JP2015225761A - Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery - Google Patents

Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015225761A
JP2015225761A JP2014109378A JP2014109378A JP2015225761A JP 2015225761 A JP2015225761 A JP 2015225761A JP 2014109378 A JP2014109378 A JP 2014109378A JP 2014109378 A JP2014109378 A JP 2014109378A JP 2015225761 A JP2015225761 A JP 2015225761A
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
material mixture
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014109378A
Other languages
Japanese (ja)
Inventor
充康 今▲崎▼
Mitsuyasu Imazaki
充康 今▲崎▼
今泉 純一
Junichi Imaizumi
純一 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2014109378A priority Critical patent/JP2015225761A/en
Publication of JP2015225761A publication Critical patent/JP2015225761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode active material mixture for manufacturing an electrode for a nonaqueous electrolyte secondary battery, in which an electrode active material, etc. are dispersed uniformly.SOLUTION: An electrode active material mixture comprises: an electrode active material; a conductive assistant; a binding material; polyether; and water for dispersing the electrode active material, the conductive assistant, and the binding material. The electrode active material consists of a substance, such as LiAlMnO, LiNiMnO, LiTiO, or TiO(B), which lithium ions can reversibly go out of/into.

Description

本発明は、非水電解質二次電池の電極の組成物に関するものである。   The present invention relates to an electrode composition for a non-aqueous electrolyte secondary battery.

リチウムイオン蓄電池はモバイル機器用電源として現在幅広く使用されている。リチウムイオン蓄電池は、既存のニッケル−カドミウム蓄電池やニッケル−水素蓄電池と比較してエネルギー密度が高いために、電気自動車や電力貯蔵などの大型電源用途としても期待されている。特に、電極活物質に遷移金属複合酸化物を用いる非水電解質二次電池はサイクル特性が良いこと及び安全性が高いことから注目を浴びている(例えば、非特許文献1)。   Lithium ion storage batteries are currently widely used as power sources for mobile devices. Lithium ion storage batteries are expected to be used for large power supplies such as electric vehicles and power storage because of their higher energy density than existing nickel-cadmium storage batteries and nickel-hydrogen storage batteries. In particular, non-aqueous electrolyte secondary batteries using transition metal composite oxides as electrode active materials are attracting attention because of their good cycle characteristics and high safety (for example, Non-Patent Document 1).

このような非水電解質二次電池において、電極の構造は、電極活物質と導電助材と、電極活物質に形状安定性を持たせるための結着材(バインダー)とを、溶媒中に分散させ練り合わせたものを、集電体に貼り付けて成形し乾燥させた構造となっている。
結着材には例えばポリフッ化ビニリデンが用いられるが、この結着材は有機溶媒であるN−メチル−2−ピロリドンに分散される。有機溶媒を分散剤に使用した場合は、溶媒自体のコストに加え、溶媒を回収する必要があるため、設備的にもコストが割高である。
In such a non-aqueous electrolyte secondary battery, the electrode has a structure in which an electrode active material, a conductive additive, and a binder (binder) for imparting shape stability to the electrode active material are dispersed in a solvent. The kneaded and kneaded materials are pasted on a current collector, molded and dried.
For example, polyvinylidene fluoride is used as the binder, and this binder is dispersed in N-methyl-2-pyrrolidone which is an organic solvent. When an organic solvent is used as a dispersant, it is necessary to recover the solvent in addition to the cost of the solvent itself.

そこで溶媒に水を使用し、結着材として、スチレン−ブタジエン共重合体などの水に分散しやすい結着材が用いられることがあるが(例えば、特許文献1)、水に分散させる場合には、電極活物質等と結着材の混合性に問題があった。
そこで、特許文献2は、分散溶媒としての水に、分散安定剤としてカルボキシルメチルセルロースという水溶性高分子を添加したものを用い、結着材にポリテトラフルオロエチレン(PTFE)を用いて、リチウムマンガン複合酸化物(実施例11)、リチウム・ニッケル・マンガン・コバルト複合酸化物( 実施例12)、リチウムチタン複合酸化物( 実施例13)などの酸化物系の電極活物質を調整している。
Therefore, water is used as a solvent, and a binder such as a styrene-butadiene copolymer that is easily dispersed in water may be used as the binder (for example, Patent Document 1). Had a problem in the mixing properties of the electrode active material and the binder.
Therefore, Patent Document 2 uses lithium manganese composite using water as a dispersion solvent to which a water-soluble polymer called carboxymethyl cellulose is added as a dispersion stabilizer, and using polytetrafluoroethylene (PTFE) as a binder. Oxide-based electrode active materials such as oxide (Example 11), lithium / nickel / manganese / cobalt composite oxide (Example 12), and lithium titanium composite oxide (Example 13) are prepared.

特許文献3は、電極活物質としてのリチウム・ニッケル複合酸化物(コア材)の表面にAl23などの被覆材を粒子状又は層状に付着させたものと、導電材との混合粉末を得て、水溶性高分子が溶解され、かつ水分散性高分子が分散された水系バインダーと混ぜて、電極活物質混合物ペーストを調整している。 Patent Document 3 discloses a mixed powder of a conductive material and a material in which a coating material such as Al 2 O 3 is adhered in the form of particles or layers on the surface of a lithium / nickel composite oxide (core material) as an electrode active material. The electrode active material mixture paste is prepared by mixing with an aqueous binder in which the water-soluble polymer is dissolved and the water-dispersible polymer is dispersed.

特開平4−342966号公報JP-A-4-342966 特開2011−258333号公報JP 2011-258333 A 特開2011−146360号公報JP 2011-146360 A

高見、小杉、本多「耐久性と安全性に優れたハイブリッド自動車用新型二次電池SCiBTM」東芝レビューVol.63, No.12, pp.54-57 (2008)Takami, Kosugi, Honda "New Rechargeable Battery SCiBTM for Hybrid Vehicles with Excellent Durability and Safety" Toshiba Review Vol.63, No.12, pp.54-57 (2008)

しかし、特許文献2は、酸化物系の電極活物質に導電助材を混合した場合に、分散安定剤として水溶性高分子を添加した水溶媒が、電極活物質の分散にどれだけ有効であるか、実施例を示していない。
本発明者が鋭意研究したところ、導電助材を混合した場合、特に導電助材として炭素系の粉末を混合した場合には、粒子の密度や親水性の問題から起こる異種粒子の分離が起こり易いことが分かった。
However, in Patent Document 2, when a conductive additive is mixed with an oxide electrode active material, how effective is an aqueous solvent with a water-soluble polymer added as a dispersion stabilizer for the dispersion of the electrode active material. No example is shown.
As a result of intensive studies by the inventor, when a conductive additive is mixed, particularly when a carbon-based powder is mixed as a conductive additive, separation of different kinds of particles is likely to occur due to particle density and hydrophilicity problems. I understood that.

また、特許文献3の実施例で用いられる電極活物質は、リチウム・ニッケル・コバルト酸化物に限られている。また、特許文献3は、電極活物質の表面に、Al、B、Ga、In、Mg、Si、Zrなどの金属の酸化物を被覆材として付着させているので、電極の単位面積、単位厚さ当たりの容量が小さくなり、電池のエネルギー密度が低下するという問題もある。   Moreover, the electrode active material used in the Example of patent document 3 is restricted to lithium nickel nickel cobalt oxide. Further, in Patent Document 3, since a metal oxide such as Al, B, Ga, In, Mg, Si, and Zr is attached to the surface of the electrode active material as a coating material, the unit area and unit thickness of the electrode There is also a problem that the capacity per unit is reduced and the energy density of the battery is lowered.

本発明は前述した事情に鑑みてなされたもので、形状安定性に優れた電池用電極を製造するため、短時間で製造することができる電極活物質混合物、それを用いて作製した電極及び非水電解質二次電池を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and in order to manufacture a battery electrode having excellent shape stability, an electrode active material mixture that can be manufactured in a short time, an electrode manufactured using the electrode, and a non-electrode It aims at providing a water electrolyte secondary battery.

本発明の非水電解質二次電池用電極活物質混合物は、非水電解質二次電池用の電極を作製するのに用いられ、少なくとも、電極活物質、導電助材、結着材、ポリエーテル及び、前記電極活物質と導電助剤と結着材とポリエーテルとを分散させるための溶媒として水を含み、前記電極活物質が以下の(1)〜(3)のいずれかである。
(1)Li1+xyMn2-x-y4(0≦x≦0.34、0<y≦0.6、AはAl、Mg、Zn、Ni、Co、Fe及びCrからなる群から選ばれる少なくとも1種)、
(2)Li[Li(1/3)-xyTi(5/3)+x-y]O4(0≦x≦1/3、0≦y≦1/2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)、
(3)Tixy2(0.8≦x+y≦1.2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)。
The electrode active material mixture for a non-aqueous electrolyte secondary battery of the present invention is used to produce an electrode for a non-aqueous electrolyte secondary battery, and includes at least an electrode active material, a conductive additive, a binder, a polyether, Water is included as a solvent for dispersing the electrode active material, the conductive additive, the binder, and the polyether, and the electrode active material is any one of (1) to (3) below.
(1) Li 1 + x A y Mn 2-xy O 4 (0 ≦ x ≦ 0.34, 0 <y ≦ 0.6, A is a group consisting of Al, Mg, Zn, Ni, Co, Fe and Cr At least one selected from)
(2) Li [Li (1/3 ) -x A y Ti (5/3) + xy] O 4 (0 ≦ x ≦ 1 / 3,0 ≦ y ≦ 1/2, A is Al, Mg, Zn , At least one selected from the group consisting of Ni, Co, Fe, Cr or Nb),
(3) Ti x A y O 2 (0.8 ≦ x + y ≦ 1.2, A is at least one selected from the group consisting of Al, Mg, Zn, Ni, Co, Fe, Cr, or Nb).

前記ポリエーテルはポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリブチレングリコール(PBG)またはそれらの混合物であることが好ましい。
前記電極活物質の表面に前記ポリエーテルが被覆されていてもよい。
前記導電助材が炭素系の粉末であってもよい。炭素系の粉末は、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。このように導電助材として炭素系の粉末を混合した場合には、本発明によれば、粒子の密度や親水性の問題から起こる異種粒子の分離を抑制することができ、短時間で均一混合物とすることができる。
The polyether is preferably polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol (PBG) or a mixture thereof.
The surface of the electrode active material may be coated with the polyether.
The conductive aid may be a carbon-based powder. Examples of the carbon-based powder include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. Thus, when carbon-based powder is mixed as a conductive additive, according to the present invention, separation of different kinds of particles caused by particle density and hydrophilic problems can be suppressed, and a uniform mixture can be obtained in a short time. It can be.

前記結着材が、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合体、ポリアクリル酸エステル、ポリビニルアルコール、カルボキシメチルセルロース、ポリイミドの、少なくとも何れか1種であることが好ましい。
前記電極活物質の種類に応じて、電池の正極に好適に用いられる場合もあり、電池の負極に好適に用いられる場合もある。
The binder is at least one of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, styrene-butadiene copolymer, polyacrylic ester, polyvinyl alcohol, carboxymethyl cellulose, and polyimide. It is preferable.
Depending on the type of the electrode active material, it may be suitably used for the positive electrode of the battery, or may be suitably used for the negative electrode of the battery.

さらに本発明によれば、前記電極活物質混合物より得られる非水電解質二次電池用電極が提供される。また本発明によれば、それを具えてなる非水電解質二次電池が提供される。   Furthermore, according to this invention, the electrode for nonaqueous electrolyte secondary batteries obtained from the said electrode active material mixture is provided. Moreover, according to this invention, the nonaqueous electrolyte secondary battery provided with it is provided.

本発明によれば、電極活物質混合物が、前記(1)〜(3)で特定されるいずれかの電極活物質、導電助材、結着材、水、ポリエーテルを含むことにより、短時間で分散状態が向上し、形状安定性及び電池性能の良好な電極を作製することが可能となる。   According to the present invention, the electrode active material mixture contains any one of the electrode active materials specified in the above (1) to (3), a conductive additive, a binder, water, and a polyether, so that a short time can be obtained. Thus, the dispersed state is improved, and an electrode having good shape stability and battery performance can be produced.

以下、本発明の実施の形態を添付図面を参照して説明する。
本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
<1.電極>
本発明の電極活物質混合物は、少なくとも、電極活物質、導電助材、結着材(バインダー)、ポリエーテル、水を含んでいる。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
<1. Electrode>
The electrode active material mixture of the present invention contains at least an electrode active material, a conductive additive, a binder (binder), polyether, and water.

前記電極活物質は、リチウムイオンの挿入・脱離が可能な遷移金属酸化物及び/又は遷移金属酸化物であり、(1)Li1+xyMn2-x-y4(0≦x≦0.34、0<y≦0.6、AはAl、Mg、Zn、Ni、Co、Fe及びCrからなる群から選ばれる少なくとも1種)、(2)Li[Li(1/3)-xyTi(5/3)+x-y]O4(0≦x≦1/3、0≦y≦1/2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)、(3)Tixy2(0.8≦x+y≦1.2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)、の何れかが用いられる。これら電極活物質は充放電に伴う体積変化がほとんど無いと云う特長がある。 The electrode active material is a transition metal oxide and / or transition metal oxide capable of inserting / extracting lithium ions, and (1) Li 1 + x A y Mn 2-xy O 4 (0 ≦ x ≦ 0.34, 0 <y ≦ 0.6, A is at least one selected from the group consisting of Al, Mg, Zn, Ni, Co, Fe and Cr), (2) Li [Li (1/3) − consisting x A y Ti (5/3) + xy] O 4 (0 ≦ x ≦ 1 / 3,0 ≦ y ≦ 1/2, A is Al, Mg, Zn, Ni, Co, Fe, Cr or Nb At least one selected from the group), (3) Ti x A y O 2 (0.8 ≦ x + y ≦ 1.2, A is from the group consisting of Al, Mg, Zn, Ni, Co, Fe, Cr, or Nb) Any one of at least one selected) is used. These electrode active materials have the feature that there is almost no volume change accompanying charging / discharging.

特に限定されないが、前記(1)においてAの金属がアルミニウム又はニッケルの酸化物であることが好ましい。
前記(2)及び(3)においてAの金属を含まない(y=0)ことが好ましい。あるいはAの金属を含む場合は、Aの金属がニオブである酸化物が好ましい。
ポリエーテルはポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリブチレングリコール(PBG)またはそれらの混合物であることが好ましい。本発明においてポリエーテルの全溶媒に対する混合比率は、重量比率で0.5〜5%であることが好ましく、より好ましくは0.5〜3%である。2種類以上のポリエーテルを混合して用いても良い。
Although not particularly limited, in (1), the metal A is preferably an oxide of aluminum or nickel.
In the above (2) and (3), it is preferable that the metal of A is not included (y = 0). Or when the metal of A is included, the oxide whose metal of A is niobium is preferable.
The polyether is preferably polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol (PBG) or mixtures thereof. In the present invention, the mixing ratio of the polyether to the total solvent is preferably 0.5 to 5% by weight, and more preferably 0.5 to 3%. Two or more kinds of polyethers may be mixed and used.

前記バインダーは水に分散可能なものが使用される。例えば、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、スチレン−ブタジエン共重合体(SBR)、ポリアクリル酸エステル、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)及びそれら誘導体からなる群から選ばれる少なくとも1種を用いることができる。これらに分散剤、増粘剤を加えても良い。本発明において、電極に含まれるバインダーの量は、電極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、電極活物質と導電助材との接着性が維持され、集電体との密着性を十分に得ることができる。   A binder that can be dispersed in water is used. For example, although not particularly limited, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), styrene-butadiene copolymer (SBR), polyacrylic acid ester, polyvinyl alcohol (PVA), At least one selected from the group consisting of carboxymethyl cellulose (CMC), polyimide (PI) and derivatives thereof can be used. You may add a dispersing agent and a thickener to these. In the present invention, the amount of the binder contained in the electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the electrode active material. If it is the said range, the adhesiveness of an electrode active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.

電極は、導電助材を含有している。導電助材としては、特に限定されないが、炭素系材料及び/又は金属微粒子が好ましい。炭素系材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。金属微粒子として、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金が挙げられる。また、電極活物質の表面や無機材料の微粒子の表面にめっきを施したものでも良い。これら炭素系材料及び金属微粒子は1種類でも良いし、2種類以上用いても良い。   The electrode contains a conductive additive. Although it does not specifically limit as a conductive support material, A carbonaceous material and / or metal microparticles are preferable. Examples of the carbon-based material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. Examples of the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the surface of the electrode active material or the surface of fine particles of inorganic material may be plated. These carbon-based materials and metal fine particles may be used alone or in combination of two or more.

負極に含まれる導電助材の量は、電極活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、電極の導電性が確保される。
本発明の非水電解質二次電池用電極に用いられる集電体は、例えば、銅、アルミニウム、ニッケル、チタン及びこれら少なくとも1種を含む合金又は導電性を有する高分子が挙げられる。形状としては、箔状、メッシュ状、パンチング状、エキスパンド状、又は発泡構造体が挙げられる。集電体の空隙度を「集電体を含む単位体積内に存在する孔の内容積の合計」と定義する。
The amount of the conductive additive contained in the negative electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the electrode active material. If it is the said range, the electroconductivity of an electrode will be ensured.
Examples of the current collector used in the electrode for the nonaqueous electrolyte secondary battery of the present invention include copper, aluminum, nickel, titanium, an alloy containing at least one of these, or a polymer having conductivity. Examples of the shape include a foil shape, a mesh shape, a punching shape, an expanded shape, and a foam structure. The porosity of the current collector is defined as “the total volume of the pores existing in the unit volume including the current collector”.

ここで、メッシュ状とは、金属又は導電性高分子の繊維を織布あるいは不織布にしたものである。繊維の太さは50μm以上2000μm以下であることが好ましい。50μm未満の場合は集電体が破壊されやすい傾向がある。一方、2000μmより太い繊維を用いた場合、後述の空隙度とするには目開きが大きくなりすぎ、メッシュによる電極活物質混合物の保持が困難になる傾向がある。   Here, the mesh shape is a woven fabric or non-woven fabric of metal or conductive polymer fibers. The thickness of the fiber is preferably 50 μm or more and 2000 μm or less. When the thickness is less than 50 μm, the current collector tends to be easily broken. On the other hand, when a fiber thicker than 2000 μm is used, the opening becomes too large to make the porosity described later, and it tends to be difficult to hold the electrode active material mixture by the mesh.

パンチング状とは、板に円形、四角形、又は六角形などの孔を開けたものであり、金属からなるものがパンチングメタルである。板状であるので、空隙度は開孔率(平面視して、板の単位面積あたりの孔の合計面積の割合)に対応する。開孔率は孔径と骨(地金の部分)の比率、孔の形状、及び孔の配列によって決定される。孔の形状は特に限定されないが、開孔率上昇の観点から、丸孔千鳥型(千鳥型の開き角は例えば60°)、角孔並列型が好ましい。   The punching shape is a plate in which holes such as a circle, a rectangle, or a hexagon are formed, and a metal made of metal is punching metal. Since it is plate-shaped, the porosity corresponds to the hole area ratio (the ratio of the total area of the holes per unit area of the plate in plan view). The hole area ratio is determined by the ratio between the hole diameter and the bone (metal part), the hole shape, and the hole arrangement. The shape of the hole is not particularly limited, but from the viewpoint of increasing the hole area ratio, a round hole zigzag type (open angle of the zigzag type is 60 °, for example) and a square hole parallel type are preferable.

エキスパンド状とは、板に千鳥状の切れ目を入れ、引き伸ばして網目状にしたもので、金属からなるものがエキスパンドメタルである。エキスパンドメタルの空隙度は開孔率に対応し、開孔率は孔径と骨の比率、孔の形状、及び孔の配列によって決定される。
発泡構造体とは、骨格がスポンジのように3次元の網目状になっているもので、その孔は連続又は分散している。構造は孔径及び気孔率で決定される。連続孔の形状や孔径は特に限定されないが、高い比表面積を有する構造が好ましい。
The expanded shape is a staggered cut made on a plate and stretched to form a mesh. Expanded metal is made of metal. The porosity of the expanded metal corresponds to the hole area ratio, which is determined by the hole diameter / bone ratio, the hole shape, and the hole arrangement.
The foam structure has a three-dimensional network structure like a sponge, and the pores are continuous or dispersed. The structure is determined by the pore size and porosity. The shape and diameter of the continuous holes are not particularly limited, but a structure having a high specific surface area is preferable.

本発明の集電体に用いられる金属は、電極作動電位で安定であればよく、作動電位がリチウム基準で0.7V以下では、銅及びその合金が好ましく、0.7V以上ではアルミニウム及びその合金が好ましい。
本発明の電極活物質混合物を作製する器具は、特に限定されないが、電極活物質、導電助材、バインダー、ポリエーテル及び水を均一に混合できることから、撹拌造粒装置、ボールミル、プラネタリミキサ、ジェットミル又は薄膜旋回型ミキサーを用いることが好ましい。電極活物質混合物の混合方法は、特に限定されないが、電極活物質、導電助材、ポリエーテルを混合した後に、水に分散させたバインダーを加えて作製しても良いし、電極活物質、導電助材、ポリエーテル及びバインダーを混合した後に水を加えて作製しても良い。好ましくは、電極活物質、導電助材、ポリエーテルを混合した後に、水に分散させたバインダーを加え、混合する方法が望ましい。このようにしてスラリー状の電極活物質混合物が得られる。
The metal used for the current collector of the present invention is only required to be stable at the electrode operating potential. When the operating potential is 0.7 V or less on the basis of lithium, copper and its alloys are preferable, and when 0.7 V or more, aluminum and its alloys are used. Is preferred.
The device for producing the electrode active material mixture of the present invention is not particularly limited, but since the electrode active material, conductive additive, binder, polyether and water can be uniformly mixed, agitation granulator, ball mill, planetary mixer, jet It is preferable to use a mill or a thin film swirl mixer. The mixing method of the electrode active material mixture is not particularly limited, but may be prepared by mixing the electrode active material, the conductive additive, and the polyether, and then adding a binder dispersed in water. You may make by adding water, after mixing an auxiliary material, polyether, and a binder. Preferably, a method in which an electrode active material, a conductive additive, and a polyether are mixed and then a binder dispersed in water is added and mixed is desirable. In this way, a slurry-like electrode active material mixture is obtained.

本発明の電極活物質混合物から水を除去したものを集電体に担持させることにより非水電解質二次電池用電極を作製することができる。すなわち、水を含む電極活物質混合物を集電体の空孔部及びその外面に充填及び塗布した後に、水を除去することによって電極を作製する。
集電体上への電極活物質混合物の担持方法は、特に限定されないが、例えば電極活物質混合物を集電体上へ分散させ、加圧して電極を形成した後に水を除去する方法、電極活物質混合物のみでシートを形成し、集電体へ圧着させることで電極形成し混合溶媒を除去する方法、電極活物質混合物をドクターブレード、ダイコータ等により塗布した後に水を除去する方法、スプレーにより集電体に付着させた後に水を除去する方法、電極活物質混合物に集電体を含浸させた後に水を除去する方法が好ましい。特に、加圧・圧着等により電極を形成する方法が好ましい。混合溶媒を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。雰囲気としては、室温あるいは高温とした空気、不活性ガス、真空状態などが挙げられる。
An electrode for a non-aqueous electrolyte secondary battery can be produced by supporting a current collector after removing water from the electrode active material mixture of the present invention. That is, after filling and applying the electrode active material mixture containing water to the pores and the outer surface of the current collector, the electrode is produced by removing the water.
The method for supporting the electrode active material mixture on the current collector is not particularly limited. For example, the electrode active material mixture is dispersed on the current collector and pressurized to form an electrode, and then water is removed. A sheet is formed only from the substance mixture, and an electrode is formed by pressure bonding to the current collector to remove the mixed solvent, a method in which the electrode active material mixture is applied with a doctor blade, a die coater, etc., and then water is removed. A method of removing water after adhering to the electric body and a method of removing water after impregnating the current collector in the electrode active material mixture are preferable. In particular, a method of forming an electrode by pressure, pressure bonding or the like is preferable. A method of removing the mixed solvent is preferable because it is easy to dry using an oven or a vacuum oven. As the atmosphere, air at room temperature or high temperature, an inert gas, a vacuum state, or the like can be given.

前記電極活物質の表面にポリエーテルをあらかじめ被覆してから、本発明の電極活物質混合物を作製する方法がある。この場合、固形分濃度を80%以上にし、電極活物質混合物のみでシートを形成し、集電体へ圧着させた後、混合溶媒を除去する方法により良好な電極となる。固形分濃度を80%以上にすることで、表面のポリエーテルの一部が溶解し、潤滑性が向上する。転動流動コーティング装置(MP−25、パウレック製)を用い、活物質を容器内に飛散させ、容器内にポリエーテル水溶液を噴霧することによりポリエーテルコーティングを行うことができる。被覆する厚さは1nm以上1μm以下が好ましい。   There is a method of preparing the electrode active material mixture of the present invention after previously coating the surface of the electrode active material with polyether. In this case, a solid electrode having a solid content concentration of 80% or more, a sheet is formed only from the electrode active material mixture, and after pressure-bonded to the current collector, a mixed electrode is removed to obtain a good electrode. By setting the solid content concentration to 80% or more, a part of the surface polyether is dissolved and the lubricity is improved. Polyether coating can be performed by using a tumbling fluidized coating apparatus (MP-25, manufactured by Paulek) to scatter the active material into the container and spray the aqueous polyether solution into the container. The coating thickness is preferably 1 nm or more and 1 μm or less.

得られた電極は、非水電解質二次電池の負極として用いても良いし、正極として用いても良い。正極として用いる場合には、リチウムイオンを化学的・電気化学的にあらかじめ挿入しておいても良い。
<2.負極と正極の容量比及び面積比>
本発明の電極活物質混合物より製造された非水電解質二次電池用電極を用いて作製した二次電池における正極と負極の電気容量の比は、下記式(a)を満たすことが望ましい。
The obtained electrode may be used as a negative electrode of a nonaqueous electrolyte secondary battery or may be used as a positive electrode. When used as a positive electrode, lithium ions may be inserted in advance chemically and electrochemically.
<2. Capacity ratio and area ratio of negative electrode to positive electrode>
As for the ratio of the electric capacity of a positive electrode and a negative electrode in the secondary battery produced using the electrode for nonaqueous electrolyte secondary batteries manufactured from the electrode active material mixture of the present invention, it is desirable to satisfy the following formula (a).

0.7≦B/A≦1.3 (a)
但し、上記式(a)中、Aは正極1cmあたりの電気容量を示し、Bは負極1cmあたりの電気容量を示す。
B/Aが0.7未満である場合は、過充電時に負極の電位が負極集電体とリチウムが反応する電位又はリチウムの析出電位になる場合があり、一方、B/Aが1.3より大きい場合は電池反応に関与しない負極活物質多いために副反応が起こる場合がある。
0.7 ≦ B / A ≦ 1.3 (a)
However, in said formula (a), A shows the electrical capacity per 1 cm < 2 > of positive electrodes, B shows the electrical capacity per 1 cm < 2 > of negative electrodes.
When B / A is less than 0.7, the potential of the negative electrode may become a potential at which the negative electrode current collector reacts with lithium or a lithium deposition potential during overcharge, while B / A is 1.3. If it is larger, a side reaction may occur because there are many negative electrode active materials not involved in the battery reaction.

本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(b)を満たすことが好ましい。
1≦D/C≦1.2 (b)
但し、上記式(b)中、Cは正極の面積、Dは負極の面積を示す。D/Cが1未満である場合は、例えば前述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、電極作製の際、塗工幅を制御することによって行うことができる。
The area ratio between the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (b).
1 ≦ D / C ≦ 1.2 (b)
However, in said formula (b), C shows the area of a positive electrode, D shows the area of a negative electrode. When D / C is less than 1, for example, when B / A = 1, the capacity of the negative electrode is smaller than that of the positive electrode, so that the potential of the negative electrode may become a lithium deposition potential during overcharge. On the other hand, if D / C is greater than 1.2, the negative electrode active material not involved in the battery reaction may cause a side reaction because the portion of the negative electrode that is not in contact with the positive electrode is large. Although control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of electrode preparation, it can carry out by controlling the coating width.

本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(c)を満たすことが好ましい。
1≦F/E≦1.5 (c)
但し、上記式(c)中、Eは負極の面積、Fはセパレータの面積を示す。F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の容量密度及び出力密度が低下する場合がある。
The area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (c).
1 ≦ F / E ≦ 1.5 (c)
However, in said formula (c), E shows the area of a negative electrode and F shows the area of a separator. When F / E is less than 1, the positive electrode and the negative electrode are in contact with each other. When F / E is greater than 1.5, the volume required for the exterior increases, and the capacity density and output density of the battery may decrease.

<3.セパレータ>
本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
<3. Separator>
Examples of the separator used in the nonaqueous electrolyte secondary battery of the present invention include porous materials and nonwoven fabrics. The material of the separator is preferably one that does not dissolve in the organic solvent that constitutes the electrolytic solution. Specifically, a polyolefin polymer such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass. Inorganic materials.

セパレータの厚みは1〜500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10〜300μmである。
<4.非水電解質>
本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
The thickness of the separator is preferably 1 to 500 μm. If it is less than 1 μm, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 μm, the load characteristics of the battery tend to be reduced due to the increase in the internal resistance of the battery and the distance between the positive and negative electrodes. A more preferable thickness is 10 to 300 μm.
<4. Non-aqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent. A gel electrolyte or the like can be used.

非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、上記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。   The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propionic acid Methyl and the like can be used. These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used. A gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.

溶質は、特に限定されないが、例えば、LiClO4、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (OxAlato) Borate)、LiN(SOCFなどは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.5mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.5mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。 The solute is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (OxAlato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to do. The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.5 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.5 mol / L, the solute may not be dissolved any more. The non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.

<5.非水電解質二次電池>
本発明の非水電解質二次電池の正極及び負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよいが、バイポーラ型とする場合、集電体を介した正極と負極の液絡を防止するため、導電助材料及び/又は絶縁材料が正極と負極間に配置されている。また、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、各正極側と負極側とが対向した層内は、液絡を防止するため正極及び負極の周辺部に絶縁材料が配置されている。
<5. Non-aqueous electrolyte secondary battery>
The positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery of the present invention may be in the form in which the same electrode is formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on one side. In other words, in the case of a bipolar type, in order to prevent a liquid junction between the positive electrode and the negative electrode through the current collector, the conductive auxiliary material and / or the insulating material is between the positive electrode and the negative electrode. Is arranged. In the case of a bipolar electrode, a separator is disposed between the positive electrode side and the negative electrode side of the adjacent bipolar electrode, and the positive electrode and An insulating material is disposed around the negative electrode.

本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極、及びセパレータには、リチウムイオン伝導を担う非水電解質が含浸している。非水電解としてゲル状のものを使用する場合は、電解質が正極及び負極に含浸していても、正極・負極間のみにある状態でもよい。ゲル状電解質により正極・負極間が直接接触していなければ、セパレータを使用しなくてもよい。   The nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side. The positive electrode, the negative electrode, and the separator are impregnated with a nonaqueous electrolyte that is responsible for lithium ion conduction. When a non-aqueous electrolysis gel is used, the electrolyte may be impregnated in the positive electrode and the negative electrode, or may be in a state only between the positive electrode and the negative electrode. If the positive electrode and the negative electrode are not in direct contact with the gel electrolyte, the separator need not be used.

本発明の非水電解質二次電池に用いる非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。
非水電解質は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回、あるいは積層した後に添加してもよい。ゲル状の非水電解質を使用する場合は、モノマーを含浸させた後ゲル状にしても、予めゲル状にした後に正極と負極の間に配置してもよい。
The amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
The nonaqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side. When using a gel-like non-aqueous electrolyte, it may be gelled after impregnation with a monomer, or may be placed between the positive electrode and the negative electrode after gelling in advance.

本発明の非水電解質二次電池は、上記積層体を倦回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための添加剤を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するまで積層させることができる。積層の場合は、電極の積層方向に圧力が加えられていても良い。セル内部で圧力を加えても、外装の外側から圧力を加えても良い。   The non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas or the like. Further, a mechanism for injecting an additive for recovering the function of the deteriorated nonaqueous electrolyte secondary battery from the outside of the battery may be provided. The number of stacked layers can be stacked until a desired battery capacity is exhibited. In the case of stacking, pressure may be applied in the stacking direction of the electrodes. Pressure may be applied inside the cell or may be applied from the outside of the exterior.

本発明の非水電解質二次電池は、複数接続することによって二次電池モジュールとすることができる。本発明のモジュールは、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、前記二次電池モジュールに制御回路が付属されていても良い。   The nonaqueous electrolyte secondary battery of the present invention can be made into a secondary battery module by connecting a plurality of nonaqueous electrolyte secondary batteries. The module of the present invention can be manufactured by connecting in series or in parallel as appropriate depending on the desired size, capacity, and voltage. Further, a control circuit may be attached to the secondary battery module in order to confirm the state of charge of each battery and improve safety.

(1)電極の製造
電極活物質であるLi1.1Al0.1Mn1.84;LiNi0.5Mn1.54;LiTi12;TiO(B)をそれぞれ100重量部に対して、導電助材(アセチレンブラック)を5.6重量部と、種々のバインダーの固形分換算5.6重量部と、PEG(ポリエチレングリコール)1.2重量部とを混合してそれぞれ電極活物質混合物を作製した。
(1) is prepared electrode active material of the electrode Li 1.1 Al 0.1 Mn 1.8 O 4 ; LiNi 0.5 Mn 1.5 O 4; Li 4 Ti 5 O 12; TiO 2 (B) is For each 100 parts by weight, 5.6 parts by weight of conductive additive (acetylene black), 5.6 parts by weight in terms of solid content of various binders, and 1.2 parts by weight of PEG (polyethylene glycol) are mixed. Thus, an electrode active material mixture was prepared.

前記Li1.1Al0.1Mn1.84は、Li1+xyMn2-x-y4(0≦x≦0.34、0<y≦0.6、AはAl、Mg、Zn、Ni、Co、Fe及びCrからなる群から選ばれる少なくとも1種)において、A=Al、x=0.1,y=0.1の場合に該当する。前記LiNi0.5Mn1.54は、A=Ni、x=0,y=0.5の場合に該当する。 Li 1.1 Al 0.1 Mn 1.8 O 4 is Li 1 + x A y Mn 2-xy O 4 (0 ≦ x ≦ 0.34, 0 <y ≦ 0.6, A is Al, This corresponds to the case of A = Al, x = 0.1, and y = 0.1 in at least one selected from the group consisting of Mg, Zn, Ni, Co, Fe, and Cr. The LiNi 0.5 Mn 1.5 O 4 corresponds to the case of A = Ni, x = 0, y = 0.5.

前記LiTi12は、「Li[Li(1/3)-xyTi(5/3)+x-y]O4(0≦x≦1/3、0≦y≦1/2、AはAl、Mg、Zn、Ni、Co、Fe、Cr及びNbからなる群から選ばれる少なくとも1種)」においてx=0,y=0の場合に該当する。前記TiO(B)は、TiAyO(0.8≦x+y≦1.2、AはAl、Mg、Zn、Ni、Co、Fe、Cr及びNbからなる群から選ばれる少なくとも1種)においてx=1,y=0の場合に該当する。 The Li 4 Ti 5 O 12 is “Li [Li (1/3) -x A y Ti (5/3) + xy ] O 4 (0 ≦ x ≦ 1/3, 0 ≦ y ≦ 1/2, A corresponds to the case of x = 0 and y = 0 in “at least one selected from the group consisting of Al, Mg, Zn, Ni, Co, Fe, Cr and Nb)”. The TiO 2 (B) is Ti x AyO 2 (0.8 ≦ x + y ≦ 1.2, A is at least one selected from the group consisting of Al, Mg, Zn, Ni, Co, Fe, Cr and Nb) This corresponds to the case of x = 1 and y = 0.

電極活物質のLi1.1Al0.1Mn1.84(LAMO)は、文献("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters Volume9, Issue12, Pages A557 (2006))に記載されている方法で作製した。すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、及びホウ酸の水分散液を調製し、スプレードライ法で混合粉末を作製した。このとき、二酸化マンガン、炭酸リチウム及び水酸化アルミニウムの量は、リチウム、アルミニウム及びマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって電極活物質を作製した。 The electrode active material Li 1.1 Al 0.1 Mn 1.8 O 4 (LAMO) is described in the literature ("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters. Volume9, Issue12, Pages A557 (2006)). That is, an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was prepared by a spray drying method. At this time, the amounts of manganese dioxide, lithium carbonate and aluminum hydroxide were adjusted so that the molar ratio of lithium, aluminum and manganese was 1.1: 0.1: 1.8. Next, the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with water at 95 ° C. and dried to prepare an electrode active material.

電極活物質としてのLiNi0.5Mn1.54(LiNiMO)は、文献("Solid-state redox potentials for Li [Me1/2Mn3/2] O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries" Journal of Power Sources, Vol. 81-82, pp. 90-94(1999) )に記載されている方法で作製した。すなわち、まず水酸化リチウム、酸化水酸化マンガン、及び水酸化ニッケルをリチウム、マンガン及びニッケルのモル比が1:1.5:0.5となるように混合した。次に、この混合物を空気雰囲気下550℃で加熱した後に、再度750℃で加熱することによって電極活物質を作製した。 LiNi 0.5 Mn 1.5 O 4 (LiNiMO) as an electrode active material is the literature (“Solid-state redox potentials for Li [Me1 / 2Mn3 / 2] O4 (Me: 3d-transition metal) having spinel-framework” It was made by the method described in "structure: a series of 5 volt materials for advanced lithium-ion batteries" Journal of Power Sources, Vol. 81-82, pp. 90-94 (1999)). That is, lithium hydroxide, manganese oxide hydroxide, and nickel hydroxide were first mixed so that the molar ratio of lithium, manganese, and nickel was 1: 1.5: 0.5. Next, the mixture was heated at 550 ° C. in an air atmosphere, and then heated again at 750 ° C. to prepare an electrode active material.

電極活物質のLiTi12(LTO)は、文献("Zero-Strain Insertion Material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995))に記載されている方法で作製した。すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって電極活物質を作製した。 Li 4 Ti 5 O 12 (LTO), an electrode active material, has been published in the literature ("Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5 , pp. 1431-1435 (1995)). That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated at 800 ° C. for 12 hours in a nitrogen atmosphere to obtain an electrode active material. Produced.

電極活物質としてのTiO(B;ブロンズ型)は、文献(”TiO2(B)as a promissing high potential negative electrode for large-size lithium-ion batteries" Journal of Power Sources 189, 580 (2009) )に記載されている方法で作製した。すなわち、炭酸カリウムとアナターゼ型TiOをモル比1:4で混合し、空気中1000℃で24時間焼成を2回行うことによりKTiを得た後に、1M塩化水素溶液中で3日浸漬させることによりイオン交換を行い、500℃で30分脱水・乾燥させることにより作製した。 TiO 2 (B: bronze type) as an electrode active material is described in the literature (“TiO 2 (B) as a promissing high potential negative electrode for large-size lithium-ion batteries” Journal of Power Sources 189, 580 (2009)). Prepared by the method described. That is, potassium carbonate and anatase TiO 2 were mixed at a molar ratio of 1: 4, and K 2 Ti 4 O 9 was obtained by firing twice at 1000 ° C. for 24 hours in air, and then in 1M hydrogen chloride solution. Ion exchange was performed by soaking for 3 days, and it was prepared by dehydration and drying at 500 ° C. for 30 minutes.

各電極活物質の混合方法及び電極作製方法を以下に示す。
先ず電極活物質と導電助材を、自動乳鉢を用いて混合した。混合粉体をステンレスボウルに移し、ポリエーテルと、水に分散したバインダーを加え、アルミナ乳棒を用いて予備混合した後、水を加えて固形分濃度75%に調整し、5〜15分程度、再度混合することにより、スラリー状の電極活物質混合物を作製した。
A method for mixing each electrode active material and a method for producing the electrode are shown below.
First, the electrode active material and the conductive additive were mixed using an automatic mortar. Transfer the mixed powder to a stainless steel bowl, add polyether and binder dispersed in water, pre-mix using alumina pestle, add water to adjust the solid content concentration to 75%, about 5 to 15 minutes, By mixing again, a slurry-like electrode active material mixture was prepared.

前述の電極活物質混合物をギャップロールに通すことによりシートを作製した。このシートをアルミニウムエキスパンドメタル(目開き1mm×2mm、厚み0.1mm)と共に再度ギャップロールに通すことにより電極を成形し、170℃で真空乾燥することにより水を除去した。乾燥後、アルミニウムエキスパンドメタルを含む電極の厚さはおよそ0.5mmであった。   A sheet was prepared by passing the electrode active material mixture described above through a gap roll. The sheet was again passed through a gap roll together with aluminum expanded metal (aperture 1 mm × 2 mm, thickness 0.1 mm), and water was removed by vacuum drying at 170 ° C. After drying, the thickness of the electrode containing aluminum expanded metal was approximately 0.5 mm.

Li1.1Al0.1Mn1.84(LAMO)及びLiNi0.5Mn1.54(LiNiMO)は正極活物質として使用した。LiTi12(LTO)及びTiO(B)は負極活物質として使用した。
レーザー回折散乱法粒度分布測定装置により測定した電極活物質の平均粒径は、LAMO=16μm、LiNiMO=11μm、LTO=7μm、TiO(B)=1μmであった。
Li 1.1 Al 0.1 Mn 1.8 O 4 (LAMO) and LiNi 0.5 Mn 1.5 O 4 (LiNiMO) were used as positive electrode active materials. Li 4 Ti 5 O 12 (LTO) and TiO 2 (B) were used as negative electrode active materials.
The average particle diameter of the electrode active material measured by a laser diffraction scattering method particle size distribution analyzer was LAMO = 16 μm, LiNiMO = 11 μm, LTO = 7 μm, TiO 2 (B) = 1 μm.

(2)半電池の作製
半電池を次のとおり作製した。
得られた電極(作用極)/セパレータ/リチウム金属の順に積層した。リチウム金属は、ステンレスシートに金属を圧着させることにより電極とした。セパレータにはPP微多孔膜(厚さ25μm、面積20cm)を2枚用いた。作用極に引き出し電極となるアルミニウムタブを振動溶接させた。リチウム極の引き出し電極にはニッケルタブを使用した。前記積層物を袋状のアルミラミネートシートに入れ、袋の中に、非水電解液(プロピレンカーボネート/エチルメチルカーボネート=3/7vol%、LiPF 1mol/L)を1mL入れた後に、引き出し電極だけ露出させて袋の出口を熱封止することによって半電池を作製した。
(2) Production of half battery A half battery was produced as follows.
The obtained electrode (working electrode) / separator / lithium metal were laminated in this order. Lithium metal was used as an electrode by pressing a metal on a stainless steel sheet. Two separators of PP microporous membrane (thickness 25 μm, area 20 cm 2 ) were used as the separator. An aluminum tab serving as a lead electrode was vibration welded to the working electrode. A nickel tab was used for the extraction electrode of the lithium electrode. Put the laminate in a bag-like aluminum laminate sheet, put 1 mL of non-aqueous electrolyte (propylene carbonate / ethyl methyl carbonate = 3/7 vol%, LiPF 6 1 mol / L) in the bag, then only the extraction electrode A half cell was made by exposing and heat sealing the outlet of the bag.

(3)測定
(3−1)正極
先ず前記バインダーとしてPTFEを使用し、前記ポリエーテルとしてPEG(実施例1,4)、PPG(実施例2,5)又はPBG(実施例3,6)を使用して、Li金属を対極とした正極を含む半電池を作製し測定した。
(3) Measurement (3-1) Positive electrode First, PTFE is used as the binder, and PEG (Examples 1 and 4), PPG (Examples 2 and 5), or PBG (Examples 3 and 6) is used as the polyether. A half cell including a positive electrode using Li metal as a counter electrode was prepared and measured.

また、正極活物質にPEGをコーティングしたもの(実施例7,8)も作製し、前述と同様に電極にし、半電池試験を行った。コーティングは転動流動コーティング装置(MP−25、パウレック製)を用いて行った。活物質を飛散させた槽の中に5%PEG水溶液を噴霧し、乾燥するプロセスを繰り返すことによりコーティングを行った。コーティングしたものは、電極活物質混合物のみでシートを形成し、集電体へ圧着させた後、混合溶媒を除去する方法により作製した。   Moreover, what coated PEG on the positive electrode active material (Examples 7 and 8) was also produced, it was set as the electrode similarly to the above, and the half-cell test was done. Coating was performed using a tumbling fluidized coating apparatus (MP-25, manufactured by Paulek). Coating was performed by repeating the process of spraying and drying a 5% aqueous PEG solution in a tank in which the active material was scattered. The coated material was prepared by forming a sheet with only the electrode active material mixture, pressing it onto the current collector, and then removing the mixed solvent.

このような半電池を外側から金属板で挟んだ状態で、電圧範囲を3〜5Vとし、8時間かけて充電又は放電が終わる電流値(1/8Cレート)で充放電サイクル試験を行った。サイクルには充放電試験装置(HJ1005SD8、北斗電工社製)を用い、サイクル数は200サイクルとした。
容量維持率の測定結果を表1に示す。
With such a half-cell sandwiched between the metal plates from the outside, the voltage range was set to 3 to 5 V, and a charge / discharge cycle test was conducted at a current value (1/8 C rate) at which charging or discharging ended over 8 hours. A charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko) was used for the cycle, and the number of cycles was 200.
Table 1 shows the measurement results of the capacity retention rate.

Figure 2015225761
Figure 2015225761

表1の結果から、ポリエーテルを混合しない場合(比較例1〜4)、容量維持率が良好でなかった。ポリエーテルを混合した場合(実施例1〜3,4〜6,7〜8)、短時間(5分間)の混合で外見が均一の電極成形が可能であることがわかった。また、実施例では容量維持率が90%を超えており、良好であるという結果も得た。
活物質表面にコーティングを施し、低水分混合物の加圧による電極成形でも、混合が容易になり、かつ、分散も向上した為、容量維持率が良好であったと考えられる。
From the results of Table 1, when the polyether was not mixed (Comparative Examples 1 to 4), the capacity retention rate was not good. When the polyether was mixed (Examples 1 to 3, 4 to 6, 7 to 8), it was found that electrode formation with a uniform appearance was possible by mixing for a short time (5 minutes). Moreover, in the Example, the capacity maintenance rate exceeded 90%, and the result that it was favorable was also obtained.
Even when the active material surface was coated and the electrode was formed by pressurizing a low-moisture mixture, the mixing was facilitated and the dispersion was improved.

(3−2)負極
次にLi金属を対極とした負極(LTO又はTiO(B))を含む半電池を作製し測定した。ポリエーテルとしてPEGを使用し、正極に比べ作動電位が低いことから、バインダーとしてPTFE、スチレン−ブタジエンゴム(SBR)、アクリル系、ポリビニルアルコール(PVA)、ポリイミド(PI)を使用した。電圧範囲を1〜3Vとしたこと以外は(3−1)の同様に充放電サイクル試験を行った。結果を表2に示す。
(3-2) Negative Electrode Next, a half cell including a negative electrode (LTO or TiO 2 (B)) with Li metal as a counter electrode was prepared and measured. Since PEG was used as the polyether and the operating potential was lower than that of the positive electrode, PTFE, styrene-butadiene rubber (SBR), acrylic, polyvinyl alcohol (PVA), and polyimide (PI) were used as the binder. A charge / discharge cycle test was conducted in the same manner as in (3-1) except that the voltage range was 1 to 3V. The results are shown in Table 2.

Figure 2015225761
Figure 2015225761

表2に示すように、負極材料にLTO、バインダーにPTFEを用いて混合時間5分で混合物を作製した場合には(比較例6)、電極活物質が集電体から落下し、電極の形成はできなかった。
水溶性高分子PEGが含まれている場合には(実施例9)、混合時間5分でも電極活物質が落下することは無く、外見が均一で性能も良好であった。また、PEGを混合することで、PTFE以外のバインダーを用いても(実施例10〜13)、電極形成が可能で、電池性能も良好であった。
As shown in Table 2, when a mixture was prepared using LTO as the negative electrode material and PTFE as the binder in a mixing time of 5 minutes (Comparative Example 6), the electrode active material dropped from the current collector to form an electrode. I couldn't.
When the water-soluble polymer PEG was contained (Example 9), the electrode active material did not fall even at a mixing time of 5 minutes, and the appearance was uniform and the performance was good. Moreover, even if it used binders other than PTFE by mixing PEG (Examples 10-13), electrode formation was possible and the battery performance was also favorable.

負極材料にTiO(B)、バインダーにPTFEを用い、水溶性高分子PEGを用い、混合時間5分で混合物を作製した場合には(実施例14)、電極形成が可能で、電池性能も良好であった。容量維持率が実施例9よりも低いのは、電極活物質の違いに由来するものと思われる。
これらのことから、PEGを加えて混合物を作製することにより、電極活物質の分散が良好となり、電極の形状安定性が良く、良好な電池性能を実現できる電極を作製することが可能になることがわかる。
When TiO 2 (B) is used for the negative electrode material, PTFE is used for the binder, a water-soluble polymer PEG is used, and a mixture is prepared in a mixing time of 5 minutes (Example 14), electrode formation is possible and battery performance is also improved. It was good. The capacity retention rate is lower than that in Example 9 because of the difference in electrode active material.
From these facts, by preparing a mixture by adding PEG, it becomes possible to produce an electrode that has good electrode active material dispersion, good electrode shape stability, and good battery performance. I understand.

Claims (9)

非水電解質二次電池用の電極を作製するのに用いられ、少なくとも、電極活物質、導電助材、結着材、ポリエーテル及び、前記電極活物質と導電助剤と結着材とポリエーテルとを分散させるための溶媒として水を含み、前記電極活物質が以下の(1)〜(3)のいずれかである、電極活物質混合物。
(1)Li1+xyMn2-x-y4(0≦x≦0.34、0<y≦0.6、AはAl、Mg、Zn、Ni、Co、Fe及びCrからなる群から選ばれる少なくとも1種)、
(2)Li[Li(1/3)-xyTi(5/3)+x-y]O4(0≦x≦1/3、0≦y≦1/2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)、
(3)Tixy2(0.8≦x+y≦1.2、AはAl、Mg、Zn、Ni、Co、Fe、Cr又はNbからなる群から選ばれる少なくとも1種)。
Used to produce an electrode for a non-aqueous electrolyte secondary battery, at least an electrode active material, a conductive aid, a binder, a polyether, and the electrode active material, a conductive aid, a binder, and a polyether An electrode active material mixture which contains water as a solvent for dispersing the water and the electrode active material is any one of the following (1) to (3).
(1) Li 1 + x A y Mn 2-xy O 4 (0 ≦ x ≦ 0.34, 0 <y ≦ 0.6, A is a group consisting of Al, Mg, Zn, Ni, Co, Fe and Cr At least one selected from)
(2) Li [Li (1/3 ) -x A y Ti (5/3) + xy] O 4 (0 ≦ x ≦ 1 / 3,0 ≦ y ≦ 1/2, A is Al, Mg, Zn , At least one selected from the group consisting of Ni, Co, Fe, Cr or Nb),
(3) Ti x A y O 2 (0.8 ≦ x + y ≦ 1.2, A is at least one selected from the group consisting of Al, Mg, Zn, Ni, Co, Fe, Cr, or Nb).
前記ポリエーテルがポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールからなる群から選ばれる1種又はそれらの混合物である、請求項1に記載の電極活物質混合物。   The electrode active material mixture according to claim 1, wherein the polyether is one or a mixture selected from the group consisting of polyethylene glycol, polypropylene glycol, and polybutylene glycol. 前記電極活物質の表面に前記ポリエーテルが被覆されていることを特徴とする、請求項1又は請求項2に記載の電極活物質混合物。   The electrode active material mixture according to claim 1 or 2, wherein the surface of the electrode active material is coated with the polyether. 前記導電助材が炭素系の粉末である、請求項1〜請求項3のいずれか1項に記載の電極活物質混合物。   The electrode active material mixture according to claim 1, wherein the conductive additive is a carbon-based powder. 前記結着材が、ポリテトラフルオロエチレン系、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体系、スチレン−ブタジエン共重合体系、ポリアクリル酸エステル系、ポリビニルアルコール、カルボキシメチルセルロース、ポリイミド系の、少なくとも何れか1種である、請求項1〜請求項4のいずれか1項に記載の電極活物質混合物。   The binder is at least one of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, styrene-butadiene copolymer, polyacrylate, polyvinyl alcohol, carboxymethylcellulose, and polyimide. The electrode active material mixture according to claim 1, which is a seed. 前記電極活物質が電池の正極に用いられる、請求項1〜請求項5のいずれか1項に記載の電極活物質混合物。   The electrode active material mixture according to any one of claims 1 to 5, wherein the electrode active material is used for a positive electrode of a battery. 前記電極活物質が電池の負極に用いられる、請求項1〜請求項5のいずれか1項に記載の電極活物質混合物。   The electrode active material mixture according to any one of claims 1 to 5, wherein the electrode active material is used for a negative electrode of a battery. 請求項1〜請求項7のいずれか1項に記載の電極活物質混合物を集電体上に塗布し、溶媒を除去することによって作製される、非水電解質二次電池用電極。   The electrode for nonaqueous electrolyte secondary batteries produced by apply | coating the electrode active material mixture of any one of Claims 1-7 on a collector, and removing a solvent. 請求項8に記載の非水電解質二次電池用電極を用いて作製される、非水電解質二次電池。   A non-aqueous electrolyte secondary battery produced using the electrode for a non-aqueous electrolyte secondary battery according to claim 8.
JP2014109378A 2014-05-27 2014-05-27 Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery Pending JP2015225761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014109378A JP2015225761A (en) 2014-05-27 2014-05-27 Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109378A JP2015225761A (en) 2014-05-27 2014-05-27 Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015225761A true JP2015225761A (en) 2015-12-14

Family

ID=54842378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109378A Pending JP2015225761A (en) 2014-05-27 2014-05-27 Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015225761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061622A1 (en) * 2016-09-27 2018-04-05 日本ゼオン株式会社 Slurry composition for positive electrode of non-aqueous secondary battery, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2020509525A (en) * 2017-01-31 2020-03-26 ユニバーシティ デ リージェ Flexible thin films for battery electrodes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354125A (en) * 1998-06-05 1999-12-24 Hitachi Maxell Ltd Lithium secondary battery
JP2002358959A (en) * 2001-03-27 2002-12-13 Showa Denko Kk Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same
WO2009078138A1 (en) * 2007-12-17 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012129095A (en) * 2010-12-16 2012-07-05 Kaneka Corp Bipolar electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013073906A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014203555A (en) * 2013-04-02 2014-10-27 東洋インキScホールディングス株式会社 Composition for secondary battery electrode formation, method for manufacturing the same, secondary battery electrode, and secondary battery
US20150108410A1 (en) * 2012-07-13 2015-04-23 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Chitosan-based binder for electrodes of lithium ion batteries
JP2015144050A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Method for manufacturing nonaqueous lithium ion secondary battery, and nonaqueous lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354125A (en) * 1998-06-05 1999-12-24 Hitachi Maxell Ltd Lithium secondary battery
JP2002358959A (en) * 2001-03-27 2002-12-13 Showa Denko Kk Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same
WO2009078138A1 (en) * 2007-12-17 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2012089411A (en) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd Cathode composition for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012129095A (en) * 2010-12-16 2012-07-05 Kaneka Corp Bipolar electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013073906A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20150108410A1 (en) * 2012-07-13 2015-04-23 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Chitosan-based binder for electrodes of lithium ion batteries
JP2014203555A (en) * 2013-04-02 2014-10-27 東洋インキScホールディングス株式会社 Composition for secondary battery electrode formation, method for manufacturing the same, secondary battery electrode, and secondary battery
JP2015144050A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Method for manufacturing nonaqueous lithium ion secondary battery, and nonaqueous lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061622A1 (en) * 2016-09-27 2018-04-05 日本ゼオン株式会社 Slurry composition for positive electrode of non-aqueous secondary battery, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2018061622A1 (en) * 2016-09-27 2019-07-04 日本ゼオン株式会社 Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP3522273A4 (en) * 2016-09-27 2020-02-26 Zeon Corporation Slurry composition for positive electrode of non-aqueous secondary battery, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7010230B2 (en) 2016-09-27 2022-02-10 日本ゼオン株式会社 Non-aqueous secondary battery positive electrode slurry composition, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
US11329271B2 (en) 2016-09-27 2022-05-10 Zeon Corporation Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2020509525A (en) * 2017-01-31 2020-03-26 ユニバーシティ デ リージェ Flexible thin films for battery electrodes
US11631837B2 (en) 2017-01-31 2023-04-18 Université de Liège Flexible thin-films for battery electrodes

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis of TiO 2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate
WO2010073332A1 (en) Lithium air battery
WO2013176130A1 (en) Nonaqueous electrolyte secondary battery
JP6746506B2 (en) Non-aqueous electrolyte secondary battery
CN115172654B (en) Lithium supplementing negative electrode plate and secondary battery
JP5924925B2 (en) Positive electrode for secondary battery and secondary battery
JP2009026514A (en) Nonaqueous electrolyte secondary battery
JP6163613B2 (en) Lithium secondary battery
CN107546357A (en) Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell
CN109417167A (en) Cladding lithium titanate for lithium ion battery
JP2014006971A (en) Nonaqueous electrolyte secondary battery and battery pack including the same
JP2013157318A (en) Anode, method for manufacturing the same, and lithium battery including the same
JP5395350B2 (en) Sheet-like negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6136057B2 (en) Nonaqueous electrolyte secondary battery and secondary battery module
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP6331246B2 (en) Nonaqueous electrolyte secondary battery electrode and battery using the same
JP2015225761A (en) Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
JP2014093272A (en) Electrode active material mixture, electrode formed by use thereof, and nonaqueous electrolytic secondary battery
JP2016207583A (en) Sheet-like active material particle-containing molding for secondary battery electrode, secondary battery electrode, and secondary battery using the same
KR20130124226A (en) Anode active material for electrochemical device
JP2015049984A (en) Slurry for manufacturing electrode of nonaqueous electrolyte secondary battery, electrode manufactured by using it, and nonaqueous electrolyte secondary battery using that electrode
JP4264805B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180517