JP2005063805A - Anode and lithium secondary battery using it - Google Patents

Anode and lithium secondary battery using it Download PDF

Info

Publication number
JP2005063805A
JP2005063805A JP2003292201A JP2003292201A JP2005063805A JP 2005063805 A JP2005063805 A JP 2005063805A JP 2003292201 A JP2003292201 A JP 2003292201A JP 2003292201 A JP2003292201 A JP 2003292201A JP 2005063805 A JP2005063805 A JP 2005063805A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
capacity
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292201A
Other languages
Japanese (ja)
Inventor
Yoshio Kayama
美穂 嘉山
Yasuhiko Mifuji
靖彦 美藤
Harunari Shimamura
治成 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003292201A priority Critical patent/JP2005063805A/en
Publication of JP2005063805A publication Critical patent/JP2005063805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a lithium secondary battery with high capacity and yet small irreversible capacity. <P>SOLUTION: The anode for the lithium secondary battery is provided with an anode mixture layer containing an anode active material containing at least one kind selected from a group consisting of Si, Sn, and an Si-Ti group alloy, and forms a lithium layer so as to cover a surface of the anode mixture layer. The anode active material is preferable to have irreversible capacity at a first cycle of charge and discharge cycles. It is preferable to use the anode mixture layer satisfying a relational expression: Y=X/(1-a) (provided, 'a' denotes an irreversible capacity ratio) between a cathode capacity X per unit volume (mAh/sq.cm) and an anode capacity Y per unit volume (mAh/sq.cm). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、充放電サイクル初期における不可逆容量が少ないリチウム二次電池、特に、その負極活物質として有効な固溶体または金属間化合物からなる負極材料を含む負極に関する。   The present invention relates to a lithium secondary battery having a low irreversible capacity at the beginning of a charge / discharge cycle, and more particularly to a negative electrode including a negative electrode material made of a solid solution or an intermetallic compound effective as a negative electrode active material.

リチウムまたはリチウム化合物を負極材料とするリチウム二次電池は、高電圧および高エネルギー密度を有する。この電池のさらなる性能向上を目指し、多くの研究が行われている。
これまで、リチウム二次電池の正極活物質として、LiCoO2、LiMn24、LiFeO2、LiNiO2、V25、Cr25、MnO2、TiS2、MoS2などの遷移金属の酸化物およびカルコゲン化合物が提案されている。
A lithium secondary battery using lithium or a lithium compound as a negative electrode material has a high voltage and a high energy density. Many studies have been conducted with the aim of further improving the performance of this battery.
Until now, as a positive electrode active material of a lithium secondary battery, transition metal such as LiCoO 2 , LiMn 2 O 4 , LiFeO 2 , LiNiO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , MoS 2, etc. Oxide and chalcogen compounds have been proposed.

一方、負極についても種々の材料が検討され、炭素材料やアルミニウム合金等が、実用電池の負極活物質として実用化されている。現在では、炭素材料が最も高性能を有し、広く用いられている。しかし、この炭素材料は、正極材料と比較して比重が小さいため、電池内部での占有体積の割合が大きくなるという問題がある。また、既に理論容量に近い容量で実用化されているため、この炭素材料を用いてさらに高エネルギー密度化を図ることは困難である。今後の電池の高容量化には炭素材料以外の負極材料による高容量化または高密度化が必要不可欠である。   On the other hand, various materials have been studied for the negative electrode, and carbon materials, aluminum alloys, and the like have been put into practical use as negative electrode active materials for practical batteries. At present, carbon materials have the highest performance and are widely used. However, since this carbon material has a specific gravity smaller than that of the positive electrode material, there is a problem that the proportion of the occupied volume inside the battery is increased. In addition, since it has already been put to practical use with a capacity close to the theoretical capacity, it is difficult to further increase the energy density using this carbon material. In order to increase the capacity of batteries in the future, it is indispensable to increase the capacity or increase the density using negative electrode materials other than carbon materials.

高容量を有する負極材料としては、酸化タングステン、酸化鉄のリチウム化合物、酸化ニオブ、酸化鉄、酸化コバルト、リチウムを含有する珪素の酸化物、バナジウムを含む酸化物、錫、ゲルマニウム、または珪素などを含む複合酸化物、錫、鉛、または珪素などを含む非晶質の酸化物等が提案されている。   As a negative electrode material having high capacity, tungsten oxide, lithium compound of iron oxide, niobium oxide, iron oxide, cobalt oxide, oxide of silicon containing lithium, oxide containing vanadium, tin, germanium, silicon, etc. There have been proposed composite oxides containing, amorphous oxides containing tin, lead, silicon, or the like.

また、これらの酸化物以外にも、鉄珪化物、遷移金属からなる非鉄金属の珪化物、ニッケル珪化物、マンガン珪化物、SiまたはSnとFeまたはNiとの合金材料、Si、Sn、Zn等の少なくとも1つを含む金属間化合物、Si、Snなどの相と、Si、Snなどを構成元素の1つとする金属間化合物からなる相とを共に含む粒子からなる材料などが提案されている。   Besides these oxides, iron silicide, non-ferrous metal silicide made of transition metal, nickel silicide, manganese silicide, alloy material of Si or Sn and Fe or Ni, Si, Sn, Zn, etc. An intermetallic compound containing at least one of the above, a material made of particles containing both a phase of Si, Sn, etc. and a phase made of an intermetallic compound containing Si, Sn, etc. as one of constituent elements has been proposed.

しかしながら、これらの材料は、いずれも初期の充放電において不可逆容量が大きいという問題を有する。
この問題を解決するために、あらかじめ不可逆容量分を電気化学的に充電しておく電極化成法(例えば、特許文献1)や、負極に金属リチウムを貼り付けて不可逆容量分を補う方法が提案されている(例えば、特許文献2〜5)。しかし、これらの方法を用いた場合、別に新たな問題を有する。
However, all of these materials have a problem that the irreversible capacity is large in the initial charge / discharge.
In order to solve this problem, an electrode formation method in which the irreversible capacity is charged electrochemically in advance (for example, Patent Document 1) and a method of making up for the irreversible capacity by attaching metallic lithium to the negative electrode have been proposed. (For example, Patent Documents 2 to 5). However, when these methods are used, there is a new problem.

電極化成法では、通電電気量を制御することにより、目的に応じた量の化成が可能である。しかし、一度電極を充電した後に再び電池として組み直すため、作業が繁雑となる。また、金属リチウムを貼り付ける方法では、電解液を電池内に注液すると、負極内部において金属リチウムと負極材料が短絡し、自動的にリチウムが移動する。しかし、この方法は、金属リチウムの貼り付け方や負極の形態によりリチウムの移動量が不十分となる場合があり、ばらつきの発生や安全性の問題を生じる可能性がある。   In the electrode formation method, the amount of electricity according to the purpose can be formed by controlling the amount of electricity supplied. However, since the electrode is once charged and then reassembled as a battery, the work becomes complicated. Further, in the method of attaching metallic lithium, when an electrolytic solution is injected into the battery, metallic lithium and the negative electrode material are short-circuited inside the negative electrode, and lithium automatically moves. However, in this method, the amount of lithium movement may be insufficient depending on how the metallic lithium is attached or the form of the negative electrode, which may cause variations and safety problems.

さらに、金属リチウムを負極表面全面に薄く配置するために、負極上に等間隔に金属リチウムを配置し、これを負極とともに圧延することにより金属リチウムを薄膜化する方法がある。しかし、この場合、圧延により負極の密度が部分的に不均一になる可能性がある。
これらの固溶体および金属間化合物を負極活物質として用いた場合、正極容量を一定に固定すると、1サイクル目の充電時に不可逆容量が生じるため、1サイクル目の放電時に正極に戻るリチウム量が減少する。このため、その後の充放電時において正極と負極との間を可逆的に移動するリチウム量が減少する、すなわち電池容量が低下するという問題があった。
Furthermore, in order to arrange metallic lithium thinly on the entire surface of the negative electrode, there is a method in which metallic lithium is arranged on the negative electrode at equal intervals and rolled together with the negative electrode to thin the metallic lithium. However, in this case, the density of the negative electrode may be partially non-uniform due to rolling.
When these solid solutions and intermetallic compounds are used as the negative electrode active material, if the positive electrode capacity is fixed, an irreversible capacity occurs during the first cycle charge, so the amount of lithium that returns to the positive electrode during the first cycle discharge decreases. . For this reason, there was a problem that the amount of lithium reversibly moving between the positive electrode and the negative electrode during subsequent charging / discharging decreased, that is, the battery capacity decreased.

負極活物質としてグラファイトを用いた場合、1サイクル目の不可逆容量は、理論容量の約5%程度である。しかし、上述のような固溶体および金属間化合物を用いた場合には、例えば、その不可逆容量は理論容量の約30%と大きく、電池容量が大幅に低下する。
このような問題を解決する方法として、正極の容量をあらかじめ不可逆容量分だけ多くしておくことが考えられる。しかし、この方法では、同体積の同サイズの電池を比較した場合に、電池としての容量が低下してしまう。
特開平11−31531号公報 特開平8−1023363号公報 特開平10−83834号公報 特開平11−86847号公報 特開2002−75454号公報
When graphite is used as the negative electrode active material, the irreversible capacity in the first cycle is about 5% of the theoretical capacity. However, when the above solid solution and intermetallic compound are used, for example, the irreversible capacity is as large as about 30% of the theoretical capacity, and the battery capacity is greatly reduced.
As a method for solving such a problem, it is conceivable to increase the capacity of the positive electrode in advance by an irreversible capacity. However, in this method, when batteries of the same volume and the same size are compared, the capacity as a battery is reduced.
JP 11-31531 A JP-A-8-102363 Japanese Patent Laid-Open No. 10-83834 Japanese Patent Laid-Open No. 11-86847 JP 2002-75454 A

そこで、本発明は、上記従来の問題を解決するために、負極合剤の表面全体を覆うように、不可逆容量分の金属リチウム層を均一に形成することにより、不可逆容量の小さいリチウム二次電池用負極を提供することを目的とする。また、この負極を用いることにより、充放電サイクル特性に優れたリチウム二次電池を提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention provides a lithium secondary battery having a small irreversible capacity by uniformly forming a metal lithium layer for the irreversible capacity so as to cover the entire surface of the negative electrode mixture. An object of the present invention is to provide a negative electrode for use. Moreover, it aims at providing the lithium secondary battery excellent in charging / discharging cycling characteristics by using this negative electrode.

本発明のリチウム二次電池用負極は、Si、Sn、およびSi−Ti系合金からなる群より選択される少なくとも1種の負極活物質を含む負極合剤層を備え、前記負極合剤層の表面を覆うように金属リチウム層が形成されていることを特徴とする。
前記負極活物質が、充放電サイクルの1サイクル目において不可逆容量を有することが好ましい。
The negative electrode for a lithium secondary battery of the present invention includes a negative electrode mixture layer containing at least one negative electrode active material selected from the group consisting of Si, Sn, and Si-Ti alloys, A metal lithium layer is formed so as to cover the surface.
The negative electrode active material preferably has an irreversible capacity in the first charge / discharge cycle.

単位面積当たりの正極容量X(mAh/cm2)に対し、単位面積当たりの負極の容量Y(mAh/cm2)が、関係式:
Y=X/(1−a)
(式中、aは不可逆容量率であり、下記の式1で示される。)を満たす負極合剤層を用いたことが好ましい。
不可逆容量率a=1−(1サイクル目の放電容量(mAh/cm2)/
1サイクル目の充電容量(mAh/cm2)) (式1)
For the positive electrode capacity X (mAh / cm 2 ) per unit area, the negative electrode capacity Y (mAh / cm 2 ) per unit area is a relational expression:
Y = X / (1-a)
It is preferable to use a negative electrode mixture layer satisfying (where a is an irreversible capacity ratio and is represented by the following formula 1).
Irreversible capacity ratio a = 1− (discharge capacity at the first cycle (mAh / cm 2 ) /
Charging capacity in the first cycle (mAh / cm 2 )) (Formula 1)

さらに、前記金属リチウム層におけるリチウムの量Z(g/cm2)が、関係式:
(2.59×10-4aX/(1−a))×0.95≦Z≦(2.59×10-4aX/(1−a))×1.05を満たすのが好ましい。
Furthermore, the amount Z (g / cm 2 ) of lithium in the metal lithium layer is expressed by the relational expression:
It is preferable that (2.59 × 10 −4 aX / (1-a)) × 0.95 ≦ Z ≦ (2.59 × 10 −4 aX / (1-a)) × 1.05 is satisfied.

前記金属リチウム層が、蒸着またはスパッタにより前記負極合剤層の表面を覆うように形成されるのが好ましい。
前記負極合剤層が、負極活物質を含むペーストを基材上に塗布した後、乾燥させることにより得られるのが好ましい。
前記負極合剤層が、負極活物質を含むペーストを基材上に塗布した後、乾燥させ、さらに圧延させることにより得られるのが好ましい。
The metal lithium layer is preferably formed so as to cover the surface of the negative electrode mixture layer by vapor deposition or sputtering.
The negative electrode mixture layer is preferably obtained by applying a paste containing a negative electrode active material on a substrate and then drying it.
It is preferable that the negative electrode mixture layer be obtained by applying a paste containing a negative electrode active material on a substrate, followed by drying and further rolling.

前記負極合剤層が、蒸着、スパッタまたはCVDにより基材上に形成されるのが好ましい。
前記負極合剤層が、蒸着、スパッタまたはCVDにより基材上に形成された後、さらに熱処理されることにより得られることが好ましい。
また、本発明は、上記の負極と、正極活物質を含む正極と、電解液を含むセパレータとを具備するリチウム二次電池に関する。
The negative electrode mixture layer is preferably formed on the substrate by vapor deposition, sputtering, or CVD.
It is preferable that the negative electrode mixture layer be obtained by further heat treatment after being formed on the substrate by vapor deposition, sputtering or CVD.
The present invention also relates to a lithium secondary battery comprising the above negative electrode, a positive electrode including a positive electrode active material, and a separator including an electrolytic solution.

本発明によれば、高容量でありかつ不可逆容量の小さい負極を提供することができる。また、この負極を用いることによりサイクル特性に優れたリチウム二次電池を提供することができる。   According to the present invention, a negative electrode having a high capacity and a small irreversible capacity can be provided. Moreover, the lithium secondary battery excellent in cycling characteristics can be provided by using this negative electrode.

本発明は、負極活物質を含む負極合剤層および前記負極合剤層の表面を均一に覆う金属リチウム層からなるリチウム二次電池用負極に関する。
正極および上記の負極をセパレータを介して構成したものを電池ケースに挿入した後、電解液を注液すると、負極合剤表面で局部電池が構成され、負極合剤と前記負極合剤の表面を均一に覆う金属リチウムは短絡した状態となる。このため、金属リチウムは、負極合剤中の負極活物質である固溶体または金属間化合物と反応し、負極活物質中に挿入される。この際、金属リチウムが負極合剤表面を均一に覆うように存在することにより、負極の位置に関係なく、金属リチウムが均一に負極活物質中に挿入される。
The present invention relates to a negative electrode for a lithium secondary battery comprising a negative electrode mixture layer containing a negative electrode active material and a metallic lithium layer that uniformly covers the surface of the negative electrode mixture layer.
After inserting the positive electrode and the negative electrode described above via a separator into the battery case and injecting an electrolyte, a local battery is formed on the surface of the negative electrode mixture, and the surface of the negative electrode mixture and the negative electrode mixture Evenly covering the metallic lithium is short-circuited. For this reason, metallic lithium reacts with the solid solution or intermetallic compound that is the negative electrode active material in the negative electrode mixture, and is inserted into the negative electrode active material. At this time, since the metallic lithium exists so as to uniformly cover the negative electrode mixture surface, the metallic lithium is uniformly inserted into the negative electrode active material regardless of the position of the negative electrode.

また、金属リチウムが負極活物質中に挿入されることにより、金属リチウム層が存在した部分が空間として残る。この空間の存在により、金属リチウム挿入にともなう負極の膨張を緩和することができる。   In addition, when metal lithium is inserted into the negative electrode active material, a portion where the metal lithium layer is present remains as a space. Due to the presence of this space, the expansion of the negative electrode accompanying the insertion of metallic lithium can be mitigated.

前記負極合剤層は、例えば、負極活物質、炭素材料等の導電剤、およびカルボキシメチルセルロース(CMC)等の結着剤からなる。前記負極合剤層は負極活物質のみで構成されていてもよい。
前記負極活物質は、Si、Sn、およびSi−Ti系合金からなる群より選択される少なくとも1種であることが好ましい。
Siについては、その結晶状態は特に限定されないが、アモルファスのものがより好ましい。
Si−Ti合金については、SiとTiの組成比M(M=Si/Ti)が2<M≦4であることが好ましい。また、Si−Ti合金がTiSi2合金相とSi相の2相からなることが好ましい。
The negative electrode mixture layer includes, for example, a negative electrode active material, a conductive agent such as a carbon material, and a binder such as carboxymethylcellulose (CMC). The negative electrode mixture layer may be composed of only a negative electrode active material.
The negative electrode active material is preferably at least one selected from the group consisting of Si, Sn, and Si—Ti alloys.
As for Si, the crystal state is not particularly limited, but amorphous one is more preferable.
For the Si—Ti alloy, the composition ratio M (M = Si / Ti) of Si and Ti is preferably 2 <M ≦ 4. Further, it is preferable that the Si-Ti alloy consists of two phases TiSi 2 alloy phase and the Si phase.

単位面積当たりの負極の容量Y(mAh/cm2)が、単位面積当たりの正極容量X(mAh/cm2)に対し、関係式:
Y=X/(1−a)
(式中、aは不可逆容量率であり、下記の式1で示される。)を満たす負極合剤層を用いるのが好ましい。
不可逆容量率a=1−(1サイクル目の放電容量(mAh/cm2)/
1サイクル目の充電容量(mAh/cm2)) (式1)
The negative electrode capacity Y (mAh / cm 2 ) per unit area is related to the positive electrode capacity X (mAh / cm 2 ) per unit area:
Y = X / (1-a)
It is preferable to use a negative electrode mixture layer satisfying (where a is an irreversible capacity ratio and is represented by the following formula 1).
Irreversible capacity ratio a = 1− (discharge capacity at the first cycle (mAh / cm 2 ) /
Charging capacity in the first cycle (mAh / cm 2 )) (Formula 1)

さらに、前記金属リチウム層におけるリチウム量Z(g/cm2)は、関係式:
(2.59×10-4aX/(1−a))×0.95≦Z≦(2.59×10-4aX/(1−a))×1.05
を満たすのが好ましい。
すなわち、前記金属リチウム層におけるリチウム量Zが不可逆容量に相当するリチウム量の95〜105%であることが好ましい。ここで、2.59×10-4aX/(1−a)は、負極の不可逆容量に相当するリチウム量を表す。
Further, the lithium amount Z (g / cm 2 ) in the metal lithium layer is expressed by the relational expression:
(2.59 × 10 −4 aX / (1-a)) × 0.95 ≦ Z ≦ (2.59 × 10 −4 aX / (1-a)) × 1.05
It is preferable to satisfy.
That is, it is preferable that the lithium amount Z in the metal lithium layer is 95 to 105% of the lithium amount corresponding to the irreversible capacity. Here, 2.59 × 10 −4 aX / (1-a) represents the amount of lithium corresponding to the irreversible capacity of the negative electrode.

なお、この不可逆容量に相当するリチウム量は以下のようにして導き出される。
上記より、不可逆容量(mAh/cm2)は、Y×a=aX/(1−a)と表される。そして、この不可逆容量に相当するリチウム量(g/cm2)は、((aX/(1−a)×3600)/(1000×96500))×6.939と表される。これを計算することにより、不可逆容量に相当するリチウム量は2.59×10-4aX/(1−a)と導き出される。なお、96500はファラデー定数(1モルの電子当たりの電気量)、6.939はLiの原子量である。
The amount of lithium corresponding to this irreversible capacity is derived as follows.
From the above, the irreversible capacity (mAh / cm 2 ) is expressed as Y × a = aX / (1-a). The lithium amount (g / cm 2 ) corresponding to this irreversible capacity is expressed as ((aX / (1-a) × 3600) / (1000 × 96500)) × 6.939. By calculating this, the amount of lithium corresponding to the irreversible capacity is derived as 2.59 × 10 −4 aX / (1-a). In addition, 96500 is a Faraday constant (amount of electricity per 1 mol of electrons), and 6.939 is an atomic weight of Li.

前記金属リチウム層は、蒸着またはスパッタ等の方法により形成される。
また、負極合剤層表面を覆う金属リチウム層の厚みは、特に限定されないが、負極表面上に形成された金属リチウム層が厚すぎると、電解液注液時に金属リチウムが十分に消費されなくなる可能性がある。
The metallic lithium layer is formed by a method such as vapor deposition or sputtering.
In addition, the thickness of the metal lithium layer covering the surface of the negative electrode mixture layer is not particularly limited, but if the metal lithium layer formed on the negative electrode surface is too thick, the metal lithium may not be sufficiently consumed when the electrolyte is injected. There is sex.

前記負極合剤層は、負極活物質を含むペーストを基材上に塗布、乾燥させることにより得られる。さらに、前記負極合剤層は、ペーストを基材上に塗布、乾燥させた後に、さらに圧延させてもよい。なお、前記ペーストは、水系、有機系のどちらでもよい。
また、前記負極合剤層は、蒸着、スパッタ、CVD等の方法により基材上に形成される。さらに、これらの方法により負極合剤層を形成した後、熱処理を加えてもよい。負極合剤層の形成方法は、特にこれらに限定されるものではない。
The negative electrode mixture layer is obtained by applying and drying a paste containing a negative electrode active material on a substrate. Further, the negative electrode mixture layer may be further rolled after the paste is applied on the substrate and dried. The paste may be either aqueous or organic.
The negative electrode mixture layer is formed on the substrate by a method such as vapor deposition, sputtering, or CVD. Furthermore, after forming the negative electrode mixture layer by these methods, heat treatment may be applied. The method for forming the negative electrode mixture layer is not particularly limited thereto.

本発明のリチウム二次電池は、上記の負極と、正極と、電解液を含むセパレータより構成される。
前記正極活物質としては、例えば、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMn24等のリチウムマンガン複合酸化物を用いることができる。
The lithium secondary battery of this invention is comprised from said negative electrode, a positive electrode, and the separator containing electrolyte solution.
As the positive electrode active material, for example, it can be used lithium-cobalt composite oxide such as LiCoO 2, lithium-nickel composite oxide such as LiNiO 2, lithium-manganese composite oxide such as LiMn 2 O 4.

電解液としては、通常リチウム二次電池で用いられるものであればよい。
前記電解液としては、リチウム塩を含む溶媒が用いられる。前記リチウム塩としては、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム等のリチウム等が挙げられる。また、前記溶媒としては、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ジメチルカーボネート等の有機溶媒またはこれらの混合溶媒が挙げられる。
前記セパレータとしては、ポリエチレン、ポリプロピレン、不織布等が挙げられる。
Any electrolytic solution may be used as long as it is usually used in lithium secondary batteries.
As the electrolytic solution, a solvent containing a lithium salt is used. Examples of the lithium salt include lithium such as lithium hexafluorophosphate and lithium tetrafluoroborate. Moreover, as said solvent, organic solvents, such as ethylene carbonate, diethyl carbonate, propylene carbonate, dimethyl carbonate, or these mixed solvents are mentioned.
Examples of the separator include polyethylene, polypropylene, and nonwoven fabric.

以下、本発明の実施例を詳細に説明する。
なお、本実施例における負極の作製以外の材料の作製および電池の組み立て等の作業工程は、すべて窒素雰囲気下で行った。また、雰囲気中の水分量は露点−60℃、酸素分圧は50ppm以下とした。
Hereinafter, embodiments of the present invention will be described in detail.
In addition, work steps such as production of materials and battery assembly other than the production of the negative electrode in this example were all performed in a nitrogen atmosphere. The moisture content in the atmosphere was set to a dew point of −60 ° C., and the oxygen partial pressure was set to 50 ppm or less.

《実施例1》
(i)負極合剤の作製
所定組成比の合金または金属粉を出発原料として用い、真空溶解炉中で溶融後急冷してTi−Si(組成比Si/Ti=3)合金を得た。
上記で得られた負極活物質としてのTi−Si合金粉末と、導電剤としての炭素粉末と、結着剤としてのカルボキシメチルセルロース(CMC)およびスチレン−ブタジエンゴム(SBR)とを、重量比90:10:5:2の割合で水(固液比45:55)中で混合し、負極ペーストを得た。この負極ペーストを銅箔からなる芯材上に塗布し、60℃で乾燥させた後、さらに110℃で10時間真空乾燥させた。それを、直径13.0mmの円盤状に打ち抜いて負極合剤を得た。このとき、負極の容量Yが、後述する正極の容量Xと不可逆容量率aに対して、Y=X/(1−a)の関係式を満たすように負極活物質の量を調整した。なお、この負極活物質の不可逆容量率aは、0.18であった。
Example 1
(I) Production of negative electrode mixture An alloy or metal powder having a predetermined composition ratio was used as a starting material, and was melted in a vacuum melting furnace and then rapidly cooled to obtain a Ti-Si (composition ratio Si / Ti = 3) alloy.
Ti-Si alloy powder as the negative electrode active material obtained above, carbon powder as a conductive agent, carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) as a binder, a weight ratio of 90: The mixture was mixed in water (solid / liquid ratio 45:55) at a ratio of 10: 5: 2 to obtain a negative electrode paste. This negative electrode paste was applied onto a core material made of copper foil, dried at 60 ° C., and further vacuum dried at 110 ° C. for 10 hours. It was punched into a disk shape having a diameter of 13.0 mm to obtain a negative electrode mixture. At this time, the amount of the negative electrode active material was adjusted so that the negative electrode capacity Y satisfied the relational expression of Y = X / (1-a) with respect to the positive electrode capacity X and irreversible capacity ratio a described later. In addition, the irreversible capacity ratio a of this negative electrode active material was 0.18.

(ii)負極合剤表面上への金属リチウム層の形成
上記で得られた円盤状の負極合剤の全面にリチウムを蒸着させ、負極合剤の表面を覆うように所定の厚さの金属リチウム層を形成し、負極を得た。このとき、金属リチウムは、10-2Pa下で480℃で加熱して融解させることにより、金属リチウムを蒸発させた。また、金属リチウムの量は、上記負極合剤の不可逆容量(a×Y)に相当する量とした。
(Ii) Formation of a metallic lithium layer on the surface of the negative electrode mixture Lithium is vapor-deposited on the entire surface of the disk-shaped negative electrode mixture obtained above, and a predetermined thickness of the metallic lithium so as to cover the surface of the negative electrode mixture A layer was formed to obtain a negative electrode. At this time, metallic lithium was evaporated by heating and melting at 480 ° C. under 10 −2 Pa. The amount of metallic lithium was set to an amount corresponding to the irreversible capacity (a × Y) of the negative electrode mixture.

(iii)正極の作製
正極活物質としてのコバルト酸リチウム、導電剤としての炭素粉末、および結着剤としてのポリ4フッ化エチレン粉末を重量比100:5:5の割合で混合し、正極合剤を得た。これをシート状に圧延し、直径12.5mmの円盤状に打ち抜いたものを正極とした。このとき、正極の容量Xが約3mAh/cm2となるように正極活物質の量を調整した。
(Iii) Production of positive electrode Lithium cobaltate as a positive electrode active material, carbon powder as a conductive agent, and polytetrafluoroethylene powder as a binder were mixed in a weight ratio of 100: 5: 5, An agent was obtained. This was rolled into a sheet and punched into a disk having a diameter of 12.5 mm to make a positive electrode. At this time, the amount of the positive electrode active material was adjusted so that the positive electrode capacity X was about 3 mAh / cm 2 .

(iv)リチウム二次電池の組み立て
上記で得られた正極および負極を用いて図1に示す構造の2016サイズのコイン型リチウム二次電池を作製した。この電池の作製手順を以下に示す。
ます、ケース14に接合した集電体16に正極15を圧着した。次いで、正極15の上に多孔質ポリエチレンシートからなるセパレータ13を設置した後、電解液をケース14内に注液した。このとき、電解液として、エチレンカーボネートとジエチルカーボネートを体積比1:1の割合で混合した溶媒中に六フッ化リン酸リチウムを1Mの濃度で溶解させたものを用いた。負極12を内面の集電体18に圧着し、周縁部に封口リング17を設置した封口板11をケース14に組み合わせた。次いで、プレス封口機を用いて封口した。この電池を電池Aとした。
(Iv) Assembly of lithium secondary battery A 2016-size coin-type lithium secondary battery having the structure shown in FIG. 1 was produced using the positive electrode and the negative electrode obtained above. The procedure for manufacturing this battery is shown below.
First, the positive electrode 15 was pressure-bonded to the current collector 16 bonded to the case 14. Next, a separator 13 made of a porous polyethylene sheet was placed on the positive electrode 15, and then an electrolyte solution was injected into the case 14. At this time, an electrolytic solution in which lithium hexafluorophosphate was dissolved at a concentration of 1M in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. The negative electrode 12 was pressure-bonded to the current collector 18 on the inner surface, and the sealing plate 11 provided with the sealing ring 17 at the peripheral edge was combined with the case 14. Subsequently, it sealed using the press sealing machine. This battery was designated as battery A.

《実施例2》
負極活物質としてSiを用いた以外は、実施例1と同様の方法により負極合剤を作製した。なお、この負極活物質の不可逆容量率は0.13であった。実施例1と同様の方法により、この負極合剤表面に金属リチウム層を形成し、負極を得た。そして、この負極を用いた以外は、実施例1と同様の方法により、電池Bを作製した。
Example 2
A negative electrode mixture was prepared in the same manner as in Example 1 except that Si was used as the negative electrode active material. The irreversible capacity ratio of this negative electrode active material was 0.13. In the same manner as in Example 1, a metal lithium layer was formed on the surface of the negative electrode mixture to obtain a negative electrode. And the battery B was produced by the method similar to Example 1 except having used this negative electrode.

《実施例3》
実施例1と同様の方法により、TiSi2相とSi相の2相からなる負極活物質を作製した。なお、TiSi2相とSi相との重量比は80:20とした。
負極活物質として上記で得られた合金を用いた以外は、実施例1と同様の方法により負極合剤を作製した。なお、この負極活物質の不可逆容量率は0.10であった。
実施例1と同様の方法により、この負極合剤表面に金属リチウム層を形成し、負極を得た。そして、この負極を用いた以外は、実施例1と同様の方法により、電池Cを作製した。
Example 3
A negative electrode active material composed of two phases of TiSi 2 phase and Si phase was produced in the same manner as in Example 1. The weight ratio between the TiSi 2 phase and the Si phase was 80:20.
A negative electrode mixture was prepared in the same manner as in Example 1 except that the alloy obtained above was used as the negative electrode active material. The irreversible capacity ratio of this negative electrode active material was 0.10.
In the same manner as in Example 1, a metal lithium layer was formed on the surface of the negative electrode mixture to obtain a negative electrode. A battery C was produced in the same manner as in Example 1 except that this negative electrode was used.

《実施例4》
所定の原料ガスおよび水素キャリアガスを用いてCVD法(化学蒸着法)により、銅箔からなる基板上に負極活物質としてSi層を形成した。なお、このSi層の不可逆容量率は0.04であった。
実施例1と同様の方法により、このSi層表面に金属リチウム層を形成し、負極を得た。そして、この負極を用いた以外は、実施例1と同様の方法により、電池Dを作製した。
Example 4
A Si layer was formed as a negative electrode active material on a substrate made of copper foil by a CVD method (chemical vapor deposition method) using a predetermined source gas and a hydrogen carrier gas. The irreversible capacity ratio of this Si layer was 0.04.
A metallic lithium layer was formed on the surface of the Si layer by the same method as in Example 1 to obtain a negative electrode. And the battery D was produced by the method similar to Example 1 except having used this negative electrode.

《実施例5》
所定の原料ガスおよび水素キャリアガスを用いてCVD法(化学蒸着法)により、銅箔からなる基板上に負極活物質としてSn層を形成した。なお、このSn層の不可逆容量率は0.07であった。
実施例1と同様の方法により、このSn層表面に金属リチウム層を形成し、負極を得た。そして、この負極を用いた以外は、実施例1と同様の方法により、電池Eを作製した。
Example 5
An Sn layer as a negative electrode active material was formed on a substrate made of copper foil by a CVD method (chemical vapor deposition method) using a predetermined source gas and a hydrogen carrier gas. The irreversible capacity ratio of this Sn layer was 0.07.
In the same manner as in Example 1, a metallic lithium layer was formed on the surface of this Sn layer to obtain a negative electrode. A battery E was produced in the same manner as in Example 1 except that this negative electrode was used.

《比較例1》
負極合剤表面に金属リチウム層を形成しない以外は、実施例1と同様の方法により電池Fを作製した。
<< Comparative Example 1 >>
A battery F was produced in the same manner as in Example 1 except that the metal lithium layer was not formed on the surface of the negative electrode mixture.

