JPH03289068A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03289068A
JPH03289068A JP2090859A JP9085990A JPH03289068A JP H03289068 A JPH03289068 A JP H03289068A JP 2090859 A JP2090859 A JP 2090859A JP 9085990 A JP9085990 A JP 9085990A JP H03289068 A JPH03289068 A JP H03289068A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
carbon
negative electrode
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090859A
Other languages
Japanese (ja)
Inventor
Nobuo Eda
江田 信夫
Yoshiyuki Ozaki
義幸 尾崎
Akiyoshi Nishiyama
西山 晃好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2090859A priority Critical patent/JPH03289068A/en
Publication of JPH03289068A publication Critical patent/JPH03289068A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous solvent secondary battery with high voltage and capacity performance and also excellent in its high rate charge-discharge performance by using a negative material which is formed in a manner where an active material of light metal is stored in a specified carbon-based fiberous material or its crushed material. CONSTITUTION:As a material for the negative of nonaqueous electrolyte secondary battery, carbon fiber or the crushed thereof, which is obtained by heat- dissolving in gas phase a mixture of hydrogen carbonate and hydrogen having the distance of 002 face by the X-ray wide anglo diffraction method which is 3.37Angstrom to 3.50Angstrom and the thickness Lc of crystal element in the direction (c) which is 100Angstrom to 400Angstrom , and deposition-developed on metal catalyst particles, is used. An active material of light metal is stored therein. It is thus possible to realize the provision of a negative electrode carbon material capable of charging/discharging at a high rate as well as having high voltage and capacity performance and less self-discharge performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池、詳しくは小形、軽量で
新規な二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a novel compact, lightweight secondary battery.

従来の技術 近年、民生用電子機器のポータプル化、コードレス化が
急速に進んでおり、これらの駆動用電源を担う小形・軽
量で、かつ高エネルギー密度を有する二次電池への要望
が高まっている。このような観点から、非水系二次電池
、特にリチウム二次電池は、とりわけ高電圧、高エネル
ギー密度を有する電池として期待が大きい。
Conventional technology In recent years, consumer electronic devices have rapidly become portable and cordless, and there is an increasing demand for small, lightweight, and high-energy-density secondary batteries that serve as the power source for driving these devices. . From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have high expectations as batteries with particularly high voltage and high energy density.

従来、リチウム二次電池の正極活物質には、二酸化マン
ガン、五酸化バナジウムや二硫化チタンなとが用いられ
ている。このような正極と、金属リチウム負極および有
機電解液とで電池を構成し、充放電を繰り返している。
Conventionally, manganese dioxide, vanadium pentoxide, and titanium disulfide have been used as positive electrode active materials for lithium secondary batteries. A battery is made up of such a positive electrode, a metallic lithium negative electrode, and an organic electrolyte, and is repeatedly charged and discharged.

、ところが、一般に負極にリチウム金属を用いた二次電
池では、充電時に生成するデンドライト状リチウムによ
る内部短絡や活物質と電解液の副反応といった課題が実
用化への大きな障害となっている。さらには、高率充電
特性や過放電特性においても満足するものが見い出され
ていない。
However, in general, secondary batteries that use lithium metal for the negative electrode have problems such as internal short circuits caused by dendrite-like lithium produced during charging and side reactions between the active material and the electrolyte, which are major obstacles to practical application. Furthermore, no material has been found that satisfies high-rate charging characteristics or over-discharge characteristics.

一方、層状化合物のインターカレーション(挿入反応)
を利用した新しいタイプの電極活物質が注目を集めてお
り、古くから黒鉛層間化合物が二次電池の電極材料とし
て用いられている。特に、ClO4−PF6−1BF4
−イオンなどのアニオンを取りこんだ黒鉛層間化合物は
正極として用いらる。また、Li+、Na+などのカチ
オンを取りこんだ黒鉛層間化合物は負極として考えられ
ている。
On the other hand, intercalation (insertion reaction) of layered compounds
A new type of electrode active material that utilizes is attracting attention, and graphite intercalation compounds have been used as electrode materials for secondary batteries for a long time. In particular, ClO4-PF6-1BF4
- Graphite intercalation compounds incorporating anions such as ions are used as positive electrodes. Further, graphite intercalation compounds incorporating cations such as Li+ and Na+ are considered as negative electrodes.

しかしながら、このようなカチオンを取りこんだ黒鉛層
間化合物は極めて不安定であり、黒鉛材料を負極として
用いた場合、電池としての安定性に欠けるとともに容量
も低く、さらには大きな電解液の分解を伴うために、リ
チウム負極の代替となり得るものではなかった。
However, graphite intercalation compounds that incorporate such cations are extremely unstable, and when graphite materials are used as negative electrodes, they lack stability as a battery, have low capacity, and are accompanied by a large amount of electrolyte decomposition. However, it could not be used as a substitute for lithium negative electrodes.

最近になって、ある種の液状の炭化水素あるいは高分子
材料を炭素化して得られた疑黒鉛材料のカチオン・ドー
プ体が負極として有効であり、利用率が比較的高く電池
としての安定性に優れ、小形、軽量の二次電池を提供し
得ると報告されている。
Recently, cation-doped pseudographite materials obtained by carbonizing certain liquid hydrocarbons or polymer materials have been found to be effective as negative electrodes, and have a relatively high utilization rate and stability as batteries. It is reported that an excellent, compact, and lightweight secondary battery can be provided.

発明か解決しようとする課題 一般に、黒鉛層間にインターカレートされ得るリチウム
の量は、炭素6原子に対しリチウム1原子が挿入された
第1ステージの黒鉛層間化合物CaL iが上限である
と報告されている。その場合活物質は372mAh/H
の容量を持つことになる。
In general, it is reported that the upper limit of the amount of lithium that can be intercalated between graphite layers is the first stage graphite intercalation compound CaLi in which one lithium atom is inserted for every six carbon atoms. ing. In that case, the active material is 372mAh/H
It will have a capacity of

上記の疑黒鉛材料を電極材に用い、リチウムの吸蔵およ
び放出量を求めたところ、100〜150 m A h
 / gh−lンの容量しか得られず、また充放電に伴
う炭素極の分極が大きいために、例えばLiCoO2な
どの正極と組み合わせた場合、満足のいく容量、電圧を
得ることは困難である。
Using the above pseudographite material as an electrode material, the amount of lithium absorbed and released was determined to be 100 to 150 mA h.
/gh-l, and since the polarization of the carbon electrode is large during charging and discharging, it is difficult to obtain a satisfactory capacity and voltage when combined with a positive electrode such as LiCoO2.

本発明は、上記のような従来の課題を解消し、高電圧、
高容量を有し、さらには高率充放電特性に優れた非水溶
媒二次電池を提供することを目的としている。
The present invention solves the conventional problems as described above, and
The object of the present invention is to provide a non-aqueous solvent secondary battery that has a high capacity and also has excellent high-rate charge/discharge characteristics.

課題を解決するための手段 これらの課題を解決するため本発明は、負極の炭素材料
に、X線広角回折法による002面の面間隔(d 00
2)が3.37A以上3.50λ以下、C軸方向の結晶
子の厚み(Lc)が50Å以上200Å以下、a軸方向
の結晶子の厚み(La)が100A以上400Å以下の
、炭化水素と水素の混合体を気相で熱分解させて金属触
媒粒子上に堆積成長させた炭素繊維あるいはその粉砕物
を用いたものである。
Means for Solving the Problems In order to solve these problems, the present invention provides a negative electrode carbon material with a 002 plane spacing (d 00
2) is 3.37 A or more and 3.50 λ or less, the crystallite thickness (Lc) in the C-axis direction is 50 Å or more and 200 Å or less, and the crystallite thickness (La) in the a-axis direction is 100 A or more and 400 Å or less. This method uses carbon fibers or pulverized products thereof, which are grown by thermally decomposing a hydrogen mixture in the gas phase and deposited on metal catalyst particles.

作用 負極材として用いる炭素質材料は、一般にある程度の乱
層構造を有した疑黒鉛材料か好まれる。
The carbonaceous material used as the working negative electrode material is generally a pseudographite material having a certain degree of turbostratic structure.

天然黒鉛や人造黒鉛などに見られる黒鉛結晶化がかなり
発達した黒鉛材を用いた場合、充放電に伴うリチウムの
インターカレーション反応は見うれず、電解液の分解反
応が主体的に進行すると考えられる。
When graphite materials with highly developed graphite crystallization, such as those found in natural graphite or artificial graphite, are used, no intercalation reaction of lithium is observed during charging and discharging, and it is thought that the decomposition reaction of the electrolyte proceeds primarily. It will be done.

このことは黒鉛材のC軸方向の結晶子の厚みLcの値と
密接な関係があると思われ、おおむねLcが200Å以
上の炭素材では充放電に伴うリチウムの吸蔵・放出は不
可能である。一方、Lc値が50Å以下の炭素材では、
リチウムのインタカレーションは可能であるが、結晶化
か不充分であるために層間にインターカレートされたリ
チウムは非常に不安定であり、充放電に伴う炭素極の分
極が大きくなる。従って高容量を得ることは困難であり
、高率充放電も不可能となる。このような観点から負極
炭素材としては、X線回折ピークで面間隔d002が3
.37A以上3.50A以下で、かつシェラ−の式で形
状因子Kが09のときLcの値が50A以上200Å以
下、好ましくは100A以上200λ以下の炭素材か最
適となる。しかし、高分子を焼成したものや、ピンチ系
から合成したものは上記条件を満足したちのでも十分で
はなく、唯一水素を含んだ気相から合成した炭素繊維の
中に良好な特性を示すものがある。この領域にある炭素
材では、比較的結晶化が進んでおり、層状構造はある程
度発達した状態にある。従って、電気化学的にインター
カレートされたリチウムは層間で安定に存在することが
でき、炭素極の分極は小さくなる。また自己放電も小さ
く、高率充放電が可能な負極炭素材となる。
This seems to be closely related to the value of the crystallite thickness Lc in the C-axis direction of the graphite material, and it is generally impossible for carbon materials with Lc of 200 Å or more to absorb and release lithium during charging and discharging. . On the other hand, in carbon materials with an Lc value of 50 Å or less,
Intercalation of lithium is possible, but due to insufficient crystallization, lithium intercalated between layers is very unstable, and the polarization of the carbon electrode increases during charging and discharging. Therefore, it is difficult to obtain high capacity, and high rate charging and discharging is also impossible. From this point of view, the negative electrode carbon material should have a lattice spacing d002 of 3 at the X-ray diffraction peak.
.. A carbon material having an Lc value of 50 A or more and 200 Å or less, preferably 100 A or more and 200 λ or less when the shape factor K is 09 in Scherrer's equation and is 37 A or more and 3.50 A or less is optimal. However, carbon fibers made by firing polymers or synthesized from a pinch system are not sufficient even if they satisfy the above conditions, and only carbon fibers synthesized from a hydrogen-containing gas phase exhibit good properties. There is. In the carbon material in this region, crystallization is relatively advanced, and the layered structure is in a state of being developed to some extent. Therefore, electrochemically intercalated lithium can stably exist between the layers, and the polarization of the carbon electrode becomes small. In addition, self-discharge is small, making it a negative electrode carbon material that can be charged and discharged at a high rate.

このことは炭素材のa軸方向の結晶子の厚みLaの値と
も密接な関係があり、同じくシェラ−の式で形状因子K
が1.84のとき、La値としては100Å以上400
Å以下、好ましくは200Å以上400A以下の炭素材
か最適である。
This is closely related to the value of the crystallite thickness La in the a-axis direction of the carbon material, and the shape factor K
is 1.84, the La value is 100 Å or more 400
A carbon material having a thickness of Å or less, preferably 200 Å or more and 400 A or less is optimal.

実  施  例 以下、本発明を実施例で詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 本実施例では、負極用の炭素材料が吸蔵、放出し得るリ
チウムの量および炭素極の分極特性を検討する一方法と
して、炭素極を正極、金属リチウムを負極としたコイン
形電池を構成し評価を行った。
Example 1 In this example, as a method for examining the amount of lithium that can be occluded and released by the carbon material for the negative electrode and the polarization characteristics of the carbon electrode, a coin-shaped battery with the carbon electrode as the positive electrode and metallic lithium as the negative electrode was constructed. The system was constructed and evaluated.

第1図にそのコイン形電池の縦断面図を示す。FIG. 1 shows a longitudinal cross-sectional view of the coin-shaped battery.

図において、1は耐有機電解液性ステンレス鋼板を加工
した電池ケース、2は同材料の封目板、3はステンレス
製の正極集電体で、ケース1の内面にスポット溶接され
ている。4は金属リチウム負極で封口板2に圧着されて
いる。5は正極合剤で、下記に示す炭素繊維を粉砕した
粉末85重量部に、フッ素樹脂結着剤15重量部を混合
したちの50mgを集電体3の上に充填、成型したもの
である。
In the figure, 1 is a battery case made of organic electrolyte-resistant stainless steel plate, 2 is a sealing plate made of the same material, and 3 is a positive electrode current collector made of stainless steel, which is spot welded to the inner surface of case 1. 4 is a metallic lithium negative electrode which is pressed onto the sealing plate 2. 5 is a positive electrode mixture, which is prepared by mixing 85 parts by weight of the powder obtained by pulverizing the carbon fiber shown below with 15 parts by weight of a fluororesin binder, and filling 50 mg of the mixture onto the current collector 3 and molding it. .

6は微孔性のポリプロピレン製セパレータ、7はポリプ
ロピレン製絶縁バッキングである。電解液には炭酸プロ
ピレンと1,2−ジメトキンエタンの等容積混合溶媒に
、過塩素酸リチウムを1モル/lの割合で溶解したもの
を用いた。評価試験は、充放電電流密度0.3mA/c
nr、充電終止電圧(炭素材からみると放電となる)2
.5V、放電終止電圧(同しく、炭素材からみて充電と
なる)2、OVの条件下で定電流充放電試験を行った。
6 is a microporous polypropylene separator, and 7 is a polypropylene insulating backing. The electrolytic solution used was one in which lithium perchlorate was dissolved at a ratio of 1 mol/l in a mixed solvent of equal volumes of propylene carbonate and 1,2-dimethquinethane. The evaluation test was conducted at a charge/discharge current density of 0.3 mA/c.
nr, end-of-charge voltage (discharge when viewed from the carbon material) 2
.. A constant current charging/discharging test was conducted under the conditions of 5V and a discharge end voltage (also considered as charging from the viewpoint of the carbon material) of 2.0V.

なお、この電池の寸法は直径20mm、総高1.6mm
である。
The dimensions of this battery are 20mm in diameter and 1.6mm in total height.
It is.

第1表に本実施例で用いた、ベンゼンと水素ノ混合体を
気相で熱分解させて鉄触媒粒子上に堆積成長させてえた
繊維状の炭素材の諸物性値および放電比容量を示した。
Table 1 shows the physical properties and specific discharge capacity of the fibrous carbon material used in this example, which was obtained by thermally decomposing a mixture of benzene and hydrogen in the gas phase and depositing it on iron catalyst particles. Ta.

第2図には各炭素材を用いた電池の第1表の放電比容量
に対応した放電曲線を示す。これらはいずれも10サイ
クル目のものである。
FIG. 2 shows discharge curves corresponding to the discharge specific capacities in Table 1 for batteries using each carbon material. These are all from the 10th cycle.

実施例2 実施例1で使用したコイン形電池を用い、同じ(ベンゼ
ンと水素の混合体を気相で熱分解させてニッケル触媒粒
子上に堆積成長させてえた繊維状の炭素材を用いたほか
は、実施例1と全く同じように構成した。
Example 2 The coin-shaped battery used in Example 1 was used, except that the same fibrous carbon material obtained by thermally decomposing a mixture of benzene and hydrogen in the gas phase and depositing it on nickel catalyst particles was used. was constructed in exactly the same manner as in Example 1.

充放電試験も実施例1と全く同じように行なった。A charge/discharge test was also conducted in exactly the same manner as in Example 1.

第  1  表 第  2  表 第1表および第2図から負極用材料には、電池B〜D、
つまりdo02か3.37〜3.45゜Lcは91〜1
92.Laは132〜400の範囲に物性値をもつ炭素
材が好ましいと言える。
Table 1 Table 2 From Table 1 and Figure 2, negative electrode materials include batteries B to D,
In other words, do02 or 3.37~3.45°Lc is 91~1
92. It can be said that a carbon material having a physical property value of La in the range of 132 to 400 is preferable.

第2表にこのときの炭素材の諸物性値および放電比容量
を示した。第3図には各電池の1サイクル目の充電曲線
を示す。なお、第3図には比較のため実施例1を代表し
て電池Cの1サイクル目の充電曲線を示す。第3図で見
るように、ニッケル触媒を用いると電解液の分解に対応
する電圧挙動がなく、より好ましい。また、放電比容量
から電池F−H,つまり負極用の材料には、d002が
3.39〜3.50.Lcは50〜170.Laは11
0〜360の範囲に物性値をもつ炭素材が好ましいと言
える。
Table 2 shows the physical property values and discharge specific capacity of the carbon material at this time. FIG. 3 shows the charging curve of each battery in the first cycle. Note that, for comparison, FIG. 3 shows the charging curve of the battery C in the first cycle as a representative of Example 1. As seen in FIG. 3, the use of a nickel catalyst is more preferable since there is no voltage behavior corresponding to the decomposition of the electrolyte. Also, from the discharge specific capacity, battery F-H, that is, the negative electrode material has d002 of 3.39 to 3.50. Lc is 50-170. La is 11
It can be said that carbon materials having physical property values in the range of 0 to 360 are preferable.

発明の効果 以上の説明から明らかなように、実施例1および2より
、非水電解液二次電池の負極材料に、X線広角回折法に
よる002面の面間隔(d002)が3.37Å以上3
.50A以下、C軸方向の結晶子の厚みLcか50A以
上200Å以下、a軸方向の結晶子の厚みLaが100
Å以上400λ以下の、炭化水素と水素の混合体を気相
で熱分解させて金属触媒粒子上に堆積成長させた炭素繊
維あるいはその粉砕物を用い、これに軽金属の活物質を
吸蔵させることにより、従来の金属リチウムを使用した
電池か有していた過放電かできない、デンドライトの形
成による内部ショートの懸念などの課題を解決すること
ができるものである。なお、実施例では炭化水素として
ヘンゼンを用いたか、メタンガスやプロパンガスでもよ
い。
Effects of the Invention As is clear from the above explanation, Examples 1 and 2 show that the negative electrode material of the non-aqueous electrolyte secondary battery has a 002 plane spacing (d002) of 3.37 Å or more as measured by X-ray wide-angle diffraction. 3
.. 50A or less, the crystallite thickness Lc in the C-axis direction is 50A or more and 200Å or less, the crystallite thickness La in the a-axis direction is 100
By using carbon fibers or pulverized products thereof, which are made by thermally decomposing a mixture of hydrocarbon and hydrogen in the gas phase and depositing and growing on metal catalyst particles, with a size of Å or more and 400λ or less, and by occluding a light metal active material into this. This solves the problems of conventional batteries using metallic lithium, such as the inability to over-discharge and concerns about internal short circuits due to the formation of dendrites. In the examples, Hensen was used as the hydrocarbon, but methane gas or propane gas may also be used.

また、実施例では金属触媒粒子に鉄およびニッケルを用
いたが、コバルトあるいはこれらの混合体でもよい。
Furthermore, although iron and nickel were used as the metal catalyst particles in the examples, cobalt or a mixture thereof may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるコイン形電池の縦断面
図、第2図は10サイクル目の放電特性の比較を示す図
、第3図は充電特性を示す図である。 1・・・ケース、2・・・封口板、3・・・正極集電体
、4・・・負極、5・・・正極、6・・・セパレータ、
7・・・絶縁バッキング。
FIG. 1 is a longitudinal cross-sectional view of a coin-shaped battery in an example of the present invention, FIG. 2 is a diagram showing a comparison of discharge characteristics at the 10th cycle, and FIG. 3 is a diagram showing charging characteristics. DESCRIPTION OF SYMBOLS 1... Case, 2... Sealing plate, 3... Positive electrode current collector, 4... Negative electrode, 5... Positive electrode, 6... Separator,
7...Insulating backing.

Claims (3)

【特許請求の範囲】[Claims] (1)充放電可能な正極と、非水電解液と、充放電可能
な負極とを備えた非水電解液二次電池において;上記負
極は、炭化水素と水素の混合体を気相で熱分解させて金
属触媒粒子上に堆積成長させた炭素質の繊維状あるいは
その粉砕物からなり、X線広角回折法による002面の
面間隔(d002)が3.37Å以上3.50Å以下、
c軸方向の結晶子の厚み(Lc)が50Å以上200Å
以下、a軸方向の結晶子の厚み(La)が100Å以上
400Å以下の材料に、軽金属の活物質を吸蔵させたも
のであることを特徴とする非水電解液二次電池。
(1) In a non-aqueous electrolyte secondary battery comprising a chargeable/dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable/dischargeable negative electrode; the negative electrode heats a mixture of hydrocarbon and hydrogen in the gas phase. Consisting of carbonaceous fibers that have been decomposed and deposited on metal catalyst particles or their pulverized products, the interplanar spacing (d002) of the 002 plane measured by X-ray wide-angle diffraction is 3.37 Å or more and 3.50 Å or less,
The crystallite thickness (Lc) in the c-axis direction is 50 Å or more and 200 Å
Hereinafter, a non-aqueous electrolyte secondary battery is characterized in that a light metal active material is occluded in a material having a crystallite thickness (La) of 100 Å or more and 400 Å or less in the a-axis direction.
(2)上記炭化水素は、ベンゼン、メタンおよびプロパ
ンからなる群から選ばれた少なくとも1つである特許請
求の範囲第1項記載の非水電解液二次電池。
(2) The nonaqueous electrolyte secondary battery according to claim 1, wherein the hydrocarbon is at least one selected from the group consisting of benzene, methane, and propane.
(3)上記金属触媒粒子は、鉄、ニッケルおよびコバル
トからなる群から選ばれた少なくとも1つである特許請
求の範囲第1項記載の非水電解液二次電池。
(3) The nonaqueous electrolyte secondary battery according to claim 1, wherein the metal catalyst particles are at least one selected from the group consisting of iron, nickel, and cobalt.
JP2090859A 1990-04-05 1990-04-05 Nonaqueous electrolyte secondary battery Pending JPH03289068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090859A JPH03289068A (en) 1990-04-05 1990-04-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090859A JPH03289068A (en) 1990-04-05 1990-04-05 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH03289068A true JPH03289068A (en) 1991-12-19

Family

ID=14010285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090859A Pending JPH03289068A (en) 1990-04-05 1990-04-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH03289068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
US5482797A (en) * 1993-02-16 1996-01-09 Sharp Kabushiki Kaisha Nonaqueous secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482797A (en) * 1993-02-16 1996-01-09 Sharp Kabushiki Kaisha Nonaqueous secondary battery
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same

Similar Documents

Publication Publication Date Title
EP0474183B1 (en) A secondary battery or cell with a non-aqueous electrolyte
CA2032137C (en) Carbonaceous electrodes for lithium cells
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
US5474861A (en) Electrode for non-aqueous electrolyte secondary battery
US20090098448A1 (en) Composite negative electrode active material for non-aqueous electrolyte secondary battery and method for preparing the same, and non-aqueous electrolyte secondary battery including the same
KR20070001212A (en) Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JPH04155776A (en) Nonaqueous electrolyte secondary battery
JP4085243B2 (en) Non-aqueous secondary battery
JP3727666B2 (en) Lithium secondary battery
JPH03289068A (en) Nonaqueous electrolyte secondary battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP2637305B2 (en) Lithium secondary battery
JPH03285273A (en) Nonaqueous electrolyte secondary battery
JPH03245473A (en) Non-aqueous solvent secondary cell
JPH11111297A (en) Lithium secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH04342958A (en) Negative electrode for battery with non-aqueous electrolyte
JPH0428174A (en) Nonaqueous electrolytic liquid secondary battery
JPH0521065A (en) Lithium secondary battery
JPH03134970A (en) Nonaqueous solvent secondary battery
JP2000156222A (en) Secondary battery
JP3024200B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery