JP2010102841A - Nonaqueous electrolyte lithium-ion secondary battery - Google Patents

Nonaqueous electrolyte lithium-ion secondary battery Download PDF

Info

Publication number
JP2010102841A
JP2010102841A JP2008270601A JP2008270601A JP2010102841A JP 2010102841 A JP2010102841 A JP 2010102841A JP 2008270601 A JP2008270601 A JP 2008270601A JP 2008270601 A JP2008270601 A JP 2008270601A JP 2010102841 A JP2010102841 A JP 2010102841A
Authority
JP
Japan
Prior art keywords
lithium
active material
electrode active
capacity
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008270601A
Other languages
Japanese (ja)
Other versions
JP5360871B2 (en
Inventor
Tetsuya Kajita
徹也 梶田
Jiro Iriyama
次郎 入山
Ryuichi Kasahara
竜一 笠原
Tatsuji Numata
達治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008270601A priority Critical patent/JP5360871B2/en
Publication of JP2010102841A publication Critical patent/JP2010102841A/en
Application granted granted Critical
Publication of JP5360871B2 publication Critical patent/JP5360871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte lithium-ion secondary battery having a high energy density, in which reduction of energy density by irreversible capacity in initial charge and discharge is minimized by using a high-capacity positive electrode. <P>SOLUTION: As a positive electrode active material 4 which is consumed by the initial irreversible capacity specific to a negative electrode active material 1 including at least one selected from Si, Si oxide and C, a lithium-containing composite nitride represented by the higher capacity formula: Li<SB>3-x</SB>M<SB>x</SB>N (M is one or more transition metals selected from Co, Ni and Cu, and x is 0≤x≤0.8) is used to reduce the weight of the positive electrode active material 4 which is not used for charge and discharge after the initial discharge, whereby the nonaqueous electrolyte lithium-ion secondary battery having a high energy density is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極に高容量活物質を用い、高エネルギー密度を有する非水系電解質リチウムイオン二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte lithium ion secondary battery using a high-capacity active material for a positive electrode and having a high energy density.

現在、携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められ、現在はリチウムイオン二次電池が最も多く利用されている。   Currently, with the spread of mobile devices such as mobile phones and notebook personal computers, the role of secondary batteries as the power source is regarded as important. These secondary batteries are small, lightweight, and have a high capacity, and are required to have a performance that does not easily deteriorate even after repeated charging and discharging. Currently, lithium ion secondary batteries are most frequently used.

リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素(C)が用いられている。Cは、充放電サイクルを良好に繰り返すことができるものの、すでに理論容量付近まで容量を使用していることから、今後大幅な容量向上は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強く、炭素よりも高容量、すなわち高エネルギー密度を有する負極材料の検討が行われている。   Carbon (C) such as graphite or hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although C can repeat charge / discharge cycles satisfactorily, the capacity has already been used up to the vicinity of the theoretical capacity. On the other hand, there is a strong demand for increasing the capacity of lithium ion secondary batteries, and negative electrode materials having a higher capacity than carbon, that is, a higher energy density are being studied.

高エネルギー密度を実現可能な負極材料として、たとえばケイ素(Si)が挙げられる。実際に負極活物質として用いられることが、非特許文献1に記載されている。   An example of a negative electrode material capable of realizing a high energy density is silicon (Si). Non-patent document 1 describes that it is actually used as a negative electrode active material.

Siを用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体の膨脹収縮が大きいために微粉化が進行し、初回充放電における不可逆容量が大きく、正極側に充放電に利用されない部分ができる。また、充放電サイクル寿命が短いという問題点がある。   Although the negative electrode using Si has a large amount of occlusion and release of lithium ions per unit volume and a high capacity, pulverization progresses due to large expansion and contraction of the electrode active material itself when lithium ions are occluded and released. And the irreversible capacity | capacitance in first time charging / discharging is large, and the part which is not utilized for charging / discharging is made in the positive electrode side. Moreover, there is a problem that the charge / discharge cycle life is short.

Siを用いた初回不可逆容量の低減、及び充放電サイクル寿命の改善対策として、Si酸化物を負極活物質として用いる方法が特許文献1で提案されている。特許文献1においては、Si酸化物を活物質として用いることにより活物質単位重量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、充放電における不可逆容量が大きいという問題点を有していた。   Patent Document 1 proposes a method of using Si oxide as a negative electrode active material as a measure for reducing the initial irreversible capacity using Si and improving the charge / discharge cycle life. In Patent Document 1, since the volume expansion / contraction per unit weight of the active material can be reduced by using Si oxide as the active material, improvement in cycle characteristics has been confirmed. On the other hand, since the conductivity of the oxide is low, the current collecting property is lowered, and the irreversible capacity in charge / discharge is large.

さらに容量及び充放電サイクル寿命の改善対策として、SiおよびSi酸化物に炭素材料を複合化させた粒子を活物質として用いる方法が特許文献2で提案されている。これによりサイクル特性の向上が確認されたもののまだ不十分であり、また初回充放電効率の改善は不十分である。   Furthermore, as a countermeasure for improving capacity and charge / discharge cycle life, Patent Document 2 proposes a method using particles obtained by combining a carbon material with Si and Si oxide as an active material. Although the improvement of the cycle characteristics was confirmed by this, it is still insufficient, and the improvement of the first charge / discharge efficiency is insufficient.

この初回不可逆容量の対応策として、不可逆容量分を予め電気化学的に充電しておく電極化成法や負極に金属リチウムを貼り付けて不可逆容量を補う方法などが試みられている。   As countermeasures for this initial irreversible capacity, an electrode formation method in which the irreversible capacity is electrochemically charged in advance or a method of making up for the irreversible capacity by attaching metallic lithium to the negative electrode has been attempted.

電極化成法は、通電電気量を制御することで目的に応じた量の化成が可能な点が優れているが、一度電極を充電した後に再び電池として組み直すため煩雑で生産性も極めて悪い。   The electrode formation method is excellent in that the amount of electricity according to the purpose can be formed by controlling the amount of electricity supplied. However, since the electrode is once charged and then reassembled as a battery, it is cumbersome and productivity is extremely poor.

金属リチウム貼付け法は電解液を注液することで短絡状態にある酸化物と金属リチウム間で自動的にLiの移動を行うというものである。ところが、この方法の場合、極板形態によってはLiの移動が不十分で金属リチウムが残存し、特性ばらつきの発生や安全性に問題が生じるなどの品質上に問題がある。   The lithium metal sticking method automatically moves Li between an oxide in a short-circuited state and lithium metal by injecting an electrolytic solution. However, in the case of this method, depending on the electrode plate form, there is a problem in quality such that Li migration is insufficient and metallic lithium remains, causing variations in characteristics and problems in safety.

他に、この初回不可逆容量の対応策として、負極にSi酸化物と一般式Li3-xxN(Mは遷移金属であり、0≦x≦0.8)で表されるリチウム含有複合窒化物との混合活物質を用いる非水系電解質リチウムイオン二次電池が特許文献3で提案されている。リチウム含有複合窒化物でSi酸化物の不可逆容量を補う点で優れているが、リチウム含有複合窒化物の重量あたりの容量が約800mAh/gとSi酸化物と比べて小さく、Si酸化物のみを負極活物質に用いた場合の電池のエネルギー密度に比べて、電池としてのエネルギー密度は小さくなるという問題がある。 In addition, as a countermeasure for this first irreversible capacity, a lithium-containing composite represented by Si oxide and a general formula Li 3-x M x N (M is a transition metal, 0 ≦ x ≦ 0.8) is used as a negative electrode. Patent Document 3 proposes a non-aqueous electrolyte lithium ion secondary battery using a mixed active material with nitride. The lithium-containing composite nitride is excellent in terms of compensating the irreversible capacity of the Si oxide. However, the lithium-containing composite nitride has a capacity per weight of about 800 mAh / g, which is small compared to the Si oxide, and only the Si oxide is used. There is a problem that the energy density of the battery is smaller than the energy density of the battery when used as the negative electrode active material.

高エネルギー密度を実現可能な負極材料としてSiを用いることで電池としてのエネルギー密度は大きくなるが、電池全体の重さでは正極のほうが占める割合が大きく、正極側の高容量化も求められる。   The use of Si as a negative electrode material capable of realizing a high energy density increases the energy density of the battery, but the positive electrode occupies a larger proportion of the weight of the entire battery, and a higher capacity on the positive electrode side is also required.

特許第2997741号公報Japanese Patent No. 2999741 特開2004−139886号公報JP 2004-139886 A 特開2000−164207号公報JP 2000-164207 A リー(Li)他4名、A High Capacity Nano−Si Composite Anode Material for Lithium Rechargeable Batteries、Electrochemical and Solid−State Letters、 第2巻、 第11号、 p547−549 (1999)Li et al., 4 others, A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries, Electrochemical and Solid-State Letters, Vol. 49, Vol. 99, Vol.

上述のように、従来技術においては、初回充放電における不可逆容量が大きく、正極側に充放電に利用されない部分ができ、また、充放電サイクル寿命が短いという課題、充放電における不可逆容量が大きいという課題、特性ばらつきの発生や安全性に問題が生じるなどの品質上の課題、さらにエネルギー密度が小さいという課題等があった。   As described above, in the prior art, the irreversible capacity in the first charge / discharge is large, there is a portion that is not used for charge / discharge on the positive electrode side, the problem that the charge / discharge cycle life is short, the irreversible capacity in charge / discharge is large. There were problems such as quality problems such as the occurrence of characteristic variations and safety problems, and the problem of low energy density.

本発明は、このような課題を解決するためになされたもので、その目的は、高容量正極を用いて初回充放電での不可逆容量によるエネルギー密度の低下を最小限に抑えた高エネルギー密度を有する非水系電解質リチウムイオン二次電池を提供することにある。   The present invention has been made to solve such problems, and its purpose is to use a high-capacity positive electrode to achieve a high energy density that minimizes a decrease in energy density due to irreversible capacity during initial charge and discharge. An object of the present invention is to provide a non-aqueous electrolyte lithium ion secondary battery.

上記のような課題を解決するために、本発明は、高容量の正極に、
一般式Li3-xxN(MはCo、Ni、Cuから選ばれる1種以上の遷移金属であり、0≦x≦0.8)で表されるリチウム含有複合窒化物を含む非水系電解質リチウムイオン二次電池としている。xとしては、0≦x≦0.5がより好ましく、さらに好ましい範囲は、0.4≦x≦0.5である。
In order to solve the above problems, the present invention provides a high capacity positive electrode,
Non-aqueous system including lithium-containing composite nitride represented by the general formula Li 3-x M x N (M is one or more transition metals selected from Co, Ni and Cu, and 0 ≦ x ≦ 0.8) The electrolyte is a lithium ion secondary battery. As x, 0 ≦ x ≦ 0.5 is more preferable, and a more preferable range is 0.4 ≦ x ≦ 0.5.

また、正極活物質にそのリチウム含有複合窒化物とリチウム吸蔵放出可能な酸化物を混合活物質として用い、負極活物質にリチウムを吸蔵放出可能なSiおよびSi酸化物およびCから選択される少なくとも1種以上からなる混合活物質を含む非水系電解質リチウムイオン二次電池としている。Si酸化物としては、二酸化ケイ素(SiO2)が例示される。 In addition, at least one selected from Si, Si oxide and C capable of occluding and releasing lithium in the negative electrode active material using the lithium-containing composite nitride and the oxide capable of occluding and releasing lithium as the positive electrode active material. The non-aqueous electrolyte lithium ion secondary battery includes a mixed active material composed of more than seeds. Examples of the Si oxide include silicon dioxide (SiO 2 ).

正極活物質に含まれるリチウム吸蔵放出可能な酸化物の単位重さあたりの充放電容量をA、Li放出電位をA’とし、また、リチウム含有複合窒化物の単位重さあたりの充放電容量をB、Li放出電位をB’としたとき、A<BかつA’>B’を満足する非水系電解質リチウムイオン二次電池としている。   The charge / discharge capacity per unit weight of the oxide capable of occluding and releasing lithium contained in the positive electrode active material is A, the Li discharge potential is A ′, and the charge / discharge capacity per unit weight of the lithium-containing composite nitride is When the B and Li emission potentials are B ′, the nonaqueous electrolyte lithium ion secondary battery satisfies A <B and A ′> B ′.

負極活物質の初回不可逆容量に相当するLi量をαとし、初回充電時にリチウム含有複合窒化物が放出するLi量をγとするとき、負極活物質と前記リチウム含有複合窒化物の重量比を、α≧γを満足するように選択する非水系電解質リチウムイオン二次電池としている。これにより、不可逆容量に使用される正極活物質の重さを軽量化する。よって、電池のエネルギー密度が上昇する。   When the amount of Li corresponding to the first irreversible capacity of the negative electrode active material is α and the amount of Li released by the lithium-containing composite nitride at the time of initial charge is γ, the weight ratio of the negative electrode active material and the lithium-containing composite nitride is The non-aqueous electrolyte lithium ion secondary battery is selected so as to satisfy α ≧ γ. This reduces the weight of the positive electrode active material used for the irreversible capacity. Therefore, the energy density of the battery increases.

負極活物質の初回充電容量をY、リチウム吸蔵放出可能な酸化物とリチウム含有複合窒化物の初回充電容量の合計をZとするとき、これらの関係がZ≦Yとなる非水系電解質リチウムイオン二次電池としている。これにより、正極中の活物質全て充放電に使い、高エネルギー密度を実現できる。   When the initial charge capacity of the negative electrode active material is Y and the sum of the initial charge capacities of the oxide capable of occluding and releasing lithium and the lithium-containing composite nitride is Z, the relationship is Z ≦ Y. Next battery. Thereby, all the active materials in a positive electrode are used for charging / discharging, and a high energy density is realizable.

リチウム吸蔵放出可能な酸化物としては、ニッケル酸リチウム、マンガン酸リチウム、コバルト酸リチウム等が例示される。また、負極の活物質層中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。生成した負極活物質層の電極密度は0.5g/cm3以上2.0g/cm3以下であるとよい。 Examples of the oxide capable of occluding and releasing lithium include lithium nickelate, lithium manganate, and lithium cobaltate. In addition, in the active material layer of the negative electrode, carbon black, acetylene black, or the like may be mixed in order to impart conductivity as necessary. The electrode density of the produced negative electrode active material layer is preferably 0.5 g / cm 3 or more and 2.0 g / cm 3 or less.

また、電池に用いる非水系電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1、3‐ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して、これらの有機溶媒に溶解するリチウム塩を溶解させて用いることができる。   Moreover, as nonaqueous electrolyte solution used for a battery, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate ( DEC), chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ-lactones such as γ-butyrolactone , 1,2-ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, aceto Toamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl -2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, etc. A lithium salt that dissolves in an organic solvent can be dissolved and used.

これらの有機溶媒に溶解するリチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CCF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質、固体電解質を用いてもよい。 Examples of the lithium salt dissolved in these organic solvents include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , Examples thereof include LiN (CCF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides, and the like. Moreover, it may replace with electrolyte solution and may use a polymer electrolyte and a solid electrolyte.

本発明によれば、SiおよびSi酸化物およびCから選択される少なくとも1種以上からなる負極活物質固有の初回不可逆容量によって消費される正極活物質を、より高容量な一般式Li3-xxN(MはCo、Ni、Cuから選ばれる1種以上の遷移金属であり、0≦x≦0.8)で表されるリチウム含有複合窒化物にし、初回放電以降の充放電に利用されない正極活物質の重さを低減することで、高エネルギー密度をもつ非水系電解質リチウムイオン二次電池を得ることができる。 According to the present invention, the positive electrode active material consumed by the initial irreversible capacity inherent in the negative electrode active material composed of at least one selected from Si and Si oxide and C is converted to a higher capacity general formula Li 3-x. Lithium-containing composite nitride represented by M x N (M is one or more transition metals selected from Co, Ni and Cu, 0 ≦ x ≦ 0.8) is used for charge and discharge after the first discharge By reducing the weight of the positive electrode active material that is not used, a non-aqueous electrolyte lithium ion secondary battery having a high energy density can be obtained.

本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の非水系電解質リチウムイオン二次電池の断面図である。図1に示すように本発明の非水系電解質二次電池は銅箔などの負極集電体2上に形成した負極の活物質層1からなる負極3とアルミニウム箔などの正極集電体5上に形成した正極の活物質層4からなる正極6がセパレータ7を介して対向配置されている構造となっている。セパレータ7としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。負極3と正極6から、それぞれ電極端子取り出しのための負極リードタブ9、正極リードタブ10が引き出され、それぞれの先端を除いて、ラミネートフィルムなどの外装フィルム8を用いて外装する。   FIG. 1 is a cross-sectional view of a non-aqueous electrolyte lithium ion secondary battery of the present invention. As shown in FIG. 1, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode 3 composed of a negative electrode active material layer 1 formed on a negative electrode current collector 2 such as a copper foil, and a positive electrode current collector 5 such as an aluminum foil. The positive electrode 6 formed of the positive electrode active material layer 4 is disposed so as to face the separator 7. As the separator 7, a polyolefin such as polypropylene or polyethylene, or a porous film such as a fluororesin can be used. A negative electrode lead tab 9 and a positive electrode lead tab 10 for taking out electrode terminals are drawn out from the negative electrode 3 and the positive electrode 6, respectively, and are covered with an outer film 8 such as a laminate film except for the respective ends.

負極の材料構成は、リチウムを吸蔵放出可能なSiおよびSi酸化物およびCから選択される少なくとも1種以上からなる負極活物質、およびバインダ樹脂からなり、これらを混合した合剤によって負極の活物質層1が形成される。これら合剤は溶剤で混練したペーストを銅箔等の金属箔上に塗布して圧延加工した塗布型極板や直接プレスして加圧成形極板にするなどの製法で周知の形態に加工することができ、具体的には、Si粉末、Si酸化物粉末、C粉末と、バインダ樹脂としてポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤とをN−メチル−2−ピロリドン(NMP)等の溶剤に分散させ混練し、金属箔からなる負極集電体2の上に塗布し、高温雰囲気で乾燥することにより形成される。   The material structure of the negative electrode is composed of a negative electrode active material composed of at least one selected from Si and Si oxides and C capable of occluding and releasing lithium, and a binder resin, and a mixture of these negative electrode active materials Layer 1 is formed. These mixtures are processed into a known form by a manufacturing method such as applying a paste kneaded with a solvent onto a metal foil such as copper foil and rolling it, or directly pressing into a pressure-formed electrode plate. Specifically, Si powder, Si oxide powder, C powder, and binder resin, such as polyimide, polyamide, polyamideimide, polyacrylic acid resin, and polymethacrylic acid resin, can be used. It is formed by dispersing a kneading agent in a solvent such as N-methyl-2-pyrrolidone (NMP), kneading, applying onto the negative electrode current collector 2 made of metal foil, and drying in a high temperature atmosphere. .

前述のように、負極の活物質層1中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。生成した負極の活物質層1の電極密度は0.5g/cm3以上2.0g/cm3以下であるとよい。電極密度が低い場合は放電容量の絶対値が小さく、従来の炭素材料に対するメリットが得られない。逆に高い場合、電極に電解液を含浸させることが難しく、やはり放電容量が低下する。金属箔からなる負極集電体2の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。 As described above, carbon black, acetylene black, or the like may be mixed in the negative electrode active material layer 1 in order to impart conductivity as necessary. The electrode density of the generated negative electrode active material layer 1 is preferably 0.5 g / cm 3 or more and 2.0 g / cm 3 or less. When the electrode density is low, the absolute value of the discharge capacity is small, and a merit over the conventional carbon material cannot be obtained. On the other hand, when it is high, it is difficult to impregnate the electrode with the electrolytic solution, and the discharge capacity is also lowered. The thickness of the negative electrode current collector 2 made of metal foil is preferably 4 to 100 μm because it is preferable to maintain the strength, and in order to increase the energy density, it is 5 to 30 μm. Is more preferable.

正極の材料構成は、ニッケル酸リチウム、マンガン酸リチウム、コバルト酸リチウム等のリチウム吸蔵放出可能な酸化物と一般式Li3-xxN(MはCo、Ni、Cuから選ばれる1種以上の遷移金属であり、0≦x≦0.8)で表されるリチウム含有複合窒化物からなる正極活物質、導電性を付与するためのカーボンブラックやアセチレンブラック等の導電剤、およびバインダ樹脂からなり、これらを混合した合剤によって正極の活物質層4が形成される。 Material composition of the positive electrode, lithium nickelate, lithium manganate, lithium capable of absorbing and releasing oxides of the general formula Li 3-x M x N ( M lithium cobaltate or the like Co, Ni, 1 or more selected from Cu A positive electrode active material composed of a lithium-containing composite nitride represented by 0 ≦ x ≦ 0.8), a conductive agent such as carbon black or acetylene black for imparting conductivity, and a binder resin Thus, the positive electrode active material layer 4 is formed by a mixture of these.

具体的には、リチウム吸蔵放出可能な酸化物粉末、リチウム含有複合窒化物粉末、導電剤粉末と、バインダ樹脂としてポリフッ化ビリニデン、ビリニデンフルオライド−ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド−テトラフルオロチレン共重合体、ポリテトラフルオロチレンに代表されるバインダ樹脂とをN−メチル−2−ピロリドン(NMP)、脱水トルエン等の溶剤に分散させ混練し、金属箔からなる正極集電体5の上に塗布し、高温雰囲気で乾燥することにより形成される。生成した正極活物質層4の電極密度は2.0g/cm3以上3.0g/cm3以下であるとよい。電極密度が低い場合は放電容量の絶対値が小さなる。また、逆に高い場合、電極に電解液を含浸させることが難しく、やはり放電容量が低下する。金属箔からなる正極集電体5の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。 Specifically, oxide powder capable of occluding and releasing lithium, lithium-containing composite nitride powder, conductive agent powder, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride as binder resin. A positive electrode current collector made of metal foil by dispersing and kneading a binder resin typified by a ride-tetrafluoroethylene copolymer and polytetrafluoroethylene in a solvent such as N-methyl-2-pyrrolidone (NMP) or dehydrated toluene. It is formed by applying on the body 5 and drying in a high temperature atmosphere. The electrode density of the generated positive electrode active material layer 4 is preferably 2.0 g / cm 3 or more and 3.0 g / cm 3 or less. When the electrode density is low, the absolute value of the discharge capacity is small. On the other hand, when it is high, it is difficult to impregnate the electrode with the electrolytic solution, and the discharge capacity is also lowered. The thickness of the positive electrode current collector 5 made of metal foil is preferably 4 to 100 μm because it is preferable to maintain the strength, and is 5 to 30 μm in order to increase the energy density. Is more preferable.

また、電池に用いる電解液としては、前述の通り、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1、3‐ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。   Moreover, as above-mentioned as electrolyte solution used for a battery, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl Chain carbonates such as carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ- such as γ-butyrolactone Lactones, chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide , Acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3- An aprotic organic solvent such as methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, etc. is used alone or in combination. The lithium salt that dissolves in these organic solvents is dissolved.

リチウム塩としては、前述のように、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CCF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質、固体電解質を用いてもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN ( CCF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like. Moreover, it may replace with electrolyte solution and may use a polymer electrolyte and a solid electrolyte.

また、上記のようにして製造される非水系電解質二次電池の、放電終止電圧値は1.5V以上2.7V以下であることが望ましい。放電終止電圧値が低くなる程充放電の繰り返しによる放電容量の劣化が大きくなる問題がある。1.5V以下とするのは回路設計上の難易度も高い。また2.7V以上の場合放電容量の絶対値が小さく従来の炭素材料に対するメリットが得られない。   Moreover, it is desirable that the non-aqueous electrolyte secondary battery manufactured as described above has a discharge end voltage value of 1.5 V or more and 2.7 V or less. There is a problem that the deterioration of the discharge capacity due to repeated charge / discharge increases as the discharge end voltage value decreases. Setting the voltage to 1.5 V or less has a high degree of difficulty in circuit design. Further, when the voltage is 2.7 V or more, the absolute value of the discharge capacity is small and no merit over the conventional carbon material can be obtained.

本発明の電池では、SiおよびSi酸化物およびCから選択される少なくとも1種以上からなる負極活物質固有の初回不可逆容量によって消費される正極活物質を、より高容量なリチウム含有複合窒化物にし、初回放電以降の充放電に利用されない正極活物質の重さを低減することで、高エネルギー密度をもつ非水系電解質二次電池を得ることができる。   In the battery of the present invention, the positive electrode active material consumed by the initial irreversible capacity inherent to the negative electrode active material comprising at least one selected from Si, Si oxide and C is made into a higher capacity lithium-containing composite nitride. By reducing the weight of the positive electrode active material that is not used for charge / discharge after the initial discharge, a non-aqueous electrolyte secondary battery having a high energy density can be obtained.

初回の充電操作によって、正極から負極中の負極活物質へLiが供給される。次の初回放電において、負極活物質から正極へ戻るLiは不足分(不可逆容量分)が生じるため、正極全体にLiは供給されなくなり、正極中に充放電に関係ない余分な活物質が生じる。そこで、あらかじめ正極中に初回不可逆容量分に相当する量、または、その一部分に相当する量の、リチウム吸蔵放出可能な酸化物よりも単位重さあたりの容量の大きいリチウム含有複合窒化物を含ませることにより、余分な活物質の重さを、リチウム吸蔵放出可能な酸化物のみの時に比べて軽くする。結果、電池の単位重さあたりエネルギー密度は上昇することになる。   Li is supplied from the positive electrode to the negative electrode active material in the negative electrode by the first charging operation. In the next initial discharge, the amount of Li returning from the negative electrode active material to the positive electrode is insufficient (irreversible capacity), so that Li is not supplied to the entire positive electrode, and an extra active material unrelated to charge / discharge is generated in the positive electrode. Therefore, an amount corresponding to the initial irreversible capacity or a portion corresponding to a part of the first irreversible capacity is previously included in the positive electrode, and the lithium-containing composite nitride having a larger capacity per unit weight than the oxide capable of inserting and extracting lithium. As a result, the weight of the extra active material is reduced as compared with the case of using only an oxide capable of inserting and extracting lithium. As a result, the energy density per unit weight of the battery increases.

リチウム吸蔵放出可能な酸化物のLi吸蔵放出の電位がリチウム含有複合窒化物のLi吸蔵放出電位より低いと、リチウム吸蔵放出可能な酸化物をリチウム含有複合窒化物に置き換える利得はなく、エネルギー密度の低い電池になり、従来の電池に対してメリットが得られない。   If the Li storage potential of the oxide capable of occluding and releasing lithium is lower than the Li storage potential of the lithium-containing composite nitride, there is no gain for replacing the lithium storage and release oxide with the lithium-containing composite nitride, and the energy density The battery is low, and no merit is obtained over the conventional battery.

放電電圧を1.5〜2.7Vとし、正極中に不可逆容量分以上のリチウム含有複合窒化物を混合すると、初回充電した後の初回放電時において、Liを受け入れる正極中のリチウム吸蔵放出可能な酸化物が足りなくなり、電池としての容量が下がってしまい、エネルギー密度が下がる。   When the discharge voltage is 1.5 to 2.7 V and a lithium-containing composite nitride having an irreversible capacity or more is mixed in the positive electrode, lithium can be occluded and released in the positive electrode that accepts Li at the first discharge after the first charge. The oxide becomes insufficient, the capacity of the battery decreases, and the energy density decreases.

正極中のリチウム含有複合窒化物は初回充電時においてLiを放出する。負極活物質の初回充電容量をY、リチウム吸蔵放出可能な酸化物とリチウム含有複合窒化物の初回充電容量の合計をZとするとき、これらの関係がZ≦Yの条件であると負極活物質特有の高容量化の効果が得られる。一方、Z>Yであると正極中のリチウム吸蔵放出可能な酸化物の容量を完全には生かせなくなり、電池のエネルギー密度が低下する。   The lithium-containing composite nitride in the positive electrode releases Li during the initial charge. When the initial charge capacity of the negative electrode active material is Y and the sum of the initial charge capacities of the oxide capable of occluding and releasing lithium and the lithium-containing composite nitride is Z, the negative electrode active material is such a relationship that Z ≦ Y. A specific high capacity effect can be obtained. On the other hand, if Z> Y, the capacity of the oxide capable of occluding and releasing lithium in the positive electrode cannot be fully utilized, and the energy density of the battery is lowered.

さらに、リチウム含有複合窒化物は、その原材料がLiと、Co、Ni、Cuから選ばれる1種以上の遷移金属、並びにNであり、コスト的にも特に問題はない。また、金属リチウムに比べて他の物質と反応せず安定なため、作業上の制御性、安全性で優れている。   Further, the lithium-containing composite nitride is composed of Li, one or more transition metals selected from Co, Ni, and Cu, and N, and there is no particular problem in terms of cost. In addition, since it does not react with other substances and is stable as compared with metallic lithium, it is excellent in work controllability and safety.

本発明は負極の活物質としてSi、SiO2、Cから選択される少なくとも1種以上を用いるが、本実施例では、その代表としてそれぞれのモル比を1:1:0.8としたものを用いた。 In the present invention, at least one selected from Si, SiO 2 , and C is used as the negative electrode active material. In this example, the molar ratio is 1: 1: 0.8 as a representative example. Using.

Si粉末、SiO2粉末、C粉末は試薬として市販されているものが有り、この粉末を入手して用いた。 Si powder, SiO 2 powder, and C powder are commercially available as reagents, and these powders were obtained and used.

事前に使用する酸化物Si、SiO2、C複合体負極の充放電性能を確認(金属リチウムを対極としたモデルセルにより2.0Vから0.02Vの間で容量特性の確認)したところ、最初の充電でSi、SiO2、C複合体は約2500mAh/g分のLiを吸蔵したが、次の放電で約1650mAh/gしか放電せず、約850mAh/gの不可逆容量を有した。この値がαになり、充電容量に対して約34%の容量が不可逆容量、すなわちαとなる。 The charge / discharge performance of the oxide Si, SiO 2 , C composite negative electrode to be used in advance was confirmed (capacity characteristics were confirmed between 2.0 V and 0.02 V using a model cell with metallic lithium as a counter electrode). In this charging, the Si, SiO 2 , and C composite occluded about 2500 mAh / g of Li, but only discharged about 1650 mAh / g in the next discharge, and had an irreversible capacity of about 850 mAh / g. This value is α, and a capacity of about 34% of the charge capacity is an irreversible capacity, that is, α.

正極に含まれるリチウム吸蔵放出可能な酸化物について、本実施例では、代表的なものとして、ニッケル酸リチウム、マンガン酸リチウム、コバルト酸リチウムを用いた。これらの材料は粉末試薬として市販されており、これらの粉末を入手して使用した。それぞれの充放電性能を確認(金属リチウムを対極としたモデルセルにより4.3V〜3.0Vの間で容量特性の確認)したところ、ニッケル酸リチウムは約200mAh/g、マンガン酸リチウムは約120mAh/g、コバルト酸リチウムは150mAh/gを示し、充放電電位はそれぞれ3.8V付近、4.0V付近、3.7V付近であった。   In this example, lithium nickelate, lithium manganate, and lithium cobaltate were used as representative examples of oxides that can be stored and released in lithium in the positive electrode. These materials are commercially available as powder reagents, and these powders were obtained and used. Each charge / discharge performance was confirmed (capacity characteristics were confirmed between 4.3 V and 3.0 V by a model cell using metallic lithium as a counter electrode). As a result, lithium nickelate was about 200 mAh / g, and lithium manganate was about 120 mAh. / G, lithium cobaltate showed 150 mAh / g, and the charge / discharge potential was about 3.8 V, 4.0 V, and 3.7 V, respectively.

一般式Li3-xxN(MはCo、Ni、Cuから選ばれる1種以上の遷移金属、0≦x≦0.8)で表されるリチウム含有複合窒化物の市販品はなく、以下に示すように別途合成した。 There is no commercially available lithium-containing composite nitride represented by the general formula Li 3-x M x N (M is one or more transition metals selected from Co, Ni, Cu, 0 ≦ x ≦ 0.8), Separately synthesized as shown below.

市販試薬の窒化リチウム粉末と市販試薬の遷移金属粉末を所定量で混合し、窒素雰囲気中で8時間焼成し、目的のリチウム含有複合窒化物の焼結体を得た。さらにこれを粉砕してリチウム含有複合窒化物粉末とした。なお、混合から粉砕までの工程は低湿度(露点−30℃以下)の高純度窒素雰囲気中で行った。得られたリチウム含有複合窒化物の粉末X線回折測定結果は窒化リチウムと同じ六方晶パターンが現れており、不純物ピークもなく、目的のリチウム含有複合窒化物ができていることを確認した。   A commercial reagent lithium nitride powder and a commercial reagent transition metal powder were mixed in a predetermined amount and fired in a nitrogen atmosphere for 8 hours to obtain a sintered body of the target lithium-containing composite nitride. Further, this was pulverized to obtain a lithium-containing composite nitride powder. In addition, the process from mixing to grinding | pulverization was performed in the high purity nitrogen atmosphere of low humidity (dew point -30 degrees C or less). As a result of powder X-ray diffraction measurement of the obtained lithium-containing composite nitride, it was confirmed that the same hexagonal crystal pattern as that of lithium nitride appeared, there was no impurity peak, and the target lithium-containing composite nitride was formed.

次に、リチウム含有複合窒化物の1.4V〜0.0Vにおける充放電性能の確認(金属リチウムを対極としたモデルセルによる容量特性の確認)をした。本実施例ではその代表例として、遷移金属はCo、Ni、Cuとしx=0.4とした。充放電性能はLi2.6Co0.4Nで約800mAh/g、Li2.6Ni0.4Nで約500mAh/g、Li2.6Cu0.4Nで約600mAh/gを示した。この値がそれぞれのγとなる。また、充放電電位は1.3V付近であった。よって、リチウム吸蔵放出可能な酸化物に比較して、リチウム含有複合窒化物のほうが充電容量が大きいため、正極にリチウム含有複合窒化物を用いると高容量な電池が提供できるが、リチウム含有複合窒化物の充放電電位が低いため初回放電に関与すると電池のエネルギー密度が低くなる。 Next, the charge / discharge performance at 1.4 V to 0.0 V of the lithium-containing composite nitride was confirmed (capacity characteristics confirmed by a model cell using metal lithium as a counter electrode). In this embodiment, as representative examples, transition metals are Co, Ni and Cu, and x = 0.4. The charge / discharge performance was about 800 mAh / g for Li 2.6 Co 0.4 N, about 500 mAh / g for Li 2.6 Ni 0.4 N, and about 600 mAh / g for Li 2.6 Cu 0.4 N. This value becomes each γ. The charge / discharge potential was around 1.3V. Therefore, since the lithium-containing composite nitride has a larger charge capacity than the oxide capable of occluding and releasing lithium, the use of the lithium-containing composite nitride for the positive electrode can provide a high-capacity battery. Since the charge / discharge potential of the object is low, the energy density of the battery decreases when it is involved in the initial discharge.

本実施例で用いたリチウム含有複合窒化物において、遷移金属をCo、Ni、Cuとし、x=0.5とした場合でも結果は同等であった。   In the lithium-containing composite nitride used in this example, the results were the same even when the transition metals were Co, Ni, and Cu and x = 0.5.

本実施例においては、リチウム含有複合窒化物とリチウム吸蔵放出可能な酸化物の関係はリチウム含有複合窒化物の単位重さあたりの充放電容量をB、Li放出電位をB’としたとき、A<BかつA’>B’を満足するものである。   In this example, the relationship between the lithium-containing composite nitride and the oxide capable of occluding and releasing lithium is such that when the charge / discharge capacity per unit weight of the lithium-containing composite nitride is B and the Li discharge potential is B ′, A <B and A ′> B ′ is satisfied.

負極の活物質層はSi、SiO2、C複合体物質粒子に、バインダとしてポリイミド、溶剤としてNMPを混合した電極材を10μmの銅箔の上に塗布し、125℃、5分間乾燥した後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて350℃、30分間、N2雰囲気中で乾燥処理を行い作製した。この銅箔上に形成された活物質層を30×28mmに打ち抜き負極とし、電荷取り出しのためのニッケルからなる負極リードタブを超音波により融着した。 The active material layer of the negative electrode was coated on a 10 μm copper foil with an electrode material mixed with Si, SiO 2 , C composite material particles, polyimide as a binder, and NMP as a solvent, and dried at 125 ° C. for 5 minutes. A compression molding was performed by a roll press, and a drying treatment was performed again in a drying furnace at 350 ° C. for 30 minutes in an N 2 atmosphere. The active material layer formed on this copper foil was punched out to 30 × 28 mm to form a negative electrode, and a negative electrode lead tab made of nickel for extracting electric charge was fused by ultrasonic waves.

正極の活物質層については、上記リチウム吸蔵放出可能な酸化物と上記リチウム含有複合窒化物からなる活物質粒子、バインダとしてポリフッ化ビニリデン、溶剤としてNMPを混合した電極材を20μmのアルミ箔の上に塗布し、125℃、5分間乾燥処理を行い作製した。アルミ箔上に形成された活物質層を30×28mmに打ち抜き正極とし、電荷取り出しのためのアルミからなる正極リードタブを超音波により融着した。負極、セパレータ、正極の順に、活物質層がセパレータと対面するように積層した後、ラミネートフィルムをはさみ、電解液を注液し、真空下にて封止することによりラミネート型電池を作製した。なお電解液には、ECと、DECと、EMCとの体積比3:5:2の混合溶媒に1mol/LのLiPF6を溶解したものを用いた。 For the active material layer of the positive electrode, an active material particle composed of the above-described oxide capable of absorbing and desorbing lithium and the above lithium-containing composite nitride, an electrode material in which polyvinylidene fluoride as a binder and NMP as a solvent are mixed are placed on a 20 μm aluminum foil. Then, it was prepared by drying at 125 ° C. for 5 minutes. The active material layer formed on the aluminum foil was punched out to 30 × 28 mm to form a positive electrode, and a positive electrode lead tab made of aluminum for taking out electric charges was fused by ultrasonic waves. After laminating in order of the negative electrode, the separator, and the positive electrode so that the active material layer faces the separator, the laminate film was sandwiched, the electrolyte solution was poured, and the laminate type battery was sealed under vacuum. Note that the electrolytic solution, the EC, and DEC, the volume ratio of EMC 3: 5: was used LiPF 6 was dissolved in 1 mol / L to 2 mixture of.

このラミネート型電池を作製する際、正極の充電容量と負極の充電容量の比は、Si、SiO2、C複合体負極の初回充電容量をY、リチウム吸蔵放出可能な酸化物とリチウム含有複合窒化物の初回充電容量の合計をZとおいたとき、これらの関係がZ≦Yを満足するようにY:Z=1.00:1.00(実施例1、5、9、13、17、21、25、29、33)、Y:Z=1.10:1.00(実施例2、6、10、14、18、22、26、30、34)、Y:Z=1.16:1.00(実施例3、7、11、15、19、23、27、31、35)、Y:Z=1.22:1.00(実施例4、8、12、16、20、24、28、32、36)とした。また、Si、SiO2、C複合体負極の初回不可逆容量に相当するLi量をαとし、初回充電時にリチウム含有複合窒化物Li2.60.4N(MはCo、Ni、Cuのいずれか)が放出するLi量をγとするとき、α=γとした。α=γとするのに、負極活物質とリチウム含有複合窒化物の重量比を選択した。 When making this laminate type battery, the ratio of the charge capacity of the positive electrode to the charge capacity of the negative electrode is Y, the initial charge capacity of the Si, SiO 2 , and C composite negative electrode is Y, the lithium occluding and releasing oxide and the lithium-containing composite nitride Y: Z = 1.00: 1.00 (Examples 1, 5, 9, 13, 17, 21) so that these relationships satisfy Z ≦ Y when the total initial charge capacity of the product is Z. 25, 29, 33), Y: Z = 1.10: 1.00 (Examples 2, 6, 10, 14, 18, 22, 26, 30, 34), Y: Z = 1.16: 1 .00 (Examples 3, 7, 11, 15, 19, 23, 27, 31, 35), Y: Z = 1.22: 1.00 (Examples 4, 8, 12, 16, 20, 24, 28, 32, 36). In addition, the amount of Li corresponding to the initial irreversible capacity of the Si, SiO 2 , and C composite negative electrode is α, and the lithium-containing composite nitride Li 2.6 M 0.4 N (M is any of Co, Ni, or Cu) at the first charge. When the amount of Li released is γ, α = γ. For α = γ, the weight ratio of the negative electrode active material and the lithium-containing composite nitride was selected.

以上のように作製した電池の充放電試験は3mAの定電流で、その充電終止電圧を4.2 V、その放電終止電圧を2.5 Vとして行った。表1、表2、表3はこの試験における電池の初回と二回目の充電時の正極活物質と負極活物質の総量あたりのエネルギー密度を示し、それぞれ、リチウム含有複合窒化物が、表1ではLi2.6Co0.4N、表2ではLi2.6Ni0.4N、そして表3ではLi2.6Cu0.4Nの場合である。初回のエネルギー密度と二回目のエネルギー密度の差が小さく、Si、SiO2、C複合体の不可逆容量によるエネルギー密度の低下を最小限に抑えられていることがわかる。 The charge / discharge test of the battery produced as described above was conducted at a constant current of 3 mA, the charge end voltage being 4.2 V, and the discharge end voltage being 2.5 V. Tables 1, 2 and 3 show the energy densities per total amount of the positive electrode active material and the negative electrode active material during the first and second charging of the battery in this test. Li 2.6 Co 0.4 N, Table 2 shows Li 2.6 Ni 0.4 N, and Table 3 shows Li 2.6 Cu 0.4 N. It can be seen that the difference between the energy density of the first time and the energy density of the second time is small, and the decrease in energy density due to the irreversible capacity of the Si, SiO 2, and C composites is minimized.

Figure 2010102841
Figure 2010102841

Figure 2010102841
Figure 2010102841

Figure 2010102841
Figure 2010102841

また、本発明の電池において、Si、SiO2、C複合体負極の初回不可逆容量に相当するLi量をαとし、初回充電時Li2.60.4N(MはCo、Ni、Cuのいずれか)が放出するLi量をγとするときα>γとした場合でも、エネルギー密度の低下を抑えることができ、表4にα=2γ、表5にα=3γの結果を示す。その際のリチウム含有複合窒化物は、代表としてLi2.6Co0.4Nを用いた。この電池の充放電試験は3mAの定電流で、その充電終止電圧を4.2V、その放電終止電圧を2.5Vとして行った。α>γとするために、負極活物質とリチウム含有複合窒化物の重量比を選択した。 In the battery of the present invention, the amount of Li corresponding to the initial irreversible capacity of the Si, SiO 2 , C composite negative electrode is α, and Li 2.6 M 0.4 N (M is one of Co, Ni, or Cu) at the time of initial charge. Even when α> γ when γ represents the amount of Li released from the substrate, the decrease in energy density can be suppressed. Table 4 shows the results of α = 2γ, and Table 5 shows the results of α = 3γ. Li 2.6 Co 0.4 N was typically used as the lithium-containing composite nitride at that time. The charge / discharge test of this battery was performed at a constant current of 3 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. In order to satisfy α> γ, the weight ratio between the negative electrode active material and the lithium-containing composite nitride was selected.

Figure 2010102841
Figure 2010102841

Figure 2010102841
Figure 2010102841

本発明の電池において、二回目充電時の負極の活物質の重量あたりの容量はY、Zの比により決まり、これまでの代表として実施例1〜4の二回目充電時の負極の活物質の重量あたりの容量を表6に示す。   In the battery of the present invention, the capacity per weight of the negative electrode active material at the time of the second charge is determined by the ratio of Y and Z, and as a representative so far, the negative electrode active material at the second charge of Examples 1 to 4 Table 6 shows the capacity per weight.

Figure 2010102841
Figure 2010102841

現在実用化されているリチウムイオン電池の負極の炭素材料が300〜370mAh/g程度の容量密度であることを考えると本発明の電池は極めて高容量であり、よって、高エネルギー密度の電池を実現したことになる。   Considering that the carbon material of the negative electrode of the lithium ion battery currently in practical use has a capacity density of about 300 to 370 mAh / g, the battery of the present invention has an extremely high capacity, and thus realizes a battery with a high energy density. It will be done.

さらに、本実施例で用いたリチウム含有複合窒化物において、遷移金属をCo、Ni、Cuとし、x=0とした場合では、リチウム含有複合窒化物の重さあたりの容量は増加し、約1500mAh/gとなる。本実施例で示したLi2.6Co0.4Nの場合に比べて2倍の効果が得られる。 Furthermore, in the lithium-containing composite nitride used in this example, when the transition metal is Co, Ni, Cu, and x = 0, the capacity per weight of the lithium-containing composite nitride increases to about 1500 mAh. / g. The effect is twice that of the case of Li 2.6 Co 0.4 N shown in this example.

(比較例)
本発明との比較のため、本発明の電池に換えて、Z≦Yを満足しないY:Zの組み合わせ、すなわちZ>YとなるY:Z=0.50:1.00:(比較例1、5、9)、Y:Z=0.75:1.00(比較例2、6、10)、Y:Z=0.80:1.00(比較例3、7、11)、Y:Z=0.90:1.00(比較例4、8、12)となるように正極と負極の重量比を選択して、電池を試作し充放電試験を行った。この充放電試験は3mAの定電流で、その充電終止電圧を4.2V、その放電終止電圧を2.5Vとして行った。このとき、α=γとし、リチウム含有複合窒化物は、代表としてLi2.6Co0.4Nを用いた。表7に以上の結果を示す。初回充電時のエネルギー密度と二回目充電時のエネルギー密度が非常に小さくなることがわかる。
(Comparative example)
For comparison with the present invention, in place of the battery of the present invention, a combination of Y: Z not satisfying Z ≦ Y, that is, Y: Z = 0.50: 1.00: where Z> Y (Comparative Example 1) 5, 9), Y: Z = 0.75: 1.00 (Comparative Examples 2, 6, 10), Y: Z = 0.80: 1.00 (Comparative Examples 3, 7, 11), Y: A battery was fabricated and a charge / discharge test was performed by selecting the weight ratio of the positive electrode and the negative electrode so that Z = 0.90: 1.00 (Comparative Examples 4, 8, and 12). This charge / discharge test was performed at a constant current of 3 mA, with a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. At this time, α = γ, and Li 2.6 Co 0.4 N was typically used as the lithium-containing composite nitride. Table 7 shows the above results. It can be seen that the energy density at the first charge and the energy density at the second charge are very small.

Figure 2010102841
Figure 2010102841

次に、本発明の電池に換えて、α≧γを満足しないα<γとなる2α=γ、5α=2γの条件になるよう負極活物質とリチウム含有複合窒化物の重量比を選択し、電池を試作し充放電試験を行った。この充放電試験は3mAの定電流で、その充電終止電圧を4.2V、その放電終止電圧を2.5Vとして行った。このとき、Z≦Yの条件でリチウム含有複合窒化物は、代表としてLi2.6Co0.4Nを用いた。表8、表9にそれぞれ、2α=γ、5α=2γのときの結果を示す。二回目充電時のエネルギー密度が非常に低くなる。 Next, in place of the battery of the present invention, the weight ratio of the negative electrode active material and the lithium-containing composite nitride is selected so that 2α = γ and 5α = 2γ satisfying α <γ not satisfying α ≧ γ, A battery was prototyped and a charge / discharge test was conducted. This charge / discharge test was performed at a constant current of 3 mA, with a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. At this time, Li 2.6 Co 0.4 N was typically used as the lithium-containing composite nitride under the condition of Z ≦ Y. Tables 8 and 9 show the results when 2α = γ and 5α = 2γ, respectively. The energy density during the second charge is very low.

Figure 2010102841
Figure 2010102841

Figure 2010102841
Figure 2010102841

さらに、比較のためにSi、SiO2、C複合体を負極活物質とし、リチウム吸蔵放出可能な酸化物のみを正極活物質として組み合わせた電池を試作し(比較例37ないし48)、充放電試験を行った。表10はこの試験における電池の初回と二回目の充電時の正極活物質と負極活物質の総量あたりのエネルギー密度を示す。初回充電時と二回目充電時のエネルギー密度の差が大きく、また、二回目の充電時のエネルギー密度も小さい。 For comparison, a battery was fabricated by combining Si, SiO 2 , and C composite as a negative electrode active material and only an oxide capable of occluding and releasing lithium as a positive electrode active material (Comparative Examples 37 to 48), and a charge / discharge test. Went. Table 10 shows the energy density per total amount of the positive electrode active material and the negative electrode active material during the first and second charging of the battery in this test. The difference in energy density between the first charge and the second charge is large, and the energy density at the second charge is also small.

Figure 2010102841
Figure 2010102841

このように、Si、Si酸化物とCから選択される少なくとも1種以上からなる負極活物質固有の初回不可逆容量によって消費される正極活物質を、より高容量なリチウム含有複合窒化物にし、初回放電以降の充放電に利用されない正極活物質の重さを低減することで、高エネルギー密度をもつ非水系電解質二次電池を得ることを確認した。   Thus, the positive electrode active material consumed by the initial irreversible capacity inherent to the negative electrode active material composed of at least one selected from Si, Si oxide and C is changed to a higher capacity lithium-containing composite nitride, It was confirmed that a non-aqueous electrolyte secondary battery having a high energy density was obtained by reducing the weight of the positive electrode active material that was not used for charge and discharge after discharge.

本発明の非水系電解質リチウムイオン二次電池の断面図。Sectional drawing of the non-aqueous electrolyte lithium ion secondary battery of this invention.

符号の説明Explanation of symbols

1 負極の活物質層
2 負極集電体
3 負極
4 正極の活物質層
5 正極集電体
6 正極
7 セパレータ
8 外装フィルム
9 負極リードタブ
10 正極リードタブ
DESCRIPTION OF SYMBOLS 1 Negative electrode active material layer 2 Negative electrode current collector 3 Negative electrode 4 Positive electrode active material layer 5 Positive electrode current collector 6 Positive electrode 7 Separator 8 Exterior film 9 Negative electrode lead tab 10 Positive electrode lead tab

Claims (5)

正極活物質に
一般式:Li3-xx
(MはCo、Ni、Cuから選ばれる1種以上の遷移金属であり、0≦x≦0.8)
で表されるリチウム含有複合窒化物を含むことを特徴とする非水系電解質リチウムイオン二次電池。
General formula for the positive electrode active material: Li 3-x M x N
(M is one or more transition metals selected from Co, Ni and Cu, 0 ≦ x ≦ 0.8)
A non-aqueous electrolyte lithium ion secondary battery comprising a lithium-containing composite nitride represented by:
正極活物質に前記リチウム含有複合窒化物とリチウム吸蔵放出可能な酸化物を混合活物質として用い、負極活物質にリチウムを吸蔵放出可能なSiおよびSi酸化物およびCから選択される少なくとも1種以上からなる混合活物質を含むことを特徴とする請求項1に記載の非水系電解質リチウムイオン二次電池。   The lithium-containing composite nitride and an oxide capable of occluding and releasing lithium are used as a mixed active material for the positive electrode active material, and at least one or more selected from Si, Si oxide and C capable of occluding and releasing lithium in the negative electrode active material The non-aqueous electrolyte lithium ion secondary battery according to claim 1, comprising a mixed active material comprising: 前記正極活物質に含まれるリチウム吸蔵放出可能な酸化物の単位重さあたりの充放電容量をA、Li放出電位をA’とし、また、前記リチウム含有複合窒化物の単位重さあたりの充放電容量をB、Li放出電位をB’としたとき、A<BかつA’>B’を満足することを特徴とする請求項2に記載の非水系電解質リチウムイオン二次電池。   The charge / discharge capacity per unit weight of the oxide capable of occluding and releasing lithium contained in the positive electrode active material is A, the Li emission potential is A ′, and the charge / discharge per unit weight of the lithium-containing composite nitride is The non-aqueous electrolyte lithium ion secondary battery according to claim 2, wherein A <B and A '> B' are satisfied when the capacity is B and the Li emission potential is B '. 前記負極活物質の初回不可逆容量に相当するLi量をαとし、初回充電時に前記リチウム含有複合窒化物が放出するLi量をγとするとき、前記負極活物質と前記リチウム含有複合窒化物の重量比を、α≧γを満足するように選択することを特徴とする請求項2ないし3のいずれか1項に記載の非水系電解質リチウムイオン二次電池。   When the amount of Li corresponding to the initial irreversible capacity of the negative electrode active material is α and the amount of Li released by the lithium-containing composite nitride at the time of initial charge is γ, the weight of the negative electrode active material and the lithium-containing composite nitride 4. The non-aqueous electrolyte lithium ion secondary battery according to claim 2, wherein the ratio is selected so as to satisfy α ≧ γ. 5. 前記負極活物質の初回充電容量をY、前記リチウム吸蔵放出可能な酸化物と前記リチウム含有複合窒化物の初回充電容量の合計をZとするとき、これらの関係がZ≦Yとなることを特徴とする請求項2ないし4のいずれか1項に記載の非水系電解質リチウムイオン二次電池。   When the initial charge capacity of the negative electrode active material is Y and the total of the initial charge capacity of the oxide capable of occluding and releasing lithium and the lithium-containing composite nitride is Z, these relations satisfy Z ≦ Y. The nonaqueous electrolyte lithium ion secondary battery according to any one of claims 2 to 4.
JP2008270601A 2008-10-21 2008-10-21 Non-aqueous electrolyte lithium ion secondary battery Active JP5360871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270601A JP5360871B2 (en) 2008-10-21 2008-10-21 Non-aqueous electrolyte lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270601A JP5360871B2 (en) 2008-10-21 2008-10-21 Non-aqueous electrolyte lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010102841A true JP2010102841A (en) 2010-05-06
JP5360871B2 JP5360871B2 (en) 2013-12-04

Family

ID=42293332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270601A Active JP5360871B2 (en) 2008-10-21 2008-10-21 Non-aqueous electrolyte lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5360871B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
JP2012124057A (en) * 2010-12-09 2012-06-28 Nec Corp Lithium ion secondary battery, and method for manufacturing the same
EP2506344A1 (en) 2011-03-31 2012-10-03 Fuji Jukogyo Kabushiki Kaisha Lithium ion storage device
JP2012221681A (en) * 2011-04-07 2012-11-12 Nec Corp Lithium secondary battery and manufacturing method thereof
JP2013229320A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
JP2013543243A (en) * 2010-11-16 2013-11-28 ヴァルタ マイクロ イノヴェーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion cell with improved aging behavior
KR20140096333A (en) * 2011-11-02 2014-08-05 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
KR20140096332A (en) * 2011-11-02 2014-08-05 이-뗀 Method for manufacturing all-solid-state thin-film batteries
EP2784845A1 (en) 2013-03-29 2014-10-01 Fuji Jukogyo Kabushiki Kaisha Predoping material for electrical lithium or sodium storage device
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
US9276288B2 (en) 2011-08-06 2016-03-01 Denso Corporation Nonaqueous electrolyte rechargeable battery
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778609A (en) * 1993-09-09 1995-03-20 Matsushita Electric Ind Co Ltd Electrochemical device
JPH10302765A (en) * 1997-04-30 1998-11-13 Matsushita Denchi Kogyo Kk Lithium secondary battery
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778609A (en) * 1993-09-09 1995-03-20 Matsushita Electric Ind Co Ltd Electrochemical device
JPH10302765A (en) * 1997-04-30 1998-11-13 Matsushita Denchi Kogyo Kk Lithium secondary battery
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238490A (en) * 2010-05-11 2011-11-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013543243A (en) * 2010-11-16 2013-11-28 ヴァルタ マイクロ イノヴェーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion cell with improved aging behavior
JP2012124057A (en) * 2010-12-09 2012-06-28 Nec Corp Lithium ion secondary battery, and method for manufacturing the same
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
EP2506344A1 (en) 2011-03-31 2012-10-03 Fuji Jukogyo Kabushiki Kaisha Lithium ion storage device
CN102738505A (en) * 2011-03-31 2012-10-17 富士重工业株式会社 Lithium ion storage device
JP2012221681A (en) * 2011-04-07 2012-11-12 Nec Corp Lithium secondary battery and manufacturing method thereof
US9276288B2 (en) 2011-08-06 2016-03-01 Denso Corporation Nonaqueous electrolyte rechargeable battery
KR20140096333A (en) * 2011-11-02 2014-08-05 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
KR20140096332A (en) * 2011-11-02 2014-08-05 이-뗀 Method for manufacturing all-solid-state thin-film batteries
KR102018096B1 (en) * 2011-11-02 2019-09-04 이-뗀 Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
KR102052521B1 (en) * 2011-11-02 2019-12-05 이-뗀 Method for manufacturing all-solid-state thin-film batteries
JP2013229320A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
US9660258B2 (en) 2012-03-27 2017-05-23 Tdk Corporation Lithium-ion secondary battery
EP2784845A1 (en) 2013-03-29 2014-10-01 Fuji Jukogyo Kabushiki Kaisha Predoping material for electrical lithium or sodium storage device
US9847528B2 (en) 2013-03-29 2017-12-19 Subaru Corporation Predoping material, electric storage device including the material, and method of producing the device
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Also Published As

Publication number Publication date
JP5360871B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP5468723B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5068459B2 (en) Lithium secondary battery
JP5210503B2 (en) Nonaqueous electrolyte secondary battery
JP5278994B2 (en) Lithium secondary battery
US8956762B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4853608B2 (en) Lithium secondary battery
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2004022379A (en) Secondary cell, electrolyte therefor and usage thereof
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
WO2012098639A1 (en) Nonaqueous electrolyte secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US20200176771A1 (en) Non-aqueous electrolyte secondary battery
JP2012221681A (en) Lithium secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
JP5441196B2 (en) Lithium ion battery and manufacturing method thereof
JP5424322B2 (en) Non-aqueous electrolyte secondary battery
JP2012124057A (en) Lithium ion secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5360871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250