ
ロピレン等のポリオレフィン系ポリマー、合成ゴム類等
を用いることができるが、これに限定されるものではな
い。
As the conductive material, carbons such as carbon black (acetylene black, thermal black, channel black, etc.), graphite powder, metal powder and the like can be used, but are not limited thereto. As the binder, a fluorine-based polymer such as polytetrafluoroethylene or polyvinylidene fluoride, a polyolefin-based polymer such as polyethylene or polypropylene, or a synthetic rubber can be used, but is not limited thereto.

【0031】導電材及び結着材の混合比は、正極活物質
100重量部に対して、導電材を5〜50重量部、結着
材を1〜30重量部とすることができる。導電材が5重
量部より少ない又は結着材が30重量部より多いと、電
極の内部抵抗又は分極等が大きくなり、電極の放電容量
が低くなるため実用的なリチウム二次電池が作製できな
いので好ましくない。導電材が50重量部より多いと電
極内に含まれる活物質量が相対的に減るため、正極とし
ての放電容量が低くなる。結着材がl重量部より少ない
と活物質の結着能力がなくなり、活物質の脱落や機械的
強度の低下により電池の作製上困難である。結着材が3
0重量部より多いと導電材の場合と同様に、電極内に含
まれる活物質量が減り、さらに、電極の内部抵抗又は分
極等が大きくなり放電容量が低くなり実用的ではない。
The mixing ratio of the conductive material and the binder can be 5 to 50 parts by weight of the conductive material and 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the positive electrode active material. If the amount of the conductive material is less than 5 parts by weight or the amount of the binder is more than 30 parts by weight, the internal resistance or polarization of the electrode becomes large, and the discharge capacity of the electrode becomes low, so that a practical lithium secondary battery cannot be manufactured. Not preferred. If the amount of the conductive material is more than 50 parts by weight, the amount of active material contained in the electrode is relatively reduced, so that the discharge capacity as a positive electrode is reduced. If the amount of the binder is less than 1 part by weight, the binding ability of the active material is lost, and it is difficult to manufacture a battery because the active material falls off and the mechanical strength is reduced. 3 binders
If the amount is more than 0 parts by weight, as in the case of the conductive material, the amount of the active material contained in the electrode is reduced, and the internal resistance or polarization of the electrode is increased, so that the discharge capacity is lowered, which is not practical.

【0032】なお、正極作製において、結着性を向上さ
せるために各々の結着材の融点前後かつ、溶媒の沸点以
上の温度で熱処理を行うことが好ましい。また、非水系
イオン伝導体を保持するために、セパレーターが用いら
れる。このセパレーターとしては、電気絶縁性の合成樹
脂繊維、ガラス繊維、天然繊維等の不織布又は織布、ア
ルミナ等の紛失の成型体等が挙げられる。中でも合成樹
脂のポリエチレン、ポリプロピレン等の不織布が、品質
の安定性等の点から好ましい。これら合成樹脂の不織布
では電池が異常発熱した場合に、セパレーターが熱によ
って融解し正極と負極との極間を遮断する機能を付加し
たものもあり、電池の安全性の観点からもこれらを好適
に使用することができる。セパレーターの厚みは特に限
定されないが、必要量の非水系イオン伝導体を保持する
ことが可能で、かつ正極と負極との短絡を防ぐ厚さがあ
ればよく、通常0.01〜1mm程度のものを用いるこ
とができ、好ましくは0.02〜0.05mm程度であ
る。
In the preparation of the positive electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder and at least the boiling point of the solvent in order to improve the binding property. Further, a separator is used to hold the non-aqueous ion conductor. Examples of the separator include non-woven fabrics or woven fabrics such as synthetic resin fibers, glass fibers, and natural fibers having electrical insulation properties, and lost molded articles such as alumina. Among them, non-woven fabrics such as synthetic resins such as polyethylene and polypropylene are preferable in terms of quality stability and the like. Some of these synthetic resin non-woven fabrics have a function that when the battery abnormally generates heat, the separator is melted by heat and a function of shutting off the gap between the positive electrode and the negative electrode is added. From the viewpoint of battery safety, these are preferably used. Can be used. The thickness of the separator is not particularly limited, but may have a thickness capable of holding a required amount of the nonaqueous ion conductor and preventing a short circuit between the positive electrode and the negative electrode, and is usually about 0.01 to 1 mm. And it is preferably about 0.02 to 0.05 mm.

【0033】本発明の構成を採用することにより、電位
の平坦性に優れた黒鉛粒子を負極活物質に用い、プロピ
レンカーボネート主体の低温特性に優れた非水系イオン
云導体と組み合わせることが可能となる。従って、電池
の放電電圧の平坦性が高く、かつ、低温特性に優れた非
水系二次電池を作製することができる。また、本発明の
構成により電池製造上の粉砕又は混錬という工程を経て
も、非晶質炭素を付着した黒鉛粒子の優れた特性が損な
われなくなり、材料製造上のコストも低減することが可
能となる。
By adopting the structure of the present invention, it is possible to use graphite particles having excellent flatness in potential as a negative electrode active material and to combine them with a non-aqueous ionic conductor mainly composed of propylene carbonate and having excellent low-temperature characteristics. . Therefore, a non-aqueous secondary battery having high flatness of the discharge voltage of the battery and excellent low-temperature characteristics can be manufactured. In addition, the excellent characteristics of the graphite particles to which amorphous carbon is attached are not impaired even after the process of pulverization or kneading in battery production by the configuration of the present invention, and the cost in material production can be reduced. Becomes

【0034】[0034]

【実施例】以下、実施例により発明を具体的に説明す
る。なお、X線広角回折法による平均面間隔(d002
又は結晶子の大きさ(Lc、La)を測定する方法は、
公知の方法、例えば“炭秦材料実験技術1、p.55〜
63、炭素材料学会編(科学技術社)”に記載された方
法によって行うことができる。Lc、Laを求める形状
因子Kは0.9を用いた。また、粒子の比表面積はBE
T法により測定し、粒径はレーザー回折式粒度分布計を
用い、粒度分布におけるピークを平均粒径とした。 実施例1 黒鉛粒子に人造黒鉛(鱗片状、粒径9μm、d002
0.337nm、LCは100nm、Laは100n
m、比表面積14m2/g)を用い、以下の方法により
黒鉛粒子表面に非晶質炭素を付着した炭素材料を作製し
た。
The present invention will be described below in detail with reference to examples. In addition, the average plane spacing (d 002 ) by the X-ray wide-angle diffraction method
Alternatively, a method for measuring the crystallite size (Lc, La) is as follows:
A known method, for example, “Charcoal material experiment technique 1, p.
63, edited by Japan Society for Carbon Materials (Science and Technology Co., Ltd.). The shape factor K for obtaining Lc and La was 0.9. The specific surface area of the particles was BE.
The particle size was measured by T method, and the particle size was determined by using a laser diffraction type particle size distribution analyzer, and the peak in the particle size distribution was defined as the average particle size. Example 1 Artificial graphite (flaky, particle size 9 μm, d 002 0.337 nm, LC 100 nm, La 100 n) was used as graphite particles.
m, and a specific surface area of 14 m 2 / g), a carbon material having amorphous carbon attached to the surface of graphite particles was prepared by the following method.

【0035】上記黒鉛粉末5gをボックス炉内の試料皿
に載せ、空気中600℃で5時間酸化した。その結果、
黒鉛粉末は4.9gとなった。次に図1に示す電気炉の
試料台6に酸化した黒鉛粉末1gを載せ、キャリアーガ
ス供給ラインl及び原料ガス供給ライン2により、それ
ぞれアルゴンガスとプロパンガスとを石英管5内に供給
し、ニードル弁3、4を操作することにより原料ガス濃
度を5体積%とした。チャンバー内のガス流速は12c
m/分とした。その後、加熱炉7により試料台6上で黒
鉛粉末を800℃に加熱し、ガス導入口8より供給され
るプロパンガスを熱分解することにより黒鉛粒子表面に
非晶質炭素を堆積させて負極活物質を得た。堆積時間は
3時間で、このときの重量増加割合は11%であった。
なお、図1中、9はガス排気口を示している。
5 g of the graphite powder was placed on a sample dish in a box furnace and oxidized in air at 600 ° C. for 5 hours. as a result,
The amount of graphite powder was 4.9 g. Next, 1 g of the oxidized graphite powder was placed on the sample stage 6 of the electric furnace shown in FIG. 1, and argon gas and propane gas were supplied into the quartz tube 5 through the carrier gas supply line 1 and the raw material gas supply line 2, respectively. By operating the needle valves 3 and 4, the raw material gas concentration was set to 5% by volume. Gas flow rate in chamber is 12c
m / min. Thereafter, the graphite powder is heated to 800 ° C. on the sample table 6 by the heating furnace 7, and the propane gas supplied from the gas inlet 8 is thermally decomposed to deposit amorphous carbon on the surface of the graphite particles, thereby forming a negative electrode active material. Material was obtained. The deposition time was 3 hours, and the weight increase rate at this time was 11%.
In FIG. 1, reference numeral 9 denotes a gas exhaust port.

【0036】上記の方法で作製した負極活物質を、結着
材であるポリフッ化ビニリデンを乳鉢で溶剤N−メチル
−2−ピロリドンに溶かした溶液に分散させ、負極活物
質のペーストを混錬することにより調製した。このペー
ストを銅箔集電体に両面に塗布し、空気中、60℃で仮
乾燥後、240℃で減圧乾燥して負極シート電極を作製
した。さらに水分除去のために200℃で真空乾燥した
ものを負極として用いた。この負極は、見かけ上の表面
積8cm2、電極の厚みが150μm(うち集電体の厚
みが50μm)である。
The negative electrode active material prepared by the above method is dispersed in a solution in which polyvinylidene fluoride as a binder is dissolved in a solvent N-methyl-2-pyrrolidone in a mortar, and the paste of the negative electrode active material is kneaded. Was prepared. This paste was applied to both surfaces of a copper foil current collector, temporarily dried at 60 ° C. in air, and then dried under reduced pressure at 240 ° C. to produce a negative electrode sheet electrode. Further, what was vacuum-dried at 200 ° C. for removing water was used as a negative electrode. This negative electrode has an apparent surface area of 8 cm 2 and an electrode thickness of 150 μm (of which the current collector thickness is 50 μm).

【0037】銅集電体からリード線で集電を取り、負極
単極評価用の負極とした。評価は、アルゴン雰囲気下の
グローブボックス中で、3極式セルを用い、対極及び参
照極にリチウムを用いた。非水系イオン伝導体は、P
C、EC及びジエチルカーボネート(DEC)の3種類
の混合溶媒に、電解質塩である過塩素酸リチウムを1m
o1/1の濃度になるように溶解したものを使用した。
この時にPCとECとを混合したものと、DECとの体
積比がl:1になるようにし、表1に示した溶媒組成に
て電極評価を行った。充放電試験は、負極活物質の1g
あたり30mAの電流密度で0V(対Li/Li+)ま
で充電を行い、続いて同じ電流密度で2.5Vまで放電
を行った。これらの結果を表1及び図2に示す。
The current was collected from the copper current collector with a lead wire to obtain a negative electrode for negative electrode single electrode evaluation. The evaluation was performed using a three-electrode cell in a glove box under an argon atmosphere, and lithium as a counter electrode and a reference electrode. Non-aqueous ionic conductor is P
C, EC and diethyl carbonate (DEC) are mixed with 1 m of lithium perchlorate as an electrolyte salt in three kinds of mixed solvents.
One dissolved to a concentration of o1 / 1 was used.
At this time, the volume ratio between the mixture of PC and EC and DEC was set to 1: 1 and the electrode was evaluated using the solvent composition shown in Table 1. The charge / discharge test was performed on 1 g of the negative electrode active material.
The battery was charged to 0 V (relative to Li / Li + ) at a current density of 30 mA per unit, and subsequently discharged to 2.5 V at the same current density. The results are shown in Table 1 and FIG.

【0038】比較例1 負極活物質として実施例1で用いた黒鉛粒子(人造黒
鉛)を酸化処理しないで、黒鉛粒子表面に非晶質炭素を
実施例1と同じ条件で堆積した負極活物質を用い、実施
例1と同様に負極評価を行った。この場合の炭素堆積後
の重量増加は9%であった。その結果を図2に示す。
Comparative Example 1 A negative electrode active material obtained by depositing amorphous carbon on the surface of graphite particles under the same conditions as in Example 1 without oxidizing the graphite particles (artificial graphite) used in Example 1 as the negative electrode active material was used. The negative electrode was evaluated in the same manner as in Example 1. In this case, the weight increase after carbon deposition was 9%. The result is shown in FIG.

【0039】図2が示すように、酸化処理をした黒鉛粒
子表面に非晶質炭素を付着させた黒鉛材料を負極活物質
に用い、非水系イオン伝導体に少なくともPCとECと
を含む混合溶媒を用いることにより、高い充放電容量及
び初回の高い充放電効率が得られた。これは黒鉛粒子と
非晶質炭素の付着強度が向上したためであると考えられ
る。特にECが体積比で0.5以下の場合でこれらの効
果が顕著であることがわかる。また、実施例1と比較例
lの結果より同じ条件で非晶質炭素を付着させた場合、
酸化処理した方が堆積量が多く、炭素の堆積効率も高い
ことがわかる。
As shown in FIG. 2, a graphite material obtained by attaching amorphous carbon to the surface of oxidized graphite particles is used as a negative electrode active material, and a mixed solvent containing at least PC and EC in a non-aqueous ionic conductor. By using, a high charge / discharge capacity and a high initial charge / discharge efficiency were obtained. This is considered to be because the adhesion strength between the graphite particles and the amorphous carbon was improved. In particular, it can be seen that these effects are remarkable when EC is 0.5 or less in volume ratio. Further, when amorphous carbon was adhered under the same conditions based on the results of Example 1 and Comparative Example 1,
It can be seen that the oxidation treatment results in a larger deposition amount and higher carbon deposition efficiency.

【0040】実施例2 原料としての黒鉛粒子に天然黒鉛(マダガスカル産;鱗
片状、粒径l2μm、d002は0.336nm、Lcは
l7nm、Laは27nm、比表面積8m2/g)を用
い、酸化温度700℃、酸化処理時間2.5時間である
こと以外は実施例1と同様の操作により負極を作製し評
価を行った。この場合の非晶質炭素堆積後の重量増加割
合は70%であった。なお、ここで使用した非水系イオ
ン伝導体は、PC、EC及びジメチルカーボネート(D
MC)の混合溶媒で体積比2:1:2のものに、電解質
塩である六フッ化リン酸リチウムを1mo1/1の濃度
になるように溶解したものを使用した。これらの結果を
表1に示す。
Example 2 Natural graphite (made in Madagascar; scaly, particle size: 12 μm, d 002 : 0.336 nm, Lc: 17 nm, La: 27 nm, specific surface area: 8 m 2 / g) was used as graphite material as a raw material. A negative electrode was prepared and evaluated in the same manner as in Example 1 except that the oxidation temperature was 700 ° C. and the oxidation treatment time was 2.5 hours. In this case, the weight increase ratio after the deposition of the amorphous carbon was 70%. The non-aqueous ionic conductors used here were PC, EC and dimethyl carbonate (D
A mixed solvent of MC) having a volume ratio of 2: 1: 2, in which lithium hexafluorophosphate as an electrolyte salt was dissolved to a concentration of 1 mol / 1, was used. Table 1 shows the results.

【0041】比較例2 負極活物質として実施例2で用いた天然黒鉛(マダガス
カル産)を酸化処理しないで、黒鉛粒子表面に非晶質炭
素を実施例1と同じ条件で堆積した負極活物質を用い、
実施例2と同様に負極評価を行った。この場合の非晶質
炭素堆積後の重量増加割合は11%であった。これらの
結果を表1に示す。
Comparative Example 2 A negative electrode active material obtained by depositing amorphous carbon on the surface of graphite particles under the same conditions as in Example 1 without oxidizing the natural graphite (produced in Madagascar) used in Example 2 as the negative electrode active material. Use
A negative electrode evaluation was performed in the same manner as in Example 2. In this case, the weight increase ratio after the deposition of the amorphous carbon was 11%. Table 1 shows the results.

【0042】実施例3 原料としての黒鉛粒子に人造黒鉛(鱗片状、粒径0.7
μm、d002は0.338nm、Lcは14nm、La
は25nm、比表面積150m2/g)を用い、酸化温
度200℃、酸化処理時間5時間であること以外は実施
例lと同様の操作により負極を作製し評価を行った。こ
の場合の非晶質炭素堆積後の重量増加割合は38%であ
った。なお、ここで使用した非水系イオン伝導体はP
C、EC及びエチルメチルカーボネート(EMC)の混
合溶媒では積比2:1:5に、電解質塩であるホウフッ
化リチウムを1mo1/1の濃度になるように溶解した
ものを使用した。これらの結果を表1に示す。
Example 3 Artificial graphite (flaky, particle size 0.7) was added to graphite particles as a raw material.
μm, d 002 is 0.338 nm, Lc is 14 nm, La
A negative electrode was prepared and evaluated in the same manner as in Example 1 except that the oxidation temperature was 200 ° C. and the oxidation treatment time was 5 hours, using 25 nm and a specific surface area of 150 m 2 / g). In this case, the weight increase ratio after the deposition of the amorphous carbon was 38%. The non-aqueous ionic conductor used here is P
As a mixed solvent of C, EC and ethyl methyl carbonate (EMC), a solution obtained by dissolving lithium borofluoride as an electrolyte salt to a concentration of 1 mo1 / 1 at a product ratio of 2: 1: 5 was used. Table 1 shows the results.

【0043】比較例3 負極活物質として実施例3で用いた人造黒鉛を酸化処理
しないで、黒鉛粒子表面に非晶質炭素を実施例1と同じ
条件で堆積した負極活物質を用い、実施例3と同様に負
極評価を行った。この場合の非晶質炭素堆積後の重量増
加割合は29%であった。これらの結果を表1に示す。
COMPARATIVE EXAMPLE 3 The negative electrode active material obtained by depositing amorphous carbon on the surface of graphite particles under the same conditions as in Example 1 without oxidizing the artificial graphite used in Example 3 was used as the negative electrode active material. As in the case of No. 3, the negative electrode was evaluated. In this case, the weight increase ratio after the deposition of the amorphous carbon was 29%. Table 1 shows the results.

【0044】表1が示すように、非水系イオン伝導体の
分解が抑制され、結晶性の高い天然黒鉛でも700℃で
酸化処理することにより粒子表面により強固に非晶質炭
素を付着させることが可能であり、また、比表面積が大
きい人造黒鉛は空気との接触面積が大きいので200℃
での酸化処理でも黒鉛粒子表面により強固に非晶質炭素
を付着させることが可能であることがわかる。
As shown in Table 1, the decomposition of the non-aqueous ionic conductor is suppressed, and even if natural graphite having high crystallinity is oxidized at 700 ° C., amorphous carbon can be more firmly attached to the particle surface. Possible, and artificial graphite having a large specific surface area has a large contact area with air.
It can be seen that the amorphous carbon can be more firmly attached to the surface of the graphite particles even by the oxidation treatment in the above.

【0045】実施例4 原料としての黒鉛粒子に人造黒鉛を用い、実施例1と同
条件で酸化した後、コールタールピッチと混合し、得ら
れたものを窒素雰囲気下300℃にて2時間、その後窒
素雰囲気下で1000℃にて3時間焼成した。電気炉か
ら試料を取り出し乳鉢にて粉砕し、ふるいにより粒径を
そろえ、その粉末を用いて実施例1と同様の操作により
負極を作製した。このときの非水系イオン伝導体として
は、PC、EC及びDEC体積比1:1:2の混合溶媒
に過塩素酸リチウムを1mo1/1の濃度になるように
溶解したものを使用した。この結果を表1に示す。
Example 4 An artificial graphite was used as a raw material for graphite particles, oxidized under the same conditions as in Example 1, mixed with coal tar pitch, and the resultant was heated at 300 ° C. for 2 hours in a nitrogen atmosphere. Then, it was baked at 1000 ° C. for 3 hours in a nitrogen atmosphere. The sample was taken out of the electric furnace, pulverized in a mortar, the particle size was adjusted by a sieve, and the powder was used to produce a negative electrode in the same manner as in Example 1. As the non-aqueous ionic conductor at this time, one obtained by dissolving lithium perchlorate in a mixed solvent of PC, EC and DEC at a volume ratio of 1: 1: 2 so as to have a concentration of 1 mo1 / 1 was used. Table 1 shows the results.

【0046】比較例4 負極活物質として実施例4で用いた人造黒鉛を酸化処理
しないで、黒鉛粒子表面に非晶質炭素を実施例4と同じ
条件で付着させた負極活物質を用い、実施例4と同様に
負極評価を行った。これらの結果を表1に示す。
COMPARATIVE EXAMPLE 4 The artificial graphite used in Example 4 was not oxidized as the negative electrode active material, but a negative electrode active material having amorphous carbon adhered to the surface of graphite particles under the same conditions as in Example 4 was used. A negative electrode evaluation was performed in the same manner as in Example 4. Table 1 shows the results.

【0047】[0047]

【表1】 [Table 1]

【0048】表1が示すように、液相で非晶質炭素を黒
鉛粒子表面に付着する場合においても、非晶質イオン伝
導体の分解が抑制され、黒鉛を酸化することにより黒鉛
粒子と非晶質炭素との付着強度が向上することがわか
る。
As shown in Table 1, even when amorphous carbon is adhered to the surface of graphite particles in the liquid phase, decomposition of the amorphous ion conductor is suppressed, and graphite is oxidized to form non-graphite particles. It can be seen that the bonding strength with the crystalline carbon is improved.

【0049】実施例A 黒鉛粒子に実施例1で使用した人造黒鉛を用い、以下の
方法により黒鉛粒子表面に非晶質炭素を付着した炭素材
料を作製した。
Example A Using the artificial graphite used in Example 1 for graphite particles, a carbon material having amorphous carbon adhered to the surface of the graphite particles was prepared by the following method.

【0050】上記黒鉛粉末5gを70%硝酸200ml
中、110℃で10時間還流し、水洗、乾燥して酸化し
た黒鉛粉末を得た。処理後の重量変化はなかった。次に
図1に示す電気炉を用いて、キャリアーガスに窒素ガ
ス、原料ガスにエタンガスを用いた。原料ガス濃度は3
%とした。反応温度は830℃とし、堆積時間は2.5
時間とした。
5 g of the above graphite powder was added to 200 ml of 70% nitric acid.
The mixture was refluxed at 110 ° C. for 10 hours, washed with water and dried to obtain oxidized graphite powder. There was no change in weight after the treatment. Next, using an electric furnace shown in FIG. 1, nitrogen gas was used as a carrier gas and ethane gas was used as a source gas. Source gas concentration is 3
%. The reaction temperature was 830 ° C., and the deposition time was 2.5
Time.

【0051】電極の作製方法および負極単極の評価方法
は実施例2と同様の操作により行った。これらの結果を
下記表1に示す。 比較例A 負極活物質として実施例1で用いた黒鉛粉末を酸化処理
しないで、黒鉛粒子表面に非晶質炭素を実施例Aと同じ
条件で付着させた負極活物質を用い、実施例Aと同様に
負極評価を行った。これらの結果を上記表1に示す。
The method of manufacturing the electrode and the method of evaluating the negative electrode were performed in the same manner as in Example 2. The results are shown in Table 1 below. Comparative Example A The graphite powder used in Example 1 was not oxidized as the negative electrode active material, and the negative electrode active material in which amorphous carbon was adhered to the surface of graphite particles under the same conditions as in Example A was used. Similarly, the negative electrode was evaluated. The results are shown in Table 1 above.

【0052】実施例B 硝酸濃度が5%であること以外は、黒鉛粒子表面に非晶
質炭素を実施例Aと同じ条件で付着させた負極活物質を
用い、実施例Aと同様に負極評価を行った。これらの結
果を上記表1に示す。
Example B A negative electrode evaluation was carried out in the same manner as in Example A, except that a negative electrode active material having amorphous carbon adhered to the surface of graphite particles under the same conditions as in Example A was used except that the nitric acid concentration was 5%. Was done. The results are shown in Table 1 above.

【0053】実施例C 黒鉛粒子の酸化方法として、発煙硝酸(99重量%硝
酸)を用い、反応温度が20℃であること以外は、実施
例Aと同様の操作によって酸化した黒鉛粉末を得た。上
記黒鉛粉末に表面非晶質炭素を付着させる方法および負
極単極の評価方法は実施例Aと同様の操作により行っ
た。これらの結果を上記表に示す。
Example C An oxidized graphite powder was obtained in the same manner as in Example A, except that fuming nitric acid (99% by weight nitric acid) was used as the method for oxidizing the graphite particles, and the reaction temperature was 20 ° C. . The method of adhering the surface amorphous carbon to the graphite powder and the method of evaluating the negative electrode single electrode were performed in the same manner as in Example A. The results are shown in the above table.

【0054】実施例D 黒鉛粒子に実施例1で使用した人造黒鉛を用い、以下の
方法により黒鉛粒子表面に非晶質炭素を付着した炭素材
料を作製した。
Example D Using the artificial graphite used in Example 1 for graphite particles, a carbon material having amorphous carbon adhered to the surface of the graphite particles was prepared by the following method.

【0055】上記黒鉛5gを98%硫酸120ml、硝
酸ナトリウム2.5g溶液中に入れ、20℃以下で過マ
ンガン酸カリウムを加え、ついで35℃で30分間保
ち、水を230ml加えて98℃に加熱し、過剰の過マ
ンガン酸カリウムを過酸化水素で分解し、その後十分に
水洗して酸化黒鉛粉末を得た。
5 g of the above graphite was placed in a solution of 120% of 98% sulfuric acid and 2.5 g of sodium nitrate, potassium permanganate was added at 20 ° C. or less, then kept at 35 ° C. for 30 minutes, 230 ml of water was added, and the mixture was heated to 98 ° C. Then, excess potassium permanganate was decomposed with hydrogen peroxide, and then sufficiently washed with water to obtain graphite oxide powder.

【0056】上記黒鉛粉末に表面非晶質炭素を付着させ
る方法および負極単極の評価方法は実施例Aと同様の操
作により行った。これらの結果を上記表1に示す。
The method of adhering the surface amorphous carbon to the graphite powder and the method of evaluating the negative electrode single electrode were performed in the same manner as in Example A. The results are shown in Table 1 above.

【0057】実施例A、実施例B、実施例C、実施例D
及び比較例Aの結果から、黒鉛粒子表面を硝酸あるいは
無機酸の混酸および過マンガン酸カリウムで酸化するこ
とにより、PCの多い電解液系で初回の効率が改善され
ていることから黒鉛粒子と非晶質炭素との付着強度が向
上していることがわかる。
Example A, Example B, Example C, Example D
From the results of Comparative Example A, it was found that by oxidizing the surface of the graphite particles with a mixed acid of nitric acid or inorganic acid and potassium permanganate, the initial efficiency was improved in an electrolyte system containing a large amount of PC. It can be seen that the adhesion strength with the crystalline carbon is improved.

【0058】実施例E 実施例1で用いた黒鉛粒子を用い、以下の方法で酸化し
た。
Example E The graphite particles used in Example 1 were oxidized by the following method.

【0059】まず、黒鉛粉末2gと水酸化リチウム1水
和物5gを乳鉢で混合し、空気中で700℃、2時間熱
処理した。その後十分に水洗し、乾燥して酸化黒鉛粉末
を得た。
First, 2 g of graphite powder and 5 g of lithium hydroxide monohydrate were mixed in a mortar and heat-treated at 700 ° C. for 2 hours in the air. Thereafter, it was sufficiently washed with water and dried to obtain a graphite oxide powder.

【0060】上記黒鉛粉末に表面非晶質炭素を付着させ
る方法および負極単極の評価方法は実施例Aと同様の操
作により行った。これらの結果を上記表1に示す。
The method for adhering the surface amorphous carbon to the graphite powder and the method for evaluating the negative electrode single electrode were performed in the same manner as in Example A. The results are shown in Table 1 above.

【0061】実施例F 実施例1で用いた黒鉛粒子を用い、以下の方法で酸化し
た。
Example F The graphite particles used in Example 1 were oxidized by the following method.

【0062】まず、黒鉛粉末60gを1.5規定水酸化
ナトリウム水溶液200ml中に分散させ、60℃で3
時間攪拌した。その後乾燥させ、窒素中で300℃、5
時間熱処理し、十分水洗し乾燥して酸化黒鉛粉末を得
た。
First, 60 g of graphite powder was dispersed in 200 ml of a 1.5 N aqueous sodium hydroxide solution,
Stirred for hours. After that, it is dried and placed in nitrogen at 300 ° C, 5
The mixture was heat-treated for an hour, washed sufficiently with water, and dried to obtain graphite oxide powder.

【0063】上記黒鉛粉末に表面非晶質炭素を付着させ
る方法および負極単極の評価方法は実施例Aと同様の操
作により行った。これらの結果を上記表1に示す。
The method for adhering the surface amorphous carbon to the graphite powder and the method for evaluating the negative electrode single electrode were performed in the same manner as in Example A. The results are shown in Table 1 above.

【0064】実施例Eおよび実施例Fの結果から、黒鉛
粒子表面をアルカリを用いて熱処理して酸化することに
より、PCの多い電解液系で初回の効率が改善されてい
ることから黒鉛粒子と非晶質炭素との付着強度が向上し
ていることがわかる。
From the results of Example E and Example F, it was found that the graphite particles were heat-treated with an alkali and oxidized to improve the initial efficiency in an electrolyte system containing a large amount of PC. It can be seen that the adhesion strength with the amorphous carbon is improved.

【0065】実施例5 ・負極の作製 実施例1と同様の方法により作製した表面に非晶質炭素
が付着した負極活物質を用い、ノニオン系の分散剤を添
加し、ポリテトラフルオロエチレン(乾燥後、負極活物
質とポリテトラフルオロエチレンとの重量比は、91:
9である)のディスパージョン液を加えて乳鉢でペース
ト状にしたものを、ニッケル3次元多孔質集電体の孔中
に塗り込んだ。これを60℃で仮乾燥、240℃で熱処
理後プレスし、さらに水分除去のために200℃で真空
乾燥したものを負極として用いた。この負極は直径1
4.5mm・電極厚0.4lmmのタブレットであっ
た。
Example 5 Preparation of Negative Electrode Using a negative electrode active material prepared by the same method as in Example 1 and having amorphous carbon adhered to the surface, a nonionic dispersant was added, and polytetrafluoroethylene (dried Thereafter, the weight ratio of the negative electrode active material to polytetrafluoroethylene was 91:
9), and the resulting mixture was made into a paste in a mortar, and the paste was applied to the holes of a nickel three-dimensional porous current collector. This was preliminarily dried at 60 ° C., heat-treated at 240 ° C., pressed, and then vacuum-dried at 200 ° C. to remove moisture, and used as a negative electrode. This negative electrode has a diameter of 1
The tablet had a size of 4.5 mm and an electrode thickness of 0.4 lmm.

【0066】・正極の作製 炭酸リチウムと炭酸コバルト、三酸化アンチモンをリチ
ウム原子とコバルト原子、アンチモン原子の比で、1:
9.95:0.05になるように各々秤量し、これを乳
鉢で混合した後、空気中900℃で20時間焼成し、そ
の後乳鉢で粉砕することにより正極活物質の粉末を得
た。この活物質は、Li0.98Co0.95Sb0.052の組
成を有していた。このようにして得られた正極活物質を
アセチレンブラックと混合し、ノニオン系の分散剤を添
加し、ポリテトラフルオロエチレン(乾燥後、正極活物
質とアセチレンブラック、ポリテトラフルオロエチレン
との重量比は、100:10:5である)のディスパー
ジョン液を加えてペースト状にしたものを、チタンメッ
シュ集電体上に塗布した。これを60℃で仮乾燥、24
0℃で熱処理後プレスし、さらに水分除去のために20
0℃で減圧乾燥したものを負極として用いた。この正極
は直径15mm、電極厚0.9mmのタブレットであっ
た。
Preparation of Positive Electrode Lithium carbonate and cobalt carbonate, and antimony trioxide were mixed in a ratio of lithium atom to cobalt atom and antimony atom of 1:
Each was weighed to 9.95: 0.05, mixed in a mortar, baked in air at 900 ° C. for 20 hours, and then ground in a mortar to obtain a powder of a positive electrode active material. The active material had a composition of Li 0.98 Co 0. 95 Sb 0.05 O 2. The thus obtained positive electrode active material is mixed with acetylene black, a nonionic dispersant is added, and polytetrafluoroethylene (after drying, the weight ratio of the positive electrode active material to acetylene black and polytetrafluoroethylene is , 100: 10: 5), and the mixture was made into a paste by applying a dispersion liquid onto a titanium mesh current collector. This is preliminarily dried at 60 ° C., 24
After heat treatment at 0 ° C, press, and then 20 to remove moisture
What was dried under reduced pressure at 0 ° C. was used as a negative electrode. This positive electrode was a tablet having a diameter of 15 mm and an electrode thickness of 0.9 mm.

【0067】・電池の組立 図3に示すように、予め内底面に正極集電体14が溶接
によって取り付けられ、封口パッキン15が載置された
正極電池缶17に、正極13を圧着した。次に、この上
にポリプロピレン不織布のセパレータ12を載置し、P
C、EC及びDECの体積比1:1:2の混合溶媒に電
解質塩LiPF6を1mo1/1になるように溶解した
非水系イオン伝導体を含浸させた。一方、負極電池蓋1
6の内面に負極集電体10を溶接し、この負極集電体に
負極11を圧着させた。次に前記セパレータ12の上に
前記負極11を重ね正極電池缶17と負極電池蓋16を
封口パッキン15を介在させてかしめ、コイン型電池を
作製した。
Assembling of Battery As shown in FIG. 3, the positive electrode current collector 14 was previously attached to the inner bottom surface by welding, and the positive electrode 13 was crimped to the positive electrode battery can 17 on which the sealing packing 15 was placed. Next, a polypropylene nonwoven fabric separator 12 is placed on this,
A non-aqueous ion conductor in which an electrolyte salt LiPF 6 was dissolved to a concentration of 1 mol / 1 in a mixed solvent having a volume ratio of C, EC and DEC of 1: 1: 2 was impregnated. On the other hand, the negative battery cover 1
The negative electrode current collector 10 was welded to the inner surface of No. 6, and the negative electrode 11 was pressed on the negative electrode current collector. Next, the negative electrode 11 was overlaid on the separator 12, and the positive electrode battery can 17 and the negative electrode battery lid 16 were caulked with the sealing gasket 15 interposed therebetween, thereby producing a coin-type battery.

【0068】・電池の評価 作製したコイン型電池を、充放電電流1mA、充電上限
電圧4.2Vに達した後4.2Vの定電圧充電を行な
い、充電時間を12時聞とした。放電の下限電圧を2.
5Vとして充放電試験を行った。得られた電池について
容量の温度依存性を測定し、その結果を表2に示す。
Evaluation of Battery The produced coin-type battery was charged at a charge / discharge current of 1 mA and reached a charging upper limit voltage of 4.2 V, and then was charged at a constant voltage of 4.2 V. The charging time was set at 12:00. 1. The lower limit voltage of discharge
A charge / discharge test was performed at 5 V. The temperature dependence of the capacity of the obtained battery was measured, and the results are shown in Table 2.

【0069】実施例G 負極活物質に実施例Aの炭素材料を用いること以外は、
実施例5に記載された方法で負極を作製した。作製した
負極の大きさ、厚さ共に実施例5に記載されたものと同
じとした。正極の作製方法及び電池の組立方法も実施例
5に記載された方法で作製した。
Example G Except that the carbon material of Example A was used as the negative electrode active material,
A negative electrode was produced by the method described in Example 5. The size and thickness of the produced negative electrode were the same as those described in Example 5. The method for producing the positive electrode and the method for assembling the battery were also produced by the method described in Example 5.

【0070】この電池を実施例5に記載された方法で評
価した。その結果を表2に示す。
This battery was evaluated by the method described in Example 5. Table 2 shows the results.

【0071】実施例H 負極活物質に実施例Eの炭素材料を用いること以外は、
実施例5に記載された方法で負極を作製した。作製した
負極の大きさ、厚さ共に実施例5に記載されたものと同
じとした。正極の作製方法及び電池の組立方法も実施例
5に記載された方法で作製した。
Example H Except that the carbon material of Example E was used for the negative electrode active material,
A negative electrode was produced by the method described in Example 5. The size and thickness of the produced negative electrode were the same as those described in Example 5. The method for producing the positive electrode and the method for assembling the battery were also produced by the method described in Example 5.

【0072】この電池を実施例5に記載された方法で評
価した。その結果を上記表2に示す。
This battery was evaluated by the method described in Example 5. The results are shown in Table 2 above.

【0073】比較例5 負極活物質に比較例1の炭素材料を用いる以外は、実施
例5に記載された方法で負極を作製した。作製した負極
の大きさ、厚さ共に実施例5に記載されたものと同じで
あった。正極の作製方法及び電池の組立方法も実施例5
に記載された方法で作製した。
Comparative Example 5 A negative electrode was produced in the same manner as in Example 5 except that the carbon material of Comparative Example 1 was used as the negative electrode active material. The size and thickness of the produced negative electrode were the same as those described in Example 5. The method of manufacturing the positive electrode and the method of assembling the battery are also described in Example 5.
Was prepared by the method described in (1).

【0074】この電池を実施例5に記載された方法で評
価した。その結果を表2に示す。
This battery was evaluated by the method described in Example 5. Table 2 shows the results.

【0075】[0075]

【表2】 [Table 2]

【0076】表2が示すように、黒鉛粒子を酸化するこ
とによって表面の非晶質炭素と黒鉛粒子との付着強度が
向上し、サイクル特性に優れ、低温においても優れた特
性を持つ二次電池が作製できることがわかる。
As shown in Table 2, by oxidizing the graphite particles, the adhesion strength between the amorphous carbon on the surface and the graphite particles is improved, and the secondary battery has excellent cycle characteristics and excellent characteristics even at low temperatures. It can be seen that can be prepared.

【0077】[0077]

【発明の効果】本発明の非水系二次電池は、表面に非晶
質炭酸を付着させた黒鉛粒子を負極活物質とする負極
と、リチウムを含有するカルコゲン化物を正極活物質と
する正極と、非水系イオン伝導体とからなり、前記負極
活物質が黒鉛粒子を酸化処理した後、非晶質炭素を黒鉛
粒子の表面に付着させることにより形成されることを特
徴とする。
As described above, the non-aqueous secondary battery of the present invention comprises a negative electrode using graphite particles having amorphous carbonic acid adhered on the surface as a negative electrode active material, and a positive electrode using lithium-containing chalcogenide as a positive electrode active material. And a non-aqueous ion conductor, wherein the negative electrode active material is formed by oxidizing graphite particles and then attaching amorphous carbon to the surface of the graphite particles.

【0078】従って、非晶質炭素を付着する前に黒鉛粒
子を酸化することで、非晶質炭素と黒鉛粒子との付着強
度を向上することができ、さらに気相熱分解堆積法にお
いて、非晶質炭素の堆積時間を短くし、製造コストを下
げることができる。また、低温特性に優れたプロピレン
カーボネート主体の非水系イオン伝導体と、電位の平坦
性に優れかつ低温特性に優れた黒鉛系炭素材料とを組み
合わせることができ、高容量かつ電圧平坦性が高く、サ
イクル特性が優れ、低温特性に優れた二次電池が作製で
きる。
Therefore, by oxidizing the graphite particles before attaching the amorphous carbon, the adhesion strength between the amorphous carbon and the graphite particles can be improved. The deposition time of the crystalline carbon can be shortened, and the manufacturing cost can be reduced. In addition, a non-aqueous ionic conductor mainly composed of propylene carbonate having excellent low-temperature characteristics and a graphite-based carbon material having excellent electric potential flatness and excellent low-temperature characteristics can be combined, and high capacity and high voltage flatness can be obtained. A secondary battery having excellent cycle characteristics and excellent low-temperature characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における非晶質炭素作製装置を示す図で
ある。
FIG. 1 is a view showing an apparatus for producing amorphous carbon according to the present invention.

【図2】本発明における実施例1、比較例1の放電容
量、初回の充放電効率を示す図である。
FIG. 2 is a diagram showing a discharge capacity and an initial charge / discharge efficiency of Example 1 and Comparative Example 1 in the present invention.

【図3】本発明におけるコイン型電池の断面図である。FIG. 3 is a sectional view of a coin-type battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 キャリアーガス供給ライン 2 原料ガス供給ライン 3 ニードル弁 4 二ードル弁 5 石英管 6 試料台 7 加熱炉 8 ガス導入口 9 ガス排気口 10 負極集電体 11 負極 12 セパレーター 13 正極 14 正極集電体 15 封ロパッキン 16 負極電池蓋 17 正極電池缶 DESCRIPTION OF SYMBOLS 1 Carrier gas supply line 2 Source gas supply line 3 Needle valve 4 Needle valve 5 Quartz tube 6 Sample stand 7 Heating furnace 8 Gas inlet 9 Gas exhaust port 10 Negative current collector 11 Negative electrode 12 Separator 13 Positive electrode 14 Positive electrode collector 15 Sealed packing 16 Negative battery lid 17 Positive battery can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 湊 和明 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takehito Mitate 22-22, Nagaikecho, Abeno-ku, Osaka, Osaka Inside Sharp Corporation (72) Inventor Kazuaki Minato 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp Corporation

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 表面に非晶質炭素を付着させた黒鉛粒子
を負極活物質とする負極と、リチウムを含有するカルコ
ゲン化物を正極活物質とする正極と、非水系イオン伝導
体とからなり、前記負極活物質が黒鉛粒子を酸化処理し
た後、非晶質元素を黒鉛粒子の表面に付着させることに
より形成されることを特徴とする非水系二次電池。
1. A negative electrode comprising graphite particles having amorphous carbon adhered to the surface thereof as a negative electrode active material, a positive electrode comprising a lithium-containing chalcogenide as a positive electrode active material, and a non-aqueous ion conductor, A non-aqueous secondary battery, wherein the negative electrode active material is formed by oxidizing graphite particles and then attaching an amorphous element to the surface of the graphite particles.
【請求項2】 黒鉛粒子が、X線広角回折法による(0
02)面の平均面間隔(d002)が0.335〜0.3
40nm、(002)面方向の結晶子厚み(Lc)が1
0nm以上、(110)面方向の結晶子厚み(La)が
10nm以上である請求項1に記載の非水系二次電池。
2. The method according to claim 1, wherein the graphite particles are obtained by X-ray wide-angle diffraction.
02) The average plane spacing (d 002 ) of the planes is 0.335 to 0.3
40 nm, crystallite thickness (Lc) in the (002) plane direction is 1
The non-aqueous secondary battery according to claim 1, wherein the crystallite thickness (La) in the (110) plane direction is 0 nm or more and 10 nm or more.
【請求項3】 黒鉛粒子が、5〜150m2/gのBE
T法による比表面積、0.7〜80μmの平均粒径を有
する請求項1又は2に記載の非水系二次電池。
3. The graphite particles having a BE of 5 to 150 m 2 / g.
The non-aqueous secondary battery according to claim 1, which has a specific surface area according to a T method and an average particle size of 0.7 to 80 μm.
【請求項4】 非水系イオン伝導体が、少なくともプロ
ピレンカーボネートとエチレンカーボネートとを含む混
合溶媒からなる請求項1〜3いずれか1つに記載の非水
系二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous ion conductor comprises a mixed solvent containing at least propylene carbonate and ethylene carbonate.
【請求項5】 プロピレンカーボネートとエチレンカー
ボネートとの体積比が、9:1〜1:9である請求項4
に記載の非水系二次電池。
5. The volume ratio of propylene carbonate to ethylene carbonate is from 9: 1 to 1: 9.
The non-aqueous secondary battery according to 1.
【請求項6】 プロピレンカーボネートとエチレンカー
ボネートとの体積比が、9:1〜5:5である請求項5
に記載の非水系二次電池。
6. The volume ratio of propylene carbonate to ethylene carbonate is from 9: 1 to 5: 5.
The non-aqueous secondary battery according to 1.
【請求項7】 カルコゲン化物が、リチウムを含有する
金属酸化物である請求項1〜6いずれか1つに記載の非
水系二次電池。
7. The non-aqueous secondary battery according to claim 1, wherein the chalcogenide is a metal oxide containing lithium.
【請求項8】 リチウムを含有する金属酸化物が、Li
X1-yy2(ここではMはFe、Co、Niのいずれ
かであり、Nは遷移金属であり、xは0≦x≦1、yは
0≦y≦1を表す)又はLiMn2-zz4(ここでは
Nは遷移金属であり、zは0≦z≦2を表す)である講
求項7に記載の非水系二次電池。
8. The method according to claim 1, wherein the metal oxide containing lithium is Li
X M 1-y N y O 2 (where M is any of Fe, Co, and Ni, N is a transition metal, x represents 0 ≦ x ≦ 1, and y represents 0 ≦ y ≦ 1) or LiMn 2-z N z 0 4 ( here, N is a transition metal, z is 0 ≦ z ≦ 2 are expressed) non-aqueous secondary battery according to an a lecture Motomeko 7.
【請求項9】 リチウムを含有する金属酸化物が、Li
CoO2、LiNiO2、LiFeO2、LiMnO2又は
LiMn24である請求項8に記載の非水系二次電池。
9. The method according to claim 8, wherein the metal oxide containing lithium is Li
The non-aqueous secondary battery according to claim 8, which is CoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 or LiMn 2 O 4 .
【請求項10】 黒鉛粒子を空気中で酸化処理した後、
非晶質炭素を黒鉛粒子の表面に付着させて負極活物質を
形成することを特徴とする負極活物質の製造方法。
10. After oxidizing graphite particles in air,
A method for producing a negative electrode active material, wherein amorphous carbon is attached to the surface of graphite particles to form a negative electrode active material.
【請求項11】 空気中での酸化処理が、200〜70
0℃で行われる請求項10に記載の負極活物賀の製造方
法。
11. The oxidation treatment in air is performed at 200 to 70.
The method for producing a negative electrode active material according to claim 10, which is performed at 0 ° C.
【請求項12】 非晶質炭素が、炭化水素を気相熱分解
することにより黒鉛粒子の表面に付着される請求項10
又は11に記載の負極活物質の製造方法。
12. The amorphous carbon is attached to the surface of graphite particles by gas phase pyrolysis of hydrocarbons.
Or the method for producing a negative electrode active material according to item 11.
【請求項13】 酸化処理が硝酸で行われる請求項1〜
9いずれれか1つに記載の非水系二次電池。
13. The method according to claim 1, wherein the oxidation treatment is performed with nitric acid.
9. The non-aqueous secondary battery according to any one of 9.
【請求項14】 硝酸酸化の温度が20〜130℃、硝
酸濃度が5〜99重量%で行われる請求項13に記載の
非水系二次電池。
14. The non-aqueous secondary battery according to claim 13, wherein the nitric acid oxidation is performed at a temperature of 20 to 130 ° C. and a nitric acid concentration of 5 to 99% by weight.
【請求項15】 酸化処理がアルカリで熱処理する請求
項1〜9いずれか1つに記載の非水系二次電池。
15. The non-aqueous secondary battery according to claim 1, wherein the oxidation treatment is a heat treatment with an alkali.
【請求項16】 アルカリによる熱処理の温度が300
〜700℃である請求項15に記載の非水系二次電池。
16. The temperature of the heat treatment with an alkali is 300.
The non-aqueous secondary battery according to claim 15, which is at -700C.
【請求項17】 黒鉛粒子を硝酸で酸化処理した後、非
晶質炭素を黒鉛粒子の表面に付着させて負極活物質を形
成することを特徴とする負極活物質の製造方法。
17. A method for producing a negative electrode active material, comprising oxidizing graphite particles with nitric acid, and then attaching amorphous carbon to the surface of the graphite particles to form a negative electrode active material.
【請求項18】 黒鉛粒子をアルカリで熱処理した後、
非晶質炭素を黒鉛粒子の表面に付着させて負極活物質を
形成することを特徴とする負極活物質の製造方法。
18. After the graphite particles are heat-treated with an alkali,
A method for producing a negative electrode active material, wherein amorphous carbon is attached to the surface of graphite particles to form a negative electrode active material.
JP26807496A 1996-05-23 1996-10-09 Non-aqueous secondary battery and method for producing negative electrode active material Expired - Fee Related JP3304267B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26807496A JP3304267B2 (en) 1996-05-23 1996-10-09 Non-aqueous secondary battery and method for producing negative electrode active material
CA002205767A CA2205767C (en) 1996-05-23 1997-05-21 Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
DE69701202T DE69701202T2 (en) 1996-05-23 1997-05-23 Non-aqueous secondary battery and method of manufacturing an active material for a negative electrode
US08/862,677 US5965296A (en) 1996-05-23 1997-05-23 Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
EP97303557A EP0808798B1 (en) 1996-05-23 1997-05-23 Nonaqueous secondary battery and a method of manufacturing a negative electrode active material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12875896 1996-05-23
JP8-128758 1996-05-23
JP26807496A JP3304267B2 (en) 1996-05-23 1996-10-09 Non-aqueous secondary battery and method for producing negative electrode active material

Publications (2)

Publication Number Publication Date
JPH1040914A true JPH1040914A (en) 1998-02-13
JP3304267B2 JP3304267B2 (en) 2002-07-22

Family

ID=26464346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26807496A Expired - Fee Related JP3304267B2 (en) 1996-05-23 1996-10-09 Non-aqueous secondary battery and method for producing negative electrode active material

Country Status (1)

Country Link
JP (1) JP3304267B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025619A (en) * 2000-07-04 2002-01-25 Sharp Corp Lithium secondary battery
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
US6596437B2 (en) * 1998-04-02 2003-07-22 Samsung Display Devices Co., Ltd. Active material for negative electrode used in lithium-ion battery and method of manufacturing same
US6623889B2 (en) 1999-12-20 2003-09-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery, carbon material for negative electrode, and method for manufacturing carbon material for negative electrode
JP2005243447A (en) * 2004-02-26 2005-09-08 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
JP2009043514A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Electrode material, electrode plate, secondary battery, and manufacturing method for the electrode material
JP2010123580A (en) * 2010-02-03 2010-06-03 Sharp Corp Lithium secondary battery
JP2010199083A (en) * 2010-04-28 2010-09-09 Sharp Corp Lithium secondary battery
JP2011119072A (en) * 2009-12-01 2011-06-16 Toyota Central R&D Labs Inc Method of using lithium secondary battery
WO2012141301A1 (en) 2011-04-13 2012-10-18 日本電気株式会社 Lithium secondary cell
WO2013042223A1 (en) * 2011-09-21 2013-03-28 住友ベークライト株式会社 Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
WO2014157630A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery and method of producing same, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2014199749A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2014199750A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2019057359A (en) * 2017-09-19 2019-04-11 トヨタ自動車株式会社 Aqueous lithium ion secondary battery, method for producing anode active material composite, and method for producing aqueous lithium ion secondary battery
US10431824B2 (en) 2014-03-26 2019-10-01 Nec Corporation Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
CN110870114A (en) * 2017-07-07 2020-03-06 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
CN113228344A (en) * 2019-01-04 2021-08-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH04370662A (en) * 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd Electrode for secondary battery
JPH0594838A (en) * 1991-10-02 1993-04-16 Mitsubishi Petrochem Co Ltd Secondary battery
JPH05121066A (en) * 1991-10-29 1993-05-18 Asahi Chem Ind Co Ltd Negative electrode for nonaqueous battery
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH0620690A (en) * 1992-07-07 1994-01-28 Toray Ind Inc Electrode material and secondary battery using thereof
JPH06163033A (en) * 1992-11-20 1994-06-10 Honda Motor Co Ltd Manufacture of secondary battery electrode material
JPH06187991A (en) * 1992-12-16 1994-07-08 Osaka Gas Co Ltd Manufacture of negative electrode material and lithium secondary battery
JPH07201317A (en) * 1993-12-28 1995-08-04 Toshiba Corp Lithium ion secondary battery
JPH08124559A (en) * 1994-10-27 1996-05-17 Sharp Corp Manufacture of lithium secondary battery and of negative electrode active material
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH0917418A (en) * 1995-04-24 1997-01-17 Sharp Corp Nonaqueous secondary battery carbon electrode, its manufacture and nonaqueous secondary battery using it
JPH0927316A (en) * 1995-07-13 1997-01-28 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH09320597A (en) * 1996-05-27 1997-12-12 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH04370662A (en) * 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd Electrode for secondary battery
JPH0594838A (en) * 1991-10-02 1993-04-16 Mitsubishi Petrochem Co Ltd Secondary battery
JPH05121066A (en) * 1991-10-29 1993-05-18 Asahi Chem Ind Co Ltd Negative electrode for nonaqueous battery
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH0620690A (en) * 1992-07-07 1994-01-28 Toray Ind Inc Electrode material and secondary battery using thereof
JPH06163033A (en) * 1992-11-20 1994-06-10 Honda Motor Co Ltd Manufacture of secondary battery electrode material
JPH06187991A (en) * 1992-12-16 1994-07-08 Osaka Gas Co Ltd Manufacture of negative electrode material and lithium secondary battery
JPH07201317A (en) * 1993-12-28 1995-08-04 Toshiba Corp Lithium ion secondary battery
JPH08124559A (en) * 1994-10-27 1996-05-17 Sharp Corp Manufacture of lithium secondary battery and of negative electrode active material
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH0917418A (en) * 1995-04-24 1997-01-17 Sharp Corp Nonaqueous secondary battery carbon electrode, its manufacture and nonaqueous secondary battery using it
JPH0927316A (en) * 1995-07-13 1997-01-28 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH09320597A (en) * 1996-05-27 1997-12-12 Sanyo Electric Co Ltd Nonaqueous electrolytic battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596437B2 (en) * 1998-04-02 2003-07-22 Samsung Display Devices Co., Ltd. Active material for negative electrode used in lithium-ion battery and method of manufacturing same
US6623889B2 (en) 1999-12-20 2003-09-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery, carbon material for negative electrode, and method for manufacturing carbon material for negative electrode
KR100370290B1 (en) * 2000-06-16 2003-01-30 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
JP2002025619A (en) * 2000-07-04 2002-01-25 Sharp Corp Lithium secondary battery
JP4542352B2 (en) * 2004-02-26 2010-09-15 Jfeケミカル株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2005243447A (en) * 2004-02-26 2005-09-08 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
JP2009043514A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Electrode material, electrode plate, secondary battery, and manufacturing method for the electrode material
JP2011119072A (en) * 2009-12-01 2011-06-16 Toyota Central R&D Labs Inc Method of using lithium secondary battery
JP2010123580A (en) * 2010-02-03 2010-06-03 Sharp Corp Lithium secondary battery
JP2010199083A (en) * 2010-04-28 2010-09-09 Sharp Corp Lithium secondary battery
WO2012141301A1 (en) 2011-04-13 2012-10-18 日本電気株式会社 Lithium secondary cell
WO2013042223A1 (en) * 2011-09-21 2013-03-28 住友ベークライト株式会社 Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
WO2014157630A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery and method of producing same, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2014199749A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2014199750A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery
US10431824B2 (en) 2014-03-26 2019-10-01 Nec Corporation Negative electrode carbon material, method for producing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
CN110870114A (en) * 2017-07-07 2020-03-06 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JPWO2019009422A1 (en) * 2017-07-07 2020-04-23 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JP2021180187A (en) * 2017-07-07 2021-11-18 昭和電工マテリアルズ株式会社 Method for manufacturing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JP2022153633A (en) * 2017-07-07 2022-10-12 昭和電工マテリアルズ株式会社 Method for manufacturing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
CN110870114B (en) * 2017-07-07 2023-02-17 日立化成株式会社 Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JP2019057359A (en) * 2017-09-19 2019-04-11 トヨタ自動車株式会社 Aqueous lithium ion secondary battery, method for producing anode active material composite, and method for producing aqueous lithium ion secondary battery
CN113228344A (en) * 2019-01-04 2021-08-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3304267B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JP3304267B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3481063B2 (en) Non-aqueous secondary battery
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP3685364B2 (en) Method for producing carbon-coated graphite particles and non-aqueous secondary battery
JP2017152358A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
US20120045696A1 (en) Negative electrode materials for non-aqueous electrolyte secondary battery
JP5172564B2 (en) Nonaqueous electrolyte secondary battery
JP2003303585A (en) Battery
TW201911629A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
JPH06349482A (en) Lithium secondary battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
US10164255B2 (en) Silicon material and negative electrode of secondary battery
EP4216307A1 (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
JP3340337B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JP2006004811A (en) Nonaqueous electrolyte secondary battery
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP3140880B2 (en) Lithium secondary battery
JP2006156021A (en) Nonaqueous electrolyte secondary battery
US20110244320A1 (en) Negative electrode materials for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees