JP4830178B2 - Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof - Google Patents

Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof Download PDF

Info

Publication number
JP4830178B2
JP4830178B2 JP2000168459A JP2000168459A JP4830178B2 JP 4830178 B2 JP4830178 B2 JP 4830178B2 JP 2000168459 A JP2000168459 A JP 2000168459A JP 2000168459 A JP2000168459 A JP 2000168459A JP 4830178 B2 JP4830178 B2 JP 4830178B2
Authority
JP
Japan
Prior art keywords
limn
licoo
positive electrode
linio
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000168459A
Other languages
Japanese (ja)
Other versions
JP2001351626A (en
Inventor
英夫 内野
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000168459A priority Critical patent/JP4830178B2/en
Publication of JP2001351626A publication Critical patent/JP2001351626A/en
Application granted granted Critical
Publication of JP4830178B2 publication Critical patent/JP4830178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池に関し、特に高率充放電サイクル特性の改善を図れる正極活物質の製造方法及びそれを用いた非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年、種々の電子機器の駆動用電源として小型電池、また環境問題、エネルギー問題等の観点から電気自動車用あるいは夜間電力貯蔵用の大型電池の開発が盛んに行われ、より高容量、高エネルギー密度で、経済性に優れた二次電池の実現が強く要望されている。これらの要望を満たす最も有望な二次電池として、非水電解液を用いたリチウム二次電池が挙げられる。
【0003】
従来、正極活物質としてLiCoO2 、LiNiO2 、あるいはLiMn2 4 、負極材料として炭素質材料を用いた非水電解液二次電池が既に実用化されている。中でも、電気自動車用途などに対しては、材料を多量に使用するため、正極活物質として資源的に豊富でかつ安価なLiMn2 4 を用いる非水電解液二次電池に対する期待が大きい。
【0004】
一方、正極活物質としてLiCoO2 あるいはLiNiO2 を用いた非水電解液二次電池は、比較的良好な充放電サイクル特性を有することが知られているが、他方正極活物質としてLiMn2 4 を用いた非水電解液二次電池の場合、他の2つの電池系と比較して充放電可能な理論容量が低いことに加え、充放電サイクル特性に難がある。
【0005】
LiCoO2 あるいはLiNiO2 が1グラム当たり274mAhの理論容量を有し、実使用においても1グラム当たり130〜160mAhの電気量を引き出せ、かつ500回以上の充放電が可能であるのに対し、LiMn2 4 は1グラム当たり148mAhの理論容量であり、実際に充放電可能な電気量は1グラム当たり100〜110mAh程度に止まっている。また充放電サイクルにおいても、LiMn2 4 は1グラム当たり10mA程度の充放電(ほぼ10時間率充放電、1/10CmA充放電)では、初期容量の80%までの容量維持のサイクル数としては300〜500程度が可能であるのに対し、電気自動車用途、特にハイブリッド車用途などで要求される比較的高率、例えば1グラム当たり100mA程度の充放電(ほぼ1時間率充放電、1CmA充放電)では、初期容量の80%を維持できるサイクル数はせいぜい数十回から百数十回程度となる。
【0006】
これらリチウム二次電池のサイクル特性改善手段として、特開平4−171660号公報や特開平5−82131号公報には、LiMn2 4 は充電時に結晶構造が収縮し、放電時には膨張し、一方LiCoO2 は逆に充電時に結晶構造が膨張し、放電時には収縮するという性質を利用して、これら二種類の活物質を混合して、電極内で相互に膨張と収縮を吸収しようという試みがなされている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記公報に開示された手段を講じても、粉体同士の混合であるため、均一に混合することが難しく、必ずしも満足すべき結果が得られないということと、特にLiMn2 4 活物質において、その劣化機構は明確ではないが、比較的低率での充放電ではLiMn2 4 へのリチウムの吸蔵、放出がスムーズに行われ、結晶構造に変化を及ぼさないが、比較的高率での充放電ではLiMn2 4 へのリチウムの吸蔵、放出が繰り返されることにより、特にリチウムの急速な放出(電池の充電)のたびに、結晶構造が徐々に破壊されていくと推定され、単に活物質の膨張、収縮を緩和するだけでは、サイクル特性を向上させることができないという問題があった。
【0008】
本発明は、上記従来の問題点に鑑み、LiMn2 4 とLiCoO2 あるいはLiNiO2 との混合物を正極活物質とし、かつ充電時のLiMn2 4 の結晶構造の破壊を防止してLiMn2 4 の高率充放電サイクル特性の改善を図ることができる非水電解液二次電池及びその正極活物質の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の非水電解液二次電池は、LiCoO2 もしくはLiNiO2 とリチウム化合物とマンガン化合物とを混合・熱処理することによって得られた、LiCoO2 もしくはLiNiO2 とLiMn2 4 との混合物を正極活物質とした正極と、負極と、非水電解液とから成るものである。
【0010】
LiMn2 4 に、LiCoO2 もしくはLiNiO2 を均一に混合することによって、高率での充電の際に、まず大電流負荷でLiCoO2 もしくはLiNiO2 を充電し、その後小電流負荷でLiMn2 4 を充電するという形態が取られ、LiMn2 4 の結晶構造の破壊を防止してLiMn2 4 の高率充放電サイクル特性の改善を図ることができる。しかるに、LiMn2 4 とLiCoO2 もしくはLiNiO2 とを、その粒子同士が均一に接触するように混合するのは、それぞれ独立した粉末を混合しただけでは得られず、本発明のように、LiMn2 4 を高温で合成する際に、予め合成したLiCoO2 もしくはLiNiO2 をリチウム化合物とマンガン化合物と同時に混合することによってはじめて得られ、上記作用が得られるのである。
【0011】
別の形態として、LiCoO2 もしくはLiNiO2 の原料とLiMn2 4 の原料を同時に混合し、高温で加熱処理し、LiCoO2 もしくはLiNiO2 とLiMn2 4 の均一な混合物を得ることも考えられるが、そうするとLiMn2 4 は比較的低温から合成が始まり、LiCoO2 もしくはLiNiO2 は比較的高温から合成が開始されるため、実際には均一な混合とはならない。また、例えばLiMn2 4 の原料とLiCoO2 の原料を混合して加熱した場合、LiMn2-X Cox 4 の生成が起こってしまう。
【0012】
負極は、特に限定されるものではないが、リチウム金属、リチウム合金、炭素質材料、リチウムを吸蔵、放出する化合物、もしくはそれらの混合物が用いられる。
【0013】
電解液についても、特に限定されるものではないが、LiPF6 、LiClO4 、LiBF4 、LiCF3 SO3 、LiN(CF3 SO2 2 などの無機塩の一種もしくは二種以上を、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトンなどの環状エステル、ジエチルカーボネート、エチルメチルカーボネート、メチルアセテート、エチルアセテート、メチルプロピオネート、エチルプロピオネートなどの直鎖状エステル、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、グライム、1,3−ジオキソフランなどのエーテルからなる群から選ばれた一種もしくは二種以上の溶媒に溶解させたものが好適に用いられる。
【0014】
また、本発明の非水電解液二次電池の正極活物質の製造方法は、予めリチウム化合物とコバルト化合物を混合し加熱処理することにより得られたLiCoO2 もしくはリチウム化合物とニッケル化合物を混合し加熱処理することにより得られたLiNiO2 の一定量と、リチウム化合物とマンガン化合物をリチウムとマンガンのモル比が概略1:2となるように混合した一定量とを配合し、500℃から900℃の酸化雰囲気で熱処理するものであり、上記のようにLiMn2 4 にLiCoO2 もしくはLiNiO2 が均一に混合された正極活物質を得ることができる。
【0015】
熱処理によって得られた混合物のLiMn2 4 とLiCoO2 の混合比、もしくはLiMn2 4 とLiNiO2 の混合比は、サイクル特性を重視する用途か、コストを重視する用途かによって決定されるが、モル比で9:1〜6:4の範囲にするのが好ましい。LiCoO2 もしくはLiNiO2 の混合モル比が10%未満ではサイクル特性改善の効果が得られず、50%以上ではサイクル特性改善の効果が変わらずコスト高となってしまう。
【0016】
また、LiMn2 4 の原料のリチウム化合物は、特に限定されるものではないが、LiOH、Li2 CO3 、LiNO3 からなる群より選ばれた一つであることが好ましい。中でも、LiOH又はLi2 CO3 が好ましい。
【0017】
また、LiMn2 4 の原料のマンガン化合物も、特に限定されるものではないが、MnO2 、Mn2 3 、Mn3 4 、Mn(OH)2 、Mn(NO3 2 からなる群より選ばれた一つであることが好ましい。
【0018】
【発明の実施の形態】
以下、本発明の一実施形態の非水電解液二次電池について、図1〜図6を参照して説明する。
【0019】
電池の構成を示す図1において、1は正極で、正極活物質と導電剤としてのカーボンブラックと結着剤としての四フッ化エチレンの水溶性ディスパージョン液を、重量比90:3:7で混合したものを、厚み20μmのアルミニウム箔集電体の両面に塗着、乾燥し、圧延した後、所定の寸法に切断し、アルミニウム製の正極リード板2を超音波接合したものである。なお、結着剤の四フッ化エチレンの水溶性ディスパージョンの混合比は、その固形分で計算している。
【0020】
3は負極で、人造黒鉛を活物質とし、スチレンブタジエンゴム系結着剤(SBR)と重量比で97:3の割合で混合したものを、厚み14μmの銅箔集電体の両面に塗着、乾燥し、圧延した後所定の寸法に切断し、銅製の負極リード板4をスポット溶接したものである。負極の場合も、結着剤SBRの混合比率は、その固形分で計算している。
【0021】
5はポリエチレン樹脂フイルムからなるセパレータで、正極1と負極3をセパレータ5を介して渦巻き状に巻回して極板群が構成されている。このこの極板群をその上下それぞれにポリエチレン製の絶縁板6、7を配設してステンレス製の電池ケース8に挿入し、正極リード板2を封口板10に、負極リード板4を電池ケース8の底部にそれぞれ溶接した後、電解液を注入し、ガスケット9を介して電池を封口して電池が構成されている。電解液は、エチレンカーボネートとジエチルカーボネートとを体積比で1:1に混合した混合溶媒に、溶質として6フッ化燐酸リチウムを1mol/dm3 の濃度に溶解したものを用いている。この電池の寸法は、直径33mm、高さ61.5mmである。11は電池の正極端子、負極端子は電池ケース8がこれを兼ねている。
【0022】
以下、上記構成の電池の正極1における正極活物質の構成に関して、各実施例を比較例とともに詳細に説明する。
【0023】
(実施例1)
炭酸リチウムと炭酸コバルトをLi:Co=1:1の割合で混合し、空気中900℃で6時間熱処理して合成したLiCoO2 と、LiMn2 4 の原料である炭酸リチウムと電解二酸化マンガン(MnO2 )をLi:Mn=1:2での割合で混合したLiMn混合物とを、モル比9:1、7:3、6:4、5:5で配合したものを、大気中800℃で20時間熱処理して、LiCoO2 とLiMn2 4 の混合物を合成した。これらの混合物を正極活物質として、表1に示す電池A、B、C、Dを作製した。
【0024】
【表1】

Figure 0004830178
(比較例1)
炭酸リチウムと二酸化マンガンを、Li:Mn=1:2の割合で混合し、空気中800℃で20時間熱処理してLiMn2 4 を合成し、これを正極活物質として比較例1の電池を作製した。
【0025】
(比較例2)
炭酸リチウムと炭酸コバルトを、Li:Co=1:1の割合で混合したものを空気中900℃で6時間熱処理してLiCoO2 を合成し、これを正極活物質として比較例2の電池を作製した。
【0026】
(比較例3)
炭酸リチウムと炭酸ニッケルを、Li:Ni=1:1の割合で混合したものを空気中900℃で6時間熱処理してLiNiO2 を合成し、これを正極活物質として比較例3の電池を作製した。
【0027】
(比較例4)
炭酸リチウムと電解二酸化マンガンを、Li:Mn=1:2の割合で混合したものを空気中800℃で20時間熱処理して合成したLiMn2 4 と、比較例2で合成したLiCoO2 とをモル比で7:3に配合したものを正極活物質として比較例4の電池を作製した。
【0028】
(評価試験)
比較例1〜3の電池の評価試験として、20℃において充放電電流を250mA(0.1CmA相当)及び2500mA(1CmA相当)とし、充電終止電圧4.3V、放電終止電圧3.0Vの条件下で充放電サイクル試験を行った。充放電サイクルに伴う放電容量を図2に示す。
【0029】
図2から明らかなように、LiCoO2 を活物質として用いた比較例2の電池及びLiNiO2 を活物質として用いた比較例3の電池では、充放電電流が0.1CmAと1CmAでサイクル数に大きな差は見られないが、LiMn2 4 を単独で活物質として用いた比較例1の電池は、比較的高率での1CmA放電で、比較的低率での0.1CmA放電に対してサイクル劣化が大きいことがわかる。これは、比較的高率での充放電では、リチウムの吸蔵、放出によって結晶構造が破壊されることによると推定される。
【0030】
次に、本実施例1の電池と比較例1、2、4の電池について、20℃において充放電電流を2500mA(1CmA相当)とし、充電終止電圧4.3V、放電終止電圧3.0Vの条件下で充放電サイクル試験を行った。充放電サイクルに伴う放電容量を図3に示す。
【0031】
図3から明らかなように、LiMn2 4 とLiCoO2 の混合物を活物質として用いた本実施例1の電池は、LiMn2 4 を単独で用いた比較例1の電池、あるいはLiMn2 4 とLiCoO2 を単に混合しただけの比較例4の電池に比べ、サイクル特性が優れている。
【0032】
これは単に混合しただけのものと比べ、本実施例ではLiMn2 4 粒子とLiCoO2 粒子が均一に混合、接触していることで、比較的高率の充電時に大電流負荷はLiCoO2 が、その後の小電流負荷はLiMn2 4 が担って充電されることで、LiMn2 4 の結晶構造の破壊が抑制されたことによると考えられる。
【0033】
また、同図からわかるように、LiCoO2 の比率を増加させると容量が増大し、サイクル数が増える。これを明確にするため、図4にLiMn2 4 :LiCoO2 の比率を変えたときの初期容量の80%維持率におけるサイクル数を示す。図4から、上記比率が6:4でサイクル数が一定となり、それ以上ではサイクル数は変わらない。このことから、上記比率が9:1〜6:4の範囲でサイクル特性改善の効果があることがわかる。
【0034】
(実施例2)
炭酸リチウムと炭酸ニッケルをLi:Ni=1:1の割合で混合し、空気中900℃で6時間熱処理して合成したLiNiO2 と、LiMn2 4 の原料である炭酸リチウムとMn2 3 をLi:Mn=1:2での割合で混合したLiMn混合物とを、モル比9:1、7:3、6:4、5:5で配合したものを、大気中800℃で20時間熱処理して、LiNiO2 とLiMn2 4 の混合物を合成した。これらの混合物を正極活物質として、表2に示す電池E、F、G、Hを作製した。
【0035】
【表2】
Figure 0004830178
(比較例5)
比較例1で合成したLiMn2 4 と、比較例3で合成したLiNiO2 とをモル比で7:3に配合して得られた混合物を正極活物質として比較例5の電池を作製した。
【0036】
(評価試験)
本実施例2の電池と比較例1、3、5の電池について、実施例1の場合と同様に、20℃において充放電電流を1CmA相当とし、充電終止電圧4.3V、放電終止電圧3.0Vの条件下で充放電サイクル試験を行った。充放電サイクルに伴う放電容量を図5に示す。なお、LiMn2 4 :LiNiO2 の比率を変えたときの初期容量の80%維持率におけるサイクル数については、LiCoO2 を用いた場合と同様の結果が得られている。
【0037】
図5から明らかなように、LiMn2 4 とLiNiO2 の混合物を活物質として用いた本実施例2の電池は、LiMn2 4 を単独で用いた比較例1の電池、あるいはLiMn2 4 とLiNiO2 を単に混合しただけの比較例5の電池に比べ、サイクル特性が優れている。
【0038】
また、実施例1と同様に、LiNiO2 を用いる本実施例においても、LiMn2 4 に対するLiNiO2 の比率を増加させると容量が増大し、サイクル数も多くなる。但し、上記比率が6:4を越えると、容量は増えるがサイクル数は一定となる。このことから、上記比率が9:1〜6:4の範囲でサイクル特性改善の効果があることがわかる。
【0039】
以上のことから、LiMn2 4 とLiCoO2 もしくはLiNiO2 とのモル比が9:1〜6:4の範囲で配合した混合物を活物質として用いることにより充放電サイクル特性に優れた電池を得ることができることがわかる。
【0040】
(実施例3)
LiOHと炭酸コバルトから合成されたLiCoO2 と、LiOHとMnO2 とをLi:Mn=1:2の割合で混合したLiMn混合物を、Mn:Co=7:3のモル比で配合したものを、空気中で熱処理温度を変えて合成し、その合成温度の異なる活物質混合物を合成し、表3の5種類の電池を作製した。
【0041】
【表3】
Figure 0004830178
(評価試験)
上記実施例の場合と同様に、20℃において充放電電流を1CmA相当とし、充放電サイクル試験を行い、初期容量の80%維持率におけるサイクル数を求めた。その結果を図6に示す。
【0042】
図6から明らかなように、500℃〜900℃の範囲は他の領域に比べサイクル数が多いことがわかる。これは均一に混合されたLiMn2 4 とLiCoO2 の活物質粒子がこの温度領域で熱処理されることによって良好な接触状態が得られることによると推定される。以上のことから、上記温度範囲で合成した活物質は優れたサイクル特性を発揮する。
【0043】
なお、上記実施例では、リチウム化合物としてLi2 CO3 、LiOHを用いたが、LiNO3 を用いた場合でも、またマンガン化合物としてMnO2 、Mn2 3 、Mn3 4 、Mn(OH)2 もしくはMn(NO3 2 を用いた場合でも、同様の効果が得られることが確認されている。
【0044】
【発明の効果】
本発明の非水電解液二次電池によれば、以上の説明から明らかなように、LiCoO2 もしくはLiNiO2 とリチウム化合物とマンガン化合物とを混合・熱処理することによって得られた、LiCoO2 もしくはLiNiO2 とLiMn2 4 との混合物を正極活物質とした正極と、負極と、非水電解液とから成るので、LiMn2 4 に、LiCoO2 もしくはLiNiO2 が均一に混合され、それによって高率での充電の際にまず大電流負荷でLiCoO2 もしくはLiNiO2 を充電し、その後小電流負荷でLiMn2 4 が充電されるという形態が取られるため、LiMn2 4 の結晶構造の破壊を防止してLiMn2 4 の高率充放電サイクル特性の改善を図ることができる。
【0045】
また、本発明の非水電解液二次電池の正極活物質の製造方法によれば、予めリチウム化合物とコバルト化合物を混合し加熱処理することにより得られたLiCoO2 もしくはリチウム化合物とニッケル化合物を混合し加熱処理することにより得られたLiNiO2 の一定量と、リチウム化合物とマンガン化合物をリチウムとマンガンのモル比が概略1:2となるように混合した一定量とを配合し、500℃から900℃の酸化雰囲気で熱処理するので、上記のようにLiMn2 4 にLiCoO2 もしくはLiNiO2 が均一に混合された正極活物質を得ることができ、上記効果を奏する正極活物質が得られる。
【図面の簡単な説明】
【図1】本発明の非水電解液二次電池を適用した一実施形態の円筒型電池の縦断面図である。
【図2】同実施形態における比較例の電池のサイクル寿命特性図である。
【図3】同実施形態における実施例1の電池のサイクル寿命特性図である。
【図4】同実施形態における実施例1の電池のMn/Co比率とサイクル数の関係を示す特性図である。
【図5】同実施形態における実施例2の電池のサイクル寿命特性図である。
【図6】同実施形態における実施例3の電池の熱処理温度とサイクル数の関係を示す特性図である。
【符号の説明】
1 正極
3 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a positive electrode active material capable of improving high rate charge / discharge cycle characteristics and a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
In recent years, small batteries as driving power sources for various electronic devices, and large batteries for electric vehicles or nighttime power storage have been actively developed from the viewpoint of environmental problems, energy problems, etc., resulting in higher capacity and higher energy density. Therefore, there is a strong demand for the realization of an economical secondary battery. The most promising secondary battery that satisfies these demands is a lithium secondary battery using a non-aqueous electrolyte.
