JPH05314977A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH05314977A
JPH05314977A JP4117226A JP11722692A JPH05314977A JP H05314977 A JPH05314977 A JP H05314977A JP 4117226 A JP4117226 A JP 4117226A JP 11722692 A JP11722692 A JP 11722692A JP H05314977 A JPH05314977 A JP H05314977A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon atoms
carbon
crystal structure
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117226A
Other languages
Japanese (ja)
Inventor
Shigeo Kobayashi
茂雄 小林
Kazunori Haraguchi
和典 原口
Kenichi Morigaki
健一 森垣
Yoshiaki Nitta
芳明 新田
Takahiro Teraoka
孝浩 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4117226A priority Critical patent/JPH05314977A/en
Publication of JPH05314977A publication Critical patent/JPH05314977A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase capacity and improve cycle characteristics by using a carbon material with a Fulleren crystal structure of nodular molecules as a negative electrode. CONSTITUTION:An electrode plate group 4 in a case 1 comprises positive and negative electrodes spirally wound by a plurality of turns via a separator. A carbon material of a Fulleren crystal structure of nodular molecules constituted of a hexagon having six carbon atoms and a pentagon having five carbon atoms, is used as a negative electrode. Consequently, a lithium amount intercalated and de-intercalated with carbon increases. Also, as the carbon has a nodular crystal structure, the negative electrode becomes strong, compared with the case of a laminar structure, and a battery having large capacity and excellent cycle characteristics can be provided. Also, the nodular molecules are constituted of 60, 70, 76 and 84 carbon atoms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池、特
に負極を改良した非水電解液二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小形、軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まってきている。このような観
点から、非水系二次電池、特にリチウム二次電池は、と
りわけ高電圧、高エネルギー密度を有する電池としてそ
の期待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Along with this, there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a driving power source. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed.

【0003】従来、かかるリチウム二次電池の正極活物
質には、二酸化マンガン、五酸化バナジウム、二硫化チ
タンなどが用いられていた。これらの正極と、リチウム
負極および有機電解液とで電池を構成し、充放電を繰り
返していた。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide and the like have been used as positive electrode active materials for such lithium secondary batteries. A battery was constituted by these positive electrodes, a lithium negative electrode and an organic electrolytic solution, and charging and discharging were repeated.

【0004】ところが、一般に負極にリチウム金属を用
いた二次電池では、充電時に生成するデンドライト状リ
チウムによる内部短絡や、活物質と電解液の副反応とい
った課題が二次電池への大きな障害となっていた。また
昨今、リチウム電池の安全性が厳しく指摘されており、
負極にリチウム金属あるいはリチウム合金を用いた電池
系においては安全性の確保が非常に困難な状態にある。
However, generally, in a secondary battery using lithium metal for the negative electrode, problems such as an internal short circuit due to dendrite-like lithium generated during charging and a side reaction between an active material and an electrolytic solution are major obstacles to the secondary battery. Was there. In addition, recently, the safety of lithium batteries has been pointed out severely,
In a battery system using lithium metal or lithium alloy for the negative electrode, it is very difficult to ensure safety.

【0005】一方、層状化合物のインターカレーション
反応を利用した新しいタイプの電極活物質が注目を集め
ており、黒鉛層間化合物が二次電池の電極材料として考
えられている。
On the other hand, a new type of electrode active material utilizing the intercalation reaction of a layered compound has attracted attention, and a graphite intercalation compound is considered as an electrode material for secondary batteries.

【0006】特に、ClO4 、PF5 、BF4 イオン等
のアニオンを取りこんだ黒鉛層間化合物は正極として用
いることができ、一方、Li+ 、Na+ 等のカチオンを
取りこんだ黒鉛層間化合物は負極として用いることがで
きると考えられている。
In particular, graphite intercalation compounds incorporating anions such as ClO 4 , PF 5 and BF 4 ions can be used as positive electrodes, while graphite intercalation compounds incorporating cations such as Li + and Na + can be used as negative electrodes. It is believed that it can be used.

【0007】[0007]

【発明が解決しようとする課題】しかし、カチオンを取
りこんだ黒鉛層間化合物は極めて不安定であり、天然黒
鉛や人造黒鉛を負極として用いた場合、通常は電池とし
ての安定性に欠けると共に容量も低いという問題があっ
た。また、電解液の分解を伴うために、リチウム負極の
代替となり得るものではなかった。
However, the graphite intercalation compound incorporating a cation is extremely unstable, and when natural graphite or artificial graphite is used as the negative electrode, it usually lacks stability as a battery and has a low capacity. There was a problem. Further, since the electrolyte solution is decomposed, it cannot be used as a substitute for the lithium negative electrode.

【0008】さらに従来の構成では、リチウムのインタ
ーカレートおよびデインターカレートの量を求めたとこ
ろ、黒鉛化が十分でない疑黒鉛材料を負極に用いた場合
には、100〜150mAh カーボン1gの容量しか得ら
れないという課題を有していた。
Further, in the conventional constitution, when the amounts of lithium intercalate and deintercalate were determined, when a pseudographite material having insufficient graphitization was used for the negative electrode, the capacity of 100 to 150 mAh carbon 1 g was obtained. There was a problem that it could only be obtained.

【0009】これに対し、高結晶性の黒鉛材料を負極に
用いた場合には、コークスの高温焼成体などは比較的高
容量の200〜250mAh/g の値が得られている。しか
しながら、充放電に伴い黒鉛のC軸の方向の膨張および
収縮が大きいために成形体が膨潤し、元の形状を維持で
きなくなるという課題を有していた。
On the other hand, when a highly crystalline graphite material is used for the negative electrode, a high temperature calcined product of coke or the like has a relatively high capacity of 200 to 250 mAh / g. However, there has been a problem that the molded body swells due to the large expansion and contraction of graphite in the C-axis direction with charge and discharge, and the original shape cannot be maintained.

【0010】そこで本発明の目的は、上記のような従来
技術の課題を解決し、安全性が確保され、高容量を有
し、しかもサイクル特性に優れた非水電解液二次電池を
提供することにある。
Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery which solves the above-mentioned problems of the prior art, ensures safety, has a high capacity, and is excellent in cycle characteristics. Especially.

【0011】[0011]

【課題を解決するための手段】このような目的は、下記
(1)および(2)の本発明により達成される。
Such objects are achieved by the present invention described in (1) and (2) below.

【0012】(1)非水電解液と、充放電可能な正極
と、負極とを備えた非水電解液二次電池において、前記
負極として、炭素原子6個からなる6角形と炭素原子5
個からなる5角形とから構成された球状分子のフラーレ
ン結晶構造になっている炭素材料を用いたことを特徴と
する非水電解液二次電池。
(1) In a non-aqueous electrolyte secondary battery provided with a non-aqueous electrolyte, a chargeable / dischargeable positive electrode, and a negative electrode, the negative electrode is a hexagon having 6 carbon atoms and 5 carbon atoms.
A non-aqueous electrolyte secondary battery comprising a carbon material having a spherical molecule fullerene crystal structure composed of individual pentagons.

【0013】(2)上記球状分子が60個、70個、7
6個または84個の炭素原子より構成されている上記
(1)に記載の非水電解液二次電池。
(2) 60, 70 and 7 spherical molecules
The non-aqueous electrolyte secondary battery according to (1) above, which is composed of 6 or 84 carbon atoms.

【0014】[0014]

【作用】本発明における球状分子のフラーレン結晶構造
をもつ炭素材料を負極に用いると、この炭素にインタカ
レートおよびデインタカレートするリチウム量は多くな
り、この炭素の結晶構造が球状であるため層状に比較し
て強固となり、高容量でサイクル特性の優れた非水電解
液二次電池を実現することができる。
When a carbon material having a spherical molecule fullerene crystal structure according to the present invention is used for the negative electrode, the amount of lithium intercalating and deintercalating to this carbon increases, and the carbon crystal structure is spherical, resulting in a layered structure. As a result, it is possible to realize a non-aqueous electrolyte secondary battery that is stronger, has higher capacity, and has excellent cycle characteristics.

【0015】[0015]

【具体的構成】以下、本発明について、図を参照しなが
ら説明する。
Concrete Structure The present invention will be described below with reference to the drawings.

【0016】図1に本発明において使用する炭素材料の
フラーレン結晶構造の炭素数60個の分子模式図を示
す。
FIG. 1 shows a schematic diagram of a molecule having a fullerene crystal structure of 60 carbon atoms used in the present invention.

【0017】図1から分かるように、かかる炭素材料に
おいては、炭素原子6個からなる6角形と炭素原子5個
からなる5角形から球状分子が構成されている。
As can be seen from FIG. 1, in such a carbon material, a spherical molecule is composed of a hexagon having 6 carbon atoms and a pentagon having 5 carbon atoms.

【0018】このフラーレン結晶構造は最近発表された
炭素(黒鉛)の結晶タイプの新しい発見である(「機能
材料」1992年2月号 Vol.12 No. 2参照)。フ
ラーレン構造をもつ黒鉛は、その炭素原子が等価、対称
形に並んで、サッカーボール状の分子を形成している。
This fullerene crystal structure is a new discovery of the recently announced crystal type of carbon (graphite) (see “Functional Material” February 1992 Vol. 12 No. 2). Graphite having a fullerene structure has its carbon atoms arranged in an equivalent and symmetrical form to form a soccer ball-shaped molecule.

【0019】この結晶構造は、アルゴン雰囲気中に二つ
の炭素電極を置き、アーク放電を起こさせ、高温、高磁
界での炭素の分解、結晶化により負電極上に成長させる
ことができる。
This crystal structure can be grown on the negative electrode by placing two carbon electrodes in an argon atmosphere, causing an arc discharge, and decomposing and crystallization of carbon under high temperature and high magnetic field.

【0020】負極は、例えば、かかる球状分子のフラー
レン結晶構造をもつ炭素材料に樹脂系接着剤を混合し、
水溶液に懸濁させてペースト状にし、このペーストを銅
箔の両面に塗着し、乾燥後圧延することにより製造する
ことができる。
For the negative electrode, for example, a carbonaceous material having such a spherical molecule fullerene crystal structure is mixed with a resin adhesive,
It can be manufactured by suspending in an aqueous solution to form a paste, applying this paste to both surfaces of a copper foil, drying and rolling.

【0021】正極および電解液等は従来より非水電解液
二次電池の分野において知られているものを使用するこ
とができ、特に制限されるべきものではない。
As the positive electrode, the electrolytic solution and the like, those conventionally known in the field of non-aqueous electrolytic solution secondary batteries can be used and are not particularly limited.

【0022】球状分子のフラーレン結晶構造を有する黒
鉛が高容量であるのは、以下のような理由による。
The reason why graphite having a spherical molecule fullerene crystal structure has a high capacity is as follows.

【0023】平面の層状構造を有する黒鉛は理論上は炭
素原子6個に対しリチウム1個がインタカレートする
が、実際の電池では、その三分の二のリチウムがインタ
カレートするだけである。しかし、結晶構造が球状の場
合は、球の外側へ格子間ドーピングするため、リチウム
が入り易くなるので高容量が可能となるものと思われ
る。
Theoretically, graphite having a planar layered structure intercalates one lithium with six carbon atoms, but in an actual battery, only two-thirds of the lithium intercalates. .. However, when the crystal structure is spherical, interstitial doping is performed on the outside of the sphere, and lithium is likely to enter, so that a high capacity is considered to be possible.

【0024】さらに、サイクル特性が良好となる理由
は、構造が球状の結晶構造であるためリチウムのインタ
カレートおよびデインタカレートによる結晶構造の破壊
がほとんどないことによると思われる。
Further, the reason why the cycle characteristics are improved is considered to be that the crystal structure is spherical and the crystal structure is hardly broken by intercalation and deintercalation of lithium.

【0025】[0025]

【実施例】以下、本発明の実施例について、図を参照し
ながら説明する。 実施例 図2に本実施例で用いた円筒形電池の縦断面図を示す。
この図2においては、1は耐有機電解液性のステンレス
鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極および負極がセパレータを介して複数回渦巻状に巻回
されて収納されている。
Embodiments of the present invention will be described below with reference to the drawings. Example FIG. 2 shows a vertical sectional view of a cylindrical battery used in this example.
In FIG. 2, 1 is a battery case formed by processing an organic electrolytic solution resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with a separator interposed therebetween and housed.

【0026】上記正極からは正極リード5が引き出され
て封口板2に接続され、一方、負極からは負極リード6
が引き出されて電池ケースの底部1に接続されている。
7は絶縁リングで、極板群の上下部にそれぞれ設けられ
ている。以下、正、負極板、電解液等について詳しく説
明する。
A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, while a negative electrode lead 6 is drawn from the negative electrode.
Is drawn out and connected to the bottom portion 1 of the battery case.
Insulating rings 7 are provided on the upper and lower portions of the electrode plate group, respectively. Hereinafter, the positive and negative electrode plates, the electrolytic solution and the like will be described in detail.

【0027】正極を製造するために、まずはLi2 CO
3 と、CoCO3 とを混合し、900℃で10時間焼成
して合成したLiCoO2 の粉末100重量部に、アセ
チレンブラック3重量部、グラファイト4重量部および
フッ素樹脂系接着剤7重量部を混合し、これをカルボキ
シメチルセルロース水溶液に懸濁させて、ペースト状に
した、このペーストを厚さ0.03mmのアルミ箔の両面
に塗着し、乾燥後圧延して厚さ0.19mm、幅40mm、
長さ250mmの極板とした。合剤重量は5g であった。
In order to manufacture the positive electrode, first, Li 2 CO
3 and CoCO 3 were mixed, and 100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours was mixed with 3 parts by weight of acetylene black, 4 parts by weight of graphite and 7 parts by weight of fluororesin adhesive. Then, this was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. The paste was applied to both sides of an aluminum foil having a thickness of 0.03 mm, dried and rolled to a thickness of 0.19 mm, a width of 40 mm,
The electrode plate was 250 mm long. The mixture weight was 5 g.

【0028】負極の製造は、まず熱処理を施した球状分
子のフラーレン結晶構造をもつ炭素数60の炭素材料1
00重量部に、フッ素樹脂系接着剤10重量部を混合
し、これをカルボキシメチルセルロース水溶液に懸濁さ
せて、ペースト状にした。そしてこのペーストを厚さ
0.02mmの銅箔に両面に塗着し、乾燥後圧延して厚さ
0.20mm、幅40mm、長さ260mmの極板とした、合
剤重量は2.5gであった。
The production of the negative electrode is carried out by first performing a heat treatment on a carbon material 1 having a fullerene crystal structure of spherical molecules and having 60 carbon atoms.
10 parts by weight of a fluororesin-based adhesive was mixed with 00 parts by weight, and this was suspended in an aqueous carboxymethylcellulose solution to form a paste. Then, this paste was applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled to form an electrode plate having a thickness of 0.20 mm, a width of 40 mm and a length of 260 mm. The weight of the mixture was 2.5 g. there were.

【0029】次いで、負極板それぞれにリードを取りつ
け、厚さ0.025mm、幅46mm、長さ700mmのポリ
プロピレン製のセパレータを介して渦巻状に巻回し、こ
れを直径13.8mm、高さ50mmの電池ケース内に収納
した。電解液には炭酸プロピレンと炭酸エチレンの等容
積混合溶媒に、過塩素酸リチウムを1モル/1の割合で
溶解したものを用いた。 比較例1 負極に1200℃で熱処理を施した黒鉛化されていない
メソカーボンマイクロビーズを用いた以外は全く実施例
の電池と同一条件で構成を行い、比較例1の電池とし
た。 比較例2 負極に2800℃で熱処理を施したコークス焼成体の黒
鉛化の高い層状構造の黒鉛を用いた以外は全く実施例の
電池と同一条件で構成を行い、比較例2の電池とした。
Next, a lead is attached to each of the negative electrode plates and spirally wound through a polypropylene separator having a thickness of 0.025 mm, a width of 46 mm and a length of 700 mm, which has a diameter of 13.8 mm and a height of 50 mm. Stored in the battery case. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in a mixed solvent of equal volume of propylene carbonate and ethylene carbonate at a ratio of 1 mol / 1 was used. Comparative Example 1 A battery of Comparative Example 1 was prepared under the same conditions as those of the battery of Example except that the non-graphitized mesocarbon microbeads heat-treated at 1200 ° C. were used for the negative electrode. Comparative Example 2 A battery of Comparative Example 2 was prepared under the same conditions as those of the batteries of Examples except that the negative electrode was made of the graphite having a layered structure with high graphitization of the coke calcined body which was heat-treated at 2800 ° C.

【0030】上述の実施例の電池並びに比較例1および
2の電池について、それぞれ充放電電流100mA、充電
終止電圧4.1v、放電終止電圧3.0vの条件下で定
電流充放電試験を行った。これらの10サイクル目の充
放電曲線の比較を図3に、また、サイクル特性の比較を
図4にそれぞれ示す。
A constant current charge / discharge test was conducted on the batteries of the above-mentioned examples and the batteries of Comparative Examples 1 and 2 under the conditions of a charge / discharge current of 100 mA, a charge end voltage of 4.1 v, and a discharge end voltage of 3.0 v, respectively. .. FIG. 3 shows a comparison of charge / discharge curves at the 10th cycle, and FIG. 4 shows a comparison of cycle characteristics.

【0031】図3より明らかなように、炭素原子60個
の球状分子のフラーレン結晶構造を有する炭素材料を用
いた本実施例の電池は640mAh の高い容量を示した。
これに対し比較的2の電池は450〜500mAh の容量
を有し、一方、黒鉛化していない負極材を用いた比較例
1の電池では容量が350mAh と極めて低い値となっ
た。
As is clear from FIG. 3, the battery of this example using a carbon material having a fullerene crystal structure of a spherical molecule having 60 carbon atoms exhibited a high capacity of 640 mAh.
On the other hand, the comparative battery 2 had a capacity of 450 to 500 mAh, while the battery of Comparative Example 1 using the non-graphitized negative electrode material had a very low value of 350 mAh.

【0032】また、図4から明らかなように、実施例の
電池ではサイクル平坦性が良好であり、500サイクル
以上の充放電が可能である。一方、コークスを用いた比
較例2の電池は、サイクルに伴う劣化が著しく、50サ
イクルで初期容量の半分以下であった。
Further, as is clear from FIG. 4, the batteries of Examples have good cycle flatness and can be charged and discharged for 500 cycles or more. On the other hand, the battery of Comparative Example 2 using coke was significantly deteriorated with cycles, and was less than half of the initial capacity at 50 cycles.

【0033】さらに、その他の実施例として炭素原子6
0個以外の70、76および84個の球状分子のフラー
レン結晶構造の炭素材についても検討したが、この場合
も前記実施例と全く同じ放電容量とサイクル特性が得ら
れた。
Further, as another embodiment, carbon atom 6
A carbon material having a fullerene crystal structure of 70, 76 and 84 spherical molecules other than 0 was also examined, and in this case as well, the same discharge capacity and cycle characteristics as those of the above-mentioned Examples were obtained.

【0034】以上のように本実施例では、球状分子のフ
ラーレン構造を有する炭素材料を負極に用いたことによ
り、高容量でサイクル特性の優れたリチウム二次電池が
実現できた。
As described above, in the present embodiment, by using the carbon material having the spherical molecule fullerene structure for the negative electrode, a lithium secondary battery having a high capacity and excellent cycle characteristics could be realized.

【0035】[0035]

【発明の効果】本発明の、負極として炭素原子6個から
なる6角形と炭素原子5個からなる5角形で構成される
球状分子のフラーレン結晶構造の炭素材料を用いること
により、高容量でサイクル特性の良好な非水電解液二次
電池になるという効果を得ることができる。
EFFECTS OF THE INVENTION By using a carbon material having a fullerene crystal structure of a spherical molecule composed of a hexagon having 6 carbon atoms and a pentagon having 5 carbon atoms as a negative electrode of the present invention, it is possible to cycle at a high capacity. It is possible to obtain the effect of becoming a non-aqueous electrolyte secondary battery having good characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素原子60個の球状分子のフラーレン結晶構
造を示す模式図である。
FIG. 1 is a schematic diagram showing a fullerene crystal structure of a spherical molecule having 60 carbon atoms.

【図2】本実施例において用いた円筒形非水電解液二次
電池の縦断面図である。
FIG. 2 is a vertical cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery used in this example.

【図3】本発明の一例電池と比較例1および2の電池の
10サイクル目の充放電曲線の比較を示すグラフであ
る。
FIG. 3 is a graph showing a comparison of charge / discharge curves at the 10th cycle between the example battery of the present invention and the batteries of Comparative Examples 1 and 2.

【図4】本発明の一例電池と比較例1および2の電池の
サイクル特性の比較を示すグラフである。
FIG. 4 is a graph showing a comparison of cycle characteristics of an example battery of the present invention and batteries of Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1‥‥ 電池ケース 2‥‥ 封口板 3‥‥ 絶縁パッキング 4‥‥ 極板群 5‥‥ 正極リード 6‥‥ 負極リード 7‥‥ 絶縁リング 1 Battery case 2 Seal plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

フロントページの続き (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 寺岡 孝浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Yoshiaki Nitta 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Takahiro Teraoka, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非水電解液と、充放電可能な正極と、負
極とを備えた非水電解液二次電池において、前記負極と
して、炭素原子6個からなる6角形と炭素原子5個から
なる5角形とから構成された球状分子のフラーレン結晶
構造になっている炭素材料を用いたことを特徴とする非
水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, a chargeable / dischargeable positive electrode, and a negative electrode, wherein the negative electrode comprises a hexagon having 6 carbon atoms and 5 carbon atoms. A non-aqueous electrolyte secondary battery comprising a carbon material having a spherical molecule fullerene crystal structure composed of the following pentagon.
【請求項2】 上記球状分子が60個、70個、76個
または84個の炭素原子より構成されている請求項1に
記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the spherical molecule is composed of 60, 70, 76 or 84 carbon atoms.
JP4117226A 1992-05-11 1992-05-11 Nonaqueous electrolytic secondary battery Pending JPH05314977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117226A JPH05314977A (en) 1992-05-11 1992-05-11 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117226A JPH05314977A (en) 1992-05-11 1992-05-11 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH05314977A true JPH05314977A (en) 1993-11-26

Family

ID=14706515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117226A Pending JPH05314977A (en) 1992-05-11 1992-05-11 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH05314977A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032262A1 (en) * 2002-10-04 2004-04-15 Mitsubishi Chemical Corporation Additive to negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery and, using the negative electrode material for lithium secondary battery, negative electrode and lithium secondary battery
CN1333478C (en) * 2002-10-04 2007-08-22 三菱化学株式会社 Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
US7531273B2 (en) 2001-05-29 2009-05-12 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
KR100917286B1 (en) * 2001-05-29 2009-09-11 아이티티 메뉴펙터링 엔터프라이지즈 인코포레이티드 Fullerene-based secondary cell electrodes
US7879260B2 (en) 2002-10-04 2011-02-01 Mitsubishi Chemical Corporation Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
WO2013127953A1 (en) * 2012-03-01 2013-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Electrochemical energy storage device or energy conversion device comprising a galvanic cell having electrochemical half-cells containing a suspension of fullerene and ionic liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531273B2 (en) 2001-05-29 2009-05-12 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
KR100917286B1 (en) * 2001-05-29 2009-09-11 아이티티 메뉴펙터링 엔터프라이지즈 인코포레이티드 Fullerene-based secondary cell electrodes
WO2004032262A1 (en) * 2002-10-04 2004-04-15 Mitsubishi Chemical Corporation Additive to negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery and, using the negative electrode material for lithium secondary battery, negative electrode and lithium secondary battery
CN1333478C (en) * 2002-10-04 2007-08-22 三菱化学株式会社 Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
US7879260B2 (en) 2002-10-04 2011-02-01 Mitsubishi Chemical Corporation Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
WO2013127953A1 (en) * 2012-03-01 2013-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Electrochemical energy storage device or energy conversion device comprising a galvanic cell having electrochemical half-cells containing a suspension of fullerene and ionic liquid
JP2015513179A (en) * 2012-03-01 2015-04-30 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Electrochemical energy storage device or energy conversion device with galvanic cell having an electrochemical half-cell with a suspension of fullerene and ionic liquid

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP4507284B2 (en) Non-aqueous electrolyte secondary battery
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP3061337B2 (en) Non-aqueous electrolyte secondary battery
JPH05314977A (en) Nonaqueous electrolytic secondary battery
JPH0869819A (en) Nonaqueous electrolytic secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JPH08180864A (en) Nonaqueous electrolytic secondary battery
JPH0773868A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JPH0689741A (en) Nonaqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3010861B2 (en) Non-aqueous electrolyte secondary battery
JPH09320570A (en) Lithium ton secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JPS63114065A (en) Organic electrolyte secondary battery