JP2011238490A - Nonaqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2011238490A
JP2011238490A JP2010109567A JP2010109567A JP2011238490A JP 2011238490 A JP2011238490 A JP 2011238490A JP 2010109567 A JP2010109567 A JP 2010109567A JP 2010109567 A JP2010109567 A JP 2010109567A JP 2011238490 A JP2011238490 A JP 2011238490A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
negative electrode
electrode active
operating potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010109567A
Other languages
Japanese (ja)
Other versions
JP5424052B2 (en
Inventor
Yasuyuki Oba
保幸 大場
Hisashi Umemoto
久 梅本
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010109567A priority Critical patent/JP5424052B2/en
Publication of JP2011238490A publication Critical patent/JP2011238490A/en
Application granted granted Critical
Publication of JP5424052B2 publication Critical patent/JP5424052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using an alloy-type material as a negative electrode active substance with high safety by suppressing deposit of lithium and an overcharge state of a positive electrode caused by lack of Li in the positive electrode due to an irreversible capacity arising in a negative electrode at the time of initial charge.SOLUTION: In a nonaqueous electrolyte secondary battery with higher safety than conventional one, at least one of a positive electrode and a negative electrode includes a secondary active substance whose operating potential is lower than an operating potential of a positive electrode active substance and higher than an operating potential of a negative electrode active substance, and the secondary active substance is added in a certain amount so that it has a lithium amount corresponding to or beyond an irreversible capacity of the negative electrode active substance. Since the operating potential at the time when a predetermined cell reaction proceeds is between the operating potentials of the positive electrode active substance and the negative electrode active substance, a cell reaction based on the secondary active substance having the lithium amount corresponding to the irreversible capacity proceeds preferentially. Therefore, while an overcharge state of the positive electrode can be suppressed, lithium metal can be prevented from being left in a system.

Description

本発明は、非水電解液二次電池及びその製造方法に関し、詳しくは負極として合金系材料(Mg,Ga,Al,Si,Ge,Sn,Pb,As,Sb,Bi,Ag,Au,Zn,Cd,Hg,Cu,Vなどを含有)を用いた非水電解液二次電池及びその製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more specifically, an alloy material (Mg, Ga, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Au, Zn) as a negative electrode. , Cd, Hg, Cu, V, etc.) and a method for manufacturing the same.

近年、ノート型パソコン、携帯電話、デジタルカメラ等の携帯電子機器の普及に伴い、高エネルギー密度を有する小型大容量二次電池への要求が高まっている。また、環境問題の観点から、ハイブリッド車、電気自動車などのように、駆動用もしくは駆動補助用に高エネルギー密度を有する電池が求められている。これらの要求に応える二次電池の有力候補として正極活物質にコバルト酸リチウム、ニッケル酸リチウム等のリチウム複合酸化物、負極活物質にグラファイト等の炭素材料を用いたリチウムイオン電池の開発が進んでおり、優れた安定性並びに高エネルギー密度の実現に向けた開発が行われてきた。黒鉛を負極として用いるリチウムイオン電池は1991年の商品化以来、エネルギー密度は2倍以上に向上したが、これは、電池内にどれだけ多くの活物質を詰め込むかという改良により達成されたものであり、エネルギー密度向上はほぼ限界に来たと思われる。しかし、電気自動車の駆動用などには更なるエネルギー密度向上が求められる。このような背景のもと、注目されているのが合金化・脱合金化反応により充放電反応を行うリチウム合金負極である。この合金負極を負極材料に用いると、初回充電時の不可逆容量が非常に大きく負極側でLiが消費されてしまうため、正極側でLiが不足し過充電状態となってしまうことが大きな問題である。   In recent years, with the widespread use of portable electronic devices such as notebook computers, mobile phones, and digital cameras, there is an increasing demand for small, large-capacity secondary batteries having high energy density. Further, from the viewpoint of environmental problems, there is a demand for a battery having a high energy density for driving or driving assistance, such as a hybrid vehicle and an electric vehicle. Development of lithium ion batteries using lithium composite oxides such as lithium cobaltate and lithium nickelate as the positive electrode active material and carbon materials such as graphite as the negative electrode active material is a promising candidate for a secondary battery that meets these requirements. Developments have been made to achieve excellent stability and high energy density. Lithium-ion batteries using graphite as a negative electrode have more than doubled the energy density since commercialization in 1991. This was achieved by improving how many active materials are packed in the battery. Yes, energy density improvement seems to have almost reached its limit. However, further energy density improvement is required for driving electric vehicles. Under such circumstances, a lithium alloy negative electrode that is charged and discharged by an alloying / dealloying reaction is attracting attention. When this alloy negative electrode is used for the negative electrode material, the irreversible capacity at the first charge is very large and Li is consumed on the negative electrode side. is there.

このような課題を解決するために、従来、電極活物質層上にリチウム層を形成することによりLiが負極の不可逆容量に消費され正極の過充電状態を抑制する提案がされている(例えば、特許文献1参照)。   In order to solve such a problem, conventionally, by forming a lithium layer on the electrode active material layer, Li is consumed in the irreversible capacity of the negative electrode to suppress the overcharged state of the positive electrode (for example, (See Patent Document 1).

また、負極側にリチウムイオンをドーピングすることも提案されている。これにより、結果的にリチウムが負極の不可逆容量に消費され正極の過充電状態を抑制することができる(特許文献2参照)。   It has also been proposed to dope lithium ions on the negative electrode side. As a result, lithium is eventually consumed in the irreversible capacity of the negative electrode, and the overcharged state of the positive electrode can be suppressed (see Patent Document 2).

特開2008-305608号公報JP 2008-305608 A 特開2006-286921号公報JP 2006-286921

しかしながら、特許文献1に開示の技術のように、電極活物質層上にリチウム層を有する場合、電極上にリチウム金属が残ってしまう可能性がある。また、特許文献2に開示の技術のように、負極側にリチウムイオンをドーピングする場合、系にLi金属が取り残されてしまう。特許文献1や特許文献2に示されているようにリチウム金属が系に取り残されてしまうと、充電時にデンドライト状に析出し、セパレータを突き破って短絡の原因になるといった問題がある。   However, when a lithium layer is provided on the electrode active material layer as in the technique disclosed in Patent Document 1, lithium metal may remain on the electrode. In addition, as in the technique disclosed in Patent Document 2, when lithium ions are doped on the negative electrode side, Li metal is left in the system. If lithium metal is left in the system as shown in Patent Document 1 and Patent Document 2, there is a problem in that it deposits in a dendrite state during charging, breaks through the separator and causes a short circuit.

本発明は、上記実情に鑑み完成したものであり、負極活物質として合金系材料を採用した非水電解液二次電池について、初回充電時の大きな不可逆容量が負極において発生することにより正極側のLiが欠乏するという点に着目し、正極の過充電状態を抑制しつつリチウムの析出を抑制することで安全性の高い電池を提供することを解決すべき課題とする。また、そのような電池を製造する方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and for a non-aqueous electrolyte secondary battery that employs an alloy-based material as a negative electrode active material, a large irreversible capacity at the time of initial charge is generated in the negative electrode. Focusing on the point of lack of Li, an object to be solved is to provide a battery with high safety by suppressing lithium deposition while suppressing the overcharged state of the positive electrode. It is another object of the present invention to provide a method for manufacturing such a battery.

上記課題を解決する本発明の非水電解液二次電池の特徴は、正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極とを有する二次電池であって、
前記正極及び前記負極の少なくとも一方は前記正極活物質の作動電位よりも低く前記負極活物質の作動電位よりも高い第2活物質を備え、
前記第2活物質の量は前記負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウム量をもつように添加されることにある。
The feature of the nonaqueous electrolyte secondary battery of the present invention that solves the above problems is a secondary battery having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material including an alloy-based material,
At least one of the positive electrode and the negative electrode includes a second active material that is lower than the operating potential of the positive electrode active material and higher than the operating potential of the negative electrode active material,
The amount of the second active material is added so as to have an amount of lithium corresponding to or greater than the irreversible capacity of the negative electrode active material.

ここで、不可逆容量とは、初回充電容量から初回放電容量を引いたものであり初回放電時に可逆的にとりだすことが出来ない電気容量のことである。具体的には、以下の数式で表される。(不可逆容量)=(初回充電容量)−(初回放電容量)。   Here, the irreversible capacity is an electric capacity that is obtained by subtracting the initial discharge capacity from the initial charge capacity and cannot be reversibly taken out during the initial discharge. Specifically, it is expressed by the following mathematical formula. (Irreversible capacity) = (initial charge capacity) − (initial discharge capacity).

本発明では、正極活物質の作動電位よりも低く、負極活物質の作動電位よりも高く、リチウムを脱挿入可能な第2活物質を正極又は負極に含有させる。そのため、所定の電池反応が進行する際に作動電位が正極活物質及び負極活物質の作動電位の間にあり、不可逆容量に相当する量以上だけリチウムをもつ第2活物質における電池反応が優先的に進行する。そのため、正極の過充電状態を抑制できると共に系中にリチウム金属が取り残されることもなくなる。その結果、従来よりも安全性が高い非水電解液二次電池を提供できる。   In the present invention, the positive electrode or the negative electrode contains a second active material that is lower than the operating potential of the positive electrode active material, higher than the operating potential of the negative electrode active material, and capable of removing and inserting lithium. Therefore, when the predetermined battery reaction proceeds, the operating potential is between the operating potentials of the positive electrode active material and the negative electrode active material, and the battery reaction in the second active material having lithium more than the amount corresponding to the irreversible capacity is preferential. Proceed to. Therefore, the overcharged state of the positive electrode can be suppressed and lithium metal is not left in the system. As a result, it is possible to provide a non-aqueous electrolyte secondary battery that is safer than before.

ここで、前記第2活物質の作動電位は、前記正極活物質の作動電位よりも0.2V以下で、前記負極活物質の作動電位よりも0.2V以上であることが望ましい。この程度の作動電位の差をもつ第2活物質を採用することで、より確実に過充電状態の抑制が実現できる。   Here, the operating potential of the second active material is preferably 0.2 V or less than the operating potential of the positive electrode active material and 0.2 V or more than the operating potential of the negative electrode active material. By adopting the second active material having such a difference in operating potential, it is possible to more reliably suppress the overcharged state.

また、前記第2活物質の表面は導電材が接触していることが望ましく、更には第2活物質の表面は導電材にて覆われていることが、より望ましい。第2活物質の表面は導電材が接触しているため、添加した第2活物質が初回充放電時に役割を果たした後に、導電ネットワークの構築に寄与することができる。従って、第2活物質を添加することにより、電池反応の反応速度が制限される問題がなくなる。   The surface of the second active material is preferably in contact with a conductive material, and more preferably the surface of the second active material is covered with a conductive material. Since the surface of the second active material is in contact with the conductive material, it can contribute to the construction of the conductive network after the added second active material plays a role during the first charge / discharge. Therefore, the problem of limiting the reaction rate of the battery reaction is eliminated by adding the second active material.

更に、前記第2活物質はチタン酸リチウムであることが望ましい。チタン酸リチウムは、充放電過程におけるX線回折による結晶構造の検討結果より、リチウムの挿入・脱離の間もピーク位置に変化がなく、結晶構造の変化も格子定数の変化も格子の膨張収縮も起こっていないことが報告されており、いわゆる、無歪み材料である。従って、リチウムと合金化反応により発生する大きな体積膨張を緩和するマトリックスとしても働くことが期待できる。また、無歪み材料であるため電極の構造が変化しにくく安定なサイクル特性が実現できる。更にチタン酸リチウムは安価な材料でありコストの面でも優れた性能を有している。   Furthermore, the second active material is preferably lithium titanate. Lithium titanate shows no change in the peak position during insertion / extraction of lithium from the results of examination of the crystal structure by X-ray diffraction during the charge / discharge process. This is a so-called strain-free material. Therefore, it can be expected to work as a matrix that relieves large volume expansion generated by the alloying reaction with lithium. In addition, since it is an unstrained material, the structure of the electrode hardly changes and stable cycle characteristics can be realized. Furthermore, lithium titanate is an inexpensive material and has excellent performance in terms of cost.

上記課題を解決する本発明の非水電解液二次電池の製造方法の特徴は、正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極とを有する非水電解液二次電池を製造する方法であって、
前記正極及び前記負極の少なくとも一方は前記正極活物質の作動電位よりも低く前記負極活物質の作動電位よりも高い第2活物質を備えた状態で、初回の充放電を行う工程をもち、
前記第2活物質の量は前記負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウム量をもつように添加されることにある。
A feature of the method for producing a non-aqueous electrolyte secondary battery of the present invention that solves the above problems is a non-aqueous electrolyte secondary battery having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material including an alloy material. A method of manufacturing a battery comprising:
At least one of the positive electrode and the negative electrode has a step of performing a first charge / discharge with a second active material that is lower than the operating potential of the positive electrode active material and higher than the operating potential of the negative electrode active material,
The amount of the second active material is added so as to have an amount of lithium corresponding to or greater than the irreversible capacity of the negative electrode active material.

本発明では、正極活物質の作動電位よりも低く、負極活物質の作動電位よりも高く、リチウムを脱挿入可能な第2活物質を正極又は負極に含有させる。そのため、所定の電池反応が進行する際に作動電位が正極活物質及び負極活物質の作動電位の間にあり、不可逆容量に相当する量以上のリチウムをもつ第2活物質における電池反応が優先的に進行する。そのため、正極の過充電状態を抑制できると共に系中にリチウム金属が取り残されることもなくなる。その結果、従来よりも安全性が高い非水電解液二次電池が製造できる製造方法が提供できる。   In the present invention, the positive electrode or the negative electrode contains a second active material that is lower than the operating potential of the positive electrode active material, higher than the operating potential of the negative electrode active material, and capable of removing and inserting lithium. Therefore, when a predetermined battery reaction proceeds, the operating potential is between the operating potentials of the positive electrode active material and the negative electrode active material, and the battery reaction in the second active material having an amount of lithium corresponding to the irreversible capacity is preferential. Proceed to. Therefore, the overcharged state of the positive electrode can be suppressed and lithium metal is not left in the system. As a result, it is possible to provide a production method capable of producing a non-aqueous electrolyte secondary battery that is safer than before.

実施例にて用いた試験電池(コイン型電池:正極に第2活物質を有するもの)の構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the structure of the test battery (Coin type battery: What has a 2nd active material in a positive electrode) used in the Example. 実施例にて用いた試験電池(コイン型電池:負極に第2活物質を有するもの)の構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the structure of the test battery (Coin type battery: What has a 2nd active material in a negative electrode) used in the Example. 実施例1の試験電池1における1サイクル目及び2サイクル目の充放電曲線である。2 is a charge / discharge curve of a first cycle and a second cycle in the test battery 1 of Example 1. FIG.

本発明の非水電解液二次電池及びその製造方法について以下実施形態に基づき詳細に説明を行う。   The nonaqueous electrolyte secondary battery and the manufacturing method thereof of the present invention will be described in detail based on the following embodiments.

(非水電解液二次電池)
本発明の非水電解液二次電池は正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極と電解質とを有する。正極及び/又は負極は第2活物質を備えている。
(Non-aqueous electrolyte secondary battery)
The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material including an alloy-based material, and an electrolyte. The positive electrode and / or the negative electrode includes a second active material.

負極は、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができ、負極活物質の一部乃至全部として合金系材料を備えるものであれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、負極活物質および結着剤を混合して得られた合材が集電体に塗布されてなるものを用いることが好ましい。   The negative electrode is not particularly limited in its material configuration as long as it can occlude lithium ions at the time of charging and can release lithium ions at the time of discharge and includes an alloy-based material as a part or all of the negative electrode active material. A material having a known material structure can be used. In particular, it is preferable to use a material obtained by applying a mixture obtained by mixing a negative electrode active material and a binder to a current collector.

ここで、負極活物質が備える合金系材料としては、電池反応の進行に伴い、リチウム元素を吸蔵乃至脱離して合金化、化合物化、脱合金化、脱化合物化(合金化、化合物化を併せて本明細書では合金化等と称し、脱合金化、脱化合物化を併せて脱化合物化等とそれぞれ称することがある)できる材料である。本明細書において、「合金」には2種以上の金属元素からなるものに加え、1種以上の金属元素と1種以上の半金属元素との組み合わせからなるものも含むものとする。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうち2種以上が共存するものがある。   Here, as the alloy-based material included in the negative electrode active material, as the battery reaction proceeds, lithium element is occluded or desorbed to form an alloy, compound, de-alloy, de-compound (alloy and compound). In this specification, it is a material that can be referred to as alloying or the like, and may be referred to as decompounding or the like in combination with dealloying and decompounding). In this specification, “alloy” includes, in addition to those composed of two or more metal elements, those composed of a combination of one or more metal elements and one or more metalloid elements. The structures include solid solutions, eutectics (eutectic mixtures), intermetallic compounds, or those in which two or more of them coexist.

このような金属元素あるいは半金属元素としては、マグネシウム(Mg),ガリウム(Ga),アルミニウム(Al),ケイ素(Si),ゲルマニウム(Ge),スズ(Sn),鉛(Pb),ヒ素(As),アンチモン(Sb),ビスマス(Bi),銀(Ag),金(Au),亜鉛(Zn),カドミウム(Cd),水銀(Hg),銅(Cu),バナジウム(V),インジウム(In),ホウ素(B),ジルコニウム(Zr),イットリウム(Y),ハフニウム(Hf)が例示でき、本実施形態の合金系材料はこれらの元素を単体又は合金にて含むことができる。   Such metal or metalloid elements include magnesium (Mg), gallium (Ga), aluminum (Al), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), arsenic (As ), Antimony (Sb), bismuth (Bi), silver (Ag), gold (Au), zinc (Zn), cadmium (Cd), mercury (Hg), copper (Cu), vanadium (V), indium (In ), Boron (B), zirconium (Zr), yttrium (Y), and hafnium (Hf), and the alloy-based material of this embodiment can contain these elements as a single element or an alloy.

なかでも、短周期型周期表における4B族の金属元素あるいは半金属元素の単体又は合金が好ましく、特に好ましいのはケイ素(Si)あるいはスズ(Sn)、又はこれらの合金である。これらは結晶質のものでもアモルファスのものでもよい。   Among these, a simple substance or alloy of a group 4B metal element or metalloid element in the short-period type periodic table is preferable, and silicon (Si), tin (Sn), or an alloy thereof is particularly preferable. These may be crystalline or amorphous.

リチウムを吸蔵及び放出することが可能な負極材料としては、さらに、酸化物、硫化物、あるいはLiN3などのリチウム窒化物などの他の金属化合物が挙げられる。酸化物としては、MnO2、V25、V613、NiS、MoSなどが挙げられる。その他、比較的電位が卑でリチウムを吸蔵及び放出することが可能な酸化物として、例えば酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズなどが挙げられる。硫化物としてはNiS、MoSなどが挙げられる。 Examples of the negative electrode material capable of inserting and extracting lithium further include oxides, sulfides, and other metal compounds such as lithium nitrides such as LiN 3 . Examples of the oxide include MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS. In addition, examples of the oxide that has a relatively low potential and can occlude and release lithium include iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide. Examples of the sulfide include NiS and MoS.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、たとえば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン、ポリテトラフルオロエチレン(PTFE)等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, an organic binder or an inorganic binder can be used, and examples thereof include compounds such as polyvinylidene fluoride (PVDF), polyvinylidene chloride, and polytetrafluoroethylene (PTFE). Can do.

負極の集電体としては、たとえば、銅、ニッケルなどを網、パンチドメタル、フォームメタル、板状に加工した箔などを用いることができる。   As the current collector of the negative electrode, for example, copper, nickel, or the like that is processed into a net, punched metal, foam metal, plate, or the like can be used.

正極は、リチウムイオンを充電時には放出し、かつ放電時には吸蔵することができる正極活物質を備えていれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、正極活物質、導電材および結着材を混合して得られた合材が集電体に塗布されてなるものを用いることが好ましい。   The positive electrode is not particularly limited in its material configuration as long as it has a positive electrode active material that can release lithium ions during charging and can be occluded during discharging. it can. In particular, it is preferable to use a material obtained by applying a mixture obtained by mixing a positive electrode active material, a conductive material, and a binder to a current collector.

正極活物質には、その活物質の種類で特に限定されるものではなく、公知の活物質を用いることができる。たとえば、TiS、TiS、MoS、FeS、Li(1−x)MnO、Li(1−x)Mn、Li(1−x)CoO、Li(1−x)NiO、V等の化合物をあげることができる。ここで、xは0〜1を示す。また、これらの化合物の混合物を正極活物質として用いてもよい。さらに、Li1−xMn2+x、LiNi1−xCoなどのようにLiMn、LiNiOの遷移金属元素の一部を少なくとも1種類以上の他の遷移金属元素あるいはLiで置き換えたものを正極活物質としてもよい。 The positive electrode active material is not particularly limited by the type of the active material, and a known active material can be used. For example, TiS 2, TiS 3, MoS 3, FeS 2, Li (1-x) MnO 2, Li (1-x) Mn 2 O 4, Li (1-x) CoO 2, Li (1-x) NiO 2 , compounds such as V 2 O 5 can be exemplified. Here, x shows 0-1. Moreover, you may use the mixture of these compounds as a positive electrode active material. Furthermore, a part of the transition metal element of LiMn 2 O 4 , LiNiO 2 such as Li 1-x Mn 2 + x O 4 , LiNi 1-x Co x O 2, etc. is at least one or more other transition metal elements or Li The positive electrode active material may be replaced by the positive electrode active material.

正極活物質としては、LiMn、LiCoO、LiNiO等のリチウムおよび遷移金属の複合酸化物がより好ましい。すなわち、電子とリチウムイオンの拡散性能に優れるなど活物質としての性能に優れているため、高い充放電効率と良好なサイクル特性とを有する電池が得られる。 As the positive electrode active material, a composite oxide of lithium and a transition metal such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 is more preferable. That is, since it has excellent performance as an active material such as excellent diffusion performance of electrons and lithium ions, a battery having high charge / discharge efficiency and good cycle characteristics can be obtained.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、たとえば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン、ポリテトラフルオロエチレン(PTFE)等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, an organic binder or an inorganic binder can be used, and examples thereof include compounds such as polyvinylidene fluoride (PVDF), polyvinylidene chloride, and polytetrafluoroethylene (PTFE). Can do.

導電材は、正極の電気伝導性を確保する作用を有する。導電材としては、たとえば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質の1種または2種以上の混合したものをあげることができる。また、活物質の表面をカーボンコートすることもできる。カーボンコートする方法としては特に限定しないが、高分子化合物(ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニルなど)などの炭素源と共に活物質を混合した後、焼成して炭化することにより、表面をカーボンコートすることもできる。焼成後は適宜粉砕操作などを行うこともできる。   The conductive material has an action of ensuring the electrical conductivity of the positive electrode. Examples of the conductive material include one or a mixture of two or more carbon materials such as carbon black, acetylene black, and graphite. Also, the surface of the active material can be carbon coated. The carbon coating method is not particularly limited, but by mixing an active material with a carbon source such as a polymer compound (polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, etc.), and then firing and carbonizing. The surface can also be carbon coated. After firing, a pulverization operation or the like can be performed as appropriate.

また、正極の集電体としては、たとえば、アルミニウム、ステンレスなどの金属を網、パンチドメタル、フォームメタル、板状に加工した箔などを用いることができる。   As the positive electrode current collector, for example, a metal such as aluminum or stainless steel that is processed into a net, a punched metal, a foam metal, a plate, or the like can be used.

第2活物質はリチウムイオンの授受が可能な材料であり、その作動電位が、正極材料に加え正極活物質よりも低電位で、負極活物質の作動電位よりも高電位である材料である。第2活物質は一種類の材料から形成しても良いし2以上の材料を混合して用いても良いし、別々の場所(層状としたり正負極の部位毎に分けたりする)に別々の形態で用いても良い。第2活物質としては先に正極活物質及び負極活物質として挙げた材料から選択することもできる。第2活物質の作動電位としては正極活物質の作動電位よりも0.2V低く、負極活物質の作動電位よりも0.2V高いことが望ましい。第2活物質としては特にチタン酸リチウムを採用することが望ましい。第2活物質を添加する量としては負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウム量をもつように添加される。第2活物質にリチウムを含有させるための方法としては、リチウム元素を含まない状態で第2活物質を製造した後にリチウム金属を対極として反応を進行させる電気化学的方法によりリチウム元素を含有させることもできる。リチウム元素を後に添加させる方法を採用する場合には電極を形成した後に電気化学的方法により含有させることもできる。   The second active material is a material that can exchange lithium ions, and has a working potential lower than that of the positive electrode active material and higher than that of the negative electrode active material in addition to the positive electrode material. The second active material may be formed from one type of material or a mixture of two or more materials, or may be used separately in different places (layered or divided into positive and negative electrode parts). It may be used in the form. The second active material can be selected from the materials listed above as the positive electrode active material and the negative electrode active material. The operating potential of the second active material is preferably 0.2 V lower than the operating potential of the positive electrode active material and 0.2 V higher than the operating potential of the negative electrode active material. As the second active material, it is particularly desirable to employ lithium titanate. The amount of the second active material is added so as to have an amount of lithium corresponding to or larger than the irreversible capacity of the negative electrode active material. As a method for causing the second active material to contain lithium, the lithium element is contained by an electrochemical method in which the reaction is allowed to proceed using lithium metal as a counter electrode after the second active material is produced without containing lithium element. You can also. When the method of adding lithium element later is adopted, it can be contained by an electrochemical method after forming the electrode.

第2活物質の添加は正極活物質及び/又は負極活物質に混合して行っても良いし、正極活物質及び/又は負極活物質とは別に添加しても良い。別に添加する場合には層状に添加することもできる。例えば、正極活物質(及び/又は負極活物質)と結着材と導電材とで活物質層を形成した上に、第2活物質と結着材と導電材とで第2の活物質層を形成することができる。第2活物質は表面に導電材が接触していることが好ましい。導電材としては先に正極、負極などにおいて例示した材料を採用することができる。特に第2活物質の表面は導電材にて被覆されていることが望ましい。第2活物質の表面を導電材にて被覆する程度としては充分に導電性が確保できる程度に添加することが望ましい。導電性が充分に確保できたかどうかは第2活物質を添加する前と同程度又はそれ以上にまで導電性が回復できる程度であるかどうかで判断する。   The second active material may be added to the positive electrode active material and / or the negative electrode active material, or may be added separately from the positive electrode active material and / or the negative electrode active material. When added separately, it can also be added in layers. For example, after an active material layer is formed with a positive electrode active material (and / or a negative electrode active material), a binder, and a conductive material, a second active material layer is formed with the second active material, the binder, and the conductive material. Can be formed. The second active material preferably has a conductive material in contact with the surface. As the conductive material, the materials exemplified above for the positive electrode and the negative electrode can be employed. In particular, the surface of the second active material is preferably coated with a conductive material. It is desirable to add the second active material to such an extent that the surface of the second active material can be sufficiently covered with the conductive material. Whether or not the electrical conductivity is sufficiently secured is determined by whether or not the electrical conductivity can be recovered to the same level as before adding the second active material or more.

電解質としては特に限定しないが、有機溶媒などの溶媒に電解質を溶解させたもの、自身が液体状であるイオン液体、そのイオン液体に対して更に電解質を溶解させたものなどのような液体状のものの他、固体電解質であっても良い。   Although it does not specifically limit as electrolyte, It is liquid state like what melt | dissolved electrolyte in solvents, such as an organic solvent, the ionic liquid which is liquid itself, what melt | dissolved electrolyte further in the ionic liquid, etc. In addition to those, a solid electrolyte may be used.

有機溶媒としては、通常リチウム二次電池の電解液に用いられる有機溶媒が例示できる。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等及びそれらの混合溶媒が適当である。 例に挙げたこれらの有機溶媒のうち、特に、カーボネート類、エーテル類からなる群より選ばれた一種以上の非水溶媒を用いることにより、電解質の溶解性、誘電率および粘度において優れ、電池の充放電効率も高いので、好ましい。   As an organic solvent, the organic solvent normally used for the electrolyte solution of a lithium secondary battery can be illustrated. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, and mixed solvents thereof are suitable. Among these organic solvents mentioned in the examples, in particular, by using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, the solubility, dielectric constant and viscosity of the electrolyte are excellent, and the battery Charge / discharge efficiency is also high, which is preferable.

イオン液体は、通常リチウム二次電池の電解液に用いられるイオン液体であれば特に限定されるものではない。例えば、イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF4−、N(SOCF2−等が挙げられる。 An ionic liquid will not be specifically limited if it is an ionic liquid normally used for the electrolyte solution of a lithium secondary battery. For example, examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation, and examples of the anion component include BF 4− , N (SO 2 CF 3 ) 2−. Etc.

電解質としては、特に限定されない。例えば、LiPF、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiSbF、LiSCN、LiClO、LiAlCl、NaClO、NaBF、NaI、これらの誘導体等の塩化合物が挙げられる。これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiN(FSO、LiN(CFSO)(CSO)、LiCFSOの誘導体、LiN(CFSOの誘導体及びLiC(CFSOの誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。 The electrolyte is not particularly limited. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , LiAlCl 4 , NaClO 4 , BClO 4 , NaI, and salt compounds such as derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 One or more selected from the group consisting of a derivative of SO 2 ) (C 4 F 9 SO 2 ), a derivative of LiCF 3 SO 3, a derivative of LiN (CF 3 SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 It is preferable to use a salt from the viewpoint of electrical characteristics.

リチウム二次電池は正負極及び電解液の他、その他必要な部材を有することができる。その他必要な部材としては、セパレータ、ケースなどが例示できる。セパレータは正負極間に介装され、電気的な絶縁作用とイオン伝導作用とを両立する部材である。電解液が液状である場合にはセパレータは、液状の支持電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔質膜が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極の面積よりも更に大きい形態を採用することが好ましい。   The lithium secondary battery can have other necessary members in addition to the positive and negative electrodes and the electrolytic solution. Examples of other necessary members include a separator and a case. The separator is interposed between the positive and negative electrodes and is a member that achieves both electrical insulation and ion conduction. When the electrolytic solution is liquid, the separator also plays a role of holding the liquid supporting electrolyte. Examples of the separator include a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene or polypropylene). Furthermore, it is preferable that the separator adopts a form larger than the area of the positive electrode and the negative electrode for the purpose of ensuring insulation between the positive electrode and the negative electrode.

(非水電解液二次電池の製造)
本実施形態の非水電解液二次電池の製造方法は正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極とを有する非水電解液二次電池を製造する方法である。具体的な製造方法としては、正極及び負極を形成後、セパレータを介して積層して形成した発電要素をケース内に収納した後、電解液を注入するといった通常の方法を例示することができる。ここで、正極、負極については非水電解液二次電池の欄において説明した構成を採用できるため、更なる説明は省略する。第2活物質の種類、添加量についても先に説明したものがそのまま採用できる。
(Manufacture of non-aqueous electrolyte secondary batteries)
The manufacturing method of the nonaqueous electrolyte secondary battery of this embodiment is a method of manufacturing a nonaqueous electrolyte secondary battery having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material including an alloy-based material. . As a specific manufacturing method, a normal method in which a positive electrode and a negative electrode are formed, a power generation element formed by laminating via a separator is accommodated in a case, and then an electrolytic solution is injected. Here, since the structure demonstrated in the column of the nonaqueous electrolyte secondary battery is employable about a positive electrode and a negative electrode, the further description is abbreviate | omitted. What was demonstrated previously about the kind and addition amount of a 2nd active material can be employ | adopted as it is.

本発明の非水電解液二次電池の製造方法は第2活物質を含有する状態で最初の充放電を行う工程を有する。ここで、最初の充放電とは電池の正負極を形成した後、最初に行う充放電のことであり、正負極が同じであればその他の構成要素が変わっていても良い。例えば、ケースの封止の有無や、電解液の入れ替えの有無はどのようなものであっても良い。   The manufacturing method of the non-aqueous electrolyte secondary battery of this invention has the process of performing the first charging / discharging in the state containing a 2nd active material. Here, the first charging / discharging is the first charging / discharging after forming the positive and negative electrodes of the battery, and other components may be changed as long as the positive and negative electrodes are the same. For example, the presence or absence of sealing of the case or the presence or absence of replacement of the electrolyte solution may be anything.

本発明の非水電解液二次電池及びその製造方法について以下実施例に基づき詳細に説明する。なお、以下の説明にて使用する図面における各構成要素の大きさ、比率などは見やすいように適宜調節しており、その大きさは必ずしも厳格なものではない。   The nonaqueous electrolyte secondary battery and the manufacturing method thereof according to the present invention will be described in detail based on the following examples. Note that the size and ratio of each component in the drawings used in the following description are adjusted as appropriate for easy viewing, and the size is not necessarily strict.

(実施例1)
(正極第1層の作製)
正極活物質としてのLiNiOを87質量部と、導電材としてのアセチレンブラックを10質量部と、結着材としてのカルボキシメチルセルロース(CMC)を1質量部と、結着材としてのポリエチレンオキシド(PEO)を1質量部と、結着材としてのポリテトラフルオロエチレン(PTFE)を1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極集電体上に片面塗布し、乾燥することで正極第1層を形成した。正極第1層において正極活物質を添加する量は負極活物質の量に合わせて通常の方法により決定した(以下同じ)。
Example 1
(Preparation of positive electrode first layer)
87 parts by mass of LiNiO 2 as a positive electrode active material, 10 parts by mass of acetylene black as a conductive material, 1 part by mass of carboxymethyl cellulose (CMC) as a binder, and polyethylene oxide (PEO as a binder) ) And 1 part by mass of polytetrafluoroethylene (PTFE) as a binder were mixed and dispersed in water to prepare a homogeneous coating liquid. This coating liquid was applied on one side onto the positive electrode current collector and dried to form the first positive electrode layer. The amount of the positive electrode active material added in the positive electrode first layer was determined by a normal method according to the amount of the negative electrode active material (the same applies hereinafter).

(正極第2層の作製)
第2活物質としてのカーボンコートをしたLiFePO(作動電位が、正極活物質の作動電位より0.2V低く、負極活物質の作動電位より3.15V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのポリフッ化ビニリデン(PVdF)を8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。ここで、LiFePOに対するカーボンコートはポリビニルアルコールと混合した後、焼成することでポリビニルアルコールを炭化し、粉砕することにより行った(以下の実施例においても第2活物質を形成する材料が異なる以外は同様の方法にてカーボンコートを行った。)この塗料液を正極第1層上に塗布し、乾燥することで正極第1層上に積層された正極第2層を形成した。第2活物質を添加する量は負極活物質において発生する不可逆容量に相当する量が添加されるように設定した(以下同じ)。なお、不可逆容量は予め実験により求めた。
(Preparation of positive electrode second layer)
80 parts by mass of a carbon-coated LiFePO 4 (the operating potential is 0.2 V lower than the operating potential of the positive electrode active material and 3.15 V higher than the operating potential of the negative electrode active material) as the second active material, 12 parts by mass of acetylene black and 8 parts by mass of polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a homogeneous coating liquid. Here, the carbon coat for LiFePO 4 was mixed with polyvinyl alcohol and then fired to carbonize and pulverize the polyvinyl alcohol (except for the materials that form the second active material in the following examples as well). The coating liquid was applied on the first positive electrode layer and dried to form a second positive electrode layer laminated on the first positive electrode layer. The amount of the second active material added was set such that an amount corresponding to the irreversible capacity generated in the negative electrode active material was added (hereinafter the same). The irreversible capacity was obtained in advance by experiments.

(正極の作製)
正極合材(正極第1層と正極第2層とが積層されたもの。以下同じ。)の厚みが75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。
(Preparation of positive electrode)
Pressing was performed so that the thickness of the positive electrode mixture (laminated with the positive electrode first layer and the positive electrode second layer; the same shall apply hereinafter) was 75 μm. Then, the positive electrode was produced by cutting into a predetermined size.

(負極の作製)
負極活物質としてのCuSn(合金系材料に相当)を85質量部と、導電材としてのアセチレンブラックを5質量部と、結着材としてのポリフッ化ビニリデン(PVdF)を10質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を負極集電体上に片面塗布し、乾燥することで負極層を形成した。その後、所定のサイズに裁断することで負極を作製した。
(Preparation of negative electrode)
85 parts by mass of Cu 6 Sn 6 (corresponding to an alloy material) as a negative electrode active material, 5 parts by mass of acetylene black as a conductive material, and 10 parts by mass of polyvinylidene fluoride (PVdF) as a binder Were mixed and dispersed in an organic solvent to prepare a homogeneous coating liquid. The coating liquid was applied on one side of the negative electrode current collector and dried to form a negative electrode layer. Then, the negative electrode was produced by cutting into a predetermined size.

(電解液の調製)
エチレンカーボネート(EC)とジエチルメチルカーボネート(EMC)とを3:7の質量比で混合した有機溶媒に、LiPFを1.0mol/Lの濃度で添加し電解液とした。
(Preparation of electrolyte)
LiPF 6 was added at a concentration of 1.0 mol / L to an organic solvent in which ethylene carbonate (EC) and diethyl methyl carbonate (EMC) were mixed at a mass ratio of 3: 7 to obtain an electrolytic solution.

(コイン型電池の作製)
図1に示すように、調製した正極1(正極第1層11、正極第2層12)、負極2と調製した電解液と厚さ25μmのポリエチレン製の多孔質膜からなるセパレータ7とを用いてコイン型電池50を製造した。正極1はアルミニウム集電体1aをもち、そのアルミニウム集電体1a上に正極第1層11、正極第2層12の順に活物質層が積層されている。負極2には銅集電体2aをもち、その銅集電体2a上に負極活物質層が積層されている。
(Production of coin-type battery)
As shown in FIG. 1, the prepared positive electrode 1 (positive electrode first layer 11, positive electrode second layer 12), negative electrode 2, prepared electrolyte solution, and separator 7 made of a polyethylene porous film having a thickness of 25 μm were used. A coin-type battery 50 was manufactured. The positive electrode 1 has an aluminum current collector 1 a, and an active material layer is laminated on the aluminum current collector 1 a in the order of a positive electrode first layer 11 and a positive electrode second layer 12. The negative electrode 2 has a copper current collector 2a, and a negative electrode active material layer is laminated on the copper current collector 2a.

これらの発電要素をステンレス製のケース(正極ケース4と負極ケース5から構成されている)中に収納した。正極ケース4と負極ケース5とは正極端子と負極端子とを兼ねている。正極ケース4と負極ケース5との間にはポリプロピレン製のガスケット6を介装することで密閉性と正極ケース4と負極ケース5との間の電気的な絶縁性とを担保した。以下、実施例2〜6、及び13においても図1に相当する構造をもつコイン型電池を作成した。   These power generation elements were housed in a stainless steel case (consisting of a positive electrode case 4 and a negative electrode case 5). The positive electrode case 4 and the negative electrode case 5 serve as a positive electrode terminal and a negative electrode terminal. A gasket 6 made of polypropylene is interposed between the positive electrode case 4 and the negative electrode case 5, thereby ensuring sealing and electrical insulation between the positive electrode case 4 and the negative electrode case 5. Hereinafter, coin-type batteries having a structure corresponding to FIG.

(実施例2)
(正極第1層の作製)
実施例1と同様に調製した。
(Example 2)
(Preparation of positive electrode first layer)
Prepared in the same manner as in Example 1.

(正極第2層の作製)
表面をカーボンコート(導電材に相当)をした第2活物質としてのLiFeSiO(作動電位が、正極活物質の作動電位より0.82V低く、負極活物質の作動電位より2.53V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
Li 2 FeSiO 4 as a second active material having a carbon coating (corresponding to a conductive material) on the surface (the operating potential is 0.82 V lower than the operating potential of the positive electrode active material and 2.53 V higher than the operating potential of the negative electrode active material) ), 12 parts by mass of acetylene black as a conductive material, and 8 parts by mass of PVdF as a binder were mixed and dispersed in an organic solvent to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(実施例3)
(正極第1層の作製)
実施例1と同様に調製した。
(Example 3)
(Preparation of positive electrode first layer)
Prepared in the same manner as in Example 1.

(正極第2層の作製)
表面をカーボンコート(導電材に相当)をした第2活物質としてのV(作動電位が、正極活物質の作動電位より0.35V低く、負極活物質の作動電位より3.0V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
V 2 O 5 as a second active material having a carbon coating (corresponding to a conductive material) on the surface (the operating potential is 0.35 V lower than the operating potential of the positive electrode active material and 3.0 V higher than the operating potential of the negative electrode active material) ), 12 parts by mass of acetylene black as a conductive material, and 8 parts by mass of PVdF as a binder were mixed and dispersed in an organic solvent to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて3.25Vまで定電流充電を行いV2O5中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in V 2 O 5 was treated with constant current charge to 3.25V at, An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(実施例4)
(正極第1層の作製)
実施例1と同様に調製した。
Example 4
(Preparation of positive electrode first layer)
Prepared in the same manner as in Example 1.

(正極第2層の作製)
第2活物質としてのカーボンコートをしたLiTi12(作動電位が、正極活物質の作動電位より2.05V低く、負極活物質の作動電位より1.3V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのカルボキシメチルセルロース(CMC)を1質量部と、結着材としてのポリエチレンオキシド(PEO)を1質量部と、結着材としてのポリテトラフルオロエチレン(PTFE)を1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
87 parts by mass of carbon-coated Li 4 Ti 5 O 12 (the operating potential is 2.05 V lower than the operating potential of the positive electrode active material and 1.3 V higher than the operating potential of the negative electrode active material) as the second active material 7 parts by mass of acetylene black as a conductive material, 1 part by mass of carboxymethyl cellulose (CMC) as a binder, 1 part by mass of polyethylene oxide (PEO) as a binder, and as a binder 1 part by mass of polytetrafluoroethylene (PTFE) was mixed and dispersed in water to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.55Vまで定電流充電を行いLi4Ti5O12中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. The counter electrode is made of Li metal at 25 ° C., and constant current charging is performed up to 1.55V at a current value equivalent to 1C (1C is a current value that can discharge the battery capacity in 1 hour). In Li 4 Ti 5 O 12 In advance, an amount of lithium corresponding to the initial irreversible capacity of the Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(実施例5)
(正極第1層の作製)
実施例1と同様に調製した。
(Example 5)
(Preparation of positive electrode first layer)
Prepared in the same manner as in Example 1.

(正極第2層の作製)
第2活物質としてのカーボンコートをした酸化チタン(TiO(B))(作動電位が、正極活物質の作動電位より2.0V低く、負極活物質の作動電位より1.75V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを1質量部と、結着材としてのPEOを1質量部と、結着材としてのPTFEを1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
87 carbon-coated titanium oxide (TiO 2 (B)) (operating potential is 2.0 V lower than the operating potential of the positive electrode active material and 1.75 V higher than the operating potential of the negative electrode active material) as the second active material 7 parts by mass of acetylene black as a conductive material, 1 part by mass of CMC as a binder, 1 part by mass of PEO as a binder, and 1 part by mass of PTFE as a binder Were mixed and dispersed in water to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.6Vまで定電流充電を行いTiO2(B)中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in the TiO 2 (B) in a constant current charged at up to 1.6V An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(実施例6)
(正極第1層の作製)
実施例1と同様に調製した。
(Example 6)
(Preparation of positive electrode first layer)
Prepared in the same manner as in Example 1.

(正極第2層の作製)
第2活物質としてのカーボンコートをしたNb(作動電位が、正極活物質の作動電位より1.85V低く、負極活物質の作動電位より1.5V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを1質量部と、結着材としてのPEOを1質量部と、結着材としてのPTFEを1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
87 parts by mass of Nb 2 O 5 coated with carbon as the second active material (the operating potential is 1.85 V lower than the operating potential of the positive electrode active material and 1.5 V higher than the operating potential of the negative electrode active material) 7 parts by mass of acetylene black as a material, 1 part by mass of CMC as a binder, 1 part by mass of PEO as a binder, and 1 part by mass of PTFE as a binder are mixed in water. -Dispersed to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.75Vまで定電流充電を行いNb2O5中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in Nb 2 O 5 performs constant current charging until 1.75V at, An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(実施例7)
(正極の作製)
正極活物質としてのLiNiOを87質量部と、導電材としてのアセチレンブラックを10質量部と、結着材としてのCMCを1質量部と、結着材としてのPEOを1質量部と、結着材としてのPTFEを1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極集電体上に片面塗布し、乾燥することで正極を形成した。その後、所定のサイズに裁断することで正極を作製した。
(Example 7)
(Preparation of positive electrode)
87 parts by mass of LiNiO 2 as a positive electrode active material, 10 parts by mass of acetylene black as a conductive material, 1 part by mass of CMC as a binder, 1 part by mass of PEO as a binder, A homogeneous coating liquid was prepared by mixing and dispersing 1 part by mass of PTFE as a coating material in water. This coating liquid was applied on one side onto a positive electrode current collector and dried to form a positive electrode. Then, the positive electrode was produced by cutting into a predetermined size.

(負極第1層の作製)
負極活物質としてのCuSnを85質量部と、導電材としてのアセチレンブラックを5質量部と、結着材としてのPVdFを10質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を正極集電体上に片面塗布し、乾燥することで負極層を形成した。
(Preparation of negative electrode first layer)
Uniform paint by mixing and dispersing 85 parts by mass of Cu 6 Sn 6 as a negative electrode active material, 5 parts by mass of acetylene black as a conductive material, and 10 parts by mass of PVdF as a binder in an organic solvent A liquid was prepared. This coating liquid was applied on one side onto the positive electrode current collector and dried to form a negative electrode layer.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたLiFePO(作動電位が、正極活物質の作動電位より0.2V低く、負極活物質の作動電位より3.15V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
80 parts by mass of a carbon-coated LiFePO 4 (the operating potential is 0.2 V lower than the operating potential of the positive electrode active material and 3.15 V higher than the operating potential of the negative electrode active material) as the second active material, 12 parts by mass of acetylene black and 8 parts by mass of PVdF as a binder were mixed and dispersed in an organic solvent to prepare a homogeneous coating liquid. This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

コイン型電池は、図2に示すように、調製した正極1、負極2(負極第1層21、負極第2層22)と調製した電解液と厚さ25μmのポリエチレン製の多孔質膜からなるセパレータ7とを用いてコイン型電池60を製造した。なお図1に示すものに相当する部材については同じ符号を採用した。正極1はアルミニウム集電体1aをもち、そのアルミニウム集電体1a上に活物質層が積層されている。負極2には銅集電体2aをもち、その銅集電体2a上に負極第1層21、負極第2層22の順に積層されている。   As shown in FIG. 2, the coin-type battery is composed of the prepared positive electrode 1, negative electrode 2 (negative electrode first layer 21, negative electrode second layer 22), the prepared electrolyte, and a porous film made of polyethylene having a thickness of 25 μm. A coin-type battery 60 was manufactured using the separator 7. In addition, the same code | symbol was employ | adopted about the member corresponded to what is shown in FIG. The positive electrode 1 has an aluminum current collector 1a, and an active material layer is laminated on the aluminum current collector 1a. The negative electrode 2 has a copper current collector 2 a, and the negative electrode first layer 21 and the negative electrode second layer 22 are laminated on the copper current collector 2 a in this order.

これらの発電要素をステンレス製のケース(正極ケース4と負極ケース5から構成されている)中に収納した。正極ケース4と負極ケース5とは正極端子と負極端子とを兼ねている。正極ケース4と負極ケース5との間にはポリプロピレン製のガスケット6を介装することで密閉性と正極ケース4と負極ケース5との間の電気的な絶縁性とを担保した。以下、実施例7〜12においても図2に相当する構造をもつコイン型電池を作成した。   These power generation elements were housed in a stainless steel case (consisting of a positive electrode case 4 and a negative electrode case 5). The positive electrode case 4 and the negative electrode case 5 serve as a positive electrode terminal and a negative electrode terminal. A gasket 6 made of polypropylene is interposed between the positive electrode case 4 and the negative electrode case 5, thereby ensuring sealing and electrical insulation between the positive electrode case 4 and the negative electrode case 5. Hereinafter, coin-type batteries having a structure corresponding to FIG.

(実施例8)
(正極の作製)
実施例7と同様に調製した。
(Example 8)
(Preparation of positive electrode)
Prepared in the same manner as in Example 7.

(負極第1層の作製)
実施例7と同様に調製した。
(Preparation of negative electrode first layer)
Prepared in the same manner as in Example 7.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたLiFeSiO(作動電位が、正極活物質の作動電位より0.82V低く、負極活物質の作動電位より2.53V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
80 parts by mass of Li 2 FeSiO 4 coated with carbon as a second active material (operating potential is 0.82 V lower than that of the positive electrode active material and 2.53 V higher than that of the negative electrode active material) A homogeneous coating liquid was prepared by mixing and dispersing 12 parts by mass of acetylene black as a material and 8 parts by mass of PVdF as a binder in an organic solvent. This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

(実施例9)
(正極の作製)
実施例7と同様に調製した。
Example 9
(Preparation of positive electrode)
Prepared in the same manner as in Example 7.

(負極第1層の作製)
実施例7と同様に調製した。
(Preparation of negative electrode first layer)
Prepared in the same manner as in Example 7.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたV(作動電位が、正極活物質の作動電位より0.35V低く、負極活物質の作動電位より3.0V高い)を80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
80 parts by mass of V 2 O 5 coated with carbon as the second active material (the working potential is 0.35 V lower than the working potential of the positive electrode active material and 3.0 V higher than the working potential of the negative electrode active material) A homogeneous coating liquid was prepared by mixing and dispersing 12 parts by mass of acetylene black as a material and 8 parts by mass of PVdF as a binder in an organic solvent. This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて3.25Vまで定電流充電を行いV2O5中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in V 2 O 5 was treated with constant current charge to 3.25V at, An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

(実施例10)
(正極の作製)
実施例7と同様に調製した。
(Example 10)
(Preparation of positive electrode)
Prepared in the same manner as in Example 7.

(負極第1層の作製)
実施例7と同様に調製した。
(Preparation of negative electrode first layer)
Prepared in the same manner as in Example 7.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたLiTi12(作動電位が、正極活物質の作動電位より2.05V低く、負極活物質の作動電位より1.30V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを3質量部と、結着材としてのスチレンブタジエンゴム(SBR)を3質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
Li 4 Ti 5 O 12 (operating potential is 2.05 V lower than the operating potential of the positive electrode active material and 1.30 V higher than the operating potential of the negative electrode active material) having a carbon coat as the second active material, , 7 parts by mass of acetylene black as a conductive material, 3 parts by mass of CMC as a binder, and 3 parts by mass of styrene butadiene rubber (SBR) as a binder are mixed and dispersed in water. A coating liquid was prepared. This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.55Vまで定電流充電を行いLi4Ti5O12中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size. The counter electrode is made of Li metal at 25 ° C., and constant current charging is performed up to 1.55V at a current value equivalent to 1C (1C is a current value that can discharge the battery capacity in 1 hour). In Li 4 Ti 5 O 12 In advance, an amount of lithium corresponding to the initial irreversible capacity of the Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

(実施例11)
(正極の作製)
実施例7と同様に調製した。
(Example 11)
(Preparation of positive electrode)
Prepared in the same manner as in Example 7.

(負極第1層の作製)
実施例7と同様に調製した。
(Preparation of negative electrode first layer)
Prepared in the same manner as in Example 7.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたTiO(B)(作動電位が、正極活物質の作動電位より2.00V低く、負極活物質の作動電位より1.35V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを3質量部と、結着材としてのSBRを3質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
87 parts by mass of TiO 2 (B) coated with carbon as the second active material (the operating potential is 2.00 V lower than the operating potential of the positive electrode active material and 1.35 V higher than the operating potential of the negative electrode active material), 7 parts by mass of acetylene black as a conductive material, 3 parts by mass of CMC as a binder, and 3 parts by mass of SBR as a binder were mixed and dispersed in water to prepare a homogeneous coating liquid. . This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.6Vまで定電流充電を行いTiO2(B)中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in the TiO 2 (B) in a constant current charged at up to 1.6V An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

(実施例12)
(正極の作製)
実施例7と同様に調製した。
(Example 12)
(Preparation of positive electrode)
Prepared in the same manner as in Example 7.

(負極第1層の作製)
実施例7と同様に調製した。
(Preparation of negative electrode first layer)
Prepared in the same manner as in Example 7.

(負極第2層の作製)
第2活物質としてのカーボンコートをしたNb(作動電位が、正極活物質の作動電位より1.85V低く、負極活物質の作動電位より1.50V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを3質量部と、結着材としてのSBRを3質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を負極第1層上に塗布し、乾燥することで負極第2層を形成した。
(Preparation of negative electrode second layer)
87 parts by mass of Nb 2 O 5 coated with carbon as the second active material (the operating potential is 1.85 V lower than the operating potential of the positive electrode active material and 1.50 V higher than the operating potential of the negative electrode active material) 7 parts by mass of acetylene black as a material, 3 parts by mass of CMC as a binder, and 3 parts by mass of SBR as a binder were mixed and dispersed in water to prepare a homogeneous coating liquid. This coating liquid was applied onto the negative electrode first layer and dried to form a negative electrode second layer.

(負極の作製)
負極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで負極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.75Vまで定電流充電を行いNb2O5中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of negative electrode)
The negative electrode mixture was pressed to a thickness of 75 μm. Then, the negative electrode was produced by cutting into a predetermined size. Then, in an atmosphere of 25 ° C. The counter electrode of Li metal, 1C equivalent current value (1C is the current value that can discharge the battery capacity in 1 hour) in advance in Nb 2 O 5 performs constant current charging until 1.75V at, An amount of lithium corresponding to the initial irreversible capacity of Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1.

(実施例13)
(正極第1層の作製)
正極活物質としてのカーボンコートをしたLiFePOを80質量部と、導電材としてのアセチレンブラックを12質量部と、結着材としてのPVdFを8質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を正極集電体上に片面塗布し、乾燥することで正極第1層を形成した。
(Example 13)
(Preparation of positive electrode first layer)
80 parts by mass of carbon-coated LiFePO 4 as a positive electrode active material, 12 parts by mass of acetylene black as a conductive material, and 8 parts by mass of PVdF as a binder are mixed and dispersed in an organic solvent. A coating liquid was prepared. This coating liquid was applied on one side onto the positive electrode current collector and dried to form the first positive electrode layer.

(正極第2層の作製)
第2活物質としてのカーボンコートをしたLiTi12(作動電位が、正極活物質の作動電位より1.85V低く、負極活物質の作動電位より1.30V高い)を87質量部と、導電材としてのアセチレンブラックを7質量部と、結着材としてのCMCを1質量部と、結着材としてのPEOを1質量部と、結着材としてのPTFEを1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極第1層上に塗布し、乾燥することで正極第2層を形成した。
(Preparation of positive electrode second layer)
Li 4 Ti 5 O 12 (operating potential is 1.85 V lower than the operating potential of the positive electrode active material and 1.30 V higher than the operating potential of the negative electrode active material) with carbon coating as the second active material, 7 parts by mass of acetylene black as a conductive material, 1 part by mass of CMC as a binder, 1 part by mass of PEO as a binder, and 1 part by mass of PTFE as a binder Were mixed and dispersed to prepare a homogeneous coating liquid. This coating liquid was applied onto the positive electrode first layer and dried to form a positive electrode second layer.

(正極の作製)
正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。そして、対極をLi金属で25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて1.55Vまで定電流充電を行いLi4Ti5O12中にあらかじめ、Cu6Sn6合金の初回不可逆容量に相当するリチウム量を供給しておいた。
(Preparation of positive electrode)
The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. The counter electrode is made of Li metal at 25 ° C., and constant current charging is performed up to 1.55V at a current value equivalent to 1C (1C is a current value that can discharge the battery capacity in 1 hour). In Li 4 Ti 5 O 12 In advance, an amount of lithium corresponding to the initial irreversible capacity of the Cu 6 Sn 6 alloy was supplied.

(コイン電池の作成)
負極及び電解液については、実施例1と同じものを用いてコイン型電池を製造した。
(Create coin battery)
About the negative electrode and electrolyte solution, the coin-type battery was manufactured using the same thing as Example 1. FIG.

(比較例1)
正極活物質としてのLiNiOを87質量部と、導電材としてのアセチレンブラックを10質量部と、結着材としてのCMCを1質量部と、結着材としてのPEOを1質量部と、結着材としてのPTFEを1質量部とを水に混合・分散させ、均質な塗料液を調製した。この塗料液を正極集電体上に片面塗布し、乾燥することで正極層を形成した。正極合材厚みは75μmとなるようプレスした。その後、所定のサイズに裁断することで正極を作製した。
(Comparative Example 1)
87 parts by mass of LiNiO 2 as a positive electrode active material, 10 parts by mass of acetylene black as a conductive material, 1 part by mass of CMC as a binder, 1 part by mass of PEO as a binder, A homogeneous coating liquid was prepared by mixing and dispersing 1 part by mass of PTFE as a coating material in water. This coating liquid was applied on one side onto a positive electrode current collector and dried to form a positive electrode layer. The positive electrode composite material was pressed to a thickness of 75 μm. Then, the positive electrode was produced by cutting into a predetermined size.

負極活物質としての天然黒鉛を98質量部と、結着材としてのPVdFを2質量部とを有機溶媒に混合・分散させ、均質な塗料液を調製した。この塗料液を負極集電体上に片面塗布し、乾燥することで形成した。負極の厚みは75μmとなるよう調整した。その後、所定のサイズに裁断することで正極を作製した。電解液については、実施例1と同じものを用いてコイン型電池を製造した。コイン型電池は基本的な構造としては、図1に示すものを採用し、その正極についてのみ図2に示すものを採用した。以下の比較例についても同じ構造をもつコイン型電池を採用した。   A homogeneous coating liquid was prepared by mixing and dispersing 98 parts by mass of natural graphite as a negative electrode active material and 2 parts by mass of PVdF as a binder in an organic solvent. The coating liquid was formed on one side of the negative electrode current collector and dried. The thickness of the negative electrode was adjusted to 75 μm. Then, the positive electrode was produced by cutting into a predetermined size. As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1. As the basic structure of the coin-type battery, the one shown in FIG. 1 was adopted, and only the positive electrode shown in FIG. 2 was adopted. Coin-type batteries having the same structure were adopted for the following comparative examples.

(比較例2)
正極は比較例1と同様に調製した。負極は実施例1の負極と同様に調製した。電解液については、実施例1と同じものを用いてコイン型電池を製造した。正極活物質の量は負極活物質の量に対応して算出した量に加え、負極活物質における不可逆容量に相当する量を加えた量とした。
(Comparative Example 2)
The positive electrode was prepared in the same manner as in Comparative Example 1. The negative electrode was prepared in the same manner as the negative electrode of Example 1. As for the electrolytic solution, a coin-type battery was manufactured using the same one as in Example 1. The amount of the positive electrode active material was an amount obtained by adding an amount corresponding to the irreversible capacity of the negative electrode active material in addition to the amount calculated corresponding to the amount of the negative electrode active material.

正極活物質、負極活物質、及び第2活物質として用いた材料について作動電位を表1に示す。   Table 1 shows operating potentials of materials used as the positive electrode active material, the negative electrode active material, and the second active material.

Figure 2011238490
Figure 2011238490

(コイン型電池評価)
コイン型電池は、25℃の雰囲気で、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)にて4.1Vまで定電流定電圧充電した。その後、電池を分解し得られた正極を作用極に、対極、参照極をリチウム、電解液をエチレンカーボネート(EC)とジエチルメチルカーボネート(EMC)とを3:7の質量比で混合した有機溶媒に、LiPFを1.0mol/Lの濃度で添加した電解液を用いて三極セルを作製し、開回路電圧を測定した。その結果を、初期正極充電電圧とした。評価結果を表2に示す。
(Coin-type battery evaluation)
The coin-type battery was charged at a constant current and a constant voltage up to 4.1 V at a current value equivalent to 1 C (1 C is a current value at which the battery capacity can be discharged in 1 hour) in an atmosphere of 25 ° C. Thereafter, the positive electrode obtained by disassembling the battery as a working electrode, the counter electrode, the reference electrode as lithium, and the electrolyte as an organic solvent in which ethylene carbonate (EC) and diethyl methyl carbonate (EMC) were mixed at a mass ratio of 3: 7. A triode cell was prepared using an electrolyte solution to which LiPF 6 was added at a concentration of 1.0 mol / L, and the open circuit voltage was measured. The result was used as the initial positive electrode charging voltage. The evaluation results are shown in Table 2.

Figure 2011238490
Figure 2011238490

表2から明らかなように、負極活物質として合金系材料(CuSn)を用いた比較例2の試験電池では負極活物質として炭素系材料(天然黒鉛)を用いた比較例1の試験電池に比べて初期正極充電電圧が高くなっていることが分かった。すなわち、比較例2の試験電池は、初期の充電において正極が過充電状態になっていることを示している。一方、実施例1〜6及び13の試験電池のように、正極材料よりも低電位で作動する第2活物質を正極に層状に添加したり、実施例7〜12の試験電池のように、負極材料よりも高電位で作動する第2活物質を負極側に層状にして添加したりすることで、第2活物質を添加しない比較例2の試験電池に比べ初期正極充電電圧が低くなり過充電状態が抑制されていることが分かる。これは実施例13の試験電池においても過充電が抑制できていることから、活物質の種類によらず、正極活物質よりも作動電位が低く、負極活物質よりも作動電位が高い第2活物質を正負極の少なくとも一方に添加することにより過充電が抑制できることが分かった。 As is apparent from Table 2, in the test battery of Comparative Example 2 using an alloy-based material (Cu 6 Sn 6 ) as the negative electrode active material, the test of Comparative Example 1 using a carbon-based material (natural graphite) as the negative electrode active material. It was found that the initial positive electrode charging voltage was higher than that of the battery. That is, the test battery of Comparative Example 2 shows that the positive electrode is in an overcharged state in the initial charge. On the other hand, like the test batteries of Examples 1 to 6 and 13, a second active material that operates at a lower potential than the positive electrode material is added to the positive electrode in layers, or like the test batteries of Examples 7 to 12, By adding a second active material that operates at a higher potential than the negative electrode material in a layered manner on the negative electrode side, the initial positive electrode charging voltage becomes lower than that of the test battery of Comparative Example 2 in which the second active material is not added. It can be seen that the state of charge is suppressed. This is because the overcharge can be suppressed also in the test battery of Example 13, so that the second active potential is lower than the positive electrode active material and higher than the negative electrode active material regardless of the type of the active material. It was found that overcharging can be suppressed by adding a substance to at least one of the positive and negative electrodes.

図3に実施例1(LiNiO+LiFePO/LiPFEC(30)DEC(70)/CuSn)の1サイクル目と2サイクル目の充放電曲線を示す。1サイクル目はLiFePOの充電反応が見られるが、放電反応は見られなかった。また、2サイクル目以降はLiFePOの充放電反応は見られなかった。したがって、LiFePOから脱離したLiが負極の不可逆容量に消費され、その後はLiNiOのみが充放電されていることを確認できた。実施例2〜実施例12でも同様の結果が得られており、合金系負極材料を用いる系にリチウム挿入脱離可能な活物質を添加したことで、添加した化合物中のLiが初回充電時の負極での不可逆容量分に消費され、その結果、正極の過充電状態を抑制できることが示された。 FIG. 3 shows the charge / discharge curves of the first cycle and the second cycle of Example 1 (LiNiO 2 + LiFePO 4 / LiPF 6 EC (30) DEC (70) / Cu 6 Sn 6 ). In the first cycle, a charge reaction of LiFePO 4 was observed, but no discharge reaction was observed. In addition, the charge / discharge reaction of LiFePO 4 was not observed after the second cycle. Therefore, it was confirmed that Li desorbed from LiFePO 4 was consumed by the irreversible capacity of the negative electrode, and thereafter only LiNiO 2 was charged / discharged. Similar results were obtained in Example 2 to Example 12, and the addition of an active material capable of lithium insertion / extraction to the system using the alloy-based negative electrode material resulted in Li in the added compound at the time of initial charge. It was shown that the overcharged state of the positive electrode can be suppressed as a result of being consumed by the irreversible capacity of the negative electrode.

(変形例1)
本変形例では、実施例の試験電池では電極を層状の構造にしているのに対して、第2活物質を正負極の何れかの活物質に所定の割合で混合して電極を作製し、評価したところ、実施例と同様の結果が得られた。
(Modification 1)
In this modification, the test battery of the example has a layered electrode structure, whereas the second active material is mixed with any of the positive and negative electrode active materials at a predetermined ratio to produce an electrode. As a result of evaluation, the same results as in the example were obtained.

(変形例2)
各実施例における正極活物質として、LiNi1/3Mn1/3Co1/3(3.95V vs. Li/Li)などのLiNiOよりも高電位で作動する材料を採用することにより、第2活物質としてLiNiOを採用することができる。つまり、本発明の非水電解液二次電池に含まれる材料のうち、どの材料が正極活物質(又は負極活物質)であるか、又は、第2活物質であるかは、その材料単独では決定できず、他の材料の作動電位との比較により決定される。
(Modification 2)
As a positive electrode active material in each example, a material that operates at a higher potential than LiNiO 2 such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 (3.95 V vs. Li / Li + ) should be adopted. Accordingly, LiNiO 2 can be adopted as the second active material. That is, of the materials included in the nonaqueous electrolyte secondary battery of the present invention, which material is the positive electrode active material (or the negative electrode active material) or the second active material is determined by the material alone. It cannot be determined and is determined by comparison with the working potential of other materials.

1…正極 1a…正極集電体 2…負極 2a…負極集電体 3…電解液 4…正極ケース 5…負極ケース 6…ガスケット 7…セパレータ 10…コイン型の非水電解液二次電池   DESCRIPTION OF SYMBOLS 1 ... Positive electrode 1a ... Positive electrode collector 2 ... Negative electrode 2a ... Negative electrode collector 3 ... Electrolyte solution 4 ... Positive electrode case 5 ... Negative electrode case 6 ... Gasket 7 ... Separator 10 ... Coin type nonaqueous electrolyte secondary battery

Claims (5)

正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極とを有する非水電解液二次電池であって、
前記正極及び前記負極の少なくとも一方は前記正極活物質の作動電位よりも低く前記負極活物質の作動電位よりも高い第2活物質を備え、
前記第2活物質の量は前記負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウム量をもつように添加されることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material including an alloy-based material,
At least one of the positive electrode and the negative electrode includes a second active material that is lower than the operating potential of the positive electrode active material and higher than the operating potential of the negative electrode active material,
The non-aqueous electrolyte secondary battery is characterized in that the amount of the second active material is added so as to have an amount of lithium corresponding to or greater than the irreversible capacity of the negative electrode active material.
前記第2活物質の作動電位は、前記正極活物質の作動電位よりも0.2V以下で、前記負極活物質の作動電位よりも0.2V以上である請求項1に記載の非水電解液二次電池。   2. The non-aqueous electrolyte according to claim 1, wherein an operating potential of the second active material is 0.2 V or less than an operating potential of the positive electrode active material and 0.2 V or more than an operating potential of the negative electrode active material. Secondary battery. 前記第2活物質の表面は導電材が接触している請求項1又は2に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a conductive material is in contact with the surface of the second active material. 前記第2活物質はチタン酸リチウムである請求項1〜3のうちの何れか1項に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the second active material is lithium titanate. 正極活物質を備える正極と、合金系材料を含む負極活物質を備える負極とを有する非水電解液二次電池を製造する方法であって、
前記正極及び前記負極の少なくとも一方は前記正極活物質の作動電位よりも低く前記負極活物質の作動電位よりも高い第2活物質を備えた状態で、初回の充放電を行う工程をもち、
前記第2活物質の量は前記負極活物質の不可逆容量に相当する量又はそれ以上の量のリチウム量をもつように添加されることを特徴とする非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material including an alloy-based material,
At least one of the positive electrode and the negative electrode has a step of performing a first charge / discharge with a second active material that is lower than the operating potential of the positive electrode active material and higher than the operating potential of the negative electrode active material,
The method of manufacturing a non-aqueous electrolyte secondary battery, wherein the second active material is added so as to have an amount of lithium corresponding to or greater than an irreversible capacity of the negative electrode active material.
JP2010109567A 2010-05-11 2010-05-11 Nonaqueous electrolyte secondary battery and manufacturing method thereof Active JP5424052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109567A JP5424052B2 (en) 2010-05-11 2010-05-11 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109567A JP5424052B2 (en) 2010-05-11 2010-05-11 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011238490A true JP2011238490A (en) 2011-11-24
JP5424052B2 JP5424052B2 (en) 2014-02-26

Family

ID=45326251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109567A Active JP5424052B2 (en) 2010-05-11 2010-05-11 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5424052B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025466A1 (en) * 2013-08-22 2015-02-26 株式会社豊田自動織機 Lithium ion secondary battery having positive electrode that comprises thermal runaway suppressing layer on positive electrode active material layer
WO2015056412A1 (en) * 2013-10-17 2015-04-23 株式会社豊田自動織機 Lithium-ion secondary battery
JP2015225761A (en) * 2014-05-27 2015-12-14 株式会社カネカ Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JP2001345101A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
JP2002203557A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP2002237295A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003303585A (en) * 2002-04-11 2003-10-24 Sony Corp Battery
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2008016446A (en) * 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2010102841A (en) * 2008-10-21 2010-05-06 Nec Tokin Corp Nonaqueous electrolyte lithium-ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254436A (en) * 1994-03-16 1995-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery and manufacture thereof
JP2001345101A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
JP2002203557A (en) * 2000-12-28 2002-07-19 Sony Corp Non-aqueous electrolyte secondary battery
JP2002237295A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003303585A (en) * 2002-04-11 2003-10-24 Sony Corp Battery
JP2007172954A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2008016446A (en) * 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2010102841A (en) * 2008-10-21 2010-05-06 Nec Tokin Corp Nonaqueous electrolyte lithium-ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive
WO2015025466A1 (en) * 2013-08-22 2015-02-26 株式会社豊田自動織機 Lithium ion secondary battery having positive electrode that comprises thermal runaway suppressing layer on positive electrode active material layer
US9812702B2 (en) 2013-08-22 2017-11-07 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery having positive electrode that comprises thermal run-away suppressing layer on positive electrode active material layer
WO2015056412A1 (en) * 2013-10-17 2015-04-23 株式会社豊田自動織機 Lithium-ion secondary battery
JPWO2015056412A1 (en) * 2013-10-17 2017-03-09 株式会社豊田自動織機 Lithium ion secondary battery
JP2015225761A (en) * 2014-05-27 2015-12-14 株式会社カネカ Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5424052B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
JP5882516B2 (en) Lithium secondary battery
CN112313819B (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
US10673046B2 (en) Separator for lithium metal based batteries
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
JP5029540B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery using the same
US10418668B2 (en) Electrolyte system including complexing agent to suppress or minimize metal contaminants and dendrite formation in lithium ion batteries
US11114696B2 (en) Electrolyte system for lithium-chalcogen batteries
JP2005228565A (en) Electrolytic solution and battery
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
JP6998335B2 (en) Negative electrode active material and power storage device
KR101352672B1 (en) Anode active material for secondary battery
JP2005071678A (en) Battery
CN102214818A (en) Battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5424052B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2003123767A (en) Collector, electrode, and battery
JP2006134758A (en) Secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
JP2014053154A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5590418B2 (en) Nonaqueous electrolyte secondary battery
JP2005026091A (en) Nonaqueous electrolyte battery
JP5327531B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
JP2006302757A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R151 Written notification of patent or utility model registration

Ref document number: 5424052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250