[0003]
Conventionally, non-aqueous electrolyte secondary batteries using LiCoO 2 , LiNiO 2 or LiMn 2 O 4 as a positive electrode active material and a carbonaceous material as a negative electrode material have already been put into practical use. In particular, for electric vehicle applications and the like, since a large amount of material is used, there is high expectation for a non-aqueous electrolyte secondary battery using LiMn 2 O 4 that is resource-rich and inexpensive as a positive electrode active material.
[0004]
On the other hand, a nonaqueous electrolyte secondary battery using LiCoO 2 or LiNiO 2 as a positive electrode active material is known to have relatively good charge / discharge cycle characteristics, while LiMn 2 O as a positive electrode active material. In the case of the non-aqueous electrolyte secondary battery using 4 , the charge / discharge cycle characteristics are difficult in addition to the low theoretical capacity that can be charged / discharged compared to the other two battery systems.
[0005]
LiCoO 2 or LiNiO 2 has a theoretical capacity of 274 mAh per gram, and even in actual use, it can draw 130 to 160 mAh of electricity per gram and can be charged and discharged 500 times or more, while LiMn 2 O 4 has a theoretical capacity of 148 mAh per gram, and the amount of electricity that can actually be charged and discharged is only about 100 to 110 mAh per gram. Also in the charge / discharge cycle, LiMn 2 O 4 has a charge / discharge rate of about 10 mA per gram (almost 10 hour rate charge / discharge, 1/10 CmA charge / discharge). While it can be about 300-500, it is a relatively high rate required for electric vehicle applications, particularly hybrid vehicle applications, for example, charge / discharge of about 100 mA per gram (almost 1 hour charge / discharge, 1 CmA charge / discharge) ), The number of cycles in which 80% of the initial capacity can be maintained is at most several tens to hundreds of tens.
[0006]
As means for improving the cycle characteristics of these lithium secondary batteries, JP-A-4-171660 and JP-A-5-82131 disclose that LiMn 2 O 4 has a crystal structure that contracts during charging and expands during discharge, while LiCoO On the other hand, by utilizing the property that the crystal structure expands during charging and contracts during discharging, an attempt has been made to mix these two types of active materials and absorb expansion and contraction in the electrode. Yes.
[0007]
[Problems to be solved by the invention]
However, even taking steps disclosed in the above publication, since a mixed powder with each other, uniformly mixed it is difficult to, and it necessarily satisfactory results are not obtained, in particular LiMn 2 O 4 active The degradation mechanism of the substance is not clear, but charging and discharging at a relatively low rate smoothly absorbs and desorbs lithium into and from LiMn 2 O 4 and does not change the crystal structure. In charge and discharge at a high rate, it is estimated that the crystal structure is gradually destroyed, especially when lithium is rapidly released (battery charge) by repeatedly inserting and extracting lithium into and from LiMn 2 O 4 . However, there is a problem that the cycle characteristics cannot be improved simply by relaxing the expansion and contraction of the active material.