[評価]
上記で得られた実施例1〜5の電池A〜Eおよび比較例1の電池Fについて、注液後に電池電圧を測定した。そして、下記に示す充放電サイクル試験を行った。
電流密度0.5mA/cm2の定電流で、電池電圧が4.0Vに達するまで充電した後、電流密度0.5mA/cm2の定電流で、電池電圧が2.7Vに達するまで放電するサイクルを繰り返し行った。そして、各電池の1サイクル目の充電容量および放電容量ならびに充放電効率を調べた。なお、充放電効率は下記に示す式により得られた。
充放電効率(%)=(放電容量/充電容量)×100
[Evaluation]
For the batteries A to E of Examples 1 to 5 and the battery F of Comparative Example 1 obtained above, the battery voltage was measured after injection. And the following charge / discharge cycle test was conducted.
A constant current at a current density of 0.5 mA / cm 2, was charged until the battery voltage reached 4.0V, a constant current at a current density of 0.5 mA / cm 2, to discharge until the battery voltage reached 2.7V The cycle was repeated. Then, the charge capacity and discharge capacity and charge / discharge efficiency in the first cycle of each battery were examined. In addition, charging / discharging efficiency was obtained by the following formula.
Charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100

各電池の1サイクル目の充電容量および放電容量ならびに充放電効率を図2および3に示した。なお、図2および図3における各電池に対して示された棒グラフの左側は1サイクル目の充電容量を示し、右側は1サイクル目の放電容量を示す。また、各電池に対して示されたプロットは充放電効率を示す。   The charge capacity and discharge capacity and charge / discharge efficiency in the first cycle of each battery are shown in FIGS. 2 and 3, the left side of the bar graph shown for each battery shows the charge capacity of the first cycle, and the right side shows the discharge capacity of the first cycle. Moreover, the plot shown with respect to each battery shows charging / discharging efficiency.

実施例1〜5の電池A〜Eでは、いずれも充電前の開回路電圧が2.7V程度であり、負極電位が下がっていると考えられる。また、充電容量および放電容量はともにほぼ正極容量に近い値が得られ、充放電効率が100%に近い値であった。   In batteries A to E of Examples 1 to 5, it is considered that the open circuit voltage before charging is about 2.7 V and the negative electrode potential is lowered. Moreover, both the charge capacity and the discharge capacity were values close to the positive electrode capacity, and the charge / discharge efficiency was a value close to 100%.

これに対し、比較例1の電池Fでは、充放電前の開回路電圧が0.15V程度であった。また、充放電効率は(1−不可逆容量率)×100で表される値と同じ値となった。このように、負極合剤表面上にリチウム層を形成することにより、負極の不可逆容量分の容量を補うことができ、正極容量を2サイクル目以降もほぼ100%有効に使用することが可能である。   On the other hand, in the battery F of Comparative Example 1, the open circuit voltage before charging / discharging was about 0.15V. Further, the charge / discharge efficiency was the same as the value represented by (1−irreversible capacity ratio) × 100. Thus, by forming a lithium layer on the surface of the negative electrode mixture, it is possible to supplement the capacity of the negative electrode for the irreversible capacity, and the positive electrode capacity can be effectively used almost 100% after the second cycle. is there.

《実施例6》
実施例1と同様の方法により負極合剤を作製した。そして、この負極合剤表面上に形成する金属リチウム層におけるリチウムの量を種々に変えてリチウム量の異なる負極を得た。すなわち、リチウムの量が不可逆容量に対して90%、95%、105%および110%となるように、0.126〜0.154mg/cm2の範囲で金属リチウム層を各負極合剤表面にそれぞれ形成した。
そして、上記で得られた各負極を用いた以外は、実施例1と同様の方法によりコイン型電池G〜Jをそれぞれ作製した。そして、各電池について上記と同様の充放電サイクル試験を行った。
Example 6
A negative electrode mixture was prepared in the same manner as in Example 1. And the amount of lithium in the metallic lithium layer formed on the surface of the negative electrode mixture was varied to obtain negative electrodes having different lithium amounts. That is, a metallic lithium layer is formed on the surface of each negative electrode mixture in the range of 0.126 to 0.154 mg / cm 2 so that the amount of lithium is 90%, 95%, 105% and 110% with respect to the irreversible capacity. Each was formed.
And coin type battery GJ was produced by the method similar to Example 1 except having used each negative electrode obtained above. Each battery was subjected to the same charge / discharge cycle test as described above.

上記の電池G〜Jおよび実施例1の電池Aについて、1および2サイクル目の充電容量および1サイクル目の放電容量ならびに充放電効率を図4に示した。なお、各電池に対して示された棒グラフにおける左側は1サイクル目の充電容量、中央は1サイクル目の放電容量、右側は2サイクル目の充電容量を示す。また、各電池に対して示されたプロットは充放電効率を示す。
負極合剤上に形成した金属リチウム層が不可逆容量分よりも少ない電池GおよびHの場合、1サイクル目の充電容量は正極容量と同等の値が得られたが、放電容量は低下した。
FIG. 4 shows the charge capacities of the first and second cycles, the discharge capacity of the first cycle, and the charge / discharge efficiency of the batteries G to J and the battery A of Example 1. In the bar graph shown for each battery, the left side shows the charge capacity of the first cycle, the center shows the discharge capacity of the first cycle, and the right side shows the charge capacity of the second cycle. Moreover, the plot shown with respect to each battery shows charging / discharging efficiency.
In the case of the batteries G and H in which the metal lithium layer formed on the negative electrode mixture was less than the irreversible capacity, the charge capacity at the first cycle was the same as the positive electrode capacity, but the discharge capacity was lowered.

また、2サイクル目の充電容量は、本来低下することが考えられるが、正極活物質であるLixCoO2は、x値が0.5≦x≦1の範囲におけるリチウム量で容量を計算したため、今回の充放電試験では、2サイクル目充電後のx値が0.5未満であると考えられる。正極活物質をx<0.5まで使用すると、正極電位が高くなるため、電解液が分解されやすくなり、CO2などのガス発生が起こる。このため、負極合剤表面のリチウム量が不可逆容量に対して90%である電池Gでは、その後のサイクル特性が低下した。 In addition, although the charge capacity at the second cycle is considered to decrease originally, Li x CoO 2 which is the positive electrode active material is calculated based on the amount of lithium in the range of x value of 0.5 ≦ x ≦ 1. In this charge / discharge test, the x value after the second cycle charge is considered to be less than 0.5. When the positive electrode active material is used up to x <0.5, the positive electrode potential is increased, so that the electrolytic solution is easily decomposed and gas such as CO 2 is generated. For this reason, in the battery G in which the amount of lithium on the surface of the negative electrode mixture was 90% with respect to the irreversible capacity, the subsequent cycle characteristics deteriorated.

一方、負極合剤表面のリチウム量が不可逆容量よりも大きい場合は、1サイクル目の充電容量および放電容量は正極容量よりも小さくなった。これは、不可逆容量よりも過剰な分に相当する金属リチウムが、負極における可逆反応に使用されたため、充電後の正極にこの過剰分に相当する量のリチウムが残存したためである。以上のことから、負極合剤上に形成させるリチウムの量は、不可逆容量に対して95〜105%の範囲の容量に相当することが好ましいことがわかった。   On the other hand, when the amount of lithium on the surface of the negative electrode mixture was larger than the irreversible capacity, the charge capacity and discharge capacity at the first cycle were smaller than the positive electrode capacity. This is because metal lithium corresponding to the excess of the irreversible capacity was used for the reversible reaction in the negative electrode, and thus an amount of lithium corresponding to this excess remained on the positive electrode after charging. From the above, it was found that the amount of lithium formed on the negative electrode mixture preferably corresponds to a capacity in the range of 95 to 105% with respect to the irreversible capacity.

本発明のリチウム二次電池用負極は高容量であり、かつ不可逆容量が小さいため、優れたサイクル特性を要するリチウム二次電池に適用することができる。   Since the negative electrode for a lithium secondary battery of the present invention has a high capacity and a small irreversible capacity, it can be applied to a lithium secondary battery that requires excellent cycle characteristics.

本発明のコイン型リチウム二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the coin-type lithium secondary battery of this invention. 本発明の実施例1の電池Aおよび比較例1の電池Fにおける充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic in the battery A of Example 1 of this invention, and the battery F of the comparative example 1. FIG. 本発明の実施例1〜5の電池A〜Eにおける充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic in battery AE of Examples 1-5 of this invention. 本発明の実施例1の電池Aおよび実施例6の電池G〜Jにおける充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic in the battery A of Example 1 of this invention, and the batteries GJ of Example 6. FIG.

符号の説明Explanation of symbols

11 封口板
12 負極
13 セパレータ
14 ケース
15 正極
16 集電体
17 封口リング
18 集電体
11 Sealing Plate 12 Negative Electrode 13 Separator 14 Case 15 Positive Electrode 16 Current Collector 17 Sealing Ring 18 Current Collector

Claims (10)

Si、Sn、およびSi−Ti系合金からなる群より選択される少なくとも1種の負極活物質を含む負極合剤層を備え、前記負極合剤層を覆うように金属リチウム層が形成されていることを特徴とするリチウム二次電池用負極。   A negative electrode mixture layer containing at least one negative electrode active material selected from the group consisting of Si, Sn, and Si—Ti alloys is provided, and a metallic lithium layer is formed so as to cover the negative electrode mixture layer The negative electrode for lithium secondary batteries characterized by the above-mentioned. 前記負極活物質が、充放電サイクルの1サイクル目において不可逆容量を有することを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode active material has an irreversible capacity in a first cycle of a charge / discharge cycle. 単位面積当たりの正極の容量X(mAh/cm2)に対し、単位面積当たりの負極の容量Y(mAh/cm2)が、関係式:
Y=X/(1−a)
(式中、aは不可逆容量率であり、下記の式1で示される。)を満たす負極合剤層を用いたことを特徴とする請求項1記載のリチウム二次電池用負極。
不可逆容量率a=1−(1サイクル目の放電容量(mAh/cm2)/
1サイクル目の充電容量(mAh/cm2)) (式1)
The capacity Y (mAh / cm 2 ) of the negative electrode per unit area with respect to the capacity X (mAh / cm 2 ) of the positive electrode per unit area is a relational expression:
Y = X / (1-a)
2. The negative electrode for a lithium secondary battery according to claim 1, wherein a negative electrode mixture layer satisfying (where a is an irreversible capacity ratio and is represented by the following formula 1) is used.
Irreversible capacity ratio a = 1− (discharge capacity at the first cycle (mAh / cm 2 ) /
Charging capacity in the first cycle (mAh / cm 2 )) (Formula 1)
さらに、前記金属リチウム層におけるリチウムの量Z(g/cm2)が、関係式:
(2.59×10-4aX/(1−a))×0.95≦Z≦(2.59×10-4aX/(1−a))×1.05
を満たすことを特徴とする請求項3記載のリチウム二次電池用負極。
Furthermore, the amount Z (g / cm 2 ) of lithium in the metal lithium layer is expressed by the relational expression:
(2.59 × 10 −4 aX / (1-a)) × 0.95 ≦ Z ≦ (2.59 × 10 −4 aX / (1-a)) × 1.05
The negative electrode for a lithium secondary battery according to claim 3, wherein:
前記金属リチウム層が、蒸着またはスパッタにより前記負極合剤層の表面を覆うように形成されたことを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the metal lithium layer is formed so as to cover the surface of the negative electrode mixture layer by vapor deposition or sputtering. 前記負極合剤層が、負極活物質を含むペーストを基材上に塗布した後、乾燥させることにより得られたことを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode mixture layer is obtained by applying a paste containing a negative electrode active material on a substrate and then drying the paste. 前記負極合剤層が、負極活物質を含むペーストを基材上に塗布した後、乾燥させ、さらに圧延することにより得られたことを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode mixture layer is obtained by applying a paste containing a negative electrode active material on a substrate, drying, and rolling the paste. 前記負極合剤層が、蒸着、スパッタまたはCVDにより基材上に形成されたことを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode mixture layer is formed on a substrate by vapor deposition, sputtering or CVD. 前記負極合剤層が、蒸着、スパッタまたはCVDにより基材上に形成された後、さらに熱処理されることにより得られたことを特徴とする請求項1記載のリチウム二次電池用負極。   2. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode mixture layer is obtained by further heat treatment after being formed on a substrate by vapor deposition, sputtering or CVD. 請求項1〜9のいずれかに記載の負極と、正極活物質を含む正極と、電解液を含むセパレータとを具備したことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the negative electrode according to claim 1, a positive electrode containing a positive electrode active material, and a separator containing an electrolytic solution.
JP2003292201A 2003-08-12 2003-08-12 Anode and lithium secondary battery using it Pending JP2005063805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292201A JP2005063805A (en) 2003-08-12 2003-08-12 Anode and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292201A JP2005063805A (en) 2003-08-12 2003-08-12 Anode and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2005063805A true JP2005063805A (en) 2005-03-10

Family

ID=34369618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292201A Pending JP2005063805A (en) 2003-08-12 2003-08-12 Anode and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2005063805A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP2006269331A (en) * 2005-03-25 2006-10-05 Sony Corp Cathode, battery, and manufacturing method of them
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
JP2007109423A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery, and its anode
JP2007122992A (en) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007128658A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007134108A (en) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid battery
JP2007220452A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution secondary battery and separator fabricated therefore
WO2008047668A1 (en) * 2006-10-19 2008-04-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2008098155A (en) * 2006-09-12 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for lithium secondary battery
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP4602478B2 (en) * 2008-08-04 2010-12-22 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JP2011054324A (en) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd Lithium ion secondary battery and method for manufacturing the same
WO2011101930A1 (en) * 2010-02-19 2011-08-25 パナソニック株式会社 Coin-shaped lithium secondary battery
WO2011104805A1 (en) * 2010-02-24 2011-09-01 パナソニック株式会社 Lithium secondary battery
WO2012015033A1 (en) * 2010-07-29 2012-02-02 日本電気株式会社 Lithium ion secondary battery and process for production thereof
JP2012124057A (en) * 2010-12-09 2012-06-28 Nec Corp Lithium ion secondary battery, and method for manufacturing the same
JP2012528450A (en) * 2009-05-26 2012-11-12 エルジー ケム. エルティーディ. High energy density lithium secondary battery
US8334073B2 (en) * 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
EP2784845A1 (en) 2013-03-29 2014-10-01 Fuji Jukogyo Kabushiki Kaisha Predoping material for electrical lithium or sodium storage device
KR101454372B1 (en) 2012-09-06 2014-10-24 한국전기연구원 Silicon Negative Active Material with lithium film, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
KR20190033915A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
CN110521033A (en) * 2017-04-17 2019-11-29 罗伯特·博世有限公司 A kind of silicon substrate anode of prelithiation and preparation method thereof
KR20210052056A (en) * 2019-10-31 2021-05-10 주식회사 포스코 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
US11056725B2 (en) 2016-11-21 2021-07-06 Lg Chem, Ltd. Electrode and lithium secondary battery comprising same
US11322736B2 (en) 2017-06-08 2022-05-03 Lg Energy Solution, Ltd. Negative electrode, secondary battery including the same, and method of preparing the negative electrode
JP2023523659A (en) * 2021-03-30 2023-06-07 寧徳新能源科技有限公司 electrochemical and electronic devices

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317309A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP2006269331A (en) * 2005-03-25 2006-10-05 Sony Corp Cathode, battery, and manufacturing method of them
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP5079334B2 (en) * 2005-06-03 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and method for producing the negative electrode
US8455138B2 (en) 2005-09-13 2013-06-04 Samsung Sdi Co., Ltd. Anode and lithium battery including the anode
JP2007080827A (en) * 2005-09-13 2007-03-29 Samsung Sdi Co Ltd Anode and lithium cell adopting above
JP2007109423A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery, and its anode
JP2007122992A (en) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007128658A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007134108A (en) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid battery
JP2007220452A (en) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution secondary battery and separator fabricated therefore
JP2008098155A (en) * 2006-09-12 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for lithium secondary battery
US8334073B2 (en) * 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
WO2008047668A1 (en) * 2006-10-19 2008-04-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
KR101109285B1 (en) * 2006-10-19 2012-01-31 파나소닉 주식회사 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP4602478B2 (en) * 2008-08-04 2010-12-22 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JPWO2010016217A1 (en) * 2008-08-04 2012-01-19 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JP2012528450A (en) * 2009-05-26 2012-11-12 エルジー ケム. エルティーディ. High energy density lithium secondary battery
JP2011054324A (en) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd Lithium ion secondary battery and method for manufacturing the same
WO2011101930A1 (en) * 2010-02-19 2011-08-25 パナソニック株式会社 Coin-shaped lithium secondary battery
US9508984B2 (en) 2010-02-19 2016-11-29 Panasonic Intellectual Property Management Co., Ltd. Coin-type lithium secondary battery
CN102782926A (en) * 2010-02-24 2012-11-14 松下电器产业株式会社 Lithium secondary battery
WO2011104805A1 (en) * 2010-02-24 2011-09-01 パナソニック株式会社 Lithium secondary battery
JPWO2011104805A1 (en) * 2010-02-24 2013-06-17 パナソニック株式会社 Lithium secondary battery
CN103155260B (en) * 2010-07-29 2016-01-20 日本电气株式会社 Lithium rechargeable battery and manufacture method thereof
WO2012015033A1 (en) * 2010-07-29 2012-02-02 日本電気株式会社 Lithium ion secondary battery and process for production thereof
EP2600457A1 (en) * 2010-07-29 2013-06-05 Nec Corporation Lithium ion secondary battery and process for production thereof
CN103155260A (en) * 2010-07-29 2013-06-12 日本电气株式会社 Lithium ion secondary battery and process for production thereof
EP2600457A4 (en) * 2010-07-29 2014-08-13 Nec Corp Lithium ion secondary battery and process for production thereof
JP2012199216A (en) * 2010-07-29 2012-10-18 Nec Corp Lithium ion secondary battery, and method for manufacturing the same
US8956762B2 (en) 2010-07-29 2015-02-17 Nec Corporation Lithium ion secondary battery and method for manufacturing the same
JP2012124057A (en) * 2010-12-09 2012-06-28 Nec Corp Lithium ion secondary battery, and method for manufacturing the same
KR101454372B1 (en) 2012-09-06 2014-10-24 한국전기연구원 Silicon Negative Active Material with lithium film, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
EP2784845A1 (en) 2013-03-29 2014-10-01 Fuji Jukogyo Kabushiki Kaisha Predoping material for electrical lithium or sodium storage device
US9847528B2 (en) 2013-03-29 2017-12-19 Subaru Corporation Predoping material, electric storage device including the material, and method of producing the device
US11056725B2 (en) 2016-11-21 2021-07-06 Lg Chem, Ltd. Electrode and lithium secondary battery comprising same
CN110521033A (en) * 2017-04-17 2019-11-29 罗伯特·博世有限公司 A kind of silicon substrate anode of prelithiation and preparation method thereof
US11322736B2 (en) 2017-06-08 2022-05-03 Lg Energy Solution, Ltd. Negative electrode, secondary battery including the same, and method of preparing the negative electrode
KR20190033915A (en) * 2017-09-22 2019-04-01 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102148509B1 (en) * 2017-09-22 2020-08-26 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20210052056A (en) * 2019-10-31 2021-05-10 주식회사 포스코 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
KR102324692B1 (en) * 2019-10-31 2021-11-09 주식회사 포스코 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
JP2023523659A (en) * 2021-03-30 2023-06-07 寧徳新能源科技有限公司 electrochemical and electronic devices

Similar Documents

Publication Publication Date Title
JP2005063805A (en) Anode and lithium secondary battery using it
JP6531652B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP5317390B2 (en) Nonaqueous electrolyte secondary battery
US10355272B2 (en) Anode active material for lithium secondary battery and method of preparing the same
US8003253B2 (en) Non-aqueous electrolyte secondary battery
JP5399188B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
CN108140823A (en) Anode for nonaqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery, the manufacturing method of negative electrode material for nonaqueous electrode secondary battery and non-aqueous electrolyte secondary battery manufacturing method
EP1851814A1 (en) Secondary battery of improved lithium ion mobility and cell capacity
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP4666854B2 (en) Nonaqueous electrolyte secondary battery
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
JP2002216746A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2000228196A (en) Nonaqueous electrolyte secondary battery
JPH10162823A (en) Non-aqueous secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
JPH06342673A (en) Lithium secondary battery
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JP2002270245A (en) Nonaqueous secondary cell
JP2001250541A (en) Nonaqueous electrolyte secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery