JP5288448B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5288448B2
JP5288448B2 JP2008103096A JP2008103096A JP5288448B2 JP 5288448 B2 JP5288448 B2 JP 5288448B2 JP 2008103096 A JP2008103096 A JP 2008103096A JP 2008103096 A JP2008103096 A JP 2008103096A JP 5288448 B2 JP5288448 B2 JP 5288448B2
Authority
JP
Japan
Prior art keywords
capacity
negative electrode
sio
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008103096A
Other languages
Japanese (ja)
Other versions
JP2009252705A (en
Inventor
徹也 梶田
竜一 笠原
次郎 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2008103096A priority Critical patent/JP5288448B2/en
Publication of JP2009252705A publication Critical patent/JP2009252705A/en
Application granted granted Critical
Publication of JP5288448B2 publication Critical patent/JP5288448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、負極に添加物を加えた充放電サイクル特性に優れた高容量の非水電解質二次電池に関するものである。   The present invention relates to a high-capacity nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics obtained by adding an additive to a negative electrode.

現在、携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められ、現在はリチウムイオン二次電池が最も多く利用されている。   Currently, with the spread of mobile devices such as mobile phones and notebook personal computers, the role of secondary batteries as the power source is regarded as important. These secondary batteries are small, lightweight, and have a high capacity, and are required to have a performance that does not easily deteriorate even after repeated charging and discharging. Currently, lithium ion secondary batteries are most frequently used.

リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素が用いられている。炭素は、充放電サイクルを良好に繰り返すことができるものの、すでに理論容量付近まで容量を使用していることから、今後、大幅な容量向上は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強く、炭素よりも高容量、すなわち高エネルギー密度を有する負極材料の検討が行われている。   Carbon such as graphite and hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although carbon can repeat charge / discharge cycles satisfactorily, the capacity has already been used up to near the theoretical capacity, and therefore no significant improvement in capacity can be expected in the future. On the other hand, there is a strong demand for increasing the capacity of lithium ion secondary batteries, and negative electrode materials having a higher capacity than carbon, that is, a higher energy density are being studied.

高エネルギー密度を実現可能な材料として、ケイ素が挙げられる。実際、負極活物質として用いることが、非特許文献1に記載されている。   An example of a material that can realize a high energy density is silicon. In fact, Non-Patent Document 1 describes use as a negative electrode active material.

ケイ素を用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体の膨脹収縮が大きいために微粉化が進行し、初回充放電における不可逆容量が大きく、また充放電サイクル寿命が短いという問題点がある。   Although the negative electrode using silicon has a large amount of occlusion and release of lithium ions per unit volume and a high capacity, pulverization progresses due to large expansion and contraction of the electrode active material itself when lithium ions are occluded and released. However, the irreversible capacity in the first charge / discharge is large and the charge / discharge cycle life is short.

ケイ素を用いた初回不可逆容量の低減及び充放電サイクル寿命の改善対策として、ケイ素酸化物を負極活物質として用いる方法が特許文献1で提案されている。特許文献1においては、ケイ素酸化物を活物質として用いることにより活物質単位重量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、充放電における不可逆容量が大きいという問題点を有していた。さらに容量及び充放電サイクル寿命の改善対策として、ケイ素、ケイ素酸化物に炭素材料を複合化させた粒子を活物質として用いる方法が特許文献2で提案されている。これによりサイクル特性の向上が確認されたもののまだ不十分であり、また初回充放電効率の改善は不十分である。   As a measure for reducing the initial irreversible capacity using silicon and improving the charge / discharge cycle life, Patent Document 1 proposes a method using silicon oxide as a negative electrode active material. In Patent Document 1, since the volume expansion / shrinkage per unit weight of the active material can be reduced by using silicon oxide as the active material, improvement in cycle characteristics has been confirmed. On the other hand, since the conductivity of the oxide is low, the current collecting property is lowered, and the irreversible capacity in charge / discharge is large. Furthermore, as a measure for improving capacity and charge / discharge cycle life, Patent Document 2 proposes a method using particles obtained by combining a carbon material with silicon or silicon oxide as an active material. Although the improvement of the cycle characteristics was confirmed by this, it is still insufficient, and the improvement of the first charge / discharge efficiency is insufficient.

この初回不可逆容量の対応策として、不可逆容量分を予め電気化学的に充電しておく電極化成法や負極に金属リチウムを貼り付けて不可逆容量を補う方法などが試みられている。   As countermeasures for this initial irreversible capacity, an electrode formation method in which the irreversible capacity is electrochemically charged in advance or a method of making up for the irreversible capacity by attaching metallic lithium to the negative electrode has been attempted.

電極化成法は通電電気量を制御することで目的に応じた量の化成が可能な点が優れているが、一度電極を充電した後に再び電池として組み直すため煩雑で生産性も極めて悪い。金属リチウム貼付け法は電解液を注液することで短絡状態にある酸化物と金属リチウム間で自動的にLiの移動を行うというものである。ところが、この方法の場合、極板形態によってはLiの移動が不十分で金属リチウムが残存し、特性ばらつきの発生や安全性に問題が生じるなどの品質上に問題がある。   The electrode formation method is excellent in that the amount of electricity according to the purpose can be controlled by controlling the amount of electricity supplied. However, since the electrode is once charged and then reassembled as a battery, it is cumbersome and the productivity is extremely poor. The lithium metal sticking method automatically moves Li between an oxide in a short-circuited state and lithium metal by injecting an electrolytic solution. However, in the case of this method, depending on the electrode plate form, there is a problem in quality such that Li migration is insufficient and metallic lithium remains, causing variations in characteristics and problems in safety.

他に、この初回不可逆容量の対応策として、負極にケイ素の酸化物と一般式Li3-XN(Mは遷移金属、0.2<X≦0.8)で表されるリチウム含有複合窒化物との混合活物質を用いる非水系電解質二次電池が特許文献3で提案されている。Li3-XN(Mは遷移金属、0.2<X≦0.8)でケイ素の酸化物の不可逆容量を補う点で優れているが、リチウム含有複合窒化物の重量あたりの容量が約800mAh/gと珪素の酸化物と比べて小さく、珪素の酸化物のみを負極活物質に用いた場合の電池の容量に比べて、電池としての容量は小さくなるという問題がある。 In addition, as a countermeasure for this first irreversible capacity, the negative electrode contains silicon oxide and lithium represented by the general formula Li 3-X M X N (M is a transition metal, 0.2 <X ≦ 0.8) A non-aqueous electrolyte secondary battery using a mixed active material with a composite nitride is proposed in Patent Document 3. Li 3-X M X N (M is a transition metal, 0.2 <X ≦ 0.8) is excellent in supplementing the irreversible capacity of the oxide of silicon, but the capacity per weight of the lithium-containing composite nitride Is about 800 mAh / g, which is smaller than the oxide of silicon, and the capacity of the battery is smaller than the capacity of the battery when only the silicon oxide is used as the negative electrode active material.

特許第2997741号公報Japanese Patent No. 2999741 特開2004‐139886号公報JP 2004-139886 A 特開2000‐164207号公報JP 2000-164207 A リー(Li)他4名, 「ア ハイ キャパシティ ナノ−シリコン コンポジット アノード マテリアル フォー リチウム リチャージャブル バッテリーズ(A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries), エレクトロケミカル アンド ソリッドステイト レターズ(Electrochemical and Solid-State Letters), 第2巻, 第11号, p547−549 (1999)Li et al., “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries, Electrochemical and Solid State Letters” -State Letters), Vol. 2, No. 11, p547-549 (1999)

本発明の課題は、初回充放電での充放電効率が高く、かつ、エネルギー密度の高い非水電解質二次電池を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery having high charge / discharge efficiency in the first charge / discharge and high energy density.

上記課題を解決するため本発明の非水電解質二次電池は、正極にリチウムを吸蔵放出可能なリチウム含有物質を正極活物質として用いる非水系電解質二次電池において、負極にSi、SiO2とCの複合体を負極活物質とし、Li3Nを添加剤として用いることを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention for solving the above problems is the non-aqueous electrolyte secondary battery using lithium in the positive electrode and capable of absorbing and releasing a lithium-containing material as a cathode active material, Si negative electrode, SiO 2 and C This composite is used as a negative electrode active material, and Li 3 N is used as an additive.

また、初回放電時に負極の添加剤Li3N中のLiが全て放出され、添加剤Li3Nが分解することが好ましく、初回不可逆容量を補充することとなる。 Moreover, it is preferable that all the Li in the additive Li 3 N of the negative electrode is released during the first discharge and the additive Li 3 N is decomposed, and the initial irreversible capacity is replenished.

また、前記負極のSi、SiO2、C複合体の初回不可逆容量に相当するLi量をαとし、初回放電時に前記Li3Nが放出するLi量をγとするとき、前記負極のSi、SiO2、C複合物質と前記Li3Nの重量比は、α=γを満足することが好ましい。 Further, when the amount of Li corresponding to the first irreversible capacity of the Si, SiO 2 , and C composite of the negative electrode is α and the amount of Li released by the Li 3 N during the initial discharge is γ, the Si, SiO of the negative electrode 2. It is preferable that the weight ratio between the C composite material and the Li 3 N satisfies α = γ.

また、前記負極のSi、SiO2、C複合体の初回不可逆容量をXとおき、負極の充電容量をY、正極の充電容量をZとするとき、これらの関係をY≧X+Zにすることを特徴とし、正極中の活物質を全て充放電に使い、高容量な非水電解質二次電池とする。 In addition, when the initial irreversible capacity of the Si, SiO 2 , and C composite of the negative electrode is X, the charge capacity of the negative electrode is Y, and the charge capacity of the positive electrode is Z, these relationships should be Y ≧ X + Z. Characteristically, all the active material in the positive electrode is used for charging and discharging, and a high capacity non-aqueous electrolyte secondary battery is obtained.

本発明によれば、負極活物質のSi、SiO2、C複合体固有の初回不可逆容量を負極中に添加剤として存在するLi3N中のLiで初回放電時に補充し、初回充放電効率を改善することで、高容量な非水電解質二次電池を得ることができる。 According to the present invention, the initial irreversible capacity inherent to the negative active material Si, SiO 2 , and C composite is supplemented during initial discharge with Li in Li 3 N present as an additive in the negative electrode, and the initial charge / discharge efficiency is improved. By improving, a high-capacity nonaqueous electrolyte secondary battery can be obtained.

本発明の実施の形態について図面を参照して説明する。図1は本発明の非水電解質二次電池の断面図である。図1に示すように本発明の非水電解質二次電池は銅箔などの負極集電体2上に形成した負極の活物質層1からなる負極3とアルミニウム箔などの正極集電体5上に形成した正極の活物質層4からなる正極6がセパレータ7を介して対向配置されている構造となっている。セパレータ7としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。負極3と正極6から、それぞれ電極端子取り出しのための負極リードタブ9、正極リードタブ10が引き出され、それぞれの先端を除いて、ラミネートフィルムなどの外装フィルム8を用いて外装する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery of the present invention. As shown in FIG. 1, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode 3 composed of a negative electrode active material layer 1 formed on a negative electrode current collector 2 such as a copper foil and a positive electrode current collector 5 such as an aluminum foil. The positive electrode 6 formed of the positive electrode active material layer 4 is disposed so as to face the separator 7. As the separator 7, a polyolefin such as polypropylene or polyethylene, or a porous film such as a fluororesin can be used. A negative electrode lead tab 9 and a positive electrode lead tab 10 for taking out electrode terminals are drawn out from the negative electrode 3 and the positive electrode 6, respectively, and are covered with an outer film 8 such as a laminate film except for the respective ends.

負極の材料構成は負極の活物質であるSi、SiO2、C複合体粉末と添加剤としてLi3N粉末、および結着剤樹脂からなり、これらを混合した合剤によって負極の活物質層1が形成される。これら合剤は溶剤で混練したペーストを銅箔等の金属箔上に塗布して圧延加工した塗布型極板や直接プレスして加圧成形極板にするなどの製法で周知の形態に加工することができ、具体的には、Si粉末、SiO2粉末、C粉末とリチウム窒化物粉末を混合した複合粒子と、バインダとしてポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤とをN‐メチル‐2‐ピロリドン(NMP)等の溶剤に分散させ混練し、金属箔からなる負極集電体2の上に塗布し、高温雰囲気で乾燥することにより形成される。負極の活物質層1中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。生成した負極の活物質層1の電極密度は0.5g/cm3以上2.0g/cm3以下であるとよい。電極密度が低い場合は放電容量の絶対値が小さく、従来の炭素材料に対するメリットが得られない。逆に高い場合、電極に電解液を含浸させることが難しく、やはり放電容量が低下する。負極集電体2の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。 The material structure of the negative electrode is composed of Si, SiO 2 , C composite powder, which is an active material of the negative electrode, Li 3 N powder as an additive, and a binder resin. Is formed. These mixtures are processed into a known form by a manufacturing method such as applying a paste kneaded with a solvent onto a metal foil such as copper foil and rolling it, or directly pressing into a pressure-formed electrode plate. Specifically, Si powder, SiO 2 powder, composite particles in which C powder and lithium nitride powder are mixed, and polyimide, polyamide, polyamideimide, polyacrylic acid resin, polymethacrylic acid resin as binder And a binder having thermosetting properties such as N-methyl-2-pyrrolidone (NMP) dispersed and kneaded, and applied onto the negative electrode current collector 2 made of a metal foil, and a high temperature atmosphere It is formed by drying with. In the active material layer 1 of the negative electrode, carbon black, acetylene black, or the like may be mixed in order to impart conductivity as necessary. The electrode density of the generated negative electrode active material layer 1 is preferably 0.5 g / cm 3 or more and 2.0 g / cm 3 or less. When the electrode density is low, the absolute value of the discharge capacity is small, and a merit over the conventional carbon material cannot be obtained. On the other hand, when it is high, it is difficult to impregnate the electrode with the electrolytic solution, and the discharge capacity is also lowered. The thickness of the negative electrode current collector 2 is preferably 4 to 100 μm because it is preferable to maintain a thickness that can maintain strength, and more preferably 5 to 30 μm in order to increase the energy density.

また、電池に用いる電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2‐エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3‐ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3‐ジメチル‐2‐イミダゾリジノン、3‐メチル‐2‐オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3‐プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質を用いてもよい。 Moreover, as electrolyte solution used for a battery, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC) Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and γ-lactones such as γ-butyrolactone, , 2-Ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethyl ether Tylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2 -Using an aprotic organic solvent such as oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, or a mixture of two or more thereof. A lithium salt that dissolves in an organic solvent is dissolved. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ). 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like. Further, a polymer electrolyte may be used instead of the electrolytic solution.

また、上記のようにして製造される非水電解質二次電池の、放電終止電圧値は1.5V以上2.7V以下であることが望ましい。放電終止電圧値が低くなる程充放電の繰り返しによる放電容量の劣化が大きくなる問題がある。1.5V以下とするのは回路設計上の難易度も高い。また2.7V以上の場合、放電容量の絶対値が小さく従来の炭素材料に対するメリットが得られない。   Moreover, it is desirable that the discharge end voltage value of the nonaqueous electrolyte secondary battery manufactured as described above is 1.5 V or more and 2.7 V or less. There is a problem that the deterioration of the discharge capacity due to repeated charge / discharge increases as the discharge end voltage value decreases. Setting the voltage to 1.5 V or less has a high degree of difficulty in circuit design. In the case of 2.7 V or more, the absolute value of the discharge capacity is small and no merit over the conventional carbon material can be obtained.

本発明の電池では、負極中のSi、SiO2、C複合体へのLi3NからのSi、SiO2、C複合体の不可逆容量分に相当するLiの補充は電池構成後の放電操作によってなされる。この負極中ではSi、SiO2、C複合体とLi3Nは局部電池を構成しているが、Si、SiO2、C複合体のLi吸蔵電位がLi3NのLi放出電位である1V付近より卑な領域にあるため基本的に電位差による自動的なLiの移動はない。この電池の場合、最初の充電でまず負極のSi、SiO2、C複合体へのみリチウム含有複合酸化物正極からLiが供給され充電が終了する。次の放電でSi、SiO2、C複合体から正極へ戻るLiは不足分(不可逆容量分)が生じるため、この時初めてLi3Nから正極にLiが供給される。負極中には、不可逆容量分のLiと同量のLiを含むLi3Nが含まれており、初回放電時に完全に電池を放電することでLi3N中の全てのLiが全て放出され、Li3Nは分解する。Liの補充は電池構成後の放電操作によってなされると述べたが、これは電池の製造上極めて効果的な利点でもある。これが、本発明のSi、SiO2、C複合体とリチウム窒化物の組み合わせを選んだ理由でもある。Li3Nの場合、初期のLi放出電位が1V付近にあるのが特徴であるが、負極として有望な酸化物はそのLi吸蔵電位が1Vより貴にあるものが殆どである。すなわち、そのような酸化物で本発明と同様の混合活物質を構成した場合、電解液の注入と同時に電位差による自動的なLiの移動が急激に起こる。従って、Liの放出が制御可能な点でSi、SiO2、C複合体とLi3Nの組み合わせは好適である。 In the battery of the present invention, Si of Fukyokuchu, Si from Li 3 N to SiO 2, C complexes, recruitment of Li corresponding to the irreversible capacity of SiO 2, C complex by a discharge operation after the cell structure Made. In this negative electrode, Si, SiO 2 , C composite and Li 3 N constitute a local battery, but the Li occlusion potential of Si, SiO 2 , C composite is around 1 V where Li 3 N is the Li release potential. Basically, there is no automatic movement of Li due to a potential difference because it is in a more base area. In the case of this battery, Li is supplied from the lithium-containing composite oxide positive electrode only to the Si, SiO 2 , and C composite of the negative electrode at the first charge, and the charge is completed. The amount of Li that returns from the Si, SiO 2 , and C composite to the positive electrode in the next discharge is insufficient (irreversible capacity). Therefore, Li is first supplied from Li 3 N to the positive electrode at this time. The negative electrode contains Li 3 N containing the same amount of Li as the irreversible capacity Li, and all Li in the Li 3 N is released by completely discharging the battery during the first discharge, Li 3 N decomposes. Although it has been stated that the replenishment of Li is performed by the discharging operation after the battery construction, this is also a very effective advantage in the manufacture of the battery. This is also the reason for choosing the combination of Si, SiO 2 , C composite and lithium nitride of the present invention. In the case of Li 3 N, the initial Li emission potential is in the vicinity of 1 V, but most of the oxides promising as negative electrodes have a Li storage potential nobler than 1 V. That is, when a mixed active material similar to that of the present invention is formed of such an oxide, automatic Li movement occurs rapidly due to a potential difference simultaneously with the injection of the electrolytic solution. Therefore, the combination of Si, SiO 2 , C complex and Li 3 N is preferable in that the release of Li can be controlled.

さらに、Li3Nはその原材料がLi、Nであり、コスト的にも特に問題はない。 Furthermore, Li 3 N has Li and N as its raw materials, and there is no particular problem in terms of cost.

負極の添加剤であるLi3Nが初回放電時においてのみLiを放出し分解するため、Si、SiO2、C複合体の初回不可逆容量をXとおき、負極の充電容量をY、正極の充電容量をZとおいたときこれらの関係がY≧X+Zの条件であるとSi、SiO2、C複合体特有の高容量化の効果が得られる。また、Y<X+ZであるとSi、SiO2、C複合体の不可逆容量分を初回放電時にLi3Nで補充しても次の充電時にLiを受け入れるSi、SiO2、C複合体が存在せず、正極中の活物質の容量を完全には生かせなくなり、電池容量が低下する。 Since Li 3 N, which is an additive for the negative electrode, releases and decomposes Li only at the time of the first discharge, the initial irreversible capacity of Si, SiO 2 , C complex is set to X, the negative electrode charge capacity is set to Y, and the positive electrode is charged If the relationship is Y ≧ X + Z when the capacity is Z, the effect of increasing the capacity peculiar to Si, SiO 2 and C composites can be obtained. Further, if it is Y <X + Z Si, be supplemented with Li 3 N irreversible capacity of SiO 2, C complex during initial discharge accept Li at the next charging Si, there is SiO 2, C complex Therefore, the capacity of the active material in the positive electrode cannot be fully utilized, and the battery capacity is reduced.

負極中のSi、SiO2、C複合体の初回不可逆容量に相当するLi量をαとおき、初回放電時に負極中のLi3Nが分解して放出するLi量をγとおいたとき、負極中のSi、SiO2、C複合体と負極中のLi3Nの重量比がα=γの関係を満足すると、初回充放電時における不可逆容量の補充が過不足なく最大限利用できる。また、リチウム含有複合窒化物による初回不可逆容量の補充と比較しても、重さあたりの充放電容量においてメリットが得られる。 When the amount of Li corresponding to the initial irreversible capacity of the Si, SiO 2 , C composite in the negative electrode is α, and the amount of Li released by decomposition and release of Li 3 N in the negative electrode during the first discharge is γ, When the weight ratio of the Si, SiO 2 , C composite and Li 3 N in the negative electrode satisfies the relationship of α = γ, replenishment of the irreversible capacity at the first charge / discharge can be utilized to the maximum. Further, even when compared with replenishment of the initial irreversible capacity with lithium-containing composite nitride, a merit is obtained in charge / discharge capacity per weight.

以上のように、Si、SiO2、C複合体固有の初回不可逆容量を負極中に添加剤として存在するLi3N中のLiで初回放電時に補充し、初回充放電効率を改善することで、高容量な非水電解質二次電池を作製できる。 As described above, by replenishing the initial irreversible capacity inherent to Si, SiO 2 , and C complex with Li in Li 3 N present as an additive in the negative electrode at the time of initial discharge, and improving the initial charge and discharge efficiency, A high-capacity nonaqueous electrolyte secondary battery can be produced.

本発明は負極の活物質としてSi、SiO2、Cを用いるが、本実施例では、その代表としてそれぞれの分子量の比を1:1:0.8とする。 In the present invention, Si, SiO 2 , and C are used as the negative electrode active material. In this example, the ratio of the respective molecular weights is 1: 1: 0.8 as a representative example.

Si粉末、SiO2粉末、C粉末、Li3N粉末は試薬として市販されているものが有り、この粉末を入手して用いた。 Si powder, SiO 2 powder, C powder, and Li 3 N powder are commercially available as reagents, and this powder was obtained and used.

事前に使用する酸化物Si、SiO2、C複合体負極の充放電性能を確認(金属リチウムを対極としたモデルセルによる容量特性の確認)したところ、最初の充電でSi、SiO2、C複合体は約2500mAh/g分のLiを吸蔵したが、次の放電で約1750mAh/gしか放電せず、約750mAh/gの不可逆容量を有した。 Oxide Si to be used in advance, was confirmed Discharge Performance of SiO 2, C composite anode electrode (confirmation capacitance characteristic metallic lithium by the model cell having a counter electrode), Si in the first charge, SiO 2, C composite The body occluded about 2500 mAh / g of Li, but only discharged about 1750 mAh / g in the next discharge and had an irreversible capacity of about 750 mAh / g.

また、事前に使用するリチウム窒化物Li3Nの充放電性能を確認(金属リチウムを対極としたモデルセルによる容量特性の確認)したところ、最初の放電で約2300mAh/g分のLiを全て放出し、分解し、次の充電ではほとんど充電しなかった。 In addition, when the charge / discharge performance of the lithium nitride Li 3 N used in advance was confirmed (capacity characteristics using a model cell with metal lithium as the counter electrode), approximately 2300 mAh / g of Li was released in the first discharge. However, it was disassembled and hardly charged in the next charging.

負極の活物質層はSi、SiO2、C複合体物質粒子に、Si、SiO2、C複合体の初期不可逆容量分約750mAh/g分に相当するLi3N粉末を混合し、バインダとしてポリイミド、溶剤としてNMPを混合した電極材を10μmの銅箔の上に塗布し、125℃、5分間乾燥した後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて350℃、10分間N2雰囲気中で乾燥処理を行い作製した。この銅箔上に形成された活物質層を30×28mmに打ち抜き負極とし、電荷取り出しのためのニッケルからなる負極リードタブを超音波により融着した。正極の活物質層については、ニッケル酸リチウムからなる活物質粒子、バインダとしてポリフッ化ビニリデン、溶剤としてNMPを混合した電極材を20μmのアルミ箔の上に塗布し、125℃、5分間乾燥処理を行い作製した。アルミ箔上に形成された活物質層を30×28mmに打ち抜き正極とし、電荷取り出しのためのアルミからなる正極リードタブを超音波により融着した。負極、セパレータ、正極の順に、活物質層がセパレータと対面するように積層した後、ラミネートフィルムをはさみ、電解液を注液し、真空下にて封止することによりラミネート型電池を作製した。なお電解液には、ECと、DECと、EMCとの体積比3:5:2の混合溶媒に1mol/LのLiPF6を溶解したものを用いた。 The active material layer of the negative electrode is a mixture of Si, SiO 2 , C composite material particles and Li 3 N powder corresponding to an initial irreversible capacity of about 750 mAh / g of Si, SiO 2 , C composite, and polyimide as a binder the electrode material obtained by mixing NMP as a solvent was coated onto a copper foil of 10 [mu] m, 125 ° C., dried for 5 minutes, subjected to compression molding by a roll press, 350 ° C. again at drying oven, 10 minutes N 2 A drying process was performed in an atmosphere. The active material layer formed on this copper foil was punched out to 30 × 28 mm to form a negative electrode, and a negative electrode lead tab made of nickel for extracting electric charge was fused by ultrasonic waves. For the positive electrode active material layer, an active material particle made of lithium nickelate, an electrode material mixed with polyvinylidene fluoride as a binder, and NMP as a solvent are applied on a 20 μm aluminum foil, and dried at 125 ° C. for 5 minutes. Made. The active material layer formed on the aluminum foil was punched out to 30 × 28 mm to form a positive electrode, and a positive electrode lead tab made of aluminum for taking out electric charges was fused by ultrasonic waves. After laminating in order of the negative electrode, the separator, and the positive electrode so that the active material layer faces the separator, the laminate film was sandwiched, the electrolyte solution was poured, and the laminate type battery was sealed under vacuum. Note that the electrolytic solution, the EC, and DEC, the volume ratio of EMC 3: 5: was used LiPF 6 was dissolved in 1 mol / L to 2 mixture of.

このラミネート型電池を作製する際、正極の充電容量と負極の充電容量の比は、Si、SiO2、C複合体負極の初回不可逆容量をXとおき、Si、SiO2、C複合体負極の充電容量をY、正極の充電容量をZとおいたとき、これらの関係がY≧X+Zを満足するようにX:Y:Z=0.3:1.3:1.0(実施例1)、X:Y:Z=0.3:1.5:1.0(実施例2)、X:Y:Z=0.3:1.6:1.0(実施例3)、X:Y:Z=0.3:1.7:1.0(実施例4)とした。 In making laminated battery, the charge capacity of the charge capacity and the negative electrode of the positive electrode ratio, Si, the initial irreversible capacity of SiO 2, C composite anode electrode X Distant, Si, the SiO 2, C composite anode electrode X: Y: Z = 0.3: 1.3: 1.0 (Example 1) so that the relationship satisfies Y ≧ X + Z when the charge capacity is Y and the charge capacity of the positive electrode is Z. X: Y: Z = 0.3: 1.5: 1.0 (Example 2), X: Y: Z = 0.3: 1.6: 1.0 (Example 3), X: Y: Z = 0.3: 1.7: 1.0 (Example 4).

以上のように作製した電池の充放電試験は3mAの定電流で、その充電終止電圧を4.2V、その放電終止電圧を2.5Vとして行った。表1はこの試験における電池の初回充電容量、初回放電容量と初回充放電効率を示し、表2に2回目充電における充電容量を示す。この電池は充電から開始するが、最初の充電容量と最初の放電容量に殆ど差はなく、Si、SiO2、C複合体の不可逆容量分がLi3Nから効果的に補充されていることがわかる。また2回目充電においても、初回充電容量と殆ど大差のない結果となる。 The charge / discharge test of the battery produced as described above was performed at a constant current of 3 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. Table 1 shows the initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency of the battery in this test, and Table 2 shows the charge capacity in the second charge. Although this battery starts from charging, there is almost no difference between the initial charge capacity and the initial discharge capacity, and the irreversible capacity of the Si, SiO 2 , C complex is effectively supplemented from Li 3 N. Recognize. In the second charge, there is almost no difference from the initial charge capacity.

Figure 0005288448
Figure 0005288448

Figure 0005288448
Figure 0005288448

次に、この電池における正負極それぞれの活物質の重量当たりの容量を計算した。その結果、正極のニッケル酸リチウムは活物質として約200mAh/g働いていた。  Next, the capacity per weight of the active material of each positive and negative electrode in this battery was calculated. As a result, the lithium nickelate of the positive electrode worked about 200 mAh / g as an active material.

一方、負極のSi、SiO2、C複合体なる活物質であるが、重量あたりの容量、負極総重量あたりの容量は表3のようになった。 On the other hand, although the active material is Si, SiO 2 , and C composite of the negative electrode, the capacity per weight and the capacity per total weight of the negative electrode are as shown in Table 3.

Figure 0005288448
Figure 0005288448

現在、実用化されているリチウムイオン電池の負極の炭素材料が300〜370mAh/g程度の容量密度であることを考えると本発明の電池は極めて高容量の電池を実現したことになる。   Considering that the carbon material of the negative electrode of a lithium ion battery currently in practical use has a capacity density of about 300 to 370 mAh / g, the battery of the present invention has realized an extremely high capacity battery.

また、本発明の電池においてY≧X+Zを満足しないX:Y:Zの組み合わせY<X+ZとなるX:Y:Z=0.3:1.0:1.0、X:Y:Z=0.3:1.1:1.0、X:Y:Z=0.3:1.2:1.0を用いて電池を作製し実施例1〜4と同様に充放電試験を行った。表4はこの試験における電池の初回充電容量、初回放電容量と2回目充電容量を示す。   Further, in the battery of the present invention, a combination of X: Y: Z not satisfying Y ≧ X + Z is satisfied. X: Y: Z = 0.3: 1.0: 1.0, X: Y: Z = 0 .3: 1.1: 1.0, X: Y: Z = 0.3: 1.2: 1.0 was used to produce a battery, and a charge / discharge test was conducted in the same manner as in Examples 1-4. Table 4 shows the initial charge capacity, initial discharge capacity, and second charge capacity of the battery in this test.

Y≧X+Zを満足する場合に比較して初回充電容量と二回目充電において充電容量が小さくなるものの、初回の充放電効率は同等となる。   Compared to the case where Y ≧ X + Z is satisfied, the initial charge capacity and the charge capacity are smaller in the second charge, but the initial charge / discharge efficiency is the same.

Figure 0005288448
Figure 0005288448

さらに、負極の活物質層において、Si、SiO2、C複合体物質粒子に、Si、SiO2、C複合体の初期不可逆容量分以上のLi3N粉末を混合した場合と初期不可逆容量分以下のLi3N粉末を混合した場合において同様に電池を作製し、充放電試験を行った。不可逆容量分に対して倍の容量分のLi3N粉末を混合した場合を実施例8、9、不可逆容量分に対して半分の容量分のLi3N粉末を混合した場を実施例10、11とし、その際の初回充放電効率と初回充電容量、負極活物質層あたりの充電容量を表5にまとめる。 Furthermore, in the active material layer of the negative electrode, when Si 3 SiO 2 , C composite material particles are mixed with Li 3 N powder more than the initial irreversible capacity of Si, SiO 2 , C composite, and less than the initial irreversible capacity. In the case where the Li 3 N powder was mixed, a battery was prepared in the same manner, and a charge / discharge test was performed. Implementing the case of mixing a Li 3 N powder fold volume fraction relative to irreversible capacity Examples 8 and 9, irreversible capacity implementing the place of a mixture of Li 3 N powder half volume fraction for the example 10, 11, the initial charge / discharge efficiency, the initial charge capacity, and the charge capacity per negative electrode active material layer are summarized in Table 5.

不可逆容量分と同じ容量分のLi3N粉末を混合した場合である実施例1、2に比べて、倍のLi3N粉末を混合した場合は、負極活物質層あたりの容量が小さいが、初回充放電効率に変化はない。逆に半分のLi3N粉末を混合した場合は初回充放電効率が小さくなるが負極活物質層あたりの容量は大きい。即ち、不可逆容量分と同じ容量分のLi3N粉末を混合した場合に最も高容量な非水電解質二次電池が得られる。 Compared to Examples 1 and 2 is the case of a mixture of Li 3 N powder of the same capacity of the irreversible capacity, the case of mixing the multiple of Li 3 N powder, the capacity per negative electrode active material layer is small, There is no change in the initial charge / discharge efficiency. Conversely, when half the Li 3 N powder is mixed, the initial charge / discharge efficiency decreases, but the capacity per negative electrode active material layer is large. That is, when the same capacity of Li 3 N powder as the irreversible capacity is mixed, the highest capacity non-aqueous electrolyte secondary battery can be obtained.

Figure 0005288448
Figure 0005288448

(比較例)
なお、比較のためにSi、SiO2、C複合体のみを負極活物質としてニッケル酸リチウム正極と組み合わせた電池を作製し(比較例1−4)、充放電試験を行った。表6はこの試験における電池の初回充電容量、初回放電容量と初回充放電効率を示す。Si、SiO2、C複合体のみを用いた電池では極めて大きい不可逆容量のためにその充放電可逆容量は小さい。
(Comparative example)
For comparison, a battery in which only a Si, SiO 2 , and C composite was used as a negative electrode active material and a lithium nickelate positive electrode was fabricated (Comparative Example 1-4), and a charge / discharge test was performed. Table 6 shows the initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency of the battery in this test. A battery using only a Si, SiO 2 , and C composite has a reversible charge / discharge capacity due to its extremely large irreversible capacity.

Figure 0005288448
Figure 0005288448

このように、負極にSi、SiO2、C複合体を負極活物質とし一般式Li3Nで表されるリチウム窒化物を添加剤として負極に用いると、初回充放電効率が高い非水電解質電池を提供出来ることを確認した。 As described above, when the negative electrode is made of Si, SiO 2 , and C composite as the negative electrode active material and the lithium nitride represented by the general formula Li 3 N is used as the additive in the negative electrode, the nonaqueous electrolyte battery has high initial charge / discharge efficiency. Confirmed that it can be provided.

本発明の非水電解質二次電池の断面図。Sectional drawing of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 (負極の)活物質層
2 負極集電体
3 負極
4 (正極の)活物質層
5 正極集電体
6 正極
7 セパレータ
8 外装フィルム
9 負極リードタブ
10 正極リードタブ
DESCRIPTION OF SYMBOLS 1 (Negative electrode) Active material layer 2 Negative electrode collector 3 Negative electrode 4 (Positive electrode) Active material layer 5 Positive electrode collector 6 Positive electrode 7 Separator 8 Exterior film 9 Negative electrode lead tab 10 Positive electrode lead tab

Claims (4)

正極にリチウムを吸蔵放出可能なリチウム含有物質を正極活物質として用いる非水系電解質二次電池において、負極にSi、SiO2とCの複合体を負極活物質とし、Li3Nを添加剤として用いることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery using a lithium-containing material capable of occluding and releasing lithium as a positive electrode as a positive electrode active material, a composite of Si, SiO 2 and C is used as a negative electrode active material and Li 3 N is used as an additive as a negative electrode A non-aqueous electrolyte secondary battery. 初回放電時に前記添加剤のLi3N中のLiが全て放出され、Li3Nが分解することを特徴とする請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein all Li in the additive Li 3 N is released and Li 3 N is decomposed during the first discharge. 前記負極のSi、SiO2、C複合体の初回不可逆容量に相当するLi量をαとし、初回放電時に前記Li3Nが放出するLi量をγとするとき、前記負極のSi、SiO2、C複合物質と前記Li3Nの重量比は、α=γを満足することを特徴とする請求項1または2に記載の非水電解質二次電池。 When the amount of Li corresponding to the initial irreversible capacity of the Si, SiO 2 , C composite of the negative electrode is α and the amount of Li released by the Li 3 N during the initial discharge is γ, Si, SiO 2 , The non-aqueous electrolyte secondary battery according to claim 1, wherein a weight ratio of the C composite material and the Li 3 N satisfies α = γ. 前記負極のSi、SiO2、C複合体の初回不可逆容量をXとし、負極の充電容量をY、正極の充電容量をZとするとき、これらの関係がY≧X+Zとなることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。 When the initial irreversible capacity of the Si, SiO 2 , and C composite of the negative electrode is X, the charge capacity of the negative electrode is Y, and the charge capacity of the positive electrode is Z, these relations satisfy Y ≧ X + Z. The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3.
JP2008103096A 2008-04-11 2008-04-11 Nonaqueous electrolyte secondary battery Active JP5288448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103096A JP5288448B2 (en) 2008-04-11 2008-04-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103096A JP5288448B2 (en) 2008-04-11 2008-04-11 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009252705A JP2009252705A (en) 2009-10-29
JP5288448B2 true JP5288448B2 (en) 2013-09-11

Family

ID=41313197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103096A Active JP5288448B2 (en) 2008-04-11 2008-04-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5288448B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120128125A (en) 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 High capacity anode materials for lithium ion batteries
US20120321962A1 (en) * 2010-02-18 2012-12-20 Nec Energy Devices, Ltd. Polymer secondary battery and method for manufacturing the same
JP5424052B2 (en) * 2010-05-11 2014-02-26 株式会社デンソー Nonaqueous electrolyte secondary battery and manufacturing method thereof
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
JP6218348B2 (en) * 2010-12-10 2017-10-25 日立化成株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2012169160A (en) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd Electrode for sodium secondary battery and sodium secondary battery
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
CN103918107B (en) * 2011-12-28 2016-09-07 松下知识产权经营株式会社 Anode for nonaqueous electrolyte secondary battery and use its rechargeable nonaqueous electrolytic battery
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
JP6319260B2 (en) * 2015-10-07 2018-05-09 日立化成株式会社 Lithium ion secondary battery and manufacturing method thereof
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
CN110148782B (en) * 2018-02-11 2021-02-09 中南大学 Use of metal nitride, electrolyte containing metal nitride and application of electrolyte in secondary battery
JP6934453B2 (en) * 2018-06-25 2021-09-15 信越化学工業株式会社 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156673A (en) * 1980-03-31 1981-12-03 Toshiba Corp Lithium solid battery
JPH07235297A (en) * 1993-12-27 1995-09-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
JP5119584B2 (en) * 2005-10-11 2013-01-16 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP5210503B2 (en) * 2006-06-26 2013-06-12 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2009252705A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
JP5468723B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5192703B2 (en) Nonaqueous electrolyte secondary battery
US8956762B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP5278994B2 (en) Lithium secondary battery
JP5717168B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6052179B2 (en) Lithium ion secondary battery
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
WO2012098639A1 (en) Nonaqueous electrolyte secondary battery
JP2015115268A (en) Nonaqueous electrolyte secondary battery
JP2012221681A (en) Lithium secondary battery and manufacturing method thereof
JP2011086448A (en) Lithium ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5502977B2 (en) Nonaqueous electrolyte secondary battery
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
JPWO2013183524A1 (en) Nonaqueous electrolyte secondary battery
JP5424322B2 (en) Non-aqueous electrolyte secondary battery
JP5605867B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
JP2019216003A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5288448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250