[0008]
The present invention is the light of the conventional problems, LiMn 2 O 4 and a mixture of LiCoO 2 or LiNiO 2 as the positive electrode active material, and to prevent the destruction of the crystal structure of LiMn 2 O 4 during charging LiMn 2 and to provide a non-aqueous electrolyte secondary battery it is possible to improve the high rate charge-discharge cycle characteristics of the O 4 and a manufacturing method of its positive electrode active material.
[0009]
[Means for Solving the Problems]
The non-aqueous electrolyte secondary battery of the present invention is a mixture of LiCoO 2 or LiNiO 2 and LiMn 2 O 4 obtained by mixing and heat-treating LiCoO 2 or LiNiO 2 with a lithium compound and a manganese compound. It comprises a positive electrode as an active material, a negative electrode, and a non-aqueous electrolyte.
[0010]
By uniformly mixing LiCoO 2 or LiNiO 2 with LiMn 2 O 4 , when charging at a high rate, LiCoO 2 or LiNiO 2 is first charged with a large current load, and then LiMn 2 O with a small current load. 4 form of charges are taken, it is possible to improve the high rate charge-discharge cycle characteristics of the LiMn 2 O 4 to prevent destruction of the crystal structure of LiMn 2 O 4. However, mixing LiMn 2 O 4 and LiCoO 2 or LiNiO 2 so that the particles are in uniform contact with each other cannot be obtained only by mixing independent powders. When 2 O 4 is synthesized at a high temperature, it can be obtained only by mixing LiCoO 2 or LiNiO 2 synthesized in advance at the same time with the lithium compound and the manganese compound, and the above-described effect can be obtained.
[0011]
As another form, it is also conceivable that a LiCoO 2 or LiNiO 2 raw material and a LiMn 2 O 4 raw material are simultaneously mixed and heat-treated at a high temperature to obtain a uniform mixture of LiCoO 2 or LiNiO 2 and LiMn 2 O 4. However, since LiMn 2 O 4 starts to be synthesized from a relatively low temperature and LiCoO 2 or LiNiO 2 starts to be synthesized from a relatively high temperature, the mixing is not actually uniform. For example, when a LiMn 2 O 4 raw material and a LiCoO 2 raw material are mixed and heated, LiMn 2−X Co x O 4 is generated.
[0012]
The negative electrode is not particularly limited, and lithium metal, a lithium alloy, a carbonaceous material, a compound that absorbs and releases lithium, or a mixture thereof is used.
[0013]
The electrolytic solution is not particularly limited, but one or more inorganic salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 are used as propylene carbonate. , Cyclic esters such as ethylene carbonate, vinylene carbonate, γ-butyrolactone, linear esters such as diethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, 1,2-dimethoxyethane , 2-methyltetrahydrofuran, glyme, 1,3-dioxofuran, or the like dissolved in one or more solvents selected from the group consisting of ethers is preferably used.
[0014]
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a method of mixing LiCoO 2 obtained by previously mixing a lithium compound and a cobalt compound and heat-treating, or mixing and heating a lithium compound and a nickel compound. A certain amount of LiNiO 2 obtained by the treatment and a certain amount of a lithium compound and a manganese compound mixed so that the molar ratio of lithium to manganese is approximately 1: 2, Heat treatment is performed in an oxidizing atmosphere, and a positive electrode active material in which LiCoO 2 or LiNiO 2 is uniformly mixed with LiMn 2 O 4 as described above can be obtained.
[0015]
The mixing ratio of LiMn 2 O 4 and LiCoO 2 or the mixing ratio of LiMn 2 O 4 and LiNiO 2 in the mixture obtained by the heat treatment is determined depending on whether the use is focused on the cycle characteristics or the cost. The molar ratio is preferably 9: 1 to 6: 4. If the mixing molar ratio of LiCoO 2 or LiNiO 2 is less than 10%, the effect of improving the cycle characteristics cannot be obtained, and if it is 50% or more, the effect of improving the cycle characteristics does not change and the cost is increased.
[0016]
The lithium compound as a raw material of LiMn 2 O 4 is not particularly limited, but is preferably one selected from the group consisting of LiOH, Li 2 CO 3 and LiNO 3 . Among these, LiOH or Li 2 CO 3 is preferable.
[0017]
Also, the manganese compound as a raw material of LiMn 2 O 4 is not particularly limited, but is a group consisting of MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Mn (OH) 2 , Mn (NO 3 ) 2. It is preferable that it is one selected more.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIGS.
[0019]
In FIG. 1 showing the structure of the battery, 1 is a positive electrode, and a water-soluble dispersion liquid of carbon black as a positive electrode active material, a conductive agent and ethylene tetrafluoride as a binder at a weight ratio of 90: 3: 7. The mixed material is applied to both sides of an aluminum foil current collector having a thickness of 20 μm, dried, rolled, cut into a predetermined size, and an aluminum positive electrode lead plate 2 is ultrasonically bonded. In addition, the mixing ratio of the water-soluble dispersion of ethylene tetrafluoride as a binder is calculated by the solid content.
[0020]
3 is a negative electrode, which is made of artificial graphite as an active material and mixed with a styrene butadiene rubber binder (SBR) at a weight ratio of 97: 3 on both surfaces of a copper foil current collector having a thickness of 14 μm. After drying, rolling and cutting to a predetermined size, the negative electrode lead plate 4 made of copper is spot welded. Also in the case of the negative electrode, the mixing ratio of the binder SBR is calculated by the solid content.
[0021]
5 is a separator made of a polyethylene resin film, and the positive electrode 1 and the negative electrode 3 are spirally wound through the separator 5 to constitute an electrode plate group. The electrode plate group is provided with polyethylene insulating plates 6 and 7 on the upper and lower sides thereof and inserted into a stainless steel battery case 8. The positive electrode lead plate 2 is used as a sealing plate 10 and the negative electrode lead plate 4 is used as a battery case. After being welded to the bottom of each of the batteries 8, an electrolytic solution is injected, and the battery is sealed through the gasket 9 to constitute the battery. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate as a solute at a concentration of 1 mol / dm 3 in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1 is used. The dimensions of this battery are a diameter of 33 mm and a height of 61.5 mm. 11 is the positive terminal of the battery, and the battery case 8 is the negative terminal.
[0022]
Hereinafter, with respect to the configuration of the positive electrode active material in the positive electrode 1 of the battery having the above configuration, each example will be described in detail together with comparative examples.
[0023]
Example 1
LiCoO 2 synthesized by mixing lithium carbonate and cobalt carbonate at a ratio of Li: Co = 1: 1 and heat-treated in air at 900 ° C. for 6 hours, lithium carbonate as a raw material of LiMn 2 O 4 and electrolytic manganese dioxide ( MnO 2 ) and a LiMn mixture mixed at a ratio of Li: Mn = 1: 2 were blended at a molar ratio of 9: 1, 7: 3, 6: 4, 5: 5 at 800 ° C. in the atmosphere. Heat treatment was performed for 20 hours to synthesize a mixture of LiCoO 2 and LiMn 2 O 4 . Using these mixtures as positive electrode active materials, batteries A, B, C, and D shown in Table 1 were produced.
[0024]
[Table 1]
Figure 0004830178
(Comparative Example 1)
Lithium carbonate and manganese dioxide were mixed at a ratio of Li: Mn = 1: 2, and heat-treated in air at 800 ° C. for 20 hours to synthesize LiMn 2 O 4. Using this as a positive electrode active material, the battery of Comparative Example 1 was prepared. Produced.
[0025]
(Comparative Example 2)
LiCoO 2 was synthesized by heat-treating a mixture of lithium carbonate and cobalt carbonate at a ratio of Li: Co = 1: 1 in air at 900 ° C. for 6 hours, and using this as a positive electrode active material, a battery of Comparative Example 2 was produced. did.
[0026]
(Comparative Example 3)
A mixture of lithium carbonate and nickel carbonate in a ratio of Li: Ni = 1: 1 was heat-treated in air at 900 ° C. for 6 hours to synthesize LiNiO 2 , and this was used as a positive electrode active material to produce a battery of Comparative Example 3. did.
[0027]
(Comparative Example 4)
LiMn 2 O 4 synthesized by heat-treating lithium carbonate and electrolytic manganese dioxide mixed at a ratio of Li: Mn = 1: 2 in air at 800 ° C. for 20 hours, and LiCoO 2 synthesized in Comparative Example 2 A battery of Comparative Example 4 was produced using a mixture of 7: 3 in molar ratio as the positive electrode active material.
[0028]
(Evaluation test)
As an evaluation test of the batteries of Comparative Examples 1 to 3, the charge / discharge current was set to 250 mA (equivalent to 0.1 CmA) and 2500 mA (equivalent to 1 CmA) at 20 ° C., and the charge end voltage was 4.3 V and the discharge end voltage was 3.0 V. A charge / discharge cycle test was conducted. The discharge capacity accompanying the charge / discharge cycle is shown in FIG.
[0029]
As is clear from FIG. 2, in the battery of Comparative Example 2 using LiCoO 2 as the active material and the battery of Comparative Example 3 using LiNiO 2 as the active material, the charge / discharge current is set to the number of cycles at 0.1 CmA and 1 CmA. Although there is no significant difference, the battery of Comparative Example 1 using LiMn 2 O 4 alone as an active material is 1 CmA discharge at a relatively high rate, and 0.1 CmA discharge at a relatively low rate. It can be seen that the cycle deterioration is large. It is presumed that this is due to the destruction of the crystal structure due to insertion and extraction of lithium in charging and discharging at a relatively high rate.
[0030]
Next, for the battery of Example 1 and the batteries of Comparative Examples 1, 2, and 4, the charge / discharge current was 2500 mA (corresponding to 1 CmA) at 20 ° C., and the charge end voltage was 4.3 V and the discharge end voltage was 3.0 V. A charge / discharge cycle test was performed below. The discharge capacity accompanying the charge / discharge cycle is shown in FIG.
[0031]
As is clear from FIG. 3, the battery of Example 1 using a mixture of LiMn 2 O 4 and LiCoO 2 as an active material is the battery of Comparative Example 1 using LiMn 2 O 4 alone, or LiMn 2 O. Compared with the battery of Comparative Example 4 in which 4 and LiCoO 2 are simply mixed, the cycle characteristics are excellent.
[0032]
It simply compared with merely mixing, LiMn 2 O 4 particles and LiCoO 2 particles uniformly mixed in the present embodiment, by contacting a relatively high rate of large current load during charging LiCoO 2 is The subsequent small current load is thought to be due to the fact that LiMn 2 O 4 is charged and charged, and thus the destruction of the crystal structure of LiMn 2 O 4 is suppressed.
[0033]
As can be seen from the figure, increasing the LiCoO 2 ratio increases the capacity and the number of cycles. In order to clarify this, FIG. 4 shows the number of cycles at an 80% maintenance ratio of the initial capacity when the ratio of LiMn 2 O 4 : LiCoO 2 is changed. From FIG. 4, the number of cycles is constant when the ratio is 6: 4, and the number of cycles does not change beyond that. From this, it can be seen that there is an effect of improving the cycle characteristics when the ratio is in the range of 9: 1 to 6: 4.
[0034]
(Example 2)
LiNiO 2 synthesized by mixing lithium carbonate and nickel carbonate at a ratio of Li: Ni = 1: 1 and heat-treating in air at 900 ° C. for 6 hours, and lithium carbonate and Mn 2 O 3 as raw materials of LiMn 2 O 4 And LiMn mixture mixed at a ratio of Li: Mn = 1: 2 at a molar ratio of 9: 1, 7: 3, 6: 4, 5: 5 were heat-treated at 800 ° C. in the atmosphere for 20 hours. Thus, a mixture of LiNiO 2 and LiMn 2 O 4 was synthesized. Using these mixtures as positive electrode active materials, batteries E, F, G, and H shown in Table 2 were produced.
[0035]
[Table 2]
Figure 0004830178
(Comparative Example 5)
A battery of Comparative Example 5 was produced using a mixture obtained by blending LiMn 2 O 4 synthesized in Comparative Example 1 and LiNiO 2 synthesized in Comparative Example 3 at a molar ratio of 7: 3 as a positive electrode active material.
[0036]
(Evaluation test)
For the battery of this Example 2 and the batteries of Comparative Examples 1, 3, and 5, as with Example 1, the charge / discharge current is equivalent to 1 CmA at 20 ° C., the charge end voltage is 4.3 V, and the discharge end voltage is 3. A charge / discharge cycle test was performed under the condition of 0V. The discharge capacity accompanying the charge / discharge cycle is shown in FIG. Incidentally, LiMn 2 O 4: For the number of cycles in 80% retention of the initial volume when changing the ratio of LiNiO 2, similar results as in the case of using a LiCoO 2 is obtained.
[0037]
As is clear from FIG. 5, the battery of Example 2 using a mixture of LiMn 2 O 4 and LiNiO 2 as the active material is the battery of Comparative Example 1 using LiMn 2 O 4 alone, or LiMn 2 O. Compared with the battery of Comparative Example 5 in which 4 and LiNiO 2 are simply mixed, the cycle characteristics are excellent.
[0038]
Further, in the same manner as in Example 1, in this embodiment using LiNiO 2, increasing the ratio of LiNiO 2 with respect to LiMn 2 O 4 volume increases, be numerous cycles. However, when the ratio exceeds 6: 4, the capacity increases but the number of cycles becomes constant. From this, it can be seen that there is an effect of improving the cycle characteristics when the ratio is in the range of 9: 1 to 6: 4.
[0039]
From the above, a battery having excellent charge / discharge cycle characteristics is obtained by using, as an active material, a mixture in which the molar ratio of LiMn 2 O 4 and LiCoO 2 or LiNiO 2 is in the range of 9: 1 to 6: 4. You can see that
[0040]
(Example 3)
LiCoO 2 synthesized from LiOH and cobalt carbonate, and LiMn mixture obtained by mixing LiOH and MnO 2 at a ratio of Li: Mn = 1: 2, blended at a molar ratio of Mn: Co = 7: 3, Synthesis was carried out by changing the heat treatment temperature in air, and active material mixtures having different synthesis temperatures were synthesized to produce five types of batteries shown in Table 3.
[0041]
[Table 3]
Figure 0004830178
(Evaluation test)
As in the case of the above example, the charge / discharge current was set to be equivalent to 1 CmA at 20 ° C., the charge / discharge cycle test was performed, and the number of cycles at an 80% maintenance rate of the initial capacity was obtained. The result is shown in FIG.
[0042]
As is apparent from FIG. 6, the range of 500 ° C. to 900 ° C. has a larger number of cycles than the other regions. It is presumed that this is because a good contact state can be obtained by heat-treating uniformly mixed LiMn 2 O 4 and LiCoO 2 active material particles in this temperature region. From the above, the active material synthesized in the above temperature range exhibits excellent cycle characteristics.
[0043]
In the above examples, Li 2 CO 3 and LiOH were used as the lithium compounds, but even when LiNO 3 was used, the manganese compounds were MnO 2 , Mn 2 O 3 , Mn 3 O 4 , and Mn (OH). Even when 2 or Mn (NO 3 ) 2 is used, it has been confirmed that the same effect can be obtained.
[0044]
【The invention's effect】
According to the non-aqueous electrolyte secondary battery of the present invention, as is apparent from the above description, it was obtained by mixing and heat treatment and LiCoO 2 or LiNiO 2 and lithium compound and manganese compound, LiCoO 2 or LiNiO 2 is composed of a positive electrode using a mixture of LiMn 2 O 4 as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte, so that LiCoO 2 or LiNiO 2 is uniformly mixed with LiMn 2 O 4 , thereby When charging at a high rate, LiCoO 2 or LiNiO 2 is first charged with a large current load, and then LiMn 2 O 4 is charged with a small current load. Therefore, the crystal structure of LiMn 2 O 4 is destroyed. Thus, the high rate charge / discharge cycle characteristics of LiMn 2 O 4 can be improved.
[0045]
In addition, according to the method for producing a positive electrode active material of a non-aqueous electrolyte secondary battery of the present invention, LiCoO 2 obtained by previously mixing a lithium compound and a cobalt compound and heat-treating, or mixing a lithium compound and a nickel compound Then, a certain amount of LiNiO 2 obtained by heat treatment and a certain amount obtained by mixing a lithium compound and a manganese compound so that the molar ratio of lithium and manganese is approximately 1: 2 are blended, and 500 to 900 ° C. Since heat treatment is performed in an oxidizing atmosphere at 0 ° C., a positive electrode active material in which LiCoO 2 or LiNiO 2 is uniformly mixed with LiMn 2 O 4 as described above can be obtained, and a positive electrode active material exhibiting the above effects can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment to which a nonaqueous electrolyte secondary battery of the present invention is applied.
FIG. 2 is a cycle life characteristic diagram of a battery of a comparative example in the embodiment.
FIG. 3 is a cycle life characteristic diagram of the battery of Example 1 in the same embodiment.
4 is a characteristic diagram showing the relationship between the Mn / Co ratio of the battery of Example 1 and the number of cycles in the same embodiment. FIG.
FIG. 5 is a cycle life characteristic diagram of the battery of Example 2 in the same embodiment.
FIG. 6 is a characteristic diagram showing the relationship between the heat treatment temperature and the number of cycles of the battery of Example 3 in the same embodiment.
[Explanation of symbols]
1 Positive electrode 3 Negative electrode

Claims (4)

LiCoO2 もしくはLiNiO2 とリチウム化合物とマンガン化合物とを混合・熱処理することによって得られた、LiCoO2 もしくはLiNiO2 とLiMn2 4 との混合物を正極活物質とした正極と、負極と、非水電解液とから成り、前記LiMn 2 4 とLiCoO 2 の混合比、もしくはLiMn 2 4 とLiNiO 2 の混合比が、モル比で9:1〜6:4の範囲にあることを特徴とする非水電解液二次電池。A positive electrode using a mixture of LiCoO 2 or LiNiO 2 and LiMn 2 O 4 obtained by mixing and heat-treating LiCoO 2 or LiNiO 2 , a lithium compound and a manganese compound, a negative electrode, and non-water Ri consists an electrolytic solution, the mixing ratio of the LiMn 2 O 4 and LiCoO 2, or a mixture ratio of LiMn 2 O 4 and LiNiO 2 are, in a molar ratio of 9: 1 to 6: wherein the range near Rukoto 4 Non-aqueous electrolyte secondary battery. 予めリチウム化合物とコバルト化合物を混合し加熱処理することにより得られたLiCoO2 もしくはリチウム化合物とニッケル化合物を混合し加熱処理することにより得られたLiNiO2 の一定量と、リチウム化合物とマンガン化合物をリチウムとマンガンのモル比が概略1:2となるように混合した一定量とを配合し、500℃から900℃の酸化雰囲気で熱処理し、熱処理によって得られた混合物のLiMn 2 4 とLiCoO 2 の混合比、もしくはLiMn 2 4 とLiNiO 2 の混合比が、モル比で9:1〜6:4の範囲にあることを特徴とする非水電解液二次電池の正極活物質の製造方法。LiCoO 2 obtained by mixing and heat-treating a lithium compound and a cobalt compound in advance, or a certain amount of LiNiO 2 obtained by mixing and heat-treating a lithium compound and a nickel compound, and lithium and manganese compounds with lithium And a certain amount mixed so that the molar ratio of manganese is approximately 1: 2, and heat-treated in an oxidizing atmosphere of 500 ° C. to 900 ° C., and LiMn 2 O 4 and LiCoO 2 of the mixture obtained by the heat treatment A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the mixing ratio or the mixing ratio of LiMn 2 O 4 and LiNiO 2 is in the range of 9: 1 to 6: 4 in terms of molar ratio . LiMn 2 4 の原料のリチウム化合物が、LiOH、Li 2 CO 3 、LiNO 3 からなる群より選ばれた一つであることを特徴とする請求項2記載の非水電解液二次電池の正極活物質の製造方法。The positive electrode of the nonaqueous electrolyte secondary battery according to claim 2 , wherein the lithium compound as a raw material of LiMn 2 O 4 is one selected from the group consisting of LiOH, Li 2 CO 3 and LiNO 3. A method for producing an active material. LiMn 2 4 の原料のマンガン化合物が、MnO 2 、Mn 2 3 、Mn 3 4 、Mn(OH) 2 、Mn(NO 3 2 からなる群より選ばれた一つであることを特徴とする請求項2又は3記載の非水電解液二次電池の正極活物質の製造方法。 The manganese compound as a raw material of LiMn 2 O 4 is one selected from the group consisting of MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Mn (OH) 2 , Mn (NO 3 ) 2. The manufacturing method of the positive electrode active material of the non-aqueous-electrolyte secondary battery of Claim 2 or 3.
JP2000168459A 2000-06-06 2000-06-06 Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof Expired - Fee Related JP4830178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168459A JP4830178B2 (en) 2000-06-06 2000-06-06 Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168459A JP4830178B2 (en) 2000-06-06 2000-06-06 Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JP2001351626A JP2001351626A (en) 2001-12-21
JP4830178B2 true JP4830178B2 (en) 2011-12-07

Family

ID=18671461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168459A Expired - Fee Related JP4830178B2 (en) 2000-06-06 2000-06-06 Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JP4830178B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441524B1 (en) * 2002-01-24 2004-07-23 삼성에스디아이 주식회사 Positive active material slurry composition for rechargeable lithium battery
CN100397684C (en) * 2004-07-19 2008-06-25 肇庆市风华锂电池有限公司 Lithium ion secondary battery plus plate active material and its preparation process
US9666862B2 (en) * 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
KR100786968B1 (en) * 2005-07-22 2007-12-17 주식회사 엘지화학 Pre-treatment method of electrode active material
US8241773B2 (en) 2005-08-19 2012-08-14 Lg Chem, Ltd. Electrochemical device with high capacity and method for preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111791B2 (en) * 1994-02-21 2000-11-27 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP3291400B2 (en) * 1994-08-05 2002-06-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPH1092430A (en) * 1996-09-20 1998-04-10 Yuasa Corp Lithium secondary battery
JP2000044206A (en) * 1998-07-22 2000-02-15 Toyota Central Res & Dev Lab Inc Production of oxide powder
JP2000164214A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2001351626A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP3959929B2 (en) Positive electrode and non-aqueous electrolyte battery
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2005123183A (en) Non-aqueous electrolyte secondary battery and composite batteries
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2004303437A (en) Nonaqueous electrolyte secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2000268879A (en) Lithium secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP4830178B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2004006188A (en) Non-aqueous electrolyte battery
JPH0997626A (en) Nonaqueous electrolytic battery
JPH11185809A (en) Lithium second battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2004259675A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2004342459A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees