JPH07326343A - Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture - Google Patents

Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture

Info

Publication number
JPH07326343A
JPH07326343A JP6116594A JP11659494A JPH07326343A JP H07326343 A JPH07326343 A JP H07326343A JP 6116594 A JP6116594 A JP 6116594A JP 11659494 A JP11659494 A JP 11659494A JP H07326343 A JPH07326343 A JP H07326343A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
graphite
secondary battery
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116594A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Hiromi Okuno
博美 奥野
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6116594A priority Critical patent/JPH07326343A/en
Publication of JPH07326343A publication Critical patent/JPH07326343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To manufacture an nonaqueous electrolytic secondary battery excellent in low temperature charging characteristic by combining a plurality of different carbon materials together as negative electrode material. CONSTITUTION:A working electrode 1 is formed by mixing, for example, 5wt% of styrene-butadiene rubber to a carbon material powder forming the main body as binder, and press-molding it onto a titanium net 3 fixed to the inside of a positive electrode case 2 by spot welding. A counter electrode 3 is formed by pressure welding metal lithium onto a stainless net 6 fixed to the inside of a sealing plate 5 by spot welding. A polypropylene separator 7 is arranged between the working electrode 1 and the counter electrode 3. As the electrolyte, a solution of lithium hexafluoride phosphate dissolved into a mixed solvent of ethylene carbonate and diethyl carbonate. Further, a case 2 and the sealing plate 3 are sealed through a polypropylene gasket 9 between them to provide a completed battery, for example, 20mm in diameter and 1.6mm in height. Thus, a battery excellent in low temperature charging characteristic is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極に炭素材料を用い
た非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小型、軽量で、高エネルギー密度を有する二次電池の要
望が高い。このような点で非水系電解液二次電池、特に
リチウム二次電池はとりわけ高電圧、高エネルギー密度
を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for secondary batteries having small size, light weight, and high energy density as power sources for driving these electronic devices. From this point of view, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density.

【0003】最近では、正極の活物質としてLiCoO
2、LiNiO2等のリチウム複合酸化物を、負極に炭素
材を用いた電池系が注目を集めている。この電池系の特
徴は、電池電圧が高いこと、正負極ともにリチウムのイ
ンターカレーション反応を利用していることにあり、負
極に金属リチウムを用いていないのでデンドライト状L
iの析出による短絡等もなく、安全性と急速充電が期待
できるものである。
Recently, LiCoO 2 has been used as a positive electrode active material.
Battery systems using a lithium composite oxide such as 2 , LiNiO 2 or the like and a carbon material for the negative electrode have been attracting attention. The characteristics of this battery system are that the battery voltage is high and that the positive and negative electrodes utilize the intercalation reaction of lithium. Since metallic lithium is not used for the negative electrode, the dendrite-like L
There is no short circuit due to the precipitation of i, and safety and rapid charging can be expected.

【0004】LiCoO2を正極に、炭素材料を負極に
用いた電池はすでに商品化されている。その中でも特に
負極の炭素材料に黒鉛を用いた電池の場合、反応の電位
が比較的金属リチウムに近いため高電圧が得られる。ま
た、黒鉛は他の炭素材料と比較して、高密度で、充填性
に富んでおり、整然とした結晶層を有している。黒鉛
は、理論的にC6Li(372Ah/gの容量に相当)
まで活物質であるリチウムを結晶の層間に取り込むこと
ができる。そのため、黒鉛を負極材料に利用すれば、高
容量でかつ高いエネルギー密度をもつ電池を得ることが
できる。
A battery using LiCoO 2 as a positive electrode and a carbon material as a negative electrode has already been commercialized. In particular, in the case of a battery using graphite as the carbon material of the negative electrode, a high voltage can be obtained because the reaction potential is relatively close to that of metallic lithium. In addition, graphite has a high density, a high packing property, and an ordered crystal layer as compared with other carbon materials. Graphite is theoretically C 6 Li (corresponding to a capacity of 372 Ah / g)
The active material lithium can be incorporated between the layers of the crystal. Therefore, if graphite is used as the negative electrode material, a battery having a high capacity and a high energy density can be obtained.

【0005】[0005]

【発明が解決しようとする課題】黒鉛は結晶性が高いほ
ど、理想的な結晶層の構造を有し、これを用いた電池の
容量は理論値に近づく。また、反応の電位も金属リチウ
ムの電位に近くなるため、高電圧が期待できると考えら
れる。現在商品化されているこれらの電池の充電方式
は、定電流−定電圧充電方式を用いており、この方法を
用いることで1〜2時間程度の短時間での充電を実現し
ている。
The higher the crystallinity of graphite, the more ideal the crystal layer structure, and the capacity of the battery using the same approaches the theoretical value. Further, since the reaction potential is close to that of metallic lithium, it is considered that a high voltage can be expected. The charging system for these batteries currently commercialized uses a constant current-constant voltage charging system, and by using this method, charging is realized in a short time of about 1 to 2 hours.

【0006】黒鉛、特に高結晶性の黒鉛を用いた場合、
室温付近(10℃〜30℃)での使用では、充放電特性
の悪化等の問題点は認められない。ところが、低温環境
下において、充放電を繰り返しているうちに容量が低下
し、室温に戻しても容量が回復しない性能劣化が生じ
る。これらの課題を解決するために、極めて低い電流で
充電する方法をはじめ、種々の充電方法が試みられた
が、放電容量等の電気的特性と実用性の両面を満足でき
る有効な充電方法は現在のところ得られていない。
When graphite, particularly highly crystalline graphite, is used,
When used at around room temperature (10 ° C to 30 ° C), problems such as deterioration of charge / discharge characteristics are not recognized. However, in a low temperature environment, the capacity decreases during repeated charging / discharging, and the capacity does not recover even if the temperature is returned to room temperature, resulting in performance deterioration. In order to solve these problems, various charging methods have been attempted, including a method of charging with an extremely low current, but an effective charging method that can satisfy both electric characteristics such as discharge capacity and practicality is currently available. Not obtained yet.

【0007】一方、結晶性が若干低下した黒鉛を使用し
た場合、低温環境下における充電時の性能劣化は緩和さ
れる。しかし、前記の結晶性の高い黒鉛を使用した場合
と比較して、容量が小さくなる課題がある。
On the other hand, when graphite having a slightly lowered crystallinity is used, deterioration of performance during charging in a low temperature environment is alleviated. However, there is a problem that the capacity becomes smaller than that in the case where the graphite having high crystallinity is used.

【0008】[0008]

【課題を解決するための手段】これらの相反する課題を
解決するために、本発明者らは鋭意検討した結果、負極
の炭素材料として少なくとも2種類以上の炭素材料を用
いるとよいことを見いだした。
In order to solve these contradictory problems, the inventors of the present invention have conducted extensive studies and found that at least two kinds of carbon materials should be used as the carbon material of the negative electrode. .

【0009】その一つは、少なくとも広角X線回折法に
より得られた面間隔d002が3.37Å以下で、C軸方
向の単位結晶子の大きさLcが1000Å以上である高
い結晶性を持つ黒鉛の群から選ばれた炭素材料とする。
以下、本明細書では前述した物性を持つ炭素材料を高結
晶性黒鉛、もしくは単に黒鉛と呼ぶことにする。
One of them is graphite having a high crystallinity, in which the interplanar spacing d002 obtained by the wide-angle X-ray diffraction method is at least 3.37 Å and the unit crystallite size Lc in the C-axis direction is at least 1000 Å. The carbon material selected from the group.
Hereinafter, in the present specification, the carbon material having the above-mentioned physical properties will be referred to as highly crystalline graphite, or simply graphite.

【0010】他の一つは、広角X線回折法による面間隔
d002が3.50Å以上で、C軸方向の単位結晶子の大
きさLcが100Å以下である結晶性の低い炭素の群か
ら選ばれた炭素材料とし、以下これを低結晶性炭素と呼
ぶことにする。これは、原料ピッチを不活性雰囲気、6
00℃〜1000℃で熱処理を施し、炭素化することに
よって得られる。好ましくは、上記の原料ピッチが等方
性ピッチであり、メソフェーズ炭素含有量が50%以
下、また軟化点が320℃以下のものがよい。
The other is selected from the group of carbons having low crystallinity, in which the interplanar spacing d002 by the wide-angle X-ray diffraction method is 3.50 Å or more and the unit crystallite size Lc in the C-axis direction is 100 Å or less. The carbon material will be referred to as low crystalline carbon hereinafter. This is a raw material pitch in an inert atmosphere, 6
It is obtained by performing heat treatment at 00 ° C to 1000 ° C and carbonizing. Preferably, the raw material pitch is an isotropic pitch, the mesophase carbon content is 50% or less, and the softening point is 320 ° C. or less.

【0011】メソフェーズ炭素は、コールタールピッチ
もしくは熱分解重油を350℃〜550℃に加熱し、熱
分解反応でガス、軽質留分を逸出する。その後、溶融ピ
ッチ中に析出するメソフェーズ球体、またはその集合体
を分離収集する。この方法は、上記の原料ピッチからメ
ソフェーズ球体またはその集合体を取り除いた後、溶融
ピッチの残渣をメソフェーズ含有量の低いピッチとして
使用できるため、副産物を有効的に利用することができ
る。
The mesophase carbon heats coal tar pitch or pyrolysis heavy oil to 350 ° C. to 550 ° C., and escapes gas and light fractions in the pyrolysis reaction. After that, the mesophase spheres that precipitate in the molten pitch, or aggregates thereof, are separated and collected. In this method, after removing the mesophase spheres or aggregates thereof from the above-mentioned raw material pitch, the residue of the molten pitch can be used as a pitch having a low mesophase content, so that the by-product can be effectively utilized.

【0012】上記2種類の炭素材料の混合は、高結晶性
黒鉛の粉末と低結晶性炭素の粉末を単に混合する方法で
も十分な効果を得られるが、好ましくは、高結晶性黒鉛
の粉末と上記原料ピッチの粉末を予め混合し、不活性雰
囲気において600℃〜1000℃で熱処理を行い、こ
れによって得られる高結晶性黒鉛の粉末に低結晶性炭素
が融着した炭素材料を粉砕し、負極炭素材料とする。
The above-mentioned two kinds of carbon materials can be mixed by simply mixing the powder of high crystalline graphite and the powder of low crystalline carbon to obtain a sufficient effect, but the powder of highly crystalline graphite is preferably used. The powder of the raw material pitch is mixed in advance and heat-treated at 600 ° C. to 1000 ° C. in an inert atmosphere, and the carbon material in which low crystalline carbon is fused to the powder of highly crystalline graphite obtained by this is crushed to obtain a negative electrode. Use carbon material.

【0013】また、これら炭素材料の混合比は高結晶性
黒鉛の群から選ばれた炭素材料を少なくとも70重量%
以上含み、かつ低結晶性炭素の群から選ばれた炭素材料
を少なくとも15重量%以上含むものである。
The mixing ratio of these carbon materials is at least 70% by weight of the carbon materials selected from the group of highly crystalline graphite.
It contains at least 15% by weight of a carbon material selected from the group of low crystalline carbon.

【0014】ところで、異なる2種類の炭素材料を混合
する技術に関しては、いくつかの報告がある。例えば、
本発明とは異なる非晶質炭素に関するものであるが、主
体となる炭素の表面を非晶質炭素で覆い、電解液の分解
を抑制した特開平4−368778号公報や、予めリチ
ウムをドープした黒鉛化炭素材料に非黒鉛化炭素を混合
した特開平4−332465号公報、炭素材料の形状を
限定した特開平4−155776号公報がある。さら
に、特開平4−196055号公報の粉末状炭素と炭素
繊維の組み合わせや、米国特許5,028,500明細
書で提示された単一粒子内に高結晶性部分と低結晶性部
分を合わせ持つ炭素材料を用いると共にカーボンブラッ
クを混入させる技術などがある。
By the way, there are some reports on the technique of mixing two different kinds of carbon materials. For example,
Although it relates to amorphous carbon different from the present invention, JP-A-4-368778, in which the surface of the main carbon is covered with amorphous carbon to suppress decomposition of the electrolytic solution, and lithium is previously doped. There are JP-A-4-332465 in which non-graphitizable carbon is mixed with graphitized carbon material, and JP-A-4-155576 in which the shape of the carbon material is limited. Further, it has a combination of powdered carbon and carbon fiber disclosed in JP-A-4-196055, and has a high crystallinity portion and a low crystallinity portion in a single particle presented in US Pat. No. 5,028,500. There is a technique of using a carbon material and mixing carbon black.

【0015】しかし、本発明は上記のように異なる2種
類の炭素材料を混合するところに特徴があるのではな
く、むしろ限定した炭素材料の物性とその組み合わせに
特徴を持つものであって、電池容量、低温充電特性とも
に優れた非水電解液二次電池を提供するものである。
However, the present invention is not characterized by mixing two kinds of different carbon materials as described above, but is rather characterized by the limited physical properties of the carbon materials and the combination thereof, and the battery. It is intended to provide a non-aqueous electrolyte secondary battery having excellent capacity and low-temperature charging characteristics.

【0016】[0016]

【作用】負極材料として高結晶性黒鉛を用いた場合、そ
の低温環境下における充放電容量の低下は、充電時に黒
鉛表面に金属リチウムが析出することに起因している。
反応電位が金属リチウムの電位に近いため、低温環境下
で分極し、容易にリチウムの析出電位に達してしまう。
さらに黒鉛表面に析出したリチウムは、極板から脱落し
て、充放電を繰り返す度に失われる。そのため充放電回
数が増えるにつれて電池容量は減少する。
When the highly crystalline graphite is used as the negative electrode material, the decrease in charge / discharge capacity under low temperature environment is due to the deposition of metallic lithium on the graphite surface during charging.
Since the reaction potential is close to that of metallic lithium, it polarizes in a low temperature environment and easily reaches the deposition potential of lithium.
Further, lithium deposited on the surface of the graphite falls off from the electrode plate and is lost each time charging and discharging are repeated. Therefore, the battery capacity decreases as the number of charge and discharge increases.

【0017】一方、黒鉛の結晶性を低下させると、反応
電位が貴にシフトし、リチウム析出電位に到達しづらく
なるが、電池容量が著しく低下する。本発明では、黒鉛
の高容量特性を残したまま、低温域での電池の充電にお
いてリチウムの析出を抑制する。
On the other hand, when the crystallinity of graphite is lowered, the reaction potential shifts to a noble level and it becomes difficult to reach the lithium deposition potential, but the battery capacity is significantly reduced. In the present invention, precipitation of lithium is suppressed during charging of a battery in a low temperature range while maintaining the high capacity characteristics of graphite.

【0018】本発明における低結晶性炭素は、非晶質炭
素ではなく、面間隔d002が3.50Å以上で、C軸方
向の単位結晶子の大きさLcが100Å以下であること
から、むしろ結晶性を持った微細粒子の集合体であるこ
とがわかる。この炭素は、ピッチを600℃〜1000
℃で焼成する事により得られる。特に原料として等方性
ピッチを用いた場合、微細粒子の配向が等方的になり、
一層効果的である。
The low crystalline carbon in the present invention is not an amorphous carbon, but the interplanar spacing d002 is 3.50 Å or more and the unit crystallite size Lc in the C-axis direction is 100 Å or less, so rather it is a crystal. It can be seen that it is an aggregate of fine particles having properties. This carbon has a pitch of 600 ° C to 1000
Obtained by firing at ℃. Especially when an isotropic pitch is used as a raw material, the orientation of fine particles becomes isotropic,
More effective.

【0019】これらの低結晶性炭素は、充電時にリチウ
ムをインターカレートする速度がきわめて速い。リチウ
ムが析出する前に、この炭素がリチウムを取り込み、固
相内を速やかに移動して高結晶性黒鉛中に直接リチウム
を供給すると考えられる。したがって、高結晶性黒鉛表
面でのリチウムの析出が抑制され、低温充電特性の向上
につながる。
These low crystalline carbons have an extremely high rate of intercalating lithium during charging. It is considered that this carbon takes up lithium and rapidly moves in the solid phase to supply lithium directly into the highly crystalline graphite before the lithium is deposited. Therefore, the precipitation of lithium on the surface of the highly crystalline graphite is suppressed, which leads to the improvement of the low temperature charging characteristics.

【0020】さらに、黒鉛と混合した後に前述したピッ
チの炭素化を行うと、極板抵抗の低下、充填性の向上等
がみられた。詳しくは後述するが、これは黒鉛に低結晶
性炭素が密着した形が得られたためである。
Further, when carbonization of the above-mentioned pitch is carried out after mixing with graphite, reduction of electrode plate resistance, improvement of filling property, etc. were observed. This will be described later in detail, but this is because a form in which the low crystalline carbon is in close contact with graphite was obtained.

【0021】[0021]

【実施例】以下、図面とともに本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】本発明の実施例として、コイン型電池を作
製して、その評価を行った。図1はコイン型電池の縦断
面図である。作用極1は、主体をなす炭素材料粉末に、
スチレンブタジエンラバー(SBR)を結着材として5
重量%混合し、これを正極ケース2の内側にスポット溶
接で固定したチタンネット3上にプレス成形したもので
ある。また、対極4は、封口板5の内側にスポット溶接
で固定したステンレス鋼ネット6上に金属リチウムを圧
着したものである。また、ポリプロピレン製のセパレー
タ7を作用極1と対極4との間に配した。電解液には、
1モル/lの6フッ化リン酸リチウム(LiPF6)を
炭酸エチレン(EC)と炭酸ジエチル(DEC)の混合
溶媒中に溶かしたものを用いた。ケース2と封口板5
は、両者間にポリプロピレン製のガスケット9を介して
密封し、直径20mm、高さ1.6mmの完成電池とし
た。
As an example of the present invention, a coin-type battery was manufactured and evaluated. FIG. 1 is a vertical sectional view of a coin-type battery. Working electrode 1 is mainly composed of carbon material powder,
Styrene butadiene rubber (SBR) as a binder 5
The mixture was mixed by weight%, and this was press-molded on the titanium net 3 fixed to the inside of the positive electrode case 2 by spot welding. Further, the counter electrode 4 is obtained by crimping metallic lithium on a stainless steel net 6 fixed by spot welding on the inside of the sealing plate 5. In addition, a polypropylene separator 7 was placed between the working electrode 1 and the counter electrode 4. The electrolyte contains
A solution prepared by dissolving 1 mol / l lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. Case 2 and sealing plate 5
Was sealed with a polypropylene gasket 9 between them to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm.

【0023】ところで、本実施例で用いた試験電池は、
作用極に負極用の炭素材料を用いた。そのために、電池
電圧が下がる方向(炭素材料中にリチウムがインターカ
レートする反応)が充電となり、電池電圧が上がる方向
(炭素材料からリチウムがデインターカレートされる反
応)が放電となる。
By the way, the test battery used in this example is
A carbon material for the negative electrode was used for the working electrode. Therefore, charging is performed in the direction in which the battery voltage decreases (reaction in which lithium intercalates in the carbon material), and discharge is performed in the direction in which the battery voltage increases (reaction in which lithium is deintercalated from the carbon material).

【0024】最初に黒鉛選択のために、高結晶性黒鉛と
して日本黒鉛(株)製の人造黒鉛SP10、SP20等
を入手し、試験用電池を作製、容量の確認を行った。室
温(20℃)において、0.5mA/ cm2の定電流
で、充電終止電圧を0V、放電終止電圧を1.5Vとし
た。その結果、面間隔d002が、3.37Å以下でLc
1000Å以上の結晶パラメータを有する黒鉛が、安定
して320mAh/g以上の高容量を示すことを見いだ
した。少なくとも黒鉛においては結晶性の高い素材を用
いれば、高容量を得ることができる。なお、容量的に有
望な黒鉛としては、日本黒鉛(株)製のSP10、SP
20及びロンザ(株)製のKS44、KS25、KS1
5等があった。
First, in order to select graphite, artificial graphites SP10 and SP20 manufactured by Nippon Graphite Co., Ltd. were obtained as highly crystalline graphite, test batteries were prepared, and the capacity was confirmed. At room temperature (20 ° C.), the charge end voltage was 0 V and the discharge end voltage was 1.5 V at a constant current of 0.5 mA / cm 2 . As a result, the surface distance d002 is 3.37 Å or less and Lc
It was found that graphite having a crystal parameter of 1000 Å or higher stably exhibits a high capacity of 320 mAh / g or higher. At least in graphite, a high capacity can be obtained by using a material having high crystallinity. In addition, as the graphite, which has a promising capacity, SP10 and SP manufactured by Nippon Graphite Co., Ltd.
20 and KS44, KS25, KS1 manufactured by Lonza Co., Ltd.
There was 5 mag.

【0025】高結晶性黒鉛として上記のロンザ(株)製
KS25、および後述する低結晶性炭素材を用いて試験
電池を作製し、0℃の環境下で充放電試験を行った。こ
の時、充電は室温で得られた容量に相当する電気量を定
容量充電し、放電は終止電圧を1.5Vに設定し、いず
れも0.5mA/cm2の定電流で充放電を行った。
A test battery was prepared using the above-mentioned KS25 manufactured by Lonza Co., Ltd. as the highly crystalline graphite and a low crystalline carbon material described later, and a charge / discharge test was conducted in an environment of 0 ° C. At this time, charging was performed with a constant amount of electricity corresponding to the capacity obtained at room temperature, and discharging was performed by setting the final voltage to 1.5 V and charging / discharging with a constant current of 0.5 mA / cm 2. It was

【0026】図2にKS25を用いた電池の充電電圧曲
線を示す。充電中に電池電圧は0Vを下回り、その後は
負の値を示した。また充放電を繰り返すことによって図
3に示したように黒鉛の放電容量は、10回繰り返した
後では、初期の半分以下となった。これを分解したとこ
ろ、金属リチウムが黒鉛の作用極の表面全体を覆うよう
な形で析出していた。
FIG. 2 shows a charging voltage curve of a battery using KS25. The battery voltage dropped below 0 V during charging and showed a negative value thereafter. By repeating charging and discharging, as shown in FIG. 3, the discharge capacity of graphite became half or less of the initial value after repeating 10 times. When this was decomposed, metallic lithium was deposited in such a form as to cover the entire surface of the working electrode of graphite.

【0027】次に、低結晶性の炭素材料についての検討
を行った。低結晶性炭素の原材料としていくつかのピッ
チ材を入手し、それぞれ500℃から2000℃の焼成
温度で炭素化した。また、比較のためにポリアクリロニ
トリル(PAN)系樹脂、ポリアミド(PA)系樹脂を
同様に500℃〜2000℃の焼成温度で炭素化した、
いわゆる非晶質炭素についても検討を加えた。前述した
高結晶性黒鉛の場合と同様に試験電池を作製し、室温で
の容量評価を行った。ピッチ材の焼成では、等方性ピッ
チと呼ばれる比較的メソフェーズ含有量の低いもの、あ
るいは軟化点が低い素材を600℃〜1000℃で焼成
した炭素材が300mAh/g以上の高容量を示した。
Next, a study was conducted on a low crystalline carbon material. Several pitch materials were obtained as raw materials for low crystalline carbon, and carbonized at firing temperatures of 500 ° C. to 2000 ° C., respectively. For comparison, polyacrylonitrile (PAN) -based resin and polyamide (PA) -based resin were similarly carbonized at a firing temperature of 500 ° C to 2000 ° C.
So-called amorphous carbon was also examined. A test battery was prepared in the same manner as in the case of the above-mentioned highly crystalline graphite, and the capacity was evaluated at room temperature. In the firing of the pitch material, a carbon material having a relatively low mesophase content called isotropic pitch or a material having a low softening point fired at 600 ° C. to 1000 ° C. showed a high capacity of 300 mAh / g or more.

【0028】そこで、これら高容量を示したピッチ材の
メソフェーズ含有量と軟化点を測定した。その結果、メ
ソフェーズ含有量が50%以下、または軟化点が320
℃以下のものが特に優れていることがわかった。なお、
メソフェーズ含有量が50%を越えるもの、および軟化
点が320℃を越えるものの容量は、100〜200m
Ah/g程度であった。一方、樹脂を焼成した炭素材料
の容量は、いずれも100mAh/g以下であった。
Therefore, the mesophase content and the softening point of the pitch materials having these high capacities were measured. As a result, the mesophase content is 50% or less, or the softening point is 320.
It was found that those having a temperature of ℃ or less are particularly excellent. In addition,
When the mesophase content exceeds 50% and the softening point exceeds 320 ° C, the capacity is 100 to 200 m.
It was about Ah / g. On the other hand, the capacities of the carbon materials obtained by firing the resin were all 100 mAh / g or less.

【0029】さらに、これらの材料について0℃の環境
下での充放電試験を、上記の高結晶性黒鉛の場合と同様
の条件で行った。その結果、いずれの材料も充電中に0
Vを切り、負の電圧を示した。
Further, a charge / discharge test was performed on these materials under an environment of 0 ° C. under the same conditions as in the case of the above highly crystalline graphite. As a result, both materials have 0 during charging.
V was turned off and showed a negative voltage.

【0030】低結晶性炭素材の代表的な結果として、等
方性ピッチの800℃炭化品についての充放電回数と放
電容量の変化を図3にあわせて示す。充放電を繰り返し
行っても容量に大きな変化は認められない。前述したよ
うに高結晶性黒鉛を用いた場合、リチウムの析出が生じ
ていたが、低結晶性炭素材については確認できなかっ
た。負の電圧を示したにもかかわらずリチウムの析出が
見られないのは、リチウムの析出反応の過電圧が高く、
かつリチウムの吸蔵反応の速度が速いことによると考え
られる。特に等方性ピッチを600℃〜1000℃で焼
成した炭素材は、前述したように300mAh/g以上
の高容量を示し、この材料のみで負極を構成し、LiC
oO2正極と組み合わせると、高容量の実用的な電池が
得られる。
As a typical result of the low crystalline carbon material, the change in the number of times of charging and discharging and the change in the discharge capacity for the 800 ° C. carbonized product having an isotropic pitch are also shown in FIG. No significant change in capacity is observed even after repeated charging and discharging. As described above, when high crystalline graphite was used, lithium was precipitated, but no low crystalline carbon material could be confirmed. The fact that no lithium deposition was observed despite showing a negative voltage was due to the high overvoltage of the lithium deposition reaction,
In addition, it is considered that the rate of the lithium occlusion reaction is high. In particular, the carbon material obtained by firing the isotropic pitch at 600 ° C. to 1000 ° C. has a high capacity of 300 mAh / g or more as described above.
When combined with an oO 2 positive electrode, a high capacity, practical battery is obtained.

【0031】図4に、低結晶性炭素と黒鉛の室温での放
電曲線を示す。これからわかるように黒鉛と比較して、
低結晶性炭素の放電反応電位は貴であり、かつ平坦性が
ない。このことから、低結晶性炭素を負極に用いて、こ
れと正極と組み合わせた電池では、作動電圧が低くなっ
てしまう欠点がある。
FIG. 4 shows discharge curves of low crystalline carbon and graphite at room temperature. As you can see, compared to graphite,
The discharge reaction potential of low crystalline carbon is noble and has no flatness. For this reason, a battery in which low crystalline carbon is used for the negative electrode and this is combined with the positive electrode has a drawback that the operating voltage becomes low.

【0032】しかし、本発明の黒鉛材料との混合におい
ては、電池の容量確保の観点からも、また多量のリチウ
ムを含んでもリチウム析出に至らないことを考慮する
と、少なくとも容量が大きい低結晶性炭素材を選択する
方が有利であることは明かである。
However, when mixed with the graphite material of the present invention, from the viewpoint of ensuring the capacity of the battery, and considering that even if a large amount of lithium is contained, lithium precipitation does not occur, at least the low crystalline carbon having a large capacity is used. Clearly, the choice of material is advantageous.

【0033】さらに、本発明の負極材料として上記2種
類の炭素材を併用する効果を立証するための検討を行っ
た。前述したように高結晶性の黒鉛は、電池容量的に優
れていたため、本実施例ではその中のロンザ(株)製の
KS25を用いて検討した。また、低結晶性炭素材に
は、等方性ピッチを800℃で炭素化した材料(室温で
の放電容量315mAh/g)を用いた。図4から明ら
かなように高結晶性の黒鉛と低結晶性の炭素とでは、電
圧プロフィールが大きく異なる。
Further, a study was conducted to prove the effect of using the above two kinds of carbon materials together as the negative electrode material of the present invention. As described above, since highly crystalline graphite is excellent in battery capacity, in this example, KS25 manufactured by Lonza Co., Ltd. among them was used for the study. As the low crystalline carbon material, a material obtained by carbonizing isotropic pitch at 800 ° C. (discharge capacity at room temperature 315 mAh / g) was used. As is clear from FIG. 4, highly crystalline graphite and low crystalline carbon have greatly different voltage profiles.

【0034】一般的に、電圧プロフィールの異なる材料
を共存させた場合の電圧プロフィールはその混合比に応
じて合成した形となる。従って、電池の室温における電
圧特性の観点からは黒鉛の比率が高い方が好ましく、低
温充電特性の観点からは低結晶性炭素材料の比率が高い
方が好ましいことが予想される。
In general, when materials having different voltage profiles are made to coexist, the voltage profiles are synthesized according to the mixing ratio. Therefore, it is expected that a higher ratio of graphite is preferable from the viewpoint of voltage characteristics at room temperature of the battery, and a higher ratio of low crystalline carbon material is preferable from the viewpoint of low temperature charging characteristics.

【0035】上記2種類の炭素材を用いて混合比の異な
る試料を準備し、上記試験用電池を作製した。これら電
池の室温における容量、電圧プロフィールおよび低温充
電特性を評価し、混合比率がおよぼす負極特性の影響に
ついて検討を行った。その結果、室温における放電容量
は、黒鉛と低結晶性炭素の各単独使用における容量を基
準とし、2種類の材料の混合比に応じた平均値となっ
た。
Samples having different mixing ratios were prepared using the above-mentioned two kinds of carbon materials, and the above-mentioned test battery was produced. The capacity, voltage profile and low temperature charging characteristics of these batteries at room temperature were evaluated, and the influence of the negative electrode characteristics on the mixing ratio was examined. As a result, the discharge capacity at room temperature was an average value according to the mixing ratio of the two types of materials, based on the capacity of each of graphite and low crystalline carbon used alone.

【0036】次に、混合比率の異なる材料についての放
電電圧プロフィールを図5に示す。この図において、各
々の曲線上の( )内に示した値は混合炭素材料中に占
める黒鉛の割合であり、残り(100%からの差分)が
低結晶性炭素の重量比率に相当する。図5から明らかな
ように、黒鉛の比率が70重量%を下回ると、低結晶性
炭素材料の電圧プロフィールの影響が見られるようにな
る。黒鉛量の低下にともなって電圧プロフィールは低結
晶性炭素単独の形状に近づいていく。逆に、黒鉛の比率
が70重量%以上の場合、電圧プロフィールは黒鉛にき
わめて類似したものになり、黒鉛と低結晶性炭素との比
率の変化による差異も少ない。このように電圧プロフィ
ールは黒鉛比率70重量%を境に黒鉛依存型と低結晶性
炭素依存型とに分類することができる。実際の電池への
応用を想定した場合、電圧特性の観点から黒鉛比率は少
なくとも70重量%以上であることが望ましい。
Next, FIG. 5 shows discharge voltage profiles for materials having different mixing ratios. In this figure, the value shown in parentheses on each curve is the proportion of graphite in the mixed carbon material, and the rest (difference from 100%) corresponds to the weight ratio of low crystalline carbon. As is clear from FIG. 5, when the proportion of graphite is less than 70% by weight, the influence of the voltage profile of the low crystalline carbon material becomes apparent. As the amount of graphite decreases, the voltage profile approaches the shape of low crystalline carbon alone. On the other hand, when the ratio of graphite is 70% by weight or more, the voltage profile becomes very similar to that of graphite, and the difference due to the change in the ratio of graphite and low crystalline carbon is small. Thus, the voltage profile can be classified into a graphite-dependent type and a low crystalline carbon-dependent type with the graphite ratio of 70% by weight as a boundary. From the viewpoint of voltage characteristics, it is desirable that the graphite ratio is at least 70% by weight or more when the application to an actual battery is assumed.

【0037】続いて、上記の各試料の低温充電特性につ
いて、室温で求めた容量を定容量充電する方法により検
討した。図6は黒鉛比率が充放電回数と放電容量に及ぼ
す影響についてを示す。図6からも明らかなように、黒
鉛の比率が85重量%を越えると充放電の繰り返しにつ
れ、容量が低下する現象が起こり始め、さらに黒鉛比率
が増えると容量の低下率が大きくなる。一方、85重量
%以下では容量低下はほとんど見られない。従って、容
量低下を抑制する効果をもつ低結晶性炭素材料の含有比
率は、少なくとも15重量%以上であることが望まし
い。これらの結果から、少なくとも放電電圧プロフィー
ルを満足し、かつ低温充電特性を満足する黒鉛と低結晶
性炭素との最適な混合比率が存在する事がわかった。
Next, the low temperature charging characteristics of each of the above samples were examined by the method of charging the capacity determined at room temperature with a constant capacity. FIG. 6 shows the influence of the graphite ratio on the number of times of charge and discharge and the discharge capacity. As is clear from FIG. 6, when the ratio of graphite exceeds 85% by weight, the phenomenon that the capacity decreases as the charge and discharge are repeated, and when the ratio of graphite further increases, the rate of decrease of the capacity increases. On the other hand, when the content is 85% by weight or less, the capacity hardly decreases. Therefore, the content ratio of the low crystalline carbon material having the effect of suppressing the capacity decrease is preferably at least 15% by weight or more. From these results, it was found that there is an optimum mixing ratio of graphite and low crystalline carbon that satisfies at least the discharge voltage profile and the low temperature charging characteristics.

【0038】上記検討における黒鉛と低結晶性炭素との
混合は、粉末を回転羽根の付いたミキサー(ミルや家庭
用ミキサー等)を用いて行った。異種の粉末を混合する
際に混合方法が特性に影響を与えることは周知の事実で
ある。そこで混合方法についても検討するために、高結
晶性の黒鉛と低結晶性の炭素の粉末を種々の方法を用い
て混合した。しかし、混合する方法を単に変えただけで
は、充分に時間をかけて混合を行うことにより、その後
の特性に影響を与えることはなかった。そこで、予め黒
鉛と等方性ピッチとを混合しておき、黒鉛の存在下で等
方性ピッチの炭素化を行った。ピッチの黒鉛化過程は高
温度で行われるが、黒鉛は本発明のピッチの炭素化温度
程度ではその物性は変化せず、従って最終的には黒鉛と
低結晶性炭素の混在した形となり、電極材料に用いた際
にはその電気抵抗が低くなることを見いだした。電極の
電気抵抗の低下は電池の内部抵抗の低下につながり、電
圧特性の点からは効果的である。これはピッチが、炭素
化過程において溶融状態になった時に黒鉛に付着し、そ
の状態でそのまま炭素化して融着するため、黒鉛と低結
晶性炭素との間の接触が強固になり、粒子間の接触抵抗
の低減に寄与したと考えられる。さらにこの方法により
調整した炭素材は、それぞれの粉末を単に混合したもの
と比較して嵩密度が高くなる傾向がある。その結果、負
極極板の充填効率が高まり、より多くの活物質を用いる
ことができる。
The mixing of graphite and low crystalline carbon in the above examination was carried out by using a mixer equipped with rotary blades (mill, household mixer, etc.). It is a well-known fact that the mixing method affects the characteristics when mixing different kinds of powders. Therefore, in order to study the mixing method, highly crystalline graphite and low crystalline carbon powder were mixed using various methods. However, simply changing the mixing method did not affect the subsequent characteristics by performing the mixing for a sufficient time. Therefore, graphite and isotropic pitch were mixed in advance, and the isotropic pitch was carbonized in the presence of graphite. Although the graphitization process of pitch is carried out at a high temperature, the physical properties of graphite do not change at about the carbonization temperature of the pitch of the present invention, so that finally, graphite and low crystalline carbon are mixed, and It has been found that when used as a material, its electrical resistance becomes low. The reduction of the electric resistance of the electrodes leads to the reduction of the internal resistance of the battery, which is effective in terms of voltage characteristics. This is because the pitch adheres to the graphite when it becomes a molten state in the carbonization process, and in that state carbonizes and fuses as it is, so the contact between the graphite and the low crystalline carbon becomes strong, and It is considered that this contributed to the reduction of the contact resistance. Further, the carbon material prepared by this method tends to have a higher bulk density than that obtained by simply mixing the respective powders. As a result, the filling efficiency of the negative electrode plate is increased, and more active material can be used.

【0039】次にこの方法により得られた炭素材を用
い、上記と同様の試験を行った。その結果、高い再現性
で上記とほぼ同じ結果が得られた。特に、低温充電特性
においては、極板抵抗の影響と考えられるが、分極が減
少し、さらに電池特性が改善された形となった。
Next, the same test as above was conducted using the carbon material obtained by this method. As a result, the same result as above was obtained with high reproducibility. Especially in the low temperature charging characteristics, it is considered that the influence of the electrode plate resistance, but the polarization was reduced and the battery characteristics were further improved.

【0040】[0040]

【発明の効果】以上の説明で明らかなように、本発明で
は放電特性だけでなく、充電特性、特に低温環境下でも
容易に充電できる実用上きわめて有効な非水電解液電池
を提供しうる。
As is apparent from the above description, the present invention can provide not only the discharge characteristics but also the charging characteristics, particularly a practically very effective non-aqueous electrolyte battery that can be easily charged even in a low temperature environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いたコイン型電池の縦断面
FIG. 1 is a vertical cross-sectional view of a coin-type battery used in an example of the present invention.

【図2】黒鉛の充電電圧挙動を示す図FIG. 2 is a graph showing the charging voltage behavior of graphite.

【図3】低温充放電回数と放電容量との関係を示す図FIG. 3 is a diagram showing the relationship between the number of low temperature charge / discharge and the discharge capacity.

【図4】黒鉛と低結晶性炭素材の放電電圧挙動を示す図FIG. 4 is a diagram showing discharge voltage behavior of graphite and a low crystalline carbon material.

【図5】本発明における炭素材料からなる負極の放電電
圧挙動の比較図
FIG. 5 is a comparison diagram of discharge voltage behavior of a negative electrode made of a carbon material according to the present invention.

【図6】本発明における炭素材料負極の低温充放電回数
と放電容量との関係を示す図
FIG. 6 is a graph showing the relationship between the low temperature charge / discharge frequency and the discharge capacity of the carbon material negative electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 作用極 2 正極ケース 3 チタンネット 4 対極 5 封口板 6 ステンレスネット 7 セパレータ 8 電解液 9 ガスケット 1 Working electrode 2 Positive electrode case 3 Titanium net 4 Counter electrode 5 Sealing plate 6 Stainless steel net 7 Separator 8 Electrolyte 9 Gasket

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウム複合酸化物を活物質とする正極
と、非水電解液と、リチウムをインターカレート、デイ
ンターカレートできる炭素材料を用いた負極を備えた非
水電解液二次電池において、 上記負極材料は2種類以上の炭素材を含み、 少なくとも炭素材の一つは広角X線回折法で得られた面
間隔d002が3.37Å以下で、C軸方向の単位結晶子
の大きさLcが1000Å以上である高結晶性の黒鉛群
から選ばれたものであり、 少なくとも他の一つは広角X線回折法による面間隔d00
2が3.50Å以上で、Lcが100Å以下である低結
晶性の炭素群から選ばれたものであり、 上記、高結晶性の黒鉛に低結晶性の炭素が融着している
非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode using a lithium composite oxide as an active material, a non-aqueous electrolyte, and a negative electrode using a carbon material capable of intercalating and deintercalating lithium. In the above-mentioned negative electrode material, the negative electrode material contains two or more kinds of carbon materials, and at least one of the carbon materials has a surface spacing d002 obtained by a wide-angle X-ray diffraction method of 3.37 Å or less, and a size of a unit crystallite in the C-axis direction Lc is 1000 Å or more and is selected from a group of highly crystalline graphites, and at least the other one is a surface spacing d00 measured by a wide-angle X-ray diffraction method.
2 is 3.50 Å or more and Lc is 100 Å or less, and is selected from the group of low crystalline carbon. The above non-aqueous electrolysis in which low crystalline carbon is fused to highly crystalline graphite. Liquid secondary battery.
【請求項2】負極に含まれる炭素材料が、上記高結晶性
の黒鉛の群から選ばれた炭素材料を少なくとも70重量
%以上含み、かつ、上記低結晶性の炭素の群から選ばれ
た炭素材料を少なくとも15重量%以上含む請求項1記
載の非水電解液二次電池。
2. The carbon material contained in the negative electrode contains at least 70% by weight or more of a carbon material selected from the group of highly crystalline graphite and a carbon selected from the group of low crystalline carbon. The non-aqueous electrolyte secondary battery according to claim 1, which contains at least 15% by weight of the material.
【請求項3】高結晶性の黒鉛およびピッチの粉末を予め
混合し、これを不活性雰囲気下、600℃〜1000℃
の温度範囲で熱処理することによって得られる上記高結
晶性黒鉛と低結晶性炭素からなる複合体を粉砕し、負極
材料とする非水電解液二次電池用負極材料の製造法。
3. Highly crystalline graphite and pitch powder are premixed, and this is mixed in an inert atmosphere at 600 ° C. to 1000 ° C.
A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, which comprises crushing a composite of the above-mentioned highly crystalline graphite and low crystalline carbon obtained by heat treatment in the temperature range of 1.
【請求項4】上記ピッチが等方性ピッチであり、そのメ
ソフェーズ含有量が50%以下、またはその軟化点が3
20℃以下であることを特徴とする請求項3記載の非水
電解液二次電池用負極材料の製造法。
4. The pitch is an isotropic pitch, and its mesophase content is 50% or less, or its softening point is 3.
The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the temperature is 20 ° C. or lower.
【請求項5】コールタールピッチ、または熱分解重油を
350℃〜550℃で熱分解反応させてガス、軽質留分
を逸出した後、溶融ピッチ内に析出するメソフェーズ球
体およびその集合体を取り除くことにより、その含有量
を50%以下に制御する非水電解液二次電池用負極材料
の製造法。
5. Coal tar pitch or pyrolysis heavy oil is pyrolyzed at 350 ° C. to 550 ° C. to escape gas and light fractions, and then the mesophase spheres and aggregates precipitated in the molten pitch are removed. Thus, the method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, the content of which is controlled to 50% or less.
JP6116594A 1994-05-30 1994-05-30 Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture Pending JPH07326343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116594A JPH07326343A (en) 1994-05-30 1994-05-30 Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116594A JPH07326343A (en) 1994-05-30 1994-05-30 Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH07326343A true JPH07326343A (en) 1995-12-12

Family

ID=14691013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116594A Pending JPH07326343A (en) 1994-05-30 1994-05-30 Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH07326343A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149822A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11246209A (en) * 1998-03-05 1999-09-14 Osaka Gas Co Ltd Negative electrode carbon material for lithium secondary cell and lithium secondary cell
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
KR100342050B1 (en) * 1999-08-20 2002-06-27 김순택 Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
JPH10149822A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH11246209A (en) * 1998-03-05 1999-09-14 Osaka Gas Co Ltd Negative electrode carbon material for lithium secondary cell and lithium secondary cell
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US6803150B1 (en) 1998-08-27 2004-10-12 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
KR100342050B1 (en) * 1999-08-20 2002-06-27 김순택 Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
JP2005129492A (en) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd Charge/discharge control method of nonaqueous electrolyte secondary battery
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3481063B2 (en) Non-aqueous secondary battery
KR101568334B1 (en) Non-aqueous electrolyte secondary battery negative electrode material making method lithium ion secondary battery and electrochemical capacitor
JP2940172B2 (en) Non-aqueous electrolyte secondary battery
KR101204192B1 (en) Silicon Composite and Method for Preparing the Same, and Negative Electrode Material for Non-aqueous Electrolyte Secondary Battery
KR101685765B1 (en) Negative active material for lithium secondary battery and method of preparing for the same
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
KR101131937B1 (en) Negative active material for lithium rechargeable battery, method of preparing the same, and lithium rechargeable battery comprising the same
KR101673719B1 (en) Negative active material for lithium secondary battery and method of preparing for the same
WO2012001845A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and production method for same
JPH06243867A (en) Nonaqueous secondary battery
KR19990083322A (en) Graphite Powders Suited for Negative Electrode Material of Lithium Ion Secondary Battery
KR20110054619A (en) Anode mixture for lithium secondary battery and lithium secondary battery using the same
KR20160065107A (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JPH0785888A (en) Lithium secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JPH0927314A (en) Nonaqueous electrolyte secondary battery
JPH07326343A (en) Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP4108226B2 (en) Bulk mesophase production method, carbon material production method, negative electrode active material, and lithium ion secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JPH0589879A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080324

FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090324

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees