JP2011187395A - Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same - Google Patents

Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2011187395A
JP2011187395A JP2010053989A JP2010053989A JP2011187395A JP 2011187395 A JP2011187395 A JP 2011187395A JP 2010053989 A JP2010053989 A JP 2010053989A JP 2010053989 A JP2010053989 A JP 2010053989A JP 2011187395 A JP2011187395 A JP 2011187395A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
current collector
electrode active
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010053989A
Other languages
Japanese (ja)
Inventor
Noriaki Amo
則晶 天羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010053989A priority Critical patent/JP2011187395A/en
Publication of JP2011187395A publication Critical patent/JP2011187395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve in adhesion of a negative electrode collector and a negative electrode active material and control diffusion of a component of the negative electrode collector and the negative electrode active material, so that a cycle characteristic is improved, in a nonaqueous electrolyte secondary battery carrying the negative electrode active material of a simple substance of silicon or tin, or a compound including silicon or tin and oxygen, as the negative electrode active material. <P>SOLUTION: Metal foil is used as the negative electrode collector 11. An element which has a stronger tendency to form oxide than a main component of the metal foil and which, furthermore, has a rapid diffusion coefficient in the metal foil is added to the metal foil, and a negative electrode active material layer 12 is formed under an oxidizing atmosphere, so that an oxide layer 13 is formed in which the added element of the negative electrode collector 11 and the negative electrode active material layer 12 are combined, and which has a function improving adhesion of the negative electrode collector 11 and the negative electrode active material layer 12 and preventing the diffusion of the component of the negative electrode collector 11 and the negative electrode active material layer 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極板とその非水電解質二次電池用負極板の製造方法およびこれを用いた非水電解質二次電池に関するものである。   The present invention relates to a negative electrode plate for a nonaqueous electrolyte secondary battery, a method for producing the negative electrode plate for the nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery using the same.

近年、モバイル機器の高性能化および多機能化に伴い、それらの電源である二次電池の高容量化が要求されている。この要求を満足し得る二次電池として非水電解質二次電池を代表するリチウムイオン二次電池が注目されている。従来、リチウムイオン二次電池における負極活物質は、リチウムイオンを可逆的に吸蔵および放出できる材料から構成されており、現在は黒鉛系が主に用いられている。しかし、黒鉛系は理論容量密度が372mAh/gと小さく、さらに放電容量の大きい負極活物質が求められている。   In recent years, as mobile devices have higher performance and more functions, there is a demand for higher capacities of secondary batteries serving as power sources thereof. As a secondary battery that can satisfy this requirement, a lithium ion secondary battery that represents a non-aqueous electrolyte secondary battery has attracted attention. Conventionally, a negative electrode active material in a lithium ion secondary battery is composed of a material capable of reversibly occluding and releasing lithium ions, and currently, graphite is mainly used. However, there is a demand for a negative electrode active material having a theoretical capacity density as small as 372 mAh / g and a large discharge capacity.

このリチウムイオン二次電池の負極活物質のホスト構造としては、分子量が小さく多くのリチウムイオンを受容できるサイトを有すること、構造内でリチウムイオンが容易に拡散できること、負極活物質はできるだけ化学的に安定で毒性が少なく安価であること、負極活物質の生成、合成ができるだけ容易であること、サイクル特性に優れていることが求められている。   As the host structure of the negative electrode active material of this lithium ion secondary battery, it has a site that can accept a large amount of lithium ions with a small molecular weight, that lithium ions can easily diffuse in the structure, and the negative electrode active material is as chemically as possible. It is required to be stable and less toxic and inexpensive, to be as easy as possible to produce and synthesize a negative electrode active material, and to have excellent cycle characteristics.

そこで、上述の負極活物質の条件を満たすものとして、ケイ素やスズなどを用いた合金系活物質が試みられている。ケイ素ではリチウムとの電池反応によりLi4.4Si(Li22Si)なる化合物を形成し、約4000mAh/gの理論容量密度を有することが知られており、スズではリチウムとの電池反応によりLi4.4Sn(Li22Sn)なる化合物を形成し、約1000mAh/gの理論容量密度を有することが知られている。その中で、例えば、負極集電体上にスパッタリング法、CVD法、真空蒸着法または溶射法によりケイ素の薄膜を形成して、高容量の負極板を得たものが提案されている(例えば、特許文献1参照)。 Therefore, an alloy-based active material using silicon, tin, or the like has been tried as a material satisfying the above-described negative electrode active material conditions. It is known that silicon forms a compound of Li 4.4 Si (Li 22 Si 5 ) by a battery reaction with lithium and has a theoretical capacity density of about 4000 mAh / g, and tin has a battery capacity reaction with lithium. It is known to form a compound of Li 4.4 Sn (Li 22 Sn 5 ) and to have a theoretical capacity density of about 1000 mAh / g. Among them, for example, a high-capacity negative electrode plate obtained by forming a silicon thin film on a negative electrode current collector by sputtering, CVD, vacuum deposition or thermal spraying has been proposed (for example, Patent Document 1).

しかし、電池反応でリチウムイオンを吸蔵する際にケイ素では約4倍、スズでは約5倍の体積膨張が生じるため、充放電の繰り返しに伴う膨張および収縮によって負極活物質と負極集電体の間に剥離が発生するなどの問題があり、十分な充放電サイクル特性が得られない。これに対し、負極活物質としてケイ素酸化物を用いた場合に、ケイ素酸化物における酸素含有率によって充放電に伴う負極活物質の膨張率が変化することに着目し、負極活物質層の負極集電体の近傍における酸素濃度を負極活物質層の平均酸素濃度よりも高めることが提案されている。この構成によれば、負極集電体の近傍の負極活物質層の膨張が抑えられるので、負極活物質層の膨張および収縮に起因する負極板の変形を抑制できる(例えば、特許文献2参照)。   However, when lithium ions are occluded in the battery reaction, the volume expansion of silicon is about 4 times and that of tin is about 5 times. Therefore, the expansion and contraction due to repeated charge and discharge causes the expansion and contraction between the negative electrode active material and the negative electrode current collector. There are problems such as peeling, and sufficient charge / discharge cycle characteristics cannot be obtained. On the other hand, when silicon oxide is used as the negative electrode active material, attention is paid to the fact that the expansion coefficient of the negative electrode active material accompanying charge / discharge changes depending on the oxygen content in the silicon oxide. It has been proposed to increase the oxygen concentration in the vicinity of the electric body higher than the average oxygen concentration of the negative electrode active material layer. According to this configuration, since the expansion of the negative electrode active material layer in the vicinity of the negative electrode current collector can be suppressed, the deformation of the negative electrode plate due to the expansion and contraction of the negative electrode active material layer can be suppressed (for example, see Patent Document 2). .

また、負極集電体と負極活物質層との間に中間層を形成することにより、負極集電体と負極活物質層との密着性を向上させて、負極集電体から負極活物質層の剥離を防止することが提案されている。その中で、例えば、負極集電体と負極活物質層との間に、モリブデン(Mo)またはタングステン(W)を含有する中間層を設ける構成が提案されている(例えば、特許文献3参照)。   Further, by forming an intermediate layer between the negative electrode current collector and the negative electrode active material layer, adhesion between the negative electrode current collector and the negative electrode active material layer is improved, and the negative electrode current collector is changed to the negative electrode active material layer. It has been proposed to prevent delamination. Among them, for example, a configuration is proposed in which an intermediate layer containing molybdenum (Mo) or tungsten (W) is provided between the negative electrode current collector and the negative electrode active material layer (see, for example, Patent Document 3). .

再公表01/029912号公報Republished 01/029912 特開2006−107912号公報JP 2006-107912 A 特許第4082922号公報Japanese Patent No. 4082922

しかしながら、特許文献2に開示された構成では、負極集電体の近傍の負極活物質層の平均酸素濃度を高めることで充放電時の負極活物質層の膨張を抑制しているが、特にケイ素酸化物を含む負極活物質の場合、負極集電体として用いられる銅箔との密着力が弱く、負極活物質の剥離が発生しやすい。また、特許文献3に開示された構成では、中間層を設けることで負極集電体と負極活物質層の密着力が向上するものの、負極集電体の成分と負極活物質の拡散を防止する中間層ではないため、充放電を繰り返すと負極集電体の成分が負極集電体と負極活物質層の界面のみならず負極活物質層の内部にまで拡散して合金を形成し、充放電に寄与する負極活物質量が減少して容量が減少するといった問題があった。   However, in the configuration disclosed in Patent Document 2, expansion of the negative electrode active material layer during charge / discharge is suppressed by increasing the average oxygen concentration of the negative electrode active material layer in the vicinity of the negative electrode current collector. In the case of a negative electrode active material containing an oxide, the adhesive strength with a copper foil used as a negative electrode current collector is weak, and peeling of the negative electrode active material is likely to occur. Further, in the configuration disclosed in Patent Document 3, although the adhesion between the negative electrode current collector and the negative electrode active material layer is improved by providing an intermediate layer, the diffusion of the components of the negative electrode current collector and the negative electrode active material is prevented. Since it is not an intermediate layer, when charging and discharging are repeated, the components of the negative electrode current collector diffuse not only to the interface between the negative electrode current collector and the negative electrode active material layer but also to the inside of the negative electrode active material layer to form an alloy. There is a problem that the amount of the negative electrode active material that contributes to the decrease in capacity decreases.

本発明は、従来の課題を鑑みてなされたもので、負極集電体と負極活物質層の密着性向上と負極集電体の成分と負極活物質の拡散抑制とを両立させることで、非水電解質二次電池のサイクル特性を向上させることを目的としている。   The present invention has been made in view of the conventional problems, and by improving the adhesion between the negative electrode current collector and the negative electrode active material layer and suppressing the diffusion of the negative electrode current collector component and the negative electrode active material, The object is to improve the cycle characteristics of the water electrolyte secondary battery.

上記目的を達成するために本発明の非水電解質二次電池用負極板は、金属箔からなる負極集電体の表面にケイ素またはスズ単体、あるいはケイ素またはスズと酸素を含む化合物からなる負極活物質を担持させた非水系二次電池用負極板であって、負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成したことを特徴とするものである。   In order to achieve the above object, a negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode active material comprising silicon or tin alone or a compound containing silicon or tin and oxygen on the surface of a negative electrode current collector made of metal foil. An anode plate for a non-aqueous secondary battery carrying a substance, wherein an element contained in a metal foil of a negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material layer A layer is formed.

本発明の非水電解質二次電池用負極板によると、酸化性雰囲気化で負極活物質を形成する際に、負極集電体の金属箔に添加した元素が優先的に負極集電体の表面に拡散して集電体の成分と負極活物質層の間に酸化物層を形成するため、負極集電体と負極活物質層の密着性が向上する。また、この酸化物層は酸素濃度が高いためリチウムイオンを吸蔵しにくいことから、充放電に伴う体積変化の影響を小さくすることができ、負極活物質の剥離を抑制することができる。   According to the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, when the negative electrode active material is formed in an oxidizing atmosphere, the element added to the metal foil of the negative electrode current collector is preferentially the surface of the negative electrode current collector. Since the oxide layer is formed between the current collector component and the negative electrode active material layer by being diffused into the current collector, the adhesion between the negative electrode current collector and the negative electrode active material layer is improved. In addition, since this oxide layer has a high oxygen concentration and does not easily store lithium ions, it is possible to reduce the influence of volume change associated with charge and discharge and to suppress peeling of the negative electrode active material.

さらに、この酸化物層が負極集電体の主成分が負極活物質層中への拡散を防ぐバリア層として機能するため、充放電を繰り返しても負極集電体の金属箔の主成分の負極活物質層への拡散を防止して充放電に寄与する負極活物質量の減少を抑制することができる。その結果、本発明の非水電解質二次電池用負極板をリチウムイオン二次電池などの非水電解質二次電池や電気化学キャパシタといった電気化学素子に用いることにより、充放電サイクル特性の向上を図ることができる。   Furthermore, since this oxide layer functions as a barrier layer that prevents the main component of the negative electrode current collector from diffusing into the negative electrode active material layer, the negative electrode that is the main component of the metal foil of the negative electrode current collector even after repeated charge and discharge It is possible to prevent a decrease in the amount of the negative electrode active material that contributes to charge and discharge by preventing diffusion to the active material layer. As a result, the negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is used for an electrochemical element such as a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electrochemical capacitor, thereby improving charge / discharge cycle characteristics. be able to.

本発明における一実施の形態の非水電解質二次電池用負極板の断面図Sectional drawing of the negative electrode plate for nonaqueous electrolyte secondary batteries of one embodiment in this invention 本発明における一実施の形態の非水電解質二次電池用負極板の製造方法を説明するための模式図The schematic diagram for demonstrating the manufacturing method of the negative electrode plate for nonaqueous electrolyte secondary batteries of one Embodiment in this invention. 本発明の一実施例におけるリチウムイオン二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a lithium ion secondary battery according to an embodiment of the present invention. 本発明における別の一実施の形態の非水電解質二次電池用負極板の断面図Sectional drawing of the negative electrode plate for nonaqueous electrolyte secondary batteries of another one Embodiment in this invention 本発明における別の一実施の形態の非水電解質二次電池用負極板の製造方法を説明するための模式図The schematic diagram for demonstrating the manufacturing method of the negative electrode plate for nonaqueous electrolyte secondary batteries of another embodiment in this invention. 従来技術における負極板の断面図Cross-sectional view of negative electrode plate in the prior art 従来技術における別の負極板の断面図Cross-sectional view of another negative electrode plate in the prior art

本発明の第1の発明においては、金属箔からなる負極集電体の表面にケイ素またはスズ単体、あるいはケイ素またはスズと酸素を含む化合物からなる負極活物質を担持させた非水系二次電池用負極板であって、負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成することにより、負極集電体と負極活物質層の密着性を改善することで、負極活物質の剥離を抑制することができる。   In the first aspect of the present invention, for a non-aqueous secondary battery in which a negative electrode current collector made of metal foil is supported on a surface of a negative electrode current collector made of a metal foil, or a negative electrode active material made of a compound containing silicon or tin and oxygen. A negative electrode current collector is formed by forming an oxide layer in which an element contained in a metal foil of a negative electrode current collector is diffused in a negative electrode active material at an interface between the negative electrode current collector and the negative electrode active material layer By improving the adhesion between the negative electrode active material layer and the negative electrode active material layer, peeling of the negative electrode active material can be suppressed.

本発明の第2の発明においては、負極集電体の金属箔に含まれる元素を金属箔の主成分よりも酸化物の形成傾向が強く、且つ金属箔中の拡散速度の速い元素とすることにより、負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成することで、負極集電体の成分と負極活物質の拡散を抑制することができる。   In the second invention of the present invention, the element contained in the metal foil of the negative electrode current collector is an element that has a stronger tendency to form an oxide than the main component of the metal foil and has a high diffusion rate in the metal foil. By forming an oxide layer in which an element contained in the metal foil of the negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material layer, the components of the negative electrode current collector and the negative electrode The diffusion of the active material can be suppressed.

本発明の第3の発明においては、負極集電体の金属箔の主成分を銅とし、この金属箔に含まれる元素をMn,Nb,Zr,Cr,V,Tc,Rcの少なくとも1種類以上とすることにより、負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成することで、負極活物質の剥離の抑制と負極集電体の成分と負極活物質の拡散を抑制することができる。   In the third aspect of the present invention, the main component of the metal foil of the negative electrode current collector is copper, and the element contained in the metal foil is at least one of Mn, Nb, Zr, Cr, V, Tc, and Rc. By forming an oxide layer in which an element contained in the metal foil of the negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material layer, the negative electrode active material is peeled off. And the diffusion of the negative electrode current collector component and the negative electrode active material can be suppressed.

本発明の第4の発明においては、負極集電体として負極活物質を担持する金属箔の表面に多数の凹凸を形成することにより、負極活物質層の形成時に隣接する負極活物質層の間に空隙を形成することが可能となり、充電時の負極活物質層の横方向の膨張による接触を抑制する空隙が確保されることで、負極活物質の剥離を抑制することができる。   In the fourth invention of the present invention, a large number of irregularities are formed on the surface of the metal foil carrying the negative electrode active material as the negative electrode current collector, so that the negative electrode active material layers are adjacent to each other when forming the negative electrode active material layer. It is possible to form voids in the substrate, and separation of the negative electrode active material can be suppressed by securing a void that suppresses contact due to lateral expansion of the negative electrode active material layer during charging.

本発明の第5の発明においては、酸化物の形成傾向が強く、且つ金属箔中の拡散速度の速い元素を含んだ金属箔からなる負極集電体を酸素雰囲気中でケイ素またはスズと酸素の化合物からなる負極活物質の成膜処理を行い、この成膜時の熱反応により負極集電体と負極活物質の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させることにより、簡便な方法で酸化物層を形成することができる。   In the fifth invention of the present invention, a negative electrode current collector made of a metal foil containing an element having a strong tendency to form an oxide and having a high diffusion rate in the metal foil is obtained by combining silicon or tin with oxygen in an oxygen atmosphere. A negative electrode active material made of a compound is formed, and an element contained in the metal foil of the negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material by a thermal reaction during the film formation. Thus, the oxide layer can be formed by a simple method.

本発明の第6の発明においては、酸化物の形成傾向が強く、且つ金属箔中の拡散係数の速い元素を含んだ金属箔からなる負極集電体を酸素雰囲気中でケイ素またはスズと酸素の化合物からなる負極活物質の成膜処理を行った後、熱処理を行って負極集電体と負極活物質の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させることにより、熱処理を行わない場合よりも酸化物層の形成を促進することができる。   In the sixth aspect of the present invention, a negative electrode current collector made of a metal foil containing an element having a strong oxide formation tendency and a fast diffusion coefficient in the metal foil is prepared by using silicon or tin and oxygen in an oxygen atmosphere. After the negative electrode active material made of a compound is formed, heat treatment is performed to diffuse the elements contained in the metal foil of the negative electrode current collector into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material. The formation of the oxide layer can be promoted more than when no heat treatment is performed.

本発明の第7の発明においては、正極集電体の表面に正極活物質を形成した正極板と負極集電体の表面に負極活物質を形成した負極板とを多孔質絶縁層を介して巻回または積層して構成した電極群を非水電解液とともに電池ケースに封入してなる非水電解質二次電池において、負極板として発明の第1〜第4のいずれかの非水電解質二次電池用負極板を用いたことにより、サイクル特性を改善することができる。   In a seventh aspect of the present invention, a positive electrode plate having a positive electrode active material formed on the surface of the positive electrode current collector and a negative electrode plate having a negative electrode active material formed on the surface of the negative electrode current collector are interposed via a porous insulating layer. In a non-aqueous electrolyte secondary battery in which an electrode group formed by winding or stacking is enclosed in a battery case together with a non-aqueous electrolyte, the non-aqueous electrolyte secondary according to any one of the first to fourth aspects of the invention as a negative electrode plate By using the negative electrode plate for a battery, cycle characteristics can be improved.

次に以下、本発明の実施の形態について図を参照しながら説明する。図1は、本発明の一実施の形態の負極板の模式的な断面図である。負極板10は、例えば負極集電体11と負極集電体11に設けられた負極活物質層12と負極集電体11と負極活物質層12との間に設けられた酸化物層13とを有している。酸化物層13は負極集電体11の全面あるいは一部を覆っており、負極活物質層12は酸化物層13上に形成されている。負極活物質層12および酸化物層13は、負極集電体11の両面に形成されていてもよく、片面のみに形成されていてもよい。   Next, embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a negative electrode plate according to an embodiment of the present invention. The negative electrode plate 10 includes, for example, a negative electrode current collector 11, a negative electrode active material layer 12 provided on the negative electrode current collector 11, and an oxide layer 13 provided between the negative electrode current collector 11 and the negative electrode active material layer 12. have. The oxide layer 13 covers the whole surface or a part of the negative electrode current collector 11, and the negative electrode active material layer 12 is formed on the oxide layer 13. The negative electrode active material layer 12 and the oxide layer 13 may be formed on both surfaces of the negative electrode current collector 11 or may be formed only on one surface.

負極集電体11は、リチウムと金属間化合物を形成しない金属元素の少なくとも1種類を主成分とする高い導電性を有する金属箔と、主成分よりも酸化物を形成する傾向が強くしかも金属箔の主成分中の拡散速度が速い元素が少なくとも1種類添加されることにより構成されている。リチウムと金属間化合物を形成すると、充放電に伴い膨張および収縮し、構造破壊が発生して、集電性が低下する他、負極活物質層12を保持する能力が小さくなり負極活物質層12が負極集電体11から脱落し易くなるからである。金属箔に添加する添加元素として、例えば、負極集電体の金属箔の主成分が銅の場合、Mn,Nb,Zr,Cr,V,Tc,Rcの少なくとも1種類以上が望ましく、特にMnが望ましい。   The negative electrode current collector 11 has a highly conductive metal foil mainly composed of at least one metal element that does not form an intermetallic compound with lithium, and has a stronger tendency to form an oxide than the main component. In the main component, at least one element having a high diffusion rate is added. When lithium and an intermetallic compound are formed, they expand and contract with charge / discharge, structural breakdown occurs, current collection performance decreases, and the ability to hold the negative electrode active material layer 12 decreases and the negative electrode active material layer 12 This is because it becomes easy to drop off from the negative electrode current collector 11. As an additive element to be added to the metal foil, for example, when the main component of the metal foil of the negative electrode current collector is copper, at least one of Mn, Nb, Zr, Cr, V, Tc, and Rc is desirable. desirable.

酸化物層13は、酸化性雰囲気下で負極活物質層12を成膜することで形成される。すなわち、負極活物質を酸化性雰囲気下で成膜する際、まず負極集電体11中の酸化物の形成傾向が強い添加元素が負極集電体11の表面に優先的に拡散する。そして、負極集電体11の表面に拡散した添加元素と負極活物質の酸化物が酸化物層13を形成する。この酸化物層13の形成を促進するために、酸化性雰囲気下で熱処理を行っても良い。   The oxide layer 13 is formed by forming the negative electrode active material layer 12 in an oxidizing atmosphere. That is, when the negative electrode active material is formed in an oxidizing atmosphere, first, an additive element having a strong oxide formation tendency in the negative electrode current collector 11 is preferentially diffused on the surface of the negative electrode current collector 11. The additive element diffused on the surface of the negative electrode current collector 11 and the oxide of the negative electrode active material form the oxide layer 13. In order to promote the formation of the oxide layer 13, heat treatment may be performed in an oxidizing atmosphere.

負極活物質層12は、例えば、負極活物質として、リチウムと合金を形成可能な元素の単体、合金および化合物からなる群のうちの少なくとも1種を含んで構成されている。中でも、負極活物質としては、ケイ素の単体、一般式SiO(0<x≦2)で表されるケイ素酸化物、またはスズの単体、一般式SnO(0<y≦2)で表されるスズ酸化物からなる群のうちの少なくとも1種を含むことが好ましい。さらに、負極活物質層12全体でみたときの酸素量の平均値をOav12とし、酸化物層13全体でみたときの酸素量の平均値をOM13とすると、OM13>Oav12の関係が満たされている。OM13>Oav12の関係にすることで、充電時のリチウムの吸蔵による酸化物層13膨張を抑制することが可能となり、酸化物層13、負極活物質層12の剥離を抑制することができる。 The negative electrode active material layer 12 includes, for example, at least one selected from the group consisting of a single element, an alloy, and a compound capable of forming an alloy with lithium as a negative electrode active material. Among them, the negative electrode active material is represented by a simple substance of silicon, a silicon oxide represented by a general formula SiO x (0 <x ≦ 2), or a simple substance of tin, a general formula SnO y (0 <y ≦ 2). It is preferable to include at least one member selected from the group consisting of tin oxides. Further, when the average value of the oxygen amount when viewed from the whole negative electrode active material layer 12 is O av12 and the average value of the oxygen amount when viewed from the whole oxide layer 13 is O M13 , the relationship of O M13 > O av12 is obtained. be satisfied. By making the relationship O M13 > O av12 , it is possible to suppress expansion of the oxide layer 13 due to occlusion of lithium during charging, and it is possible to suppress separation of the oxide layer 13 and the negative electrode active material layer 12. .

負極活物質層12は、例えば、蒸着法、スパッタリング法、CVD法および焼結法からなる群のうちの少なくとも1つの方法により形成されたものであることが好ましい。ここで、OM13>Oav12の関係を満たすようにするためには、例えば蒸着法では雰囲気ガスの酸素濃度を変化させることでOM13>Oav12とすることが可能となる。すなわち、雰囲気ガス中の酸素濃度が時間の経過とともに減少するようにしたり、負極活物質層12の形成開始から所定時間までは酸素濃度C1とし、それ以降はC1よりも低い濃度C2とするようにしたりすることで形成することができる。 The negative electrode active material layer 12 is preferably formed by at least one method selected from the group consisting of a vapor deposition method, a sputtering method, a CVD method, and a sintering method, for example. Here, in order to satisfy the relationship of O M13 > O av12 , for example, in the vapor deposition method, it is possible to satisfy O M13 > O av12 by changing the oxygen concentration of the atmospheric gas. That is, the oxygen concentration in the atmospheric gas is decreased with time, or the oxygen concentration C1 is set from the start of formation of the negative electrode active material layer 12 to a predetermined time, and thereafter, the concentration C2 is lower than C1. Can be formed.

この負極板10は、例えば金属箔からなる負極集電体11を用意し、図2に示すような蒸着装置を用いて負極集電体11の表面にケイ素および酸素を供給して、所望の化学組成を有するケイ素酸化物あるいはケイ素単体を蒸着させることによって行うことができる。図2に示す蒸着装置50は、真空槽76と、真空槽76を排気するための排気ポンプ77とを備えている。真空槽76の内部には、負極集電体11を保持する巻き出しローラ51および巻き取りローラ52と、走行ローラ53および走行ローラ54と、冷却ローラ55と、酸素ガスを出射するための酸素ノズル64と、ケイ素を供給するための蒸発源であるケイ素原料73と、ケイ素原料73を保持する蒸発ルツボ74と、ケイ素原料73を蒸発させるための電子照射部75とを備えている。酸素ノズル64は、配管を介して、酸素流量制御部65および酸素ボンベ(図示せず)と接続されている。   For this negative electrode plate 10, a negative electrode current collector 11 made of, for example, a metal foil is prepared, and silicon and oxygen are supplied to the surface of the negative electrode current collector 11 using a vapor deposition apparatus as shown in FIG. It can be carried out by depositing silicon oxide having a composition or silicon simple substance. The vapor deposition apparatus 50 shown in FIG. 2 includes a vacuum chamber 76 and an exhaust pump 77 for exhausting the vacuum chamber 76. Inside the vacuum chamber 76 are an unwinding roller 51 and a winding roller 52 that hold the negative electrode current collector 11, a traveling roller 53 and a traveling roller 54, a cooling roller 55, and an oxygen nozzle for emitting oxygen gas. 64, a silicon raw material 73 that is an evaporation source for supplying silicon, an evaporation crucible 74 that holds the silicon raw material 73, and an electron irradiation unit 75 for evaporating the silicon raw material 73. The oxygen nozzle 64 is connected to an oxygen flow rate control unit 65 and an oxygen cylinder (not shown) via a pipe.

また、真空槽76の内部には遮蔽板59が設けられており、酸素ノズル64から出射された酸素およびケイ素原料73から蒸発したケイ素は、遮蔽板59の隙間を介して、冷却ローラ55の上の負極集電体11の表面に、負極集電体11の法線方向から供給される。遮蔽板59の隙間によって規定され、負極集電体11の表面に酸素およびケイ素が供給さ
れる領域を負極活物質形成領域70と称する。
In addition, a shielding plate 59 is provided inside the vacuum chamber 76, and oxygen emitted from the oxygen nozzle 64 and silicon evaporated from the silicon raw material 73 are placed on the cooling roller 55 through the gap of the shielding plate 59. The surface of the negative electrode current collector 11 is supplied from the normal direction of the negative electrode current collector 11. A region defined by a gap between the shielding plates 59 and supplied with oxygen and silicon on the surface of the negative electrode current collector 11 is referred to as a negative electrode active material forming region 70.

このような蒸着装置50を用いて負極板10を形成する方法を以下に説明する。金属箔からなる負極集電体11を巻き出しローラ51に設置し、真空排気ポンプ77によって真空槽76の排気を行う。真空槽76の真空度が所定の真空度に達すると、真空槽76の排気を行いながら負極集電体11を、巻き出しローラ51から走行ローラ53を介して冷却ローラ55に沿って走行させる。その間に、蒸発ルツボ74に入ったケイ素原料73に電子照射部75から電子を照射して、ケイ素を融解、蒸発させる。ケイ素の蒸発量は、膜厚モニタ63に接続された膜厚コントローラ(図示せず)を用いて制御する。同時に、酸素ノズル64から所定量の酸素を真空槽76に導入する。酸素の流量は、酸素流量制御部65で制御される。   A method of forming the negative electrode plate 10 using such a vapor deposition apparatus 50 will be described below. The negative electrode current collector 11 made of metal foil is placed on the unwinding roller 51, and the vacuum chamber 76 is evacuated by the vacuum evacuation pump 77. When the vacuum degree of the vacuum chamber 76 reaches a predetermined vacuum level, the negative electrode current collector 11 is caused to travel along the cooling roller 55 from the unwinding roller 51 through the traveling roller 53 while exhausting the vacuum chamber 76. Meanwhile, the silicon raw material 73 contained in the evaporation crucible 74 is irradiated with electrons from the electron irradiation unit 75 to melt and evaporate silicon. The evaporation amount of silicon is controlled by using a film thickness controller (not shown) connected to the film thickness monitor 63. At the same time, a predetermined amount of oxygen is introduced from the oxygen nozzle 64 into the vacuum chamber 76. The oxygen flow rate is controlled by the oxygen flow rate control unit 65.

ケイ素および酸素は、遮蔽板59の隙間を通過して、負極活物質層形成領域70において、冷却ローラ55を走行する負極集電体11の表面に供給される。活物質層形成領域70では、走行している負極集電体11に対して法線方向からケイ素酸化物あるいはケイ素単体が入射して堆積する。負極集電体11にケイ素酸化物が堆積する際、ケイ素酸化物と酸素と負極集電体11の表面に拡散した添加元素が酸化物層13を形成する。   Silicon and oxygen pass through the gap of the shielding plate 59 and are supplied to the surface of the negative electrode current collector 11 running on the cooling roller 55 in the negative electrode active material layer forming region 70. In the active material layer forming region 70, silicon oxide or silicon simple substance is incident and deposited on the traveling negative electrode current collector 11 from the normal direction. When silicon oxide is deposited on the negative electrode current collector 11, silicon oxide, oxygen, and additive elements diffused on the surface of the negative electrode current collector 11 form an oxide layer 13.

酸化物層13が形成された負極集電体11は、走行ローラ54を介して巻き取りローラ52によって巻き取られる。その後、酸素流量制御部65を操作して酸素の流量を所定量に調整した後、酸化物層13が形成された負極集電体11を巻き取りローラ52から走行ローラ54を介して冷却ローラ55に沿って走行させてケイ素酸化物あるいはケイ素単体の成膜を行い、負極活物質層12の形成を行う。酸化物層13上に負極活物質層12が形成された負極集電体11は巻き出しローラ51に巻き取られる。酸素の流量を調整し、ケイ素酸化物あるいはケイ素単体の堆積を行いながら、巻き出しローラ51と巻き取りローラ52の往復を複数回繰り返すことで負極板10を形成する。   The negative electrode current collector 11 on which the oxide layer 13 is formed is taken up by the take-up roller 52 via the traveling roller 54. Thereafter, the oxygen flow rate control unit 65 is operated to adjust the flow rate of oxygen to a predetermined amount, and then the negative electrode current collector 11 on which the oxide layer 13 is formed is taken from the take-up roller 52 through the running roller 54 and the cooling roller 55. The negative electrode active material layer 12 is formed by forming a film of silicon oxide or silicon alone. The negative electrode current collector 11 in which the negative electrode active material layer 12 is formed on the oxide layer 13 is wound around the unwinding roller 51. The negative electrode plate 10 is formed by repeating the reciprocation of the unwinding roller 51 and the winding roller 52 a plurality of times while adjusting the flow rate of oxygen and depositing silicon oxide or silicon alone.

次に、本実施の形態の負極板10を適用して得られた非水電解質二次電池の構成の一例を説明する。図3は、本実施の形態の負極板10を用いた非水電解質二次電池の一例としての円筒形のリチウムイオン二次電池100を縦に切断した一部切欠斜視図である。図3の円筒形のリチウムイオン二次電池100においては、複合リチウム酸化物を活物質とする正極板105と負極板10とを多孔質絶縁体108を介して渦巻状に捲回して電極群109が作製される。   Next, an example of a configuration of a nonaqueous electrolyte secondary battery obtained by applying the negative electrode plate 10 of the present embodiment will be described. FIG. 3 is a partially cutaway perspective view of a cylindrical lithium ion secondary battery 100 as an example of a nonaqueous electrolyte secondary battery using the negative electrode plate 10 of the present embodiment, cut vertically. In the cylindrical lithium ion secondary battery 100 of FIG. 3, a positive electrode plate 105 and a negative electrode plate 10 using a composite lithium oxide as an active material are wound in a spiral shape via a porous insulator 108, and an electrode group 109. Is produced.

電極群109は、有底円筒形の電池ケース101の内部に、絶縁板102により電池ケース101とは絶縁されて収容される一方、電極群109の下部より導出した負極リード106が電池ケース101の底部に接続されるとともに、電極群109の上部より導出した正極リード107が封口板104に接続される。また、電池ケース101は、所定量の非水溶媒からなる電解液(図示せず)が注液された後、開口部に封口ガスケット103を周縁に取り付けた封口板104を挿入し、電池ケース101の開口部を内方向に折り曲げてかしめ封口される。   The electrode group 109 is housed inside the bottomed cylindrical battery case 101 while being insulated from the battery case 101 by the insulating plate 102, while the negative electrode lead 106 led out from the lower part of the electrode group 109 has the battery case 101. The positive electrode lead 107 led out from the upper part of the electrode group 109 is connected to the sealing plate 104 while being connected to the bottom. In addition, the battery case 101 is injected with a predetermined amount of an electrolyte solution (not shown) made of a non-aqueous solvent, and then a sealing plate 104 with a sealing gasket 103 attached to the periphery is inserted into the opening, and the battery case 101 is inserted. The opening is folded inward and crimped.

正極板105は、例えば、正極集電体と正極集電体に設けられた正極活物質層とを有しており、正極活物質層側が多孔質絶縁体108と接するように配置されている。正極集電体は、例えば、アルミニウム、ニッケルあるいはステンレスなどにより構成されている。正極活物質層は、例えば、正極活物質としてリチウムを吸蔵および離脱することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電材およびポリフッ化ビニリデンなどのバインダーを含んでいてもよい。リチウムを吸蔵および離脱することが可能な正極材料としては、例えば、一般式LiMOで表されるリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物は、高電圧を発生可
能であると共に、高密度であるため、リチウムイオン二次電池の更なる高容量化を図ることができるからである。
The positive electrode plate 105 includes, for example, a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector, and is disposed so that the positive electrode active material layer side is in contact with the porous insulator 108. The positive electrode current collector is made of, for example, aluminum, nickel, stainless steel, or the like. The positive electrode active material layer includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a conductive material such as a carbon material and a polyfluoride as necessary. A binder such as vinylidene chloride may be included. As a positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing metal composite oxide represented by a general formula Li Z MO 2 is preferable. This is because the lithium-containing metal composite oxide can generate a high voltage and has a high density, so that the capacity of the lithium ion secondary battery can be further increased.

なお、LiMOのMは1種類以上の遷移金属であり、例えばコバルトおよびニッケルのうちの少なくとも一方が好ましい。また、LiMOのZは電池の充放電状態によって異なり、通常0.05≦Z≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO、LiNiOあるいはLiMnなどがあげられる。 Note that M in Li Z MO 2 is one or more transition metals, and for example, at least one of cobalt and nickel is preferable. Further, Z of Li Z MO 2 varies depending on the charge / discharge state of the battery, and is usually a value in the range of 0.05 ≦ Z ≦ 1.10. Specific examples of such a lithium-containing metal composite oxide include LiCoO 2 , LiNiO 2, LiMn 2 O 4 and the like.

正極板105は、例えば、正極活物質と導電材とバインダーとを混合して合剤を調製し、この合剤をN−メチルピロリドンなどの分散媒に分散させて合剤スラリーを作製し、この合剤スラリーを金属箔よりなる正極集電体に塗布し乾燥させたのち、圧縮成型して正極活物質層を形成することにより作製することができる。多孔質絶縁体108は、負極板10と正極板105とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。この多孔質絶縁体108は、例えば、ポリエチレンやポリプロピレンにより構成されており、液状の電解質である非水電解液が含浸されている。   For example, the positive electrode plate 105 is prepared by mixing a positive electrode active material, a conductive material, and a binder to prepare a mixture, and dispersing the mixture in a dispersion medium such as N-methylpyrrolidone to prepare a mixture slurry. The mixture slurry is applied to a positive electrode current collector made of a metal foil, dried, and then compression molded to form a positive electrode active material layer. The porous insulator 108 separates the negative electrode plate 10 and the positive electrode plate 105 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes. The porous insulator 108 is made of, for example, polyethylene or polypropylene, and is impregnated with a nonaqueous electrolytic solution that is a liquid electrolyte.

この非水電解液は、例えば、溶媒と、この溶媒に溶解された電解質塩であるリチウム塩と含んでおり、必要に応じて添加剤を含んでいてもよい。溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートあるいはエチルメチルカーボネート等の有機溶媒があげられ、これらのいずれか1種または2種以上を混合して用いてもよい。リチウム塩としては、例えば、LiPF、LiCFSOあるいはLiClOがあげられ、これらのいずれか1種または2種以上を混合して用いてもよい。 This nonaqueous electrolytic solution contains, for example, a solvent and a lithium salt that is an electrolyte salt dissolved in the solvent, and may contain an additive as necessary. Examples of the solvent include organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Any one or a combination of these may be used. Examples of the lithium salt include LiPF 6 , LiCF 3 SO 3, and LiClO 4 , and one or more of these may be used in combination.

次に以下、本発明の別の実施の形態について図を参照しながら説明する。図4は、本実施の形態の負極板の模式的な断面図である。負極板20は、例えば、表面粗さRaの大きい凹凸を有する負極集電体21と、負極集電体21に設けられた負極活物質層22と、負極集電体21と負極活物質層22との間に設けられた酸化物層23とを有している。酸化物層23は負極集電体21の凹凸上の全面あるいは一部を覆っており、負極活物質層22は酸化物層23上に形成されている。特に、負極活物質層22は負極集電体21の凸部を大きく覆うように形成されている。ここでいう「表面粗さRa」とは、日本工業規格(JISB0601―1994)に定められた「算術平均粗さRa」を指し、例えば表面粗さ計などを用いて測定できる。   Next, another embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a schematic cross-sectional view of the negative electrode plate of the present embodiment. The negative electrode plate 20 includes, for example, a negative electrode current collector 21 having unevenness with a large surface roughness Ra, a negative electrode active material layer 22 provided on the negative electrode current collector 21, a negative electrode current collector 21, and a negative electrode active material layer 22. And an oxide layer 23 provided therebetween. The oxide layer 23 covers the whole or part of the unevenness of the negative electrode current collector 21, and the negative electrode active material layer 22 is formed on the oxide layer 23. In particular, the negative electrode active material layer 22 is formed so as to largely cover the convex portion of the negative electrode current collector 21. “Surface roughness Ra” here refers to “arithmetic average roughness Ra” defined in Japanese Industrial Standards (JISB0601-1994), and can be measured using, for example, a surface roughness meter.

負極集電体21の表面粗さRaは0.3μm以上5.0μm以下が好ましい。表面粗さRaが0.3μm以上であれば、隣接する負極活物質層22の間に十分な空隙をより確実に形成することができ、充電時の負極活物質層22の横方向の膨張による接触を抑制する空隙の確保が可能となる。一方、表面粗さRaが大きすぎると負極集電体21が厚くなって負極板の単位体積あたりの容量が減少してしまうため、表面粗さRaは5.0μm以下であることが好ましい。負極活物質層22および酸化物層23は、負極集電体21の両面に形成されていてもよく、片面のみに形成されていてもよい。   The surface roughness Ra of the negative electrode current collector 21 is preferably 0.3 μm or more and 5.0 μm or less. When the surface roughness Ra is 0.3 μm or more, a sufficient gap can be formed between the adjacent negative electrode active material layers 22 more reliably, which is caused by the lateral expansion of the negative electrode active material layer 22 during charging. It is possible to secure a gap that suppresses contact. On the other hand, if the surface roughness Ra is too large, the negative electrode current collector 21 becomes thick and the capacity per unit volume of the negative electrode plate decreases, so the surface roughness Ra is preferably 5.0 μm or less. The negative electrode active material layer 22 and the oxide layer 23 may be formed on both surfaces of the negative electrode current collector 21, or may be formed only on one surface.

負極集電体21は、リチウムと金属間化合物を形成しない金属元素の少なくとも1種類を主成分とする高い導電性を有する金属箔と、主成分よりも酸化物の形成傾向が強くしかも金属箔主成分中の拡散速度が速い元素が少なくとも1種類添加されることにより構成されている。リチウムと金属間化合物を形成すると、充放電に伴い膨張および収縮し、構造破壊が起こって、集電性が低下する他、負極活物質層22を支える能力が小さくなり負極活物質層22が負極集電体21から脱落し易いからである。添加元素の例としては、たとえば、負極集電体21の金属箔の主成分が銅の場合、Mn,Nb,Zr,Cr,V,Tc
,Rcの少なくとも1種類以上が望ましく、特にMnが望ましい。
The negative electrode current collector 21 includes a highly conductive metal foil mainly composed of at least one metal element that does not form an intermetallic compound with lithium, a metal foil that has a higher tendency to form an oxide than the main component, It is constituted by adding at least one element having a high diffusion rate among the components. When an intermetallic compound is formed with lithium, it expands and contracts with charge / discharge, structural breakdown occurs, current collection performance decreases, and the ability to support the negative electrode active material layer 22 decreases, so that the negative electrode active material layer 22 becomes a negative electrode. This is because it is easy to drop off from the current collector 21. As an example of the additive element, for example, when the main component of the metal foil of the negative electrode current collector 21 is copper, Mn, Nb, Zr, Cr, V, Tc
, Rc are desirable, and Mn is particularly desirable.

酸化物層23は、酸化性雰囲気下で負極活物質層22を成膜することで形成される。すなわち、負極活物質を酸化性雰囲気下で成膜する際、まず負極集電体21中の酸化物の形成傾向が強い添加元素が負極集電体21の表面に優先的に拡散する。そして、負極集電体21の表面に拡散した添加元素と負極活物質の酸化物が酸化物層23を形成する。この酸化物層23の形成を促進するために、酸化性雰囲気下で熱処理を行っても良い。   The oxide layer 23 is formed by forming the negative electrode active material layer 22 in an oxidizing atmosphere. That is, when the negative electrode active material is formed in an oxidizing atmosphere, first, an additive element having a strong oxide formation tendency in the negative electrode current collector 21 is preferentially diffused on the surface of the negative electrode current collector 21. The additive element diffused on the surface of the negative electrode current collector 21 and the oxide of the negative electrode active material form the oxide layer 23. In order to promote the formation of the oxide layer 23, heat treatment may be performed in an oxidizing atmosphere.

負極活物質層22は、例えば、負極活物質として、リチウムと合金を形成可能な元素の単体、合金および化合物からなる群のうちの少なくとも1種を含んで構成されている。中でも、負極活物質としては、ケイ素の単体、一般式SiO(0<x≦2)で表される酸化物またはスズの単体、一般式SnO(0<y≦2)で表される酸化物からなる群のうちの少なくとも1種を含むことが好ましい。さらに、負極活物質層22全体でみたときの酸素量の平均値をOav22とし、酸化物層23全体でみたときの酸素量の平均値をOM23とすると、OM23>Oav22の関係が満たされている。OM23>Oav22の関係にすることで、充電時のリチウムの吸蔵による酸化物層23の膨張を抑制することが可能となり、酸化物層23、負極活物質層22の剥離を抑制することができる。 The negative electrode active material layer 22 includes, for example, at least one selected from the group consisting of a single element, an alloy, and a compound of an element capable of forming an alloy with lithium as a negative electrode active material. Among these, as the negative electrode active material, a simple substance of silicon, an oxide represented by a general formula SiO x (0 <x ≦ 2) or a simple substance of tin, an oxidation represented by a general formula SnO y (0 <y ≦ 2). It is preferable to include at least one member selected from the group consisting of products. Furthermore, when the average value of the oxygen amount when viewed from the whole negative electrode active material layer 22 is O av22 and the average value of the oxygen amount when viewed from the whole oxide layer 23 is O M23 , the relationship of O M23 > O av22 is obtained. be satisfied. By making the relationship O M23 > O av22 , it is possible to suppress the expansion of the oxide layer 23 due to occlusion of lithium during charging, and to suppress the separation of the oxide layer 23 and the negative electrode active material layer 22. it can.

負極活物質層22は、例えば、蒸着法、スパッタリング法および焼結法からなる群のうちの少なくとも1つの方法により形成されたものであることが好ましい。OM23>Oav22の関係を満たすようにするためには、例えば蒸着法では雰囲気ガスの酸素濃度を変化させることでOM23>Oav22とすることができる。すなわち、雰囲気ガス中の酸素濃度が時間の経過とともに減少するようにしたり、負極活物質層22の形成開始から所定時間までは酸素濃度C3とし、それ以降はC3よりも低い濃度C4とするようにしたりすることで形成することができる。 The negative electrode active material layer 22 is preferably formed by at least one method selected from the group consisting of a vapor deposition method, a sputtering method, and a sintering method, for example. In order to satisfy the relationship of O M23 > O av22 , for example, in the vapor deposition method, O M23 > O av22 can be achieved by changing the oxygen concentration of the atmospheric gas. That is, the oxygen concentration in the atmospheric gas is decreased with time, or the oxygen concentration C3 is set from the start of the formation of the negative electrode active material layer 22 to a predetermined time, and thereafter, the concentration C4 is lower than C3. Can be formed.

この負極板20は、例えば金属箔からなる負極集電体21を用意し、図5に示すような蒸着装置を用いて負極集電体21の表面にケイ素および酸素を供給して、所望の化学組成を有するケイ素酸化物あるいはケイ素単体を蒸着させることによって行うことができる。図5に示す蒸着装置80は、真空槽76と、真空槽76を排気するための真空排気ポンプ77とを備えている。真空槽76の内部には、負極集電体21を保持する巻き出しローラ51および巻き取りローラ52と、走行ローラ53および54と、冷却ローラ56,57および58と、酸素ガスを出射するための酸素ノズル66および68と、ケイ素を供給するための蒸発源であるケイ素原料73と、ケイ素原料73を保持する蒸発ルツボ74と、ケイ素原料73を蒸発させるための電子照射部75とを備えている。   For this negative electrode plate 20, a negative electrode current collector 21 made of, for example, a metal foil is prepared, and silicon and oxygen are supplied to the surface of the negative electrode current collector 21 using a vapor deposition apparatus as shown in FIG. It can be carried out by depositing silicon oxide having a composition or silicon simple substance. The vapor deposition apparatus 80 shown in FIG. 5 includes a vacuum chamber 76 and a vacuum exhaust pump 77 for exhausting the vacuum chamber 76. Inside the vacuum chamber 76, the unwinding roller 51 and the winding roller 52 that hold the negative electrode current collector 21, the traveling rollers 53 and 54, the cooling rollers 56, 57, and 58, and an oxygen gas are emitted. Oxygen nozzles 66 and 68, a silicon raw material 73 that is an evaporation source for supplying silicon, an evaporation crucible 74 that holds the silicon raw material 73, and an electron irradiation unit 75 for evaporating the silicon raw material 73 are provided. .

酸素ノズル66および68は、配管を介して、酸素流量制御部67および69と酸素ボンベ(図示せず)が接続されている。また、真空槽76の内部には遮蔽板60,61および62が設けられており、酸素ノズル66および68から出射された酸素およびケイ素原料73から蒸発したケイ素は、遮蔽板60と遮蔽板61の隙間および遮蔽板61と遮蔽板62の隙間を介して、負極集電体21の法線方向に対して傾斜した方向から負極集電体21の表面に供給される。   The oxygen nozzles 66 and 68 are connected to oxygen flow rate control units 67 and 69 and an oxygen cylinder (not shown) via a pipe. Also, shielding plates 60, 61 and 62 are provided inside the vacuum chamber 76, and oxygen emitted from the oxygen nozzles 66 and 68 and silicon evaporated from the silicon raw material 73 are contained in the shielding plates 60 and 61. It is supplied to the surface of the negative electrode current collector 21 from the direction inclined with respect to the normal direction of the negative electrode current collector 21 through the gap and the gap between the shielding plate 61 and the shielding plate 62.

遮蔽板60と遮蔽板61の隙間によって規定され、負極集電体21の表面にケイ素酸化物あるいはケイ素単体および酸素が供給される領域を負極活物質形成領域71、遮蔽板61と遮蔽板62の隙間によって規定され、負極集電体21の表面にケイ素酸化物あるいはケイ素単体および酸素が供給される領域を負極活物質形成領域72と呼ぶ。   A region defined by a gap between the shielding plate 60 and the shielding plate 61 and supplied with silicon oxide or silicon alone and oxygen on the surface of the negative electrode current collector 21 is defined as a negative electrode active material formation region 71, a shielding plate 61 and a shielding plate 62. A region defined by the gap and where silicon oxide or silicon alone and oxygen are supplied to the surface of the negative electrode current collector 21 is referred to as a negative electrode active material forming region 72.

このような蒸着装置80を用いて負極板20を形成する方法を以下に説明する。金属箔からなる負極集電体21を巻き出しローラ51に設置し、真空排気ポンプ77によって真
空槽76の排気を行う。真空槽76の真空度が所定の真空度に達すると、真空槽76の排気を行いながら負極集電体21を、巻き出しローラ51から走行ローラ53を介して冷却ローラ56,57および58に沿って走行させる。その間に、蒸発ルツボ74に入ったケイ素原料73に電子照射部75から電子を照射して、ケイ素を融解、蒸発させる。ケイ素の蒸発量は、膜厚モニタ63に接続された膜厚コントローラ(図示せず)を用いて制御する。同時に、酸素ノズル66および68から所定量の酸素を真空槽76に導入する。酸素の流量は、酸素流量制御部67および69で制御される。ケイ素および酸素は、遮蔽板60と遮蔽板61の隙間および遮蔽板61と遮蔽板62の隙間を通過して、負極活物質形成領域71と負極活物質形成領域72において、冷却ローラ56,57および58を走行する負極集電体21の表面に供給される。
A method of forming the negative electrode plate 20 using such a vapor deposition apparatus 80 will be described below. The negative electrode current collector 21 made of metal foil is installed on the unwinding roller 51, and the vacuum chamber 76 is evacuated by the vacuum evacuation pump 77. When the vacuum degree of the vacuum chamber 76 reaches a predetermined vacuum level, the negative electrode current collector 21 is moved along the cooling rollers 56, 57 and 58 from the unwinding roller 51 through the running roller 53 while exhausting the vacuum chamber 76. And run. Meanwhile, the silicon raw material 73 contained in the evaporation crucible 74 is irradiated with electrons from the electron irradiation unit 75 to melt and evaporate silicon. The evaporation amount of silicon is controlled by using a film thickness controller (not shown) connected to the film thickness monitor 63. At the same time, a predetermined amount of oxygen is introduced into the vacuum chamber 76 from the oxygen nozzles 66 and 68. The flow rate of oxygen is controlled by oxygen flow rate control units 67 and 69. Silicon and oxygen pass through the gap between the shielding plate 60 and the shielding plate 61 and the gap between the shielding plate 61 and the shielding plate 62, and in the negative electrode active material formation region 71 and the negative electrode active material formation region 72, the cooling rollers 56, 57 and 58 is supplied to the surface of the negative electrode current collector 21 that travels 58.

負極活物質層形成領域71では、走行している負極集電体21の法線方向に対して角度(0°〜90°)を持った方向からケイ素酸化物あるいはケイ素単体が入射し、負極活物質層形成領域72では、走行している負極集電体21の法線方向に対して角度(−90°〜0°)を持った方向からケイ素酸化物あるいはケイ素単体が入射する。負極活物質層形成領域71と線対称となる方向からケイ素が入射して堆積する。このとき、ケイ素酸化物あるいはケイ素単体は負極集電体21の法線方向から傾斜した角度で負極集電体21の表面に入射するため、負極集電体21の表面における凸部24に堆積しやすくなる。   In the negative electrode active material layer forming region 71, silicon oxide or silicon simple substance enters from a direction having an angle (0 ° to 90 °) with respect to the normal direction of the traveling negative electrode current collector 21, and the negative electrode active material layer is formed. In the material layer forming region 72, silicon oxide or silicon simple substance enters from a direction having an angle (−90 ° to 0 °) with respect to the normal direction of the traveling negative electrode current collector 21. Silicon is incident and deposited from a direction symmetrical to the negative electrode active material layer forming region 71. At this time, since silicon oxide or silicon simple substance is incident on the surface of the negative electrode current collector 21 at an angle inclined from the normal direction of the negative electrode current collector 21, it is deposited on the convex portion 24 on the surface of the negative electrode current collector 21. It becomes easy.

一方、負極集電体21の表面における凹部では、凸部24に堆積したケイ素酸化物あるいはケイ素単体の影となるため、ケイ素酸化物あるいはケイ素単体が入射しにくくなり、ケイ素酸化物あるいはケイ素単体の堆積量は凸部24に比べて減少する。負極集電体21にケイ素酸化物が堆積する際、ケイ素酸化物と酸素と負極集電体21の表面に拡散した添加元素が酸化物層23を形成する。酸化物層23が形成された負極集電体21は、走行ローラ54を介して巻き取りローラ52によって巻き取られる。その後、酸素流量制御部67および69を操作して酸素の流量を所定量に調整した後、酸化物層23が形成された負極集電体21を巻き取りローラ52から走行ローラ54を介して冷却ローラ58,57および56に沿って走行させてケイ素酸化物あるいはケイ素単体の成膜を行い、負極活物質層22の形成を行う。酸化物層23上に負極活物質層22が形成された負極集電体21は巻き出しローラ51に巻き取られる。酸素の流量調整を行い、ケイ素酸化物あるいはケイ素単体の堆積を行いながら、上記の巻き出しローラ51と巻き取りローラ52の往復を複数回繰り返すことで負極板20を形成する。   On the other hand, in the concave portion on the surface of the negative electrode current collector 21, it becomes a shadow of silicon oxide or silicon simple substance deposited on the convex portion 24, so that the silicon oxide or silicon simple substance becomes difficult to be incident. The amount of deposition decreases compared to the convex portion 24. When silicon oxide is deposited on the negative electrode current collector 21, silicon oxide, oxygen, and additive elements diffused on the surface of the negative electrode current collector 21 form an oxide layer 23. The negative electrode current collector 21 on which the oxide layer 23 is formed is taken up by a take-up roller 52 via a traveling roller 54. Thereafter, the oxygen flow rate control units 67 and 69 are operated to adjust the oxygen flow rate to a predetermined amount, and then the negative electrode current collector 21 on which the oxide layer 23 is formed is cooled from the take-up roller 52 via the traveling roller 54. The negative electrode active material layer 22 is formed by forming a film of silicon oxide or silicon alone by running along the rollers 58, 57 and 56. The negative electrode current collector 21 in which the negative electrode active material layer 22 is formed on the oxide layer 23 is wound around the unwinding roller 51. The negative electrode plate 20 is formed by repeating the reciprocation of the unwinding roller 51 and the winding roller 52 a plurality of times while adjusting the flow rate of oxygen and depositing silicon oxide or simple silicon.

本発明の別の実施の形態の負極板20を適用して得られた非水電解質二次電池の構成の一例については、本発明の一の実施の形態に示した円筒形のリチウムイオン二次電池100に使用する負極板10が本実施の形態の負極板20に変更になる以外構成に変更はないため説明を省略する。   An example of the configuration of the non-aqueous electrolyte secondary battery obtained by applying the negative electrode plate 20 of another embodiment of the present invention is the cylindrical lithium ion secondary shown in one embodiment of the present invention. Since the negative electrode plate 10 used for the battery 100 is not changed to the negative electrode plate 20 of the present embodiment, the configuration is not changed and the description thereof is omitted.

図2に示す蒸着装置50を用いて、負極集電体11の表面にケイ素酸化物あるいはケイ素単体を堆積させて酸化物層13および負極活物質層12を形成した。負極集電体11として、10原子%のMnを含む厚さが30μmの銅箔からなる負極集電体11を用いた。負極集電体11を巻き出しローラ51に設置した後、蒸着を行う前に、排気ポンプ77を用いて真空槽76の内部が3×10−4Paに達するまで排気を行った。その後、200gのケイ素原料73の入った蒸発ルツボ74に、電子照射部75から−10kVで加速した電子を照射して、ケイ素原料を融解、蒸発させた。ケイ素の蒸発量は0.04g/secとした。 Using the vapor deposition apparatus 50 shown in FIG. 2, silicon oxide or silicon simple substance was deposited on the surface of the negative electrode current collector 11 to form the oxide layer 13 and the negative electrode active material layer 12. As the negative electrode current collector 11, a negative electrode current collector 11 made of a copper foil having a thickness of 30 μm and containing 10 atomic% of Mn was used. After the negative electrode current collector 11 was placed on the unwinding roller 51 and before the vapor deposition, the vacuum pump 76 was evacuated using the exhaust pump 77 until the inside of the vacuum chamber 76 reached 3 × 10 −4 Pa. After that, the evaporation crucible 74 containing 200 g of the silicon raw material 73 was irradiated with electrons accelerated at −10 kV from the electron irradiation unit 75 to melt and evaporate the silicon raw material. The evaporation amount of silicon was 0.04 g / sec.

一方、酸素ノズル64から酸素を真空槽76に導入した。このとき、酸素ノズル64の先端が蒸発ルツボ74から200mmの高さに位置し、且つ、酸素の出射方向が、遮蔽板
59の隙間を介して冷却ローラ55に沿って走行する負極集電体11に向くように酸素ノズル64を配置した。また酸素流量制御部65を用いて、酸素ノズル64からの酸素流量を1200sccmに制御した。
On the other hand, oxygen was introduced into the vacuum chamber 76 from the oxygen nozzle 64. At this time, the negative electrode current collector 11 in which the tip of the oxygen nozzle 64 is located at a height of 200 mm from the evaporation crucible 74 and the emission direction of oxygen travels along the cooling roller 55 through the gap of the shielding plate 59. An oxygen nozzle 64 was disposed so as to face the surface. The oxygen flow rate control unit 65 was used to control the oxygen flow rate from the oxygen nozzle 64 to 1200 sccm.

その後、真空槽76において、巻き出しローラ51から走行ローラ53を介して冷却ローラ55に沿って1m/minの速度(基板走行速度)で負極集電体11を走行させて負極集電体11上に酸化物層13の形成を行い、巻き取りローラ52に巻き取った。その後、酸素ノズル64からの酸素流量を1080sccmに制御した後、巻き取りローラ52から走行ローラ54を介して冷却ローラ55に沿って1m/minの速度(基板走行速度)で酸化物層13が形成された負極集電体11を走行させて、酸化物層13上に負極活物質層12を形成した。以後、酸素流量を960sccmの条件でケイ素酸化物あるいはケイ素単体の成膜を行って負極板10を得た。   Thereafter, in the vacuum chamber 76, the negative electrode current collector 11 is caused to travel along the cooling roller 55 from the unwinding roller 51 through the travel roller 53 at a speed of 1 m / min (substrate travel speed). Then, the oxide layer 13 was formed and wound around the winding roller 52. Thereafter, the oxygen flow rate from the oxygen nozzle 64 is controlled to 1080 sccm, and then the oxide layer 13 is formed at a speed of 1 m / min (substrate travel speed) from the take-up roller 52 through the travel roller 54 and the cooling roller 55. The negative electrode current collector 11 thus produced was run to form the negative electrode active material layer 12 on the oxide layer 13. Thereafter, film formation of silicon oxide or silicon alone was performed under the condition of an oxygen flow rate of 960 sccm, and the negative electrode plate 10 was obtained.

本実施例1では、走行している負極集電体11に対して、負極集電体11の法線方向に対して−13°の角度を持った方向からケイ素酸化物あるいはケイ素単体が入射するように、蒸発ルツボ74および遮蔽板59の位置などを設定した。蒸発ルツボ74と負極集電体11との距離は、400mmとした。このようにして、巻き出しローラ51と巻き取りローラ52間を往復させながら負極集電体11の表面に、ケイ素および酸素を供給してケイ素酸化物あるいはケイ素単体を蒸着させ、酸化物層13および負極活物質層12を形成した。得られた酸化物層13の厚さは0.1μmであり、負極活物質層12の厚さは14μmの負極板10を作製した。   In Example 1, silicon oxide or silicon simple substance enters the traveling negative electrode current collector 11 from a direction having an angle of −13 ° with respect to the normal direction of the negative electrode current collector 11. As described above, the positions of the evaporation crucible 74 and the shielding plate 59 were set. The distance between the evaporation crucible 74 and the negative electrode current collector 11 was 400 mm. In this way, while reciprocating between the unwinding roller 51 and the winding roller 52, silicon and oxygen are supplied to the surface of the negative electrode current collector 11 to deposit silicon oxide or silicon alone, and the oxide layer 13 and A negative electrode active material layer 12 was formed. The obtained oxide layer 13 was 0.1 μm thick, and the negative electrode active material layer 12 was 14 μm thick.

次に正極板105は、正極活物質である平均粒径5μmのコバルト酸リチウム(LiCoO)の粉末と、導電材であるカーボンブラックと、バインダーであるポリフッ化ビニリデンとを、コバルト酸リチウム:カーボンブラック:ポリフッ化ビニリデン=92:3:5の質量比で混合し、これを分散媒であるN−メチルピロリドンへ投入して合剤スラリーとし、厚みが15μmのアルミニウムよりなる正極集電体に塗布して乾燥させ、加圧して正極活物質層を形成することにより作製した。 Next, the positive electrode plate 105 is composed of lithium cobalt oxide (LiCoO 2 ) powder having an average particle diameter of 5 μm as a positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride as a binder. Black: polyvinylidene fluoride = 92: 3: 5 is mixed at a mass ratio, and this is added to N-methylpyrrolidone as a dispersion medium to form a mixture slurry, which is applied to a positive electrode current collector made of aluminum having a thickness of 15 μm. It was prepared by drying and pressurizing to form a positive electrode active material layer.

負極板10と正極板105とをポリエチレン製多孔質絶縁体108を介して対向させて渦巻状に捲回し、電極群109を構成して電池ケース101の中に挿入した。次いで、炭酸エチレンと炭酸ジエチルとの1:1の体積比で混合した溶媒に、溶質として1MのLiPFを溶解して得られる非水電解液をケース101に注液した。この後、封口ガスケット103を周縁に取り付けた封口板104をケース101の開口部に挿入し、電池ケース101の開口部を内方向に折り曲げてかしめ封口して作製した円筒形のリチウムイオン二次電池を実施例1とした。 The negative electrode plate 10 and the positive electrode plate 105 were wound in a spiral shape so as to face each other through a polyethylene porous insulator 108, and an electrode group 109 was configured and inserted into the battery case 101. Next, a non-aqueous electrolyte obtained by dissolving 1M LiPF 6 as a solute in a solvent mixed with ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was poured into the case 101. After that, a cylindrical lithium ion secondary battery manufactured by inserting a sealing plate 104 with a sealing gasket 103 attached to the periphery thereof into the opening of the case 101, bending the opening of the battery case 101 inward, and sealing it by caulking. Was taken as Example 1.

図5に示す蒸着装置80を用いて、負極集電体21の表面にケイ素酸化物を堆積させて酸化物層23および負極活物質層22を形成した。負極集電体21として、10原子%のMnを含む表面粗さRaが2.0μm、厚さが40μmの銅箔からなる負極集電体21を用いた。負極集電体21を巻き出しローラ51に設置した後、蒸着を行う前に、排気ポンプ77を用いて真空槽76の内部が3×10−4Paに達するまで排気を行った。その後、200gのケイ素原料73の入った蒸発ルツボ74に、電子照射部75から−10kVで加速した電子を照射して、ケイ素原料を融解、蒸発させた。ケイ素の蒸発量は0.06g/secとした。 Using the vapor deposition apparatus 80 shown in FIG. 5, silicon oxide was deposited on the surface of the negative electrode current collector 21 to form the oxide layer 23 and the negative electrode active material layer 22. As the negative electrode current collector 21, a negative electrode current collector 21 made of a copper foil having a surface roughness Ra of 2.0 μm and a thickness of 40 μm containing 10 atomic% of Mn was used. After the negative electrode current collector 21 was installed on the unwinding roller 51 and before vapor deposition, the exhaust pump 77 was used to evacuate the inside of the vacuum chamber 76 until it reached 3 × 10 −4 Pa. After that, the evaporation crucible 74 containing 200 g of the silicon raw material 73 was irradiated with electrons accelerated at −10 kV from the electron irradiation unit 75 to melt and evaporate the silicon raw material. The evaporation amount of silicon was 0.06 g / sec.

一方、酸素ノズル66および68から酸素を真空槽76に導入した。このとき、酸素ノズル66の先端は蒸発ルツボ74から220mmの高さに位置し、且つ、酸素の出射方向が、遮蔽板60と遮蔽板61の隙間を介して冷却ローラ56と冷却ローラ57に沿って走
行する負極集電体21に対して平行となるように配置し、酸素ノズル68の先端は蒸発ルツボ74から220mmの高さに位置し、且つ、酸素の出射方向が、遮蔽板61と遮蔽板62の隙間を介して冷却ローラ57と冷却ローラ58に沿って走行する負極集電体11に対して平行となるように配置した。また、酸素流量制御部67を用いて酸素ノズル66からの酸素流量を900sccm、酸素流量制御部69を用いて酸素ノズル68からの酸素流量を900sccmに制御した。
On the other hand, oxygen was introduced into the vacuum chamber 76 from the oxygen nozzles 66 and 68. At this time, the tip of the oxygen nozzle 66 is located at a height of 220 mm from the evaporation crucible 74, and the oxygen emission direction is along the cooling roller 56 and the cooling roller 57 via the gap between the shielding plate 60 and the shielding plate 61. The tip of the oxygen nozzle 68 is located at a height of 220 mm from the evaporation crucible 74, and the direction of oxygen emission is shielded from the shielding plate 61. The cooling roller 57 and the negative electrode current collector 11 traveling along the cooling roller 58 are arranged in parallel to each other through a gap between the plates 62. Further, the oxygen flow rate from the oxygen nozzle 66 was controlled to 900 sccm using the oxygen flow rate control unit 67, and the oxygen flow rate from the oxygen nozzle 68 was controlled to 900 sccm using the oxygen flow rate control unit 69.

その後、真空槽76において、巻き出しローラ51から走行ローラ53を介して冷却ローラ56,57および58に沿って1.5m/minの速度(基板走行速度)で負極集電体21を走行させて負極集電体21上に酸化物層23の形成を行い、巻き取りローラ52に巻き取った。その後、酸素ノズル66および68の酸素流量をそれぞれ810sccmに制御した後、巻き取りローラ52から走行ローラ54を介して冷却ローラ58,57および56に沿って1.5m/minの速度(基板走行速度)で酸化物層23が形成された負極集電体21を走行させて、酸化物層23上に負極活物質層22を形成した。以後、酸素流量を720sccmの条件でケイ素酸化物あるいはケイ素単体の成膜を行って負極板20を得た。   Thereafter, the negative electrode current collector 21 is caused to travel at a speed of 1.5 m / min (substrate traveling speed) along the cooling rollers 56, 57 and 58 from the unwinding roller 51 through the traveling roller 53 in the vacuum chamber 76. The oxide layer 23 was formed on the negative electrode current collector 21, and wound around the winding roller 52. Thereafter, the oxygen flow rates of the oxygen nozzles 66 and 68 are controlled to 810 sccm, respectively, and then a speed of 1.5 m / min (substrate travel speed) from the take-up roller 52 through the travel roller 54 along the cooling rollers 58, 57 and 56. The negative electrode current collector 21 having the oxide layer 23 formed thereon was run to form the negative electrode active material layer 22 on the oxide layer 23. Thereafter, the negative electrode plate 20 was obtained by depositing silicon oxide or silicon alone under the condition of an oxygen flow rate of 720 sccm.

本実施例2では、走行している負極集電体21に対して、負極活物質形成領域71では負極集電体21の法線方向に対して角度(65°)を持った方向からケイ素酸化物あるいはケイ素単体が入射するように、負極活物質形成領域72では負極集電体21の法線方向に対して角度(−72°)を持った方向からケイ素酸化物あるいはケイ素単体が入射するように、蒸発ルツボ74および遮蔽板60,61および62の位置などを設定した。蒸発ルツボ74と冷却ローラ56および57を走行する負極集電体21の中心との距離と蒸発ルツボ74と冷却ローラ57および58を走行する負極集電体21の中心との距離は、それぞれ450mmとした。   In the second embodiment, the silicon oxide is oxidized from a direction having an angle (65 °) with respect to the normal direction of the negative electrode current collector 21 in the negative electrode active material formation region 71 with respect to the traveling negative electrode current collector 21. In the negative electrode active material formation region 72, silicon oxide or silicon simple substance is incident from a direction having an angle (−72 °) with respect to the normal direction of the negative electrode current collector 21 so that an object or silicon simple substance enters. The positions of the evaporation crucible 74 and the shielding plates 60, 61 and 62 were set. The distance between the evaporation crucible 74 and the center of the negative electrode current collector 21 running on the cooling rollers 56 and 57 and the distance between the evaporation crucible 74 and the center of the negative electrode current collector 21 running on the cooling rollers 57 and 58 are 450 mm, respectively. did.

このようにして、巻き出しローラ51と巻き取りローラ52間を往復させながら負極集電体21の表面に、ケイ素および酸素を供給してケイ素酸化物あるいはケイ素単体を蒸着させ、酸化物層23および負極活物質層22を形成した。得られた酸化物層23の厚さは0.2μmであり、負極活物質層22の厚さは15μmの負極板10を作製した。   In this way, while reciprocating between the unwinding roller 51 and the winding roller 52, silicon and oxygen are supplied to the surface of the negative electrode current collector 21 to deposit silicon oxide or silicon alone, and the oxide layer 23 and A negative electrode active material layer 22 was formed. The obtained oxide layer 23 was 0.2 μm thick, and the negative electrode active material layer 22 was 15 μm thick.

次に負極板10と実施例1で用いた正極板と同じ正極板105とを多孔質絶縁体108を介して捲回し、電極群109を構成して電池ケース101の中に挿入した。次いで、実施例1と同じ非水電解液をケース101に注液し、封口ガスケット103を周縁に取り付けた封口板104をケース101の開口部に挿入して電池ケース101の開口部を内方向に折り曲げてかしめ封口して作製した円筒形のリチウムイオン二次電池を実施例2とした。   Next, the negative electrode plate 10 and the same positive electrode plate 105 as the positive electrode plate used in Example 1 were wound through a porous insulator 108 to constitute an electrode group 109 and inserted into the battery case 101. Next, the same nonaqueous electrolyte as in Example 1 was poured into the case 101, and a sealing plate 104 with a sealing gasket 103 attached to the periphery was inserted into the opening of the case 101 so that the opening of the battery case 101 was inward. A cylindrical lithium ion secondary battery produced by bending and caulking and sealing was designated as Example 2.

(比較例1)
図2に示す蒸着装置50を用いて、Mnを含まない銅箔からなる負極集電体41を用いること以外は実施例1と同様の条件で負極集電体31に負極活物質層32の形成を行い、図6に示す酸化物層を有しない負極板30を作製した。次に実施例1と同様に作製した円筒形のリチウムイオン二次電池を比較例1とした。
(Comparative Example 1)
Formation of the negative electrode active material layer 32 on the negative electrode current collector 31 under the same conditions as in Example 1 except that the negative electrode current collector 41 made of a copper foil containing no Mn is used using the vapor deposition apparatus 50 shown in FIG. The negative electrode plate 30 having no oxide layer shown in FIG. 6 was produced. Next, a cylindrical lithium ion secondary battery produced in the same manner as in Example 1 was used as Comparative Example 1.

(比較例2)
図5に示す蒸着装置80を用いて、Mnを含まない表面粗さRaが2.0μm、厚さが40μmの銅箔からなる負極集電体41を用いること以外は実施例2と同様の条件で負極集電体41に負極活物質層42の形成を行い、図7に示す酸化物層を有しない負極板40を作製した。次に実施例1と同様に作製した円筒形のリチウムイオン二次電池を比較例2とした。
(Comparative Example 2)
The same conditions as in Example 2 except that a negative electrode current collector 41 made of a copper foil having a surface roughness Ra not containing Mn of 2.0 μm and a thickness of 40 μm is used, using the vapor deposition apparatus 80 shown in FIG. Then, the negative electrode active material layer 42 was formed on the negative electrode current collector 41, and the negative electrode plate 40 having no oxide layer shown in FIG. 7 was produced. Next, a cylindrical lithium ion secondary battery produced in the same manner as in Example 1 was referred to as Comparative Example 2.

上述した方法で得られた実施例および比較例の負極板の分析・評価方法および結果を説明する。ここでは、実施例および比較例の負極板における酸化物層13、酸化物層23、負極活物質層12、負極活物質層22の化学組成や厚さを測定した。さらに、これらの負極板を用いた電池を作製し、そのサイクル特性の測定と評価とを行った。   An analysis / evaluation method and results of the negative electrode plates of Examples and Comparative Examples obtained by the above-described method will be described. Here, the chemical compositions and thicknesses of the oxide layer 13, the oxide layer 23, the negative electrode active material layer 12, and the negative electrode active material layer 22 in the negative electrode plates of Examples and Comparative Examples were measured. Furthermore, batteries using these negative electrode plates were prepared, and the cycle characteristics were measured and evaluated.

化学組成の測定として、円筒形のリチウムイオン二次電池を構成する前の負極板をサンプリングした実施例1および実施例2の負極活物質層12、酸化物層13、負極活物質層22および酸化物層23の化学組成を以下の方法で測定を行った。まず、負極集電体11上に酸化物層13および負極活物質層12が形成された負極板10および負極集電体21上に酸化物層23および負極活物質層22が形成された負極板20からそれぞれ、幅が1cm、長さ1cmサイズの測定用サンプルを切り取った。   As the measurement of the chemical composition, the negative electrode active material layer 12, the oxide layer 13, the negative electrode active material layer 22 and the oxidation of Example 1 and Example 2 in which the negative electrode plate before constituting the cylindrical lithium ion secondary battery was sampled was sampled. The chemical composition of the physical layer 23 was measured by the following method. First, the negative electrode plate 10 in which the oxide layer 13 and the negative electrode active material layer 12 are formed on the negative electrode current collector 11 and the negative electrode plate in which the oxide layer 23 and the negative electrode active material layer 22 are formed on the negative electrode current collector 21 Samples for measurement each having a width of 1 cm and a length of 1 cm were cut from 20.

その後、X線光電子分光分析(XPS)法を用いて、負極活物質層12および負極活物質層22の表面からArエッチングを行って深さ方向の分析および露出表面のSi2p束縛エネルギーの測定を行い、負極活物質層12、酸化物層13、負極活物質層22および酸化物層23に含まれる元素の同定および酸素の組成比の平均値を算出した。さらに、比較例1および比較例2の負極板に対しても、上記と同様の方法で負極活物質層の化学組成を測定した。 Thereafter, using an X-ray photoelectron spectroscopy (XPS) method, Ar etching is performed from the surface of the negative electrode active material layer 12 and the negative electrode active material layer 22 to analyze the depth direction and measure the Si 2p binding energy of the exposed surface. Then, the identification of the elements contained in the negative electrode active material layer 12, the oxide layer 13, the negative electrode active material layer 22 and the oxide layer 23 and the average value of the oxygen composition ratio were calculated. Furthermore, the chemical composition of the negative electrode active material layer was measured for the negative electrode plates of Comparative Example 1 and Comparative Example 2 in the same manner as described above.

上記の分析の結果、実施例1の負極活物質層12の組成はSiO1.2、酸化物層13の組成はMnSiO1.5、実施例2の負極活物質層22の組成はSiO1.3、酸化物層23の組成はMnSiO1.6であった。比較例1の負極活物質層32の組成はSiO1.2であり、比較例2の負極活物質層42の組成はSiO1.3であった。また、活物質層および酸化物層の厚さの測定としては上記の化学組成を測定した深さ方向の分析結果から、ケイ素と酸素が検出された領域を負極活物質層の厚さとし、ケイ素と酸素とMnが検出された領域を酸化物層の厚さとした。 As a result of the above analysis, the composition of the negative electrode active material layer 12 of Example 1 is SiO 1.2 , the composition of the oxide layer 13 is MnSiO 1.5 , and the composition of the negative electrode active material layer 22 of Example 2 is SiO 1. 3 and the composition of the oxide layer 23 was MnSiO 1.6 . The composition of the negative electrode active material layer 32 of Comparative Example 1 was SiO 1.2 , and the composition of the negative electrode active material layer 42 of Comparative Example 2 was SiO 1.3 . In addition, the thickness of the active material layer and the oxide layer was measured from the depth direction analysis results obtained by measuring the above chemical composition, and the area where silicon and oxygen were detected was defined as the thickness of the negative electrode active material layer. The region where oxygen and Mn were detected was defined as the thickness of the oxide layer.

また、円筒形のリチウムイオン二次電池のサイクル特性の評価としては、作製した円筒形のリチウムイオン二次電池を25℃の条件下で充放電試験を行い、100サイクル目の容量維持率を求めた。容量維持率の測定は、各リチウムイオン二次電池に対して、1mA/cmの定電流密度で電池電圧が4.2Vに達するまで充電を行った後、1mA/cmの定電流密度で電池の電圧が2.5Vに達するまで放電を行った。100サイクル目の容量維持率は、初回放電容量に対する100サイクル目の放電容量の比率、すなわち(100サイクル目の放電容量/初回放電容量)%として算出した。得られた結果を(表1)に示す。 In addition, as an evaluation of the cycle characteristics of the cylindrical lithium ion secondary battery, the produced cylindrical lithium ion secondary battery is subjected to a charge / discharge test under a condition of 25 ° C., and the capacity retention rate at the 100th cycle is obtained. It was. The capacity retention rate was measured by charging each lithium ion secondary battery at a constant current density of 1 mA / cm 2 until the battery voltage reached 4.2 V, and then at a constant current density of 1 mA / cm 2. Discharging was performed until the voltage of the battery reached 2.5V. The capacity maintenance ratio at the 100th cycle was calculated as the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity, that is, (discharge capacity at the 100th cycle / initial discharge capacity)%. The obtained results are shown in (Table 1).

Figure 2011187395
Figure 2011187395

(表1)から分かるように、酸化物層13および酸化物層23を形成した実施例1および実施例2の負極板を用いたリチウムイオン二次電池の100サイクル経過後の容量維持率は、実施例1の負極板を用いたリチウムイオン二次電池で92%、実施例2の負極板を用いたリチウムイオン二次電池で97%を示しており、優れた充放電サイクル特性を有することがわかった。   As can be seen from (Table 1), the capacity retention rate after 100 cycles of the lithium ion secondary battery using the negative electrode plate of Example 1 and Example 2 in which the oxide layer 13 and the oxide layer 23 were formed was The lithium ion secondary battery using the negative electrode plate of Example 1 shows 92%, and the lithium ion secondary battery using the negative electrode plate of Example 2 shows 97%, and has excellent charge / discharge cycle characteristics. all right.

一方、酸化物層を形成していない比較例1および比較例2の負極板を用いたリチウムイオン二次電池の100サイクル経過後容量維持率は、比較例1の負極板を用いたリチウムイオン二次電池で75%、比較例2の負極板を用いたリチウムイオン二次電池で82%を示しており、実施例1および実施例2に比べて容量維持率は低下している。これは充放電に伴う負極活物質の膨張収縮によって、負極集電体から負極活物質の剥離が生じたためと考えられた。   On the other hand, the capacity retention after 100 cycles of the lithium ion secondary batteries using the negative electrode plates of Comparative Example 1 and Comparative Example 2 in which the oxide layer was not formed was the same as that of the lithium ion secondary battery using the negative electrode plate of Comparative Example 1. The secondary battery showed 75%, and the lithium ion secondary battery using the negative electrode plate of Comparative Example 2 showed 82%, and the capacity retention rate was lower than that of Example 1 and Example 2. This is considered to be because the negative electrode active material was peeled off from the negative electrode current collector due to the expansion and contraction of the negative electrode active material accompanying charge / discharge.

従って、負極集電体と負極活物質の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた合金層を形成することにより、充放電サイクル特性が向上できることが確認された。実施例1および実施例2の添加元素としてMnを例にあげたが、負極集電体の金属箔の主成分が銅の場合、Mn,Nb,Zr,Cr,V,Tc,Rcの少なくとも1種類を用いることで、負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた合金層を形成することが可能であり、充放電サイクル特性が向上できる。   Therefore, it was confirmed that the charge / discharge cycle characteristics can be improved by forming an alloy layer in which the elements contained in the metal foil of the negative electrode current collector are diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material. It was. Although Mn is taken as an example of the additive element of Example 1 and Example 2, when the main component of the metal foil of the negative electrode current collector is copper, at least one of Mn, Nb, Zr, Cr, V, Tc, and Rc is used. By using the type, it is possible to form an alloy layer in which the elements contained in the metal foil of the negative electrode current collector are diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material layer, and charge / discharge Cycle characteristics can be improved.

以上、実施の形態および実施例をあげて本発明の説明をしたが、本発明は上記の実施の形態および実施例に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態および実施例では、負極集電体11あるいは負極集電体21に酸化物層13あるいは酸化物層23を介して負極活物質層12あるいは負極活物質層22が設けられた負極板10あるいは負極板20について説明したが、更に他の層を有していてもよい。例えば、酸化物層13あるいは酸化物層23と負極活物質層12あるいは負極活物質層22との間に他の層を有していてもよく、負極活物質層12あるいは負極活物質層22の上に他の層を有していてもよい。   While the present invention has been described with reference to the embodiment and examples, the present invention is not limited to the above embodiment and example, and various modifications are possible. For example, in the above embodiments and examples, the negative electrode current collector 11 or the negative electrode current collector 21 is provided with the negative electrode active material layer 12 or the negative electrode active material layer 22 with the oxide layer 13 or the oxide layer 23 interposed therebetween. Although the negative electrode plate 10 or the negative electrode plate 20 was demonstrated, you may have another layer further. For example, another layer may be provided between the oxide layer 13 or the oxide layer 23 and the negative electrode active material layer 12 or the negative electrode active material layer 22. You may have another layer on top.

また、上記実施の形態および実施例ではリチウムイオン二次電池について説明したが、図3に示す構成の円筒形のリチウムイオン二次電池に限定されない。本発明の負極板は、円筒形のリチウムイオン二次電池の他に、コイン形、角形、ボタン形、薄型、大型、積層ラミネート形等の様々な形状の非水電解質二次電池に適用可能である。また、非水電解質二次電池の封止形態や電池を構成する各要素の材料も特に限定されない。また、二次電池に限らず、一次電池についても適用することができる。   Moreover, although the lithium ion secondary battery was demonstrated in the said embodiment and Example, it is not limited to the cylindrical lithium ion secondary battery of the structure shown in FIG. The negative electrode plate of the present invention can be applied to non-aqueous electrolyte secondary batteries of various shapes such as a coin shape, a square shape, a button shape, a thin shape, a large size, and a laminated laminate type in addition to a cylindrical lithium ion secondary battery. is there. Further, the sealing form of the nonaqueous electrolyte secondary battery and the material of each element constituting the battery are not particularly limited. Moreover, not only a secondary battery but a primary battery is applicable.

本発明の非水電解質二次電池用負極板は、円筒形のリチウムイオン二次電池の他に、コイン形、角形、ボタン形、薄型、大型、積層ラミネート形等の様々な形状の非水電解質二次電池に適用できる。これらの非水電解質二次電池は、優れたサイクル特性を有するので、PC、携帯電話、PDA等の携帯情報端末や、ビデオレコーダー、メモリーオーディオプレーヤー等のオーディオビジュアル機器などに有用である。   The negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte having various shapes such as a coin-shaped, square, button-shaped, thin, large-sized, laminated laminate type, etc. in addition to a cylindrical lithium ion secondary battery. Applicable to secondary battery. Since these non-aqueous electrolyte secondary batteries have excellent cycle characteristics, they are useful for portable information terminals such as PCs, mobile phones, and PDAs, and audiovisual equipment such as video recorders and memory audio players.

10,20 負極板
11,21 負極集電体
12,22 負極活物質層
13,23 酸化物層
24 凸部
50,80 真空蒸着部
51 巻き出しローラ
52 巻き取りローラ
53,54 走行ローラ
55,56,57,58 冷却ローラ
59,60,61,62 遮蔽板
63 膜厚モニタ
64,66,68 酸素ノズル
65,67,69 酸素流量制御部
70,71,72 活物質層形成領域
73 ケイ素原料(蒸発源)
74 蒸発ルツボ
75 電子照射部
76 真空槽
77 真空排気ポンプ
100 リチウムイオン二次電池
101 電池ケース
102 絶縁板
103 封口ガスケット
104 封口板
105 正極板
106 負極リード
107 正極リード
108 多孔質絶縁体
109 電極群
DESCRIPTION OF SYMBOLS 10,20 Negative electrode plate 11,21 Negative electrode collector 12,22 Negative electrode active material layer 13,23 Oxide layer 24 Convex part 50,80 Vacuum vapor deposition part 51 Unwinding roller 52 Winding roller 53,54 Traveling roller 55,56 , 57, 58 Cooling roller 59, 60, 61, 62 Shield plate 63 Film thickness monitor 64, 66, 68 Oxygen nozzle 65, 67, 69 Oxygen flow control unit 70, 71, 72 Active material layer formation region 73 Silicon raw material (evaporation) source)
74 Evaporating crucible 75 Electron irradiation unit 76 Vacuum tank 77 Vacuum exhaust pump 100 Lithium ion secondary battery 101 Battery case 102 Insulating plate 103 Sealing gasket 104 Sealing plate 105 Positive electrode plate 106 Negative electrode lead 107 Positive electrode lead 108 Porous insulator 109 Electrode group

Claims (7)

金属箔からなる負極集電体の表面にケイ素またはスズ単体、あるいはケイ素またはスズと酸素を含む化合物からなる負極活物質を担持させた非水系二次電池用負極板であって、前記負極集電体と負極活物質層の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成したことを特徴とする非水電解質二次電池用負極板。   A negative electrode plate for a non-aqueous secondary battery in which a negative electrode current collector made of metal foil is loaded with a negative electrode active material made of silicon or tin alone or a compound containing silicon or tin and oxygen, the negative electrode current collector A negative electrode plate for a nonaqueous electrolyte secondary battery, wherein an oxide layer in which an element contained in a metal foil of a negative electrode current collector is diffused into a negative electrode active material is formed at an interface between the body and the negative electrode active material layer. 前記負極集電体の金属箔に含まれる元素を金属箔の主成分よりも酸化物の形成傾向が強く、且つ金属箔中の拡散速度の速い元素とした請求項1に記載の非水電解質二次電池用負極板。   2. The non-aqueous electrolyte 2 according to claim 1, wherein the element contained in the metal foil of the negative electrode current collector is an element having a stronger tendency to form an oxide than the main component of the metal foil and having a high diffusion rate in the metal foil. Negative electrode for secondary battery. 前記負極集電体の金属箔の主成分を銅とし、この金属箔に含まれる元素をMn,Nb,Zr,Cr,V,Tc,Rcの少なくとも1種類以上とした請求項2に記載の非水電解質二次電池用負極板。   3. The non-electrode according to claim 2, wherein a main component of the metal foil of the negative electrode current collector is copper, and an element contained in the metal foil is at least one of Mn, Nb, Zr, Cr, V, Tc, and Rc. Negative electrode plate for water electrolyte secondary battery. 前記負極集電体として負極活物質を担持する金属箔の表面に多数の凹凸を形成した請求項1に記載の非水電解質二次電池用負極板。   The negative electrode plate for a nonaqueous electrolyte secondary battery according to claim 1, wherein a number of irregularities are formed on the surface of a metal foil carrying a negative electrode active material as the negative electrode current collector. 酸化物の形成傾向が強く、且つ金属箔中の拡散速度の速い元素を含んだ金属箔からなる負極集電体を酸素雰囲気中でケイ素またはスズと酸素の化合物からなる負極活物質の成膜処理を行い、この成膜時の熱反応により負極集電体と負極活物質の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成することを特徴とした非水電解質二次電池用負極板の製造方法。   Forming a negative electrode current collector made of a metal foil containing an element having a strong oxide formation tendency and a high diffusion rate in the metal foil with a negative electrode active material made of a compound of silicon or tin and oxygen in an oxygen atmosphere And forming an oxide layer in which the element contained in the metal foil of the negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material by a thermal reaction during the film formation. A method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery. 酸化物の形成傾向が強く、且つ金属箔中の拡散係数の速い元素を含んだ金属箔からなる負極集電体を酸素雰囲気中でケイ素またはスズと酸素の化合物からなる負極活物質の成膜処理を行った後、熱処理を行って負極集電体と負極活物質の界面に負極集電体の金属箔に含まれる元素を負極活物質に拡散させた酸化物層を形成することを特徴とした非水電解質二次電池用負極板の製造方法。   Forming a negative electrode current collector made of a metal foil containing an element having a strong oxide formation tendency and a fast diffusion coefficient in the metal foil with a negative electrode active material made of a compound of silicon or tin and oxygen in an oxygen atmosphere And performing heat treatment to form an oxide layer in which an element contained in the metal foil of the negative electrode current collector is diffused into the negative electrode active material at the interface between the negative electrode current collector and the negative electrode active material. The manufacturing method of the negative electrode plate for nonaqueous electrolyte secondary batteries. 正極集電体の表面に正極活物質を形成した正極板と負極集電体の表面に負極活物質を形成した負極板とを多孔質絶縁層を介して巻回または積層して構成した電極群を非水電解液とともに電池ケースに封入してなる非水電解質二次電池において、前記負極板として請求項1〜4のいずれかの非水電解質二次電池用負極板を用いたことを特徴とする非水電解質二次電池。   An electrode group formed by winding or laminating a positive electrode plate having a positive electrode active material formed on the surface of the positive electrode current collector and a negative electrode plate having a negative electrode current material formed on the surface of the negative electrode current collector via a porous insulating layer A non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte is enclosed in a battery case, wherein the negative electrode plate for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 is used as the negative electrode plate. Non-aqueous electrolyte secondary battery.
JP2010053989A 2010-03-11 2010-03-11 Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same Pending JP2011187395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053989A JP2011187395A (en) 2010-03-11 2010-03-11 Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053989A JP2011187395A (en) 2010-03-11 2010-03-11 Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2011187395A true JP2011187395A (en) 2011-09-22

Family

ID=44793430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053989A Pending JP2011187395A (en) 2010-03-11 2010-03-11 Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2011187395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474011C1 (en) * 2011-11-24 2013-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный университет им. П.Г. Демидова" Method to manufacture thin-film anode of lithium-ion accumulators based on films of nanostructured silicon coated with silicon dioxide
WO2023182087A1 (en) * 2022-03-22 2023-09-28 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474011C1 (en) * 2011-11-24 2013-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный университет им. П.Г. Демидова" Method to manufacture thin-film anode of lithium-ion accumulators based on films of nanostructured silicon coated with silicon dioxide
WO2023182087A1 (en) * 2022-03-22 2023-09-28 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4027966B2 (en) LITHIUM SECONDARY BATTERY ANODE, PROCESS FOR PRODUCING THE SAME, AND LITHIUM SECONDARY BATTERY HAVING A LITHIUM SECONDARY BATTERY ANODE
JP4865673B2 (en) Lithium secondary battery
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
JP4164541B2 (en) Anode for non-aqueous electrolyte secondary battery
KR101520035B1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP5189210B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2010098043A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2008072460A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
WO2008029719A1 (en) Nonaqueous electrolytic secondary cell
JP2010097843A (en) Lithium-ion secondary battery
KR101037032B1 (en) Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
CN101740810B (en) Secondary cell and anode
US20230088683A1 (en) Battery and method of manufacturing battery
WO2008044449A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
KR20090012204A (en) Electrode for electrochemical element, its manufacturing method, and electrochemical element using the same
JP2009076278A (en) Positive electrode and lithium secondary battery
JP4929763B2 (en) Lithium secondary battery
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2007128658A (en) Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery
CN112018395A (en) Secondary battery
US8129076B2 (en) Electrode for lithium batteries and method of manufacturing electrode for lithium batteries
JP2007250536A (en) Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
WO2013061921A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
JP2014192135A (en) Method of manufacturing positive electrode for lithium ion secondary battery, positive electrode, and lithium ion secondary battery
JP2011154786A (en) Apparatus for manufacturing electrode plate of electrochemical device