JP2007128658A - Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery - Google Patents

Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery Download PDF

Info

Publication number
JP2007128658A
JP2007128658A JP2005317914A JP2005317914A JP2007128658A JP 2007128658 A JP2007128658 A JP 2007128658A JP 2005317914 A JP2005317914 A JP 2005317914A JP 2005317914 A JP2005317914 A JP 2005317914A JP 2007128658 A JP2007128658 A JP 2007128658A
Authority
JP
Japan
Prior art keywords
active material
lithium
material layer
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005317914A
Other languages
Japanese (ja)
Other versions
JP5076305B2 (en
Inventor
Kazuyoshi Honda
和義 本田
Masaya Ugaji
正弥 宇賀治
Yasutaka Furuyui
康隆 古結
Shoichi Imayado
昇一 今宿
Toshitada Sato
俊忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005317914A priority Critical patent/JP5076305B2/en
Publication of JP2007128658A publication Critical patent/JP2007128658A/en
Application granted granted Critical
Publication of JP5076305B2 publication Critical patent/JP5076305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery effectively taking out energy density of an activator having irreversible capacity in high level. <P>SOLUTION: On the manufacturing method of anode for lithium secondary battery comprising a process of winding and running a battery electrode 4 having an activator layer on both surfaces of longitudinal current collector, and a process of adding lithium on the activator layer of the battery electrode 4 in vacuum, lithium is added to a second activator layer of the battery electrode 4 as well, after adding lithium on a first activator layer of the battery electrode 4, before winding the battery electrode 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用負極の製造方法およびリチウム二次電池の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a lithium secondary battery and a method for producing a lithium secondary battery.

近年、非水電解質二次電池の高容量化のための負極活物質として、ケイ素(Si)やスズ(Sn)などの元素を含む負極材料が注目されている。例えば、Siの理論放電容量は約4199mAh/gであり、黒鉛の理論放電容量の約11倍である。   In recent years, negative electrode materials containing elements such as silicon (Si) and tin (Sn) have attracted attention as negative electrode active materials for increasing the capacity of nonaqueous electrolyte secondary batteries. For example, the theoretical discharge capacity of Si is about 4199 mAh / g, which is about 11 times the theoretical discharge capacity of graphite.

しかしながら、これらSiやSnは、リチウムイオンを吸蔵する際に構造が大きく変化するために膨張する。その結果、活物質粒子が割れたり、集電体から活物質層が剥がれたりすることによって、活物質と集電体間の電子伝導性が低下し、結果としてサイクル特性といった電池特性が低下する。   However, these Si and Sn swell because the structure changes greatly when occluding lithium ions. As a result, the active material particles are broken or the active material layer is peeled off from the current collector, whereby the electronic conductivity between the active material and the current collector is lowered, and as a result, battery characteristics such as cycle characteristics are lowered.

そのため、放電容量が若干低下するが、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物からなる群より選ばれた少なくとも1つを含む負極材料を用いるとともに、負極材料の膨張収縮を軽減することが試みられている。   Therefore, although the discharge capacity is slightly reduced, silicon simple substance, silicon alloy, compound containing silicon and oxygen, compound containing silicon and nitrogen, simple substance of tin, tin alloy, compound containing tin and oxygen, and tin and nitrogen Attempts have been made to reduce the expansion and contraction of the negative electrode material while using a negative electrode material containing at least one selected from the group consisting of compounds containing.

また、これらSiやSnを含む負極材料の課題として、不可逆容量がある。すなわちSiやSnを含む活物質を負極として用いると、初回充電時に吸蔵したリチウムイオンの一部が放電時に放出されず、結果として電池容量が小さくなってしまう。   Moreover, there exists an irreversible capacity | capacitance as a subject of the negative electrode material containing these Si and Sn. That is, when an active material containing Si or Sn is used as the negative electrode, some of the lithium ions occluded during the initial charge are not released during the discharge, resulting in a reduction in battery capacity.

不可逆容量を回避するには、予め不可逆容量相当のリチウムを負極に吸蔵させ、しかる後に正極板と対向させ、充放電を始めることが有効である(例えば、特許文献1、特許文献2および特許文献3参照)。このような構成を用いることにより、初回充電時に正極から放出されたリチウムイオンを放電時に負極から高い割合で回収することができるようになり、結果として電池容量が向上する。   In order to avoid the irreversible capacity, it is effective to previously store lithium corresponding to the irreversible capacity in the negative electrode and then face the positive electrode plate to start charge / discharge (for example, Patent Document 1, Patent Document 2 and Patent Document). 3). By using such a configuration, lithium ions released from the positive electrode during the initial charge can be recovered from the negative electrode at a high rate during the discharge, and as a result, the battery capacity is improved.

特許文献1には、Si、Sn、およびSi−Ti系合金からなる群より選択される少なくとも1種を含む負極活物質を含む負極合剤層を備え、前記負極合剤層の表面を覆うようにリチウム層を形成する負極が開示されている。これに充放電サイクル初期に不可逆容量の小さい電池が得られることが開示されている。また、金属リチウム層を、蒸着またはスパッタにより形成することが開示されている。   Patent Document 1 includes a negative electrode mixture layer containing a negative electrode active material containing at least one selected from the group consisting of Si, Sn, and Si—Ti alloys, and covers the surface of the negative electrode mixture layer. Discloses a negative electrode for forming a lithium layer. It is disclosed that a battery having a small irreversible capacity can be obtained at the beginning of the charge / discharge cycle. It is also disclosed that a metallic lithium layer is formed by vapor deposition or sputtering.

特許文献2には、例えば、集電体上に形成した酸化ケイ素の薄膜の上に酸化リチウムの層を形成し、さらにリチウムの層を形成して、リチウムを酸化ケイ素に補填する方法が開示されている。これにより初回充放電における不可逆容量が軽減することが開示されている。   Patent Document 2 discloses, for example, a method of forming a lithium oxide layer on a silicon oxide thin film formed on a current collector, further forming a lithium layer, and supplementing lithium with silicon oxide. ing. It is disclosed that this reduces the irreversible capacity in the first charge / discharge.

特許文献3には、集電体上に炭素を主成分とする第一の層を設けた後、ケイ素などからなる第二の層を形成するときにケイ素とリチウムを同時蒸着するが開示されている。これにより不可逆容量が低減することが開示されている。
特開2005−063805号公報 特開2003−162997号公報 特開2002−358954号公報
Patent Document 3 discloses that after a first layer mainly composed of carbon is provided on a current collector, silicon and lithium are vapor-deposited when a second layer made of silicon or the like is formed. Yes. It is disclosed that this reduces the irreversible capacity.
Japanese Patent Laying-Open No. 2005-063805 Japanese Patent Laid-Open No. 2003-162997 JP 2002-358594 A

しかしながら、長尺の集電体の第1の面に第1の活物質層が形成され、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板に対して、前記従来の手法で極板に不可逆容量相当分のリチウムを付与すると、極板を巻き取り走行する工程における走行速度ムラや金属リチウム層の形成速度ムラなどによりリチウム付着量の分布が面内で生じる。特に金属リチウム層形成の手段として蒸着法等を用いた場合、リチウム蒸気供給源の状態(例えば蒸発面積、温度、蒸気飛翔経路等)を完璧に制御し、これらに起因する経時的なムラを抑制することは至難である。その結果、過剰に付与されたリチウムが、極板上で部分的に析出するという現象が避けがたい。   However, the first active material layer is formed on the first surface of the long current collector, and the second active material layer is formed on the second surface opposite to the first surface of the current collector. When lithium corresponding to the irreversible capacity is applied to the electrode plate by the above-mentioned conventional method, the amount of lithium adhesion is reduced due to uneven travel speed or uneven formation speed of the metallic lithium layer in the process of winding the electrode plate. Distribution occurs in-plane. In particular, when vapor deposition is used as a means for forming a metallic lithium layer, the state of the lithium vapor supply source (e.g., evaporation area, temperature, vapor flight path, etc.) is perfectly controlled, and unevenness over time due to these is suppressed. It is extremely difficult to do. As a result, it is unavoidable that excessively applied lithium partially precipitates on the electrode plate.

長尺な集電体の第1の面に第1の活物質層が形成され、第1の面に対向する第2の面に第2の活物質層が形成された極板の両面に対して、活物質が持つ不可逆容量の補充を行うためにリチウム付与する場合、コストの観点から、まず第1の活物質層にリチウムが付与され、その後第2の活物質層へのリチウムが付与される。   With respect to both sides of the electrode plate in which the first active material layer is formed on the first surface of the long current collector and the second active material layer is formed on the second surface opposite to the first surface Thus, when lithium is applied to replenish the irreversible capacity of the active material, from the viewpoint of cost, lithium is first applied to the first active material layer, and then lithium is applied to the second active material layer. The

一般的に、極板を巻き取り走行する工程では走行速度のムラや極板温度の分布といったプロセス変動が存在する。そのためプロセス変動に起因するリチウム付与量の分布(バラツキ)が面内に生じ、その結果として部分的に過剰なリチウムが付与される場合がある。リチウムの付与量が活物質の不可逆容量に対して少ない場合には、付与されたリチウムが全て活物質と反応するので、リチウムの部分的な析出は起きない。しかしリチウム付与量が活物質の不可逆容量に対して多くなると、部分的に過剰なリチウムが付与される結果、リチウムの部分的な析出が発生する。極板を巻き取り走行する工程の精度および活物質とリチウムの反応性にもよるが、リチウムの析出はおおむね不可逆容量の80%以上のリチウムを付与した場合に発生しやすい。   In general, in the process of winding and traveling the electrode plate, there are process fluctuations such as uneven travel speed and electrode plate temperature distribution. For this reason, the distribution (variation) of the lithium application amount due to process variations occurs in the surface, and as a result, there may be a case where a part of excess lithium is applied. When the applied amount of lithium is small relative to the irreversible capacity of the active material, all of the applied lithium reacts with the active material, so that partial deposition of lithium does not occur. However, when the amount of lithium applied increases relative to the irreversible capacity of the active material, partial lithium deposition occurs as a result of partial application of excess lithium. Although depending on the accuracy of the process of winding and running the electrode plate and the reactivity between the active material and lithium, lithium precipitation is likely to occur when more than 80% of the irreversible capacity of lithium is applied.

第1の活物質層に過剰なリチウムが付与された状態で電池電極が巻き取られると、局部的に析出した過剰リチウムは非常に活性が高いため、リチウムがまだ付与されていない第2の活物質層に吸収される。このような状態で第2の活物質層へリチウムの付与を行うと、さらに多量の過剰リチウムが析出することになる。このような極板を用いて電池を構成すると、電界集中などにより、充放電の繰り返しで局部的なリチウム析出がさらに進行し、電池特性が低下する。   When the battery electrode is wound in a state where excess lithium is applied to the first active material layer, the excessively deposited lithium is very active, and therefore the second active material to which lithium has not been applied yet. Absorbed into the material layer. When lithium is applied to the second active material layer in such a state, a larger amount of excess lithium is deposited. When a battery is configured using such an electrode plate, local lithium deposition further proceeds due to repeated charge and discharge due to electric field concentration and the like, resulting in deterioration of battery characteristics.

このような状況を鑑み、本発明は、リチウム付与により不可逆容量をできるだけ軽減するとともに、局部的な過剰リチウムの付与による電池の短絡等の不具合を防止することが容易なリチウム二次電池用負極(以下、負極ともいう)の製造方法およびリチウム二次電池(以下、電池ともいう)の製造方法を提供することを目的とする。   In view of such a situation, the present invention reduces the irreversible capacity as much as possible by applying lithium, and can easily prevent defects such as a short circuit of the battery due to application of local excess lithium ( The object is to provide a method for producing a negative electrode) and a method for producing a lithium secondary battery (hereinafter also referred to as a battery).

前記従来の課題を解決するために、本発明の負極の製造方法は、
集電体の第1の面に第1の活物質層が形成され、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
第1の活物質層および第2の活物質層に真空中でリチウムを付与する工程と、を有し、
リチウムを付与する工程は、第1の活物質層にリチウムを付与後、極板を巻き取る前に、第2の活物質層にリチウムを付与する工程であること、を特徴とする。
In order to solve the conventional problem, the method for producing a negative electrode of the present invention includes:
The electrode plate having the first active material layer formed on the first surface of the current collector and the second active material layer formed on the second surface opposite to the first surface of the current collector is wound up. Process,
Providing lithium in a vacuum to the first active material layer and the second active material layer,
The step of applying lithium is a step of applying lithium to the second active material layer after winding lithium to the first active material layer and before winding the electrode plate.

また、本発明の負極の第2の製造方法は、
集電体の第1の面に第1の活物質層が形成され、第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
第1の活物質層および第2の活物質層に真空中でリチウムを付与する工程と、を有するリチウム二次電池用負極の製造方法において、
リチウムを付与する工程は、第1の活物質層および第2の活物質層とに同時にリチウムを付与する工程であること、を特徴とする。
In addition, the second manufacturing method of the negative electrode of the present invention includes:
Winding up an electrode plate in which a first active material layer is formed on a first surface of a current collector and a second active material layer is formed on a second surface opposite to the first surface;
A step of applying lithium to the first active material layer and the second active material layer in a vacuum, and a method for producing a negative electrode for a lithium secondary battery,
The step of applying lithium is a step of simultaneously applying lithium to the first active material layer and the second active material layer.

上記いずれの製造方法によっても、リチウム付与により不可逆容量をできるだけ軽減するとともに、局部的な過剰リチウムの付与を防止することが可能な負極の製造が容易となる。   Any of the above production methods facilitates the production of a negative electrode capable of reducing the irreversible capacity as much as possible by applying lithium and preventing local application of excess lithium.

また、本発明の電池の製造方法は、
リチウムイオンを吸蔵および放出可能な正極と、リチウムイオンを吸蔵および放出可能な負極と、正極と負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質と、を含む電池の製造方法であって、
負極の集電体の第1の面に第1の活物質層を形成する工程と、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
第1の活物質層および前記第2の活物質層とに真空中でリチウムを付与する工程と、を有し、
リチウムを付与する工程は、第1の活物質層にリチウムを付与後、極板を巻き取る前に第2の活物質層にリチウムを付与する工程であること、を特徴とする。
Further, the method for producing the battery of the present invention includes:
A battery manufacturing method comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode capable of inserting and extracting lithium ions; a separator disposed between the positive electrode and the negative electrode; and an electrolyte having lithium ion conductivity. Because
A step of forming a first active material layer on the first surface of the current collector of the negative electrode, and an electrode having a second active material layer formed on the second surface opposite to the first surface of the current collector Winding the plate,
Providing lithium in a vacuum to the first active material layer and the second active material layer,
The step of applying lithium is a step of applying lithium to the second active material layer after winding lithium to the first active material layer and before winding the electrode plate.

また、本発明の電池の第2の製造方法は、
リチウムイオンを吸蔵および放出可能な正極と、リチウムイオンを吸蔵および放出可能な負極と、正極と負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質と、を含む電池の製造方法であって、
負極の集電体の第1の面に第1の活物質層が形成され、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
第1の活物質層および第2の活物質層に真空中でリチウムを付与する工程と、を有し、
リチウムを付与する工程は、第1の活物質層および第2の活物質層とに同時にリチウムを付与する工程であること、を特徴とする。
Moreover, the second manufacturing method of the battery of the present invention includes:
A battery manufacturing method comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode capable of inserting and extracting lithium ions; a separator disposed between the positive electrode and the negative electrode; and an electrolyte having lithium ion conductivity. Because
An electrode plate in which a first active material layer is formed on a first surface of a negative electrode current collector and a second active material layer is formed on a second surface opposite to the first surface of the current collector. A winding process;
Providing lithium in a vacuum to the first active material layer and the second active material layer,
The step of applying lithium is a step of simultaneously applying lithium to the first active material layer and the second active material layer.

上記いずれの製造方法によっても、リチウム付与により不可逆容量をできるだけ軽減するとともに、局部的な過剰リチウムの付与を防止することが可能な電池の製造が容易となる。   Any of the above manufacturing methods facilitates the production of a battery capable of reducing the irreversible capacity as much as possible by applying lithium and preventing local application of excess lithium.

本発明の負極の製造方法および電池の製造方法によれば、不可逆容量を軽減するとともに、局部的な過剰リチウムの付与を防止することで、電池性能、特にサイクル特性を向上することができる極板および電池が容易に製造することが出来る。これにより理論的にはリチウムイオンを多く吸収あるいは放出できるが不可逆容量の大きな、例えばケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物からなる群より選ばれた少なくとも1つを含む活物質材料を活用することが可能となる。   According to the method for producing a negative electrode and the method for producing a battery of the present invention, an electrode plate that can improve battery performance, particularly cycle characteristics, by reducing irreversible capacity and preventing local application of excess lithium. And the battery can be manufactured easily. Theoretically, a large amount of lithium ions can be absorbed or released, but the irreversible capacity is large. For example, silicon simple substance, silicon alloy, compound containing silicon and oxygen, compound containing silicon and nitrogen, simple substance of tin, tin alloy, tin It is possible to utilize an active material containing at least one selected from the group consisting of a compound containing oxygen and oxygen, and a compound containing tin and nitrogen.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
本発明の負極の製造方法では、長尺な集電体の第1の面に第1の活物質層が形成され、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板の両面に対して、活物質が持つ不可逆容量の補充を行うためにリチウムを付与する工程は、第1の活物質層にリチウムを付与後、極板を巻き取る前に第2の活物質層にリチウムを付与する工程であること、を特徴としている。この製造方法により、第1の活物質層上に過剰なリチウムが偏在しても、第2の活物質層にリチウムが付与される前に、第1の活物質層上の過剰なリチウムが第2の活物質層に吸蔵されることがない。したがって極板巻き取り時に第1の活物質層と第2の活物質層での活物質量やリチウム付与量の面内ばらつきの結果により生じるリチウム過剰が重複することがないために、第2の活物質層における顕著なリチウム析出を防ぐことができる。これにより、この製造方法で作製された極板を用いた電池に対して充放電の繰り返しを行った際の正負極間の短絡を防止することができる。
(Embodiment 1)
In the negative electrode manufacturing method of the present invention, the first active material layer is formed on the first surface of the long current collector, and the second surface facing the first surface of the current collector is the second surface. The step of applying lithium to both surfaces of the electrode plate on which the active material layer is formed in order to supplement the irreversible capacity of the active material is performed by winding the electrode plate after applying lithium to the first active material layer. It is characterized by being a step of applying lithium to the second active material layer before taking. With this manufacturing method, even if excess lithium is unevenly distributed on the first active material layer, before the lithium is applied to the second active material layer, the excess lithium on the first active material layer is The second active material layer is not occluded. Therefore, the excess of lithium generated as a result of in-plane variations in the amount of active material and the amount of lithium applied in the first active material layer and the second active material layer does not overlap when the electrode plate is wound. Remarkable lithium deposition in the active material layer can be prevented. Thereby, the short circuit between positive and negative electrodes at the time of repeating charging / discharging with respect to the battery using the electrode plate produced by this manufacturing method can be prevented.

リチウムを付与する方法としては、薄膜プロセスを用いることが望ましい。薄膜プロセスを用いることにより、極板上にリチウムを精度よく薄く均一に付与することができる。そのため過剰なリチウムの発生や偏在を軽減することができる。リチウムを付与する薄膜プロセスとしてはスパッタ法や真空蒸着法が望ましい。中でも真空蒸着法は高速でリチウム付与ができるので最も望ましい。   As a method for applying lithium, it is desirable to use a thin film process. By using a thin film process, lithium can be applied thinly and uniformly on the electrode plate with high accuracy. Therefore, generation of excessive lithium and uneven distribution can be reduced. As a thin film process for applying lithium, sputtering or vacuum deposition is desirable. Among these, the vacuum deposition method is most preferable because lithium can be applied at a high speed.

図1は、本発明における負極の製造方法の一例を示す模式図である。図1において、真空槽2の内部は排気ポンプ1で排気されている。真空槽2中で巻き出しロール3から巻き出された長尺の電池電極4は、搬送ローラ5および円筒状の第一キャン6および第二キャン7の周面に沿って走行し、巻き取りロール8に巻き取られる。本発明では巻き出しロール3から巻き取りロール8までを巻き取る工程という。   FIG. 1 is a schematic view showing an example of a method for producing a negative electrode in the present invention. In FIG. 1, the inside of the vacuum chamber 2 is exhausted by an exhaust pump 1. The long battery electrode 4 unwound from the unwinding roll 3 in the vacuum chamber 2 travels along the peripheral surfaces of the transport roller 5 and the cylindrical first can 6 and the second can 7, and the winding roll 8 is wound up. In the present invention, it is referred to as a step of winding up the winding roll 3 to the winding roll 8.

ここで使用する電池電極4は、集電体の第1の面に第1の活物質層(図示せず)が形成され、集電体の第1の面に対向する第2の面に第2の活物質層(図示せず)が形成されている。電池電極が第一キャン6に沿った状態で第1の活物質層にリチウム付与源9からリチウムが付与され、第二キャン7に沿った状態で第2の活物質層にリチウム付与源9からリチウムが付与される工程により、活物質へのリチウム付与を行う。なお、図1において、電池電極4の第一キャン6に接する面に第2の活物質層が形成されており、第二キャン7に接する面に第1の活物質層が形成されている。   The battery electrode 4 used here has a first active material layer (not shown) formed on the first surface of the current collector, and a second surface opposite to the first surface of the current collector. Two active material layers (not shown) are formed. Lithium is applied from the lithium application source 9 to the first active material layer in a state where the battery electrode is along the first can 6, and from the lithium application source 9 to the second active material layer in a state along the second can 7. Lithium is imparted to the active material by the step of imparting lithium. In FIG. 1, the second active material layer is formed on the surface of the battery electrode 4 in contact with the first can 6, and the first active material layer is formed on the surface in contact with the second can 7.

リチウムを付与する工程は、第1の活物質層の不可逆容量の80%以上、100%以下のリチウム量を第1の活物質層に付与する工程と、第2の活物質層の不可逆容量の80%以上、100%以下のリチウム量を第2の活物質層に付与する工程と、を含むことが好ましい。不可逆容量の残存を減らすためには、50%以上の付与が好ましいが、不可逆容量の残存を大幅に減らすことが出来るため、80%以上の付与をすることが更に好ましい。100%の付与をすると、不可逆容量の残存をなくすことが出来る。100%を超える付与は、不可逆容量の残存をなくすことには寄与をせず、活物質層表面に余剰リチウムの析出につながるおそれがある。   The step of applying lithium includes the step of applying lithium amount of 80% to 100% of the irreversible capacity of the first active material layer to the first active material layer, and the irreversible capacity of the second active material layer. Preferably including a step of providing a lithium amount of 80% or more and 100% or less to the second active material layer. In order to reduce the remaining irreversible capacity, 50% or more is preferable. However, since the remaining irreversible capacity can be significantly reduced, it is more preferable to provide 80% or more. When 100% is applied, the remaining irreversible capacity can be eliminated. The application exceeding 100% does not contribute to eliminating the remaining irreversible capacity, and may lead to precipitation of excess lithium on the surface of the active material layer.

本実施の形態1では、極板の第1の活物質層にリチウムを付与後、極板の第2の活物質層にリチウムを付与するまでの間に第1の活物質層が触れる部分を、リチウムと合金化しない材料で構成することが好ましい。具体的には図1に示す搬送ローラー5が例示される。第1の活物質層に付与されたリチウムは、第1の活物質層に吸収されるまではその表面に存在しているため、極板と接触する部分がリチウムと反応することでローラが汚染されたり、ローラと極板とが接着されて走行不良になることを防止できるからである。リチウムと合金化しない材料であればどのようなものでもよいが、ローラ形状やローラ表面層への加工容易性、更にコストの観点から、銅、ニッケル、クロム、ステンレス、またはフッ素あるいは含フッ素樹脂からなる材料を用いることが望ましい。これらの材料を極板と接触する部分で用いると、その部分でのリチウムとの反応を防止して、極板の安定な走行を確保することができる。同様に、極板の第2の活物質層にリチウムを付与後、巻き取りロール8に巻き取られるまでの間に第2の活物質層が触れる部分を、リチウムと合金化しない材料で構成することが好ましい。   In the first embodiment, after the lithium is applied to the first active material layer of the electrode plate, the portion that the first active material layer touches before the lithium is applied to the second active material layer of the electrode plate. It is preferable to use a material that does not alloy with lithium. Specifically, the conveyance roller 5 shown in FIG. 1 is illustrated. Since the lithium applied to the first active material layer exists on the surface until it is absorbed by the first active material layer, the roller is contaminated by the reaction of the portion in contact with the electrode plate with lithium. This is because it is possible to prevent the roller and the electrode plate from adhering to each other and causing poor running. Any material that does not form an alloy with lithium may be used, but from the viewpoint of roller shape and ease of processing into the roller surface layer, and from the viewpoint of cost, copper, nickel, chromium, stainless steel, fluorine, or fluorine-containing resin may be used. It is desirable to use such a material. When these materials are used in a portion in contact with the electrode plate, reaction with lithium in that portion can be prevented, and stable travel of the electrode plate can be ensured. Similarly, the portion where the second active material layer touches after the lithium is applied to the second active material layer of the electrode plate and is wound on the take-up roll 8 is made of a material that does not alloy with lithium. It is preferable.

また、本実施の形態1において、極板の第1の活物質層にリチウムを付与後、極板の第2の活物質層にリチウムを付与するまでの時間は、付与されたリチウムが第1の活物質層に吸収されるのに必要な時間よりも長くすることが好ましく、また、極板の第2の活物質層にリチウムを付与後、巻き取りロール8に巻き取られるまでの時間は、付与されたリチウムが第2の活物質層に吸収されるのに必要な時間よりも長くすることが好ましい。なお、それらの時間は、活物質の材料や巻き取る工程の速度などによって適宜決めることが出来る。   In Embodiment 1, after the lithium is applied to the first active material layer of the electrode plate, the time until the lithium is applied to the second active material layer of the electrode plate is the first time the applied lithium is It is preferable that the time required to be absorbed by the active material layer is longer than the time required for the second active material layer of the electrode plate to be wound on the take-up roll 8 after the lithium is applied to the second active material layer. It is preferable to make the applied lithium longer than the time required for the lithium to be absorbed by the second active material layer. These times can be appropriately determined depending on the material of the active material, the speed of the winding process, and the like.

(実施の形態2)
また本発明の負極の第2の製造方法としては、長尺な集電体の第1の面に第1の活物質層が形成され、集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板の両面に対して、活物質が持つ不可逆容量の補充を行うためにリチウムを付与する工程は、極板の第1の活物質層と第2の活物質層とに同時にリチウム付与を行うことを特徴としている。
(Embodiment 2)
As a second method for manufacturing the negative electrode of the present invention, a second active material layer is formed on the first surface of the long current collector, and the second surface facing the first surface of the current collector is the second method. The step of applying lithium to replenish the irreversible capacity of the active material on both surfaces of the electrode plate having the second active material layer formed on the surface includes the first active material layer of the electrode plate and the second active material layer. It is characterized in that lithium is simultaneously applied to the two active material layers.

図2は、第1の活物質層および第2の活物質層にリチウムの付与を同時に行う負極の製造方法を示す模式図である。図2において、図1と同じ構成要素については同じ符号を用いる。図2において、排気ポンプ1で排気されている真空槽中2で巻き出しロール3から巻き出された電池電極4は、搬送ローラ5に添って走行後、巻き取りロール8に巻き取られる。電池電極4の両面には予め活物質層が形成されており、搬送中の電池電極4は所定の位置でリチウム付与源9からリチウムの付与を受ける。図2の搬送経路では搬送ローラ5aと5bとの間で、第1の活物質層および第2の活物質層とに同時にリチウムが付与される。この構成により第1の活物質層へのリチウムを付与と、第2の活物質層へのリチウムの付与を同時に行うことができるので、設備的に有利である。   FIG. 2 is a schematic diagram illustrating a method for manufacturing a negative electrode in which lithium is simultaneously applied to the first active material layer and the second active material layer. 2, the same reference numerals are used for the same components as in FIG. In FIG. 2, the battery electrode 4 unwound from the unwinding roll 3 in the vacuum chamber 2 evacuated by the exhaust pump 1 travels along the transport roller 5, and is then wound around the winding roll 8. An active material layer is formed on both surfaces of the battery electrode 4 in advance, and the battery electrode 4 being transported is supplied with lithium from the lithium supply source 9 at a predetermined position. In the transport path of FIG. 2, lithium is simultaneously applied to the first active material layer and the second active material layer between the transport rollers 5a and 5b. This configuration is advantageous in terms of equipment because lithium can be applied to the first active material layer and lithium can be applied to the second active material layer at the same time.

リチウムを付与する工程は、第1の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第1の活物質層に付与する工程と、第2の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第2の活物質層に付与する工程と、を含むことが好ましい。不可逆容量の残存を減らすためには、50%以上の付与が好ましいが、不可逆容量の残存を大幅に減らすことが出来るため、80%以上の付与をすることが更に好ましい。100%の付与をすると、不可逆容量の残存をなくすことが出来る。100%を超える付与は、不可逆容量の残存をなくすことには寄与をせず、活物質層表面に余剰リチウムの析出につながるおそれがある。   The step of applying lithium includes the step of applying lithium amount of 80% to 100% of the irreversible capacity of the first active material layer to the first active material layer, and the irreversible capacity of the second active material layer. And adding a lithium amount of 80% or more and 100% or less to the second active material layer. In order to reduce the remaining irreversible capacity, 50% or more is preferable. However, since the remaining irreversible capacity can be significantly reduced, it is more preferable to provide 80% or more. When 100% is applied, the remaining irreversible capacity can be eliminated. The application exceeding 100% does not contribute to eliminating the remaining irreversible capacity, and may lead to precipitation of excess lithium on the surface of the active material layer.

本実施の形態2では、極板の第1の活物質層および第2の活物質層にリチウムを付与後、極板のリチウムを付与するまでの間に第1の活物質層および第2の活物質層が触れる部分を、リチウムと合金化しない材料で構成することが好ましい。第1の活物質層および第2の活物質層に付与されたリチウムは、それぞれ第1の活物質層および第2の活物質層に吸収されるまではその表面に存在しているため、極板と接触する部分がリチウムと反応することでローラが汚染されたり、ローラと極板とが接着されて走行不良になることを防止できるからである。リチウムと合金化しない材料であればどのようなものでもよいが、ローラ形状やローラ表面層への加工容易性、更にコストの観点から、銅、ニッケル、クロム、ステンレス、またはフッ素あるいは含フッ素樹脂からなる材料を用いることが望ましい。これらの材料を極板と接触する部分で用いると、その部分でのリチウムとの反応を防止して、極板の安定な走行を確保することができる。   In Embodiment 2, after the lithium is applied to the first active material layer and the second active material layer of the electrode plate, the first active material layer and the second active material layer are applied before the lithium of the electrode plate is applied. It is preferable that the portion that is in contact with the active material layer is formed of a material that is not alloyed with lithium. The lithium applied to the first active material layer and the second active material layer is present on the surface until it is absorbed by the first active material layer and the second active material layer, respectively. This is because it is possible to prevent the roller from being contaminated due to the reaction between the portion in contact with the plate and lithium, or the roller and the electrode plate being bonded to each other to cause poor running. Any material that does not form an alloy with lithium may be used, but from the viewpoint of roller shape and ease of processing into the roller surface layer, and from the viewpoint of cost, copper, nickel, chromium, stainless steel, fluorine, or fluorine-containing resin may be used. It is desirable to use such a material. When these materials are used in a portion in contact with the electrode plate, reaction with lithium in that portion can be prevented, and stable travel of the electrode plate can be ensured.

また、本実施の形態2において、極板の第1の活物質層および第2の活物質層にリチウムを付与後、巻き取りロール8に巻き取られるまでの時間は、付与されたリチウムと第1の活物質層および第2の活物質層とが反応するのに必要な時間よりも長くすることが好ましい。この時間は、活物質の材料や巻き取る工程の速度などによって適宜決めることが出来る。   In the second embodiment, after the lithium is applied to the first active material layer and the second active material layer of the electrode plate, the time taken to be taken up by the take-up roll 8 is the same as the applied lithium and the first active material layer. It is preferable that the time is longer than the time required for the first active material layer and the second active material layer to react. This time can be appropriately determined depending on the material of the active material, the speed of the winding process, and the like.

実施の形態1および2において、不可逆容量を軽減するためのリチウム付与の前に、極板を加熱することが好ましい。これにより極板に含有、付着している有機溶剤や水分などの蒸発成分を除去することにより、付与するリチウムと蒸発成分とが化合物を形成するのを防止することができる。またリチウム付与の後、巻取りを行うまでに、極板を加熱することが望ましい。加熱することより活物質層へのリチウムの吸収、拡散が促進され、リチウムの面内分布ムラを軽減することができる。   In the first and second embodiments, it is preferable to heat the electrode plate before applying lithium for reducing the irreversible capacity. Thereby, by removing evaporation components such as an organic solvent and moisture contained in and adhered to the electrode plate, it is possible to prevent lithium to be applied and evaporation components from forming a compound. Further, it is desirable to heat the electrode plate after winding lithium and before winding. Heating promotes absorption and diffusion of lithium into the active material layer, and can reduce in-plane distribution unevenness of lithium.

実施の形態1および2で使用できる活物質としては、リチウムと電気化学的に反応するものであれば特に制限はないが、リチウムとの反応性が比較的高いケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物からなる群より選ばれた少なくとも1つを含む負極材料に対する効果が高い。中でもSiやSnの酸化物系材料は不可逆容量の度合いが初回充電容量に対して例えば5〜70%と大きいため、リチウム付与量が多く必要となる。そのため面内でのリチウムの分布ムラが大きくなる傾向がある。従って本発明の製造方法による改善度合いが顕著である。   The active material that can be used in Embodiments 1 and 2 is not particularly limited as long as it can electrochemically react with lithium, but silicon alone, silicon alloy, silicon and oxygen, which have relatively high reactivity with lithium. A negative electrode material containing at least one selected from the group consisting of a compound containing silicon, a compound containing silicon and nitrogen, a simple substance of tin, a tin alloy, a compound containing tin and oxygen, and a compound containing tin and nitrogen High effect. In particular, since the degree of irreversible capacity is as large as, for example, 5 to 70% with respect to the initial charge capacity, an oxide-based material such as Si or Sn needs a large amount of applied lithium. Therefore, there is a tendency that uneven distribution of lithium in the surface becomes large. Therefore, the improvement degree by the manufacturing method of this invention is remarkable.

リチウムとの反応性の観点からは、活物質は非晶質または低結晶性であることが好ましい。ここでいう低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。なお結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また非晶質とは、X線回折分析で得られる回折像において、2θ=15°〜40°の範囲にブロードなピークを有することを言う。   From the viewpoint of reactivity with lithium, the active material is preferably amorphous or low crystalline. The term “low crystallinity” as used herein refers to a region where the crystal grain size is 50 nm or less. Note that the grain size of the crystal grains is calculated by the Scherrer equation from the half-value width of the peak with the highest intensity in the diffraction image obtained by X-ray diffraction analysis. The term “amorphous” means that a diffraction peak obtained by X-ray diffraction analysis has a broad peak in the range of 2θ = 15 ° to 40 °.

集電体としては、銅、ニッケルなどを含むシート状の金属箔を用いることが出来る。強度、電池としての体積効率、および取り扱いの容易性などの観点から箔の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。箔の表面は平滑であってもよいが、活物質層との付着強度を高めるために、Ra=0.1〜4μm程度の凹凸箔を用いることも出来る。箔の凹凸は活物質層を構成する粒子間に空隙を形成する効果を併せ持つ。付着力、コストなどの点から、より好ましくはRa=0.4〜2.5である。   As the current collector, a sheet-like metal foil containing copper, nickel, or the like can be used. The thickness of the foil is preferably 4 to 30 μm, more preferably 5 to 10 μm from the viewpoints of strength, volumetric efficiency as a battery, and ease of handling. The surface of the foil may be smooth, but in order to increase the adhesion strength with the active material layer, a concavo-convex foil of about Ra = 0.1 to 4 μm can be used. The unevenness of the foil also has the effect of forming voids between the particles constituting the active material layer. From the viewpoints of adhesion, cost, etc., Ra is more preferably 0.4 to 2.5.

集電体の両面に活物質層を形成するプロセスは、錬合、塗工、プレスなどのの各工程を中心とするウェットプロセスや蒸着法、スパッタ法、CVD法といったドライプロセスを用いることができる。特にドライプロセスは、活物質層が連続であるため、付与されたリチウムが活物質中に拡散しやすいので望ましい。   As a process for forming the active material layer on both surfaces of the current collector, a wet process centered on each process such as refining, coating, and pressing, and a dry process such as a vapor deposition method, a sputtering method, and a CVD method can be used. . In particular, the dry process is preferable because the active material layer is continuous, so that the provided lithium is easily diffused into the active material.

(実施の形態3)
以上の各実施の形態に示した手法により得られた負極を用いた電池について、図を参照しながら説明する。
(Embodiment 3)
A battery using the negative electrode obtained by the method described in each of the above embodiments will be described with reference to the drawings.

図3は本発明にかかる電池の一例を示す概略断面図である。図3において、所定の大きさに作製された正極11の集電体に、例えばアルミニウム製の正極リード14の一端が接続されている。実施の形態1または2に示した手法により得られた負極12の集電体には、例えばニッケル製の負極リード15の一端が接続されている。正極11と負極12とを、両極板より幅広なセパレータ13を介して捲回することで、極板群20を構成できる。セパレータ13としては、例えば厚さ20μmのポリエチレン樹脂製微多孔フィルムが適用可能であるが、これに限定されるものではない。   FIG. 3 is a schematic cross-sectional view showing an example of a battery according to the present invention. In FIG. 3, one end of a positive electrode lead 14 made of, for example, aluminum is connected to a current collector of the positive electrode 11 manufactured to a predetermined size. For example, one end of a negative electrode lead 15 made of nickel is connected to the current collector of the negative electrode 12 obtained by the method shown in the first or second embodiment. The electrode plate group 20 can be configured by winding the positive electrode 11 and the negative electrode 12 through a separator 13 wider than both electrode plates. As the separator 13, for example, a polyethylene resin microporous film having a thickness of 20 μm is applicable, but is not limited thereto.

得られた極板群20は、例えば露点温度が−60℃のドライ雰囲気において60℃真空乾燥を10時間行い、極板群20中に含まれる水分を追い出す。事前にセパレータ13および他の電池部材についても乾燥を充分に行い、電池中に持ち込む水分を低減させることが好ましい。極板群の外面はセパレータ13で介装する。この極板群20は、その上下に、それぞれ上部絶縁リング16および下部絶縁リング17を配して、例えば鉄製で表面がニッケルめっきされた電池缶18の内空間に収容される。   The obtained electrode plate group 20 is vacuum-dried at 60 ° C. for 10 hours in a dry atmosphere having a dew point temperature of −60 ° C., for example, to drive out moisture contained in the electrode plate group 20. It is preferable to sufficiently dry the separator 13 and other battery members in advance to reduce moisture brought into the battery. An outer surface of the electrode plate group is interposed by a separator 13. The electrode plate group 20 is provided with an upper insulating ring 16 and a lower insulating ring 17 on the upper and lower sides thereof, and is accommodated in an inner space of a battery can 18 made of, for example, iron and nickel-plated on the surface.

極板群には、非水電解質(図示せず)が含浸される。正極リード14の他端は、周縁に絶縁パッキン21が配された封口板19の裏面に溶接される。負極リード15の他端は、電池缶18の内底面に溶接される。電池缶18の開口を、封口板19で塞ぐことにより、円筒型のリチウムイオン二次電池が作製できる。なお非水電解質には、例えばエチレンカーボネートとプロピレンカーボネートの容積比1:1の混合溶媒にLiPFを1mol/Lの濃度で溶解した非水電解質溶液を用いることが出来るが、これに限定されるものではない。 The electrode plate group is impregnated with a non-aqueous electrolyte (not shown). The other end of the positive electrode lead 14 is welded to the back surface of a sealing plate 19 having an insulating packing 21 disposed on the periphery. The other end of the negative electrode lead 15 is welded to the inner bottom surface of the battery can 18. By closing the opening of the battery can 18 with the sealing plate 19, a cylindrical lithium ion secondary battery can be produced. As the non-aqueous electrolyte, for example, a non-aqueous electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate and propylene carbonate in a volume ratio of 1: 1 can be used, but the invention is not limited thereto. It is not a thing.

正極11に用いられる正極活物質としては、リチウムイオンを吸蔵および放出可能なLiCoO、LiNiO、LiMnなどが適用できるがこれらに限定されるものではない。 Examples of the positive electrode active material used for the positive electrode 11 include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 that can occlude and release lithium ions.

本発明は、円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電池電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。   The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention is applicable to batteries of various sealing forms, including batteries that contain power generation elements such as battery electrodes and electrolytes in metal battery cans and laminated film cases. The form is not particularly limited.

本発明は、不可逆容量の程度が大きい活物質のエネルギー密度を有効に引き出すための極板および電池の製造方法を提供するものである。本発明の製造方法により得られる極板は電池産業分野に限らず、電気化学素子全般への応用が可能である。   The present invention provides an electrode plate and a battery manufacturing method for effectively extracting the energy density of an active material having a large degree of irreversible capacity. The electrode plate obtained by the production method of the present invention is not limited to the battery industry field and can be applied to all electrochemical devices.

本発明の実施の形態1における負極の製造方法を示す模式図Schematic diagram showing a method for producing a negative electrode in Embodiment 1 of the present invention 本発明の実施の形態2における負極の製造方法を示す模式図Schematic diagram showing a method for producing a negative electrode in Embodiment 2 of the present invention 本発明の実施の形態3における電池を示す概略断面図Schematic sectional view showing a battery according to Embodiment 3 of the present invention.

符号の説明Explanation of symbols

1 排気ポンプ
2 真空槽
3 巻き出しロール
4 電池電極
5、5a、5b 搬送ローラ
6 第一キャン
7 第二キャン
8 巻き取りロール
9 リチウム付与源
10 遮蔽板
11 正極
12 負極
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁リング
17 下部絶縁リング
18 電池缶
19 封口板
20 極板群
21 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Exhaust pump 2 Vacuum tank 3 Unwinding roll 4 Battery electrode 5, 5a, 5b Conveying roller 6 1st can 7 2nd can 8 Winding roll 9 Lithium supply source 10 Shielding plate 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Negative electrode Lead 16 Upper insulating ring 17 Lower insulating ring 18 Battery can 19 Sealing plate 20 Electrode plate group 21 Insulating packing

Claims (9)

集電体の第1の面に第1の活物質層が形成され、前記集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
前記第1の活物質層および前記第2の活物質層とに真空中でリチウムを付与する工程と、を有するリチウム二次電池用負極の製造方法において、
前記リチウムを付与する工程は、前記第1の活物質層にリチウムを付与後、前記極板を巻き取る前に前記第2の活物質層にリチウムを付与する工程であること、
を特徴とするリチウム二次電池用負極の製造方法。
A pole plate having a first active material layer formed on a first surface of a current collector and a second active material layer formed on a second surface opposite to the first surface of the current collector is wound. Taking steps;
A step of providing lithium in a vacuum to the first active material layer and the second active material layer, and a method for producing a negative electrode for a lithium secondary battery,
The step of applying lithium is a step of applying lithium to the second active material layer after applying lithium to the first active material layer and before winding the electrode plate,
A method for producing a negative electrode for a lithium secondary battery.
前記リチウムを付与する工程は、前記第1の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第1の活物質層に付与する工程と、
前記第2の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第2の活物質層に付与する工程と、を含むこと、
を特徴とする請求項1記載のリチウム二次電池用負極の製造方法。
The step of applying lithium includes the step of applying to the first active material layer an amount of lithium of 80% or more and 100% or less of the irreversible capacity of the first active material layer;
Adding a lithium amount of 80% or more and 100% or less of the irreversible capacity of the second active material layer to the second active material layer,
The manufacturing method of the negative electrode for lithium secondary batteries of Claim 1 characterized by these.
前記第1の活物質層および第2の活物質層は、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物からなる群より選ばれた少なくとも1つを含むこと、
を特徴とする請求項1または2に記載のリチウム二次電池用負極の製造方法。
The first active material layer and the second active material layer include silicon alone, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a tin simple substance, a tin alloy, and tin and oxygen. Including at least one selected from the group consisting of a compound and a compound containing tin and nitrogen,
The manufacturing method of the negative electrode for lithium secondary batteries of Claim 1 or 2 characterized by these.
前記第1の活物質層にリチウムを付与後、前記極板を巻き取る前に、前記第2の活物質層にリチウム付与を行う工程において、
前記リチウムを付与された前記第1の活物質層が触れる部分は、リチウムと合金化しない材料で構成されていること、
を特徴とする請求項1から3のいずれかに記載のリチウム二次電池用負極の製造方法。
In the step of applying lithium to the second active material layer after applying lithium to the first active material layer and before winding the electrode plate,
The portion where the first active material layer provided with lithium touches is made of a material that does not alloy with lithium,
The method for producing a negative electrode for a lithium secondary battery according to any one of claims 1 to 3.
集電体の第1の面に第1の活物質層が形成され、前記集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
前記第1の活物質層および前記第2の活物質層に真空中でリチウムを付与する工程と、を有するリチウム二次電池用負極の製造方法において、
前記リチウムを付与する工程は、前記第1の活物質層および前記第2の活物質層とに同時にリチウムを付与する工程であること、
を特徴とするリチウム二次電池用負極の製造方法。
A pole plate having a first active material layer formed on a first surface of a current collector and a second active material layer formed on a second surface opposite to the first surface of the current collector is wound. Taking steps;
A step of applying lithium to the first active material layer and the second active material layer in a vacuum, and a method for producing a negative electrode for a lithium secondary battery,
The step of applying lithium is a step of simultaneously applying lithium to the first active material layer and the second active material layer;
A method for producing a negative electrode for a lithium secondary battery.
前記リチウムを付与する工程は、前記第1の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第1の活物質層に付与する工程と、
前記第2の活物質層の不可逆容量の80%以上、100%以下のリチウム量を前記第2の活物質層に付与する工程と、を含むこと、
を特徴とする請求項5記載のリチウム二次電池用負極の製造方法。
The step of applying lithium includes the step of applying to the first active material layer an amount of lithium of 80% or more and 100% or less of the irreversible capacity of the first active material layer;
Adding a lithium amount of 80% or more and 100% or less of the irreversible capacity of the second active material layer to the second active material layer,
The method for producing a negative electrode for a lithium secondary battery according to claim 5.
前記第1の活物質層および第2の活物質層は、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物からなる群より選ばれた少なくとも1つを含むこと、
を特徴とする請求項5または6に記載のリチウム二次電池用負極の製造方法。
The first active material layer and the second active material layer include silicon alone, a silicon alloy, a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a tin simple substance, a tin alloy, and tin and oxygen. Including at least one selected from the group consisting of a compound and a compound containing tin and nitrogen,
The method for producing a negative electrode for a lithium secondary battery according to claim 5 or 6.
リチウムイオンを吸蔵および放出可能な正極と、リチウムイオンを吸蔵および放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質と、を含むリチウム二次電池の製造方法であって、
前記負極の集電体の第1の面に第1の活物質層を形成する工程と、前記集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
前記第1の活物質層および前記第2の活物質層とに真空中でリチウムを付与する工程と、を有し、
前記リチウムを付与する工程は、前記第1の活物質層にリチウムを付与後、前記極板を巻き取る前に、前記第2の活物質層にリチウムを付与する工程であること、
を特徴とするリチウム二次電池の製造方法。
A lithium secondary battery comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode capable of inserting and extracting lithium ions; a separator disposed between the positive electrode and the negative electrode; and an electrolyte having lithium ion conductivity. A method for manufacturing a secondary battery, comprising:
Forming a first active material layer on a first surface of the current collector of the negative electrode; and forming a second active material layer on a second surface opposite to the first surface of the current collector. Winding the electrode plate,
Providing lithium in a vacuum to the first active material layer and the second active material layer,
The step of applying lithium is a step of applying lithium to the second active material layer after winding lithium to the first active material layer and before winding the electrode plate,
A method for producing a lithium secondary battery, comprising:
リチウムイオンを吸蔵および放出可能な正極と、リチウムイオンを吸蔵および放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、リチウムイオン伝導性を有する電解質と、を含むリチウム二次電池の製造方法であって、
前記負極の集電体の第1の面に第1の活物質層が形成され、前記集電体の第1の面に対向する第2の面に第2の活物質層が形成された極板を巻き取る工程と、
前記第1の活物質層および前記第2の活物質層に真空中でリチウムを付与する工程と、を有し、
前記リチウムを付与する工程は、前記第1の活物質層および前記第2の活物質層とに同時にリチウムを付与する工程であること、
を特徴とするリチウム二次電池の製造方法。
A lithium secondary battery comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode capable of inserting and extracting lithium ions; a separator disposed between the positive electrode and the negative electrode; and an electrolyte having lithium ion conductivity. A method for manufacturing a secondary battery, comprising:
A pole in which a first active material layer is formed on the first surface of the current collector of the negative electrode, and a second active material layer is formed on a second surface opposite to the first surface of the current collector Winding the plate,
Providing lithium in a vacuum to the first active material layer and the second active material layer,
The step of applying lithium is a step of simultaneously applying lithium to the first active material layer and the second active material layer;
A method for producing a lithium secondary battery, comprising:
JP2005317914A 2005-11-01 2005-11-01 Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery Active JP5076305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317914A JP5076305B2 (en) 2005-11-01 2005-11-01 Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317914A JP5076305B2 (en) 2005-11-01 2005-11-01 Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007128658A true JP2007128658A (en) 2007-05-24
JP5076305B2 JP5076305B2 (en) 2012-11-21

Family

ID=38151153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317914A Active JP5076305B2 (en) 2005-11-01 2005-11-01 Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5076305B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007692A1 (en) 2006-07-14 2008-01-17 Panasonic Corporation Method for pretreating electrochemical capacitor negative electrode, method for manufacturing the electrochemical capacitor negative electrode, and method for manufacturing electrochemical capacitor using the method for manufacturing the electrochemical capacitor negative electrode
JP2008098155A (en) * 2006-09-12 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for lithium secondary battery
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
JP2009135084A (en) * 2007-11-02 2009-06-18 Panasonic Corp Lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162999A (en) * 2001-11-27 2003-06-06 Nec Corp Vacuum deposition device and method therefor
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
JP2005085633A (en) * 2003-09-09 2005-03-31 Sony Corp Negative electrode and battery
JP2005251610A (en) * 2004-03-05 2005-09-15 Hitachi Ltd Lithium secondary battery using ion-irradiated carbon material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162999A (en) * 2001-11-27 2003-06-06 Nec Corp Vacuum deposition device and method therefor
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
JP2005085633A (en) * 2003-09-09 2005-03-31 Sony Corp Negative electrode and battery
JP2005251610A (en) * 2004-03-05 2005-09-15 Hitachi Ltd Lithium secondary battery using ion-irradiated carbon material and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007692A1 (en) 2006-07-14 2008-01-17 Panasonic Corporation Method for pretreating electrochemical capacitor negative electrode, method for manufacturing the electrochemical capacitor negative electrode, and method for manufacturing electrochemical capacitor using the method for manufacturing the electrochemical capacitor negative electrode
US8034642B2 (en) 2006-07-14 2011-10-11 Panasonic Corporation Method for pretreating electrochemical capacitor negative electrode, method for manufacturing the electrochemical capacitor negative electrode, and method for manufacturing electrochemical capacitor using the method for manufacturing the electrochemical capacitor negative electrode
JP2008098155A (en) * 2006-09-12 2008-04-24 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode for lithium secondary battery
JP2008305608A (en) * 2007-06-06 2008-12-18 Honjiyou Kinzoku Kk Electrode for lithium secondary battery and its manufacturing method
JP2009135084A (en) * 2007-11-02 2009-06-18 Panasonic Corp Lithium ion secondary battery
JP4563478B2 (en) * 2007-11-02 2010-10-13 パナソニック株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP5076305B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4876531B2 (en) Negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
KR100659822B1 (en) Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
JP4027966B2 (en) LITHIUM SECONDARY BATTERY ANODE, PROCESS FOR PRODUCING THE SAME, AND LITHIUM SECONDARY BATTERY HAVING A LITHIUM SECONDARY BATTERY ANODE
JP5151188B2 (en) TRANSFER FILM, ELECTRODE ELECTRODE FOR ELECTROCHEMICAL DEVICE FORMED USING THE SAME, AND LITHIUM SECONDARY BATTERY
JP4036889B2 (en) battery
US7914930B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5476612B2 (en) Method for producing transfer film and method for producing electrode plate for electrochemical device
JP2010097843A (en) Lithium-ion secondary battery
WO2011093015A1 (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
JP2005183366A (en) Energy device and its manufacturing method
JP4831946B2 (en) Non-aqueous electrolyte battery
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2007214109A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4368193B2 (en) Lithium precursor battery and method for producing lithium secondary battery
KR20070035965A (en) Non-aqueous electrolyte secondary battery
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP2010073402A (en) Method for manufacturing negative electrode for lithium secondary battery
JP2007317419A (en) Electrode for battery, manufacturing method therefor, and secondary battery
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JP2002319432A (en) Lithium secondary cell
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP5130737B2 (en) Nonaqueous electrolyte secondary battery
JP2007328932A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5076305